初中数学各项作图方法及原理
初中尺规作图详细讲解(含图)
初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法。
最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题。
历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”。
直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书。
还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形—-这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的。
初中数学五种作图基本概念及技巧
初中数学五种作图基本概念及技巧-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初中数学五种作图基本概念及技巧一、基本概念1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图.2.基本作图:最基本、最常用的尺规作图,通常称基本作图.3.五种常用的基本作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)平分已知角;(4)作线段的垂直平分线.(5)经过一点作已知直线的垂线4.掌握以下几何作图语句:(1)过点×、点×作直线××;或作直线××,或作射线××;(2)连结两点×、×;或连结××;(3)在××上截取××=××;(4)以点×为圆心,××为半径作圆(或弧);(5)以点×为圆心,××为半径作弧,交××于点×;(6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××;(7)延长××到点×,或延长××到点×,使××=××.5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了。
如:(1)作线段××=××;(2)作∠×××=∠×××;(3)作××(射线)平分∠×××;(4)过点×作××⊥××,垂足为×;(5)作线段××的垂直平分线××.二、尺规作图基本步骤和作图语言1、作线段等于已知线段已知:线段a 求作:线段AB,使AB=a 作法:(1)作射线AC (2)在射线AC上截取AB=a ,则线段AB就是所要求作的线段2、作角等于已知角已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)作射线O′A′.(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.3、作角的平分线已知:∠AOB, 求作:∠AOB内部射线OC,使:∠AOC=∠BOC,作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,大于1/2DE的长为半径作弧,在∠AOB内,两弧交于点C.(3)作射线OC.OC就是所求作的射线.4、作线段的垂直平分线(中垂线)或中点已知:线段AB求作:线段AB的垂直平分线作法:(1)分别以A、B为圆心,以大于AB的一半为半径在AB两侧画弧,分别相交于E、F两点。
初中数学几何作图基本作图技巧与方法
初中数学几何作图基本作图技巧与方法在初中数学的学习中,几何作图是一项重要的技能。
它不仅能够帮助我们更好地理解几何概念和定理,还能培养我们的空间想象力和逻辑思维能力。
接下来,让我们一起深入探讨初中数学几何作图的基本作图技巧与方法。
一、线段的作图1、作一条等于已知线段长度的线段首先,我们需要准备好直尺和铅笔。
假设已知线段为 AB,我们要作一条与 AB 长度相等的线段 CD。
步骤如下:(1)用直尺将已知线段 AB 量出长度。
(2)在纸上确定一个起点 C。
(3)将直尺的零刻度线与点 C 对齐,沿着直尺的边缘,从点 C 开始,根据量出的 AB 长度,在直尺相应刻度处标记出点 D。
(4)连接点C 和点D,线段CD 就是与线段AB 长度相等的线段。
2、作线段的平分线作线段的平分线,需要用到圆规。
假设要平分线段 AB。
(1)以点 A 为圆心,大于线段 AB 一半的长度为半径画弧。
(2)再以点 B 为圆心,同样长度为半径画弧,两弧分别交于点 M和点 N。
(3)连接点 M 和点 N,与线段 AB 相交于点 O,点 O 就是线段AB 的中点,直线 MO 就是线段 AB 的平分线。
二、角的作图1、作一个等于已知角大小的角已知角为∠AOB,要作一个与之相等的角∠MON。
步骤如下:(1)先作一条射线 OM。
(2)以点 O 为圆心,任意长为半径画弧,交∠AOB 的两边于点 P和点 Q。
(3)以点 M 为圆心,以 OP 的长为半径画弧,交射线 OM 于点 A'。
(4)以点 A'为圆心,以 PQ 的长为半径画弧,交前弧于点 B'。
(5)过点 B'作射线 ON,则∠MON 就是与∠AOB 相等的角。
2、作角的平分线对于一个角,比如∠AOB,要作其平分线。
(1)以点 O 为圆心,适当长度为半径画弧,分别交 OA、OB 于点C、D。
(2)分别以点 C、D 为圆心,大于二分之一 CD 长为半径画弧,两弧在∠AOB 内部交于点 E。
初中数学几何图形构造方法梳理
初中数学几何图形构造方法梳理几何图形构造方法梳理在初中数学学习中,几何图形构造是一个重要的部分,它涉及到直线、角度、三角形、四边形等各种图形的构造方法。
本文将梳理一些常见的初中数学几何图形构造方法,帮助学生更好地理解和掌握这些内容。
一、直线图形的构造方法1. 画线段:给定两个不同的点A和B,我们可以使用直尺在点A和B之间画一条直线段AB。
2. 画射线:给定一个起点A和一个方向,我们可以使用直尺在起点A开始,按照给定的方向延伸出一条射线。
3. 画平行线:给定一条直线L和一个点P,在点P处画一条与直线L平行的直线。
4. 画垂直线:给定一条直线L和一个点P,在点P处画一条与直线L垂直的直线。
二、角度的构造方法1. 画角:给定两条射线,将它们的起点重合,通过尺规作图的方法,可以构造出一个特定的角。
2. 以角的顶点为中心,以确定的角度为半径,画弧:给定一个角的顶点O和一个角度a,我们可以使用尺规作图的方法,在以O为中心,以a为半径的圆上选择一点P,然后连接OP,即可得到一个角为a的角。
3. 画平分线:给定一个角,我们可以使用尺规作图的方法,构造出这个角的平分线,即将这个角平分为两个相等的角。
4. 画垂线:给定一条直线L和一个点P,在点P处画一条与直线L垂直的直线。
三、三角形的构造方法1. 画等边三角形:给定一个边长,我们可以使用尺规作图的方法,构造一个边长相等的等边三角形。
2. 画等腰三角形:给定一个底边和两个底角,我们可以使用尺规作图的方法,构造一个具有底边和底角相等的等腰三角形。
3. 画直角三角形:给定一个直角,我们可以使用尺规作图的方法,在直角的一边上任选一点,然后以这个点为顶点,直角的两条边为另外两边,构造一个直角三角形。
4. 画任意三角形:给定三条边长a、b、c,我们可以使用尺规作图的方法,构造一个具有边长分别为a、b、c的任意三角形。
四、四边形的构造方法1. 画平行四边形:给定两条平行线L1和L2,以及一个点P,我们可以使用尺规作图的方法,在点P处作出一条与L1平行的线段,然后再以该线段为边作出一条与L2平行的线段,连接两个线段的两个端点,即可得到一个平行四边形。
初中尺规作图详细讲解含图
初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最着名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问径1题.若干着名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个着名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多着名数学家都束手无策,因为正七边形是不能由尺规作出的.·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的.·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题.⑵四等分圆周只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战.尺规作图的相关延伸:用生锈圆规(即半径固定的圆规)作图1.只用直尺及生锈圆规作正五边形==.2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点.4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、直线与弧交点、两直线交点 ,在已有一个圆的情况下,那么凡是尺规能作的,单用直尺也能作出!.五种基本作图:初中数学的五种基本尺规作图为:1.做一线段等于已知线段2.做一角等于已知角3.做一角的角平分线4.过一点做一已知线段的垂线5.做一线段的中垂线下面介绍几种常见的尺规作图方法:⑴ 轨迹交点法:解作图题的一种常见方法.解作图题常归结到确定某一个点的位置.如果这两个点的位置是由两个条件确定的,先放弃其中一个条件,那么这个点的位置就不确定而形成一个轨迹;若改变放弃另一个条件,这个点就在另一条轨迹上,故此点便是两个轨迹的交点.这个利用轨迹的交点来解作图题的方法称为轨迹交点法,或称交轨法、轨迹交截法、轨迹法.【例1】 电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A 、B 的距离必须相等,到两条高速公路m 、n 的距离也必须相等,发射塔P 应修建在什么位置?【分析】 这是一道实际应用题,关键是转化成数学问题,根据题意知道,点P 应满足两个条件,一是在线段AB 的垂直平分线上;二是在两条公路夹角的平分线上,所以点P 应是它们的交点.【解析】 ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是发射塔的位置.【例2】 在平面直角坐标系中,点A 的坐标是(4,0),O 是坐标原点,在直线3y x =+上求一点P ,使AOP ∆是等腰三角形,这样的P 点有几个?【解析】 首先要清楚点P 需满足两个条件,一是点P 在3y x =+上;二是AOP ∆必须是等腰三角形.其次,寻找P 点要分情况讨论,也就是当OA OP =时,以O 点为圆心,OA 为半径画圆,与直线有两个点1P 、2P ;当OA AP =时,以A 点为圆心,OA 为半径画圆,与直线无交点;当PO PA =时,作OA 的垂直平分线,与直线有一交点3P ,所以总计这样的P 点有3个.【例3】 设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r 的圆,使其与O ⊙及'O ⊙外切.【分析】 设M ⊙是符合条件的圆,即其半径为r ,并与O ⊙及'O ⊙外切,显然,点M 是由两个轨迹确定的,即M 点既在以O 为圆心以R r +为半径的圆上,又在以'O 为圆心以'R r +为半径的圆上,因此所求圆的圆心的位置可确定.若O ⊙与'O ⊙相距为b ,当2r b <时,该题无解,当2r b =有唯一解;当2r b >时,有两解.【解析】 以当O ⊙与'O ⊙相距为b ,2r b >时为例:⑴ 作线段OA R r =+,''O B R r =+.⑵ 分别以O ,'O 为圆心,以R r +,'R r +为半径作圆,两圆交于12,M M 两点.⑶ 连接1OM ,2OM ,分别交以R 为半径的O ⊙于D 、C 两点.⑷ 分别以12M M ,为圆心,以r 为半径作圆.∴12,M M ⊙⊙即为所求.【思考】若将例3改为:“设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r ()r R >的圆,使其与O ⊙ 内切,与'O ⊙外切.”又该怎么作图?⑵ 代数作图法:解作图题时,往往首先归纳为求出某一线段长,而这线段长的表达式能用代数方法求出,然后根据线段长的表达式设计作图步骤.用这种方法作图称为代数作图法.【例4】 只用圆规,不许用直尺,四等分圆周(已知圆心).【分析】 设半径为1..我们的任务就是做出这个长度..1的直的长度自然就出来了.【解析】 具体做法:⑴ 随便画一个圆.设半径为1.⑵ 先六等分圆周.⑶ 以这个距离为半径,分别以两个相对的等分点为圆心,同向作弧,交于一点.(“两个相对的等分点”其实就是直径的两端点啦!两弧交点与“两个相对的等分点”形成的是一个底为2,腰为..)⑷【例5】 求作一正方形,使其面积等于已知ABC ∆的面积.【分析】 设ABC ∆的底边长为a ,高为h ,关键是在于求出正方形的边长x ,使得212x ah =,所以x 是12a 与h 的比例中项.【解析】 已知:在ABC ∆中,底边长为a ,这个底边上的高为h ,求作:正方形DEFG ,使得:ABC DEFG S S ∆=正方形作法:⑴ 作线段12MD a =; ⑵ 在MD 的延长线上取一点N ,使得DN h =;⑶ 取MN 中点O ,以O 为圆心,OM 为半径作O ⊙;⑷ 过D 作DE MN ⊥,交O ⊙于E ,⑸ 以DE 为一边作正方形DEFG .正方形DEFG 即为所求.【例6】 在已知直线l 上求作一点M ,使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .【分析】 先利用代数方法求出点M 与圆心O 的距离d ,再以O 为圆心,d 为半径作圆,此圆与直线l 的交点即为所求.【解析】 ⑴ 作Rt OAB ∆,使得:90A ∠=︒,OA r =,AB a =.⑵ 以O 为圆心,OB 为半径作圆.若此圆与直线l 相交,此时有两个交点1M ,2M .1M ,2M 即为所求.若此圆与直线l 相切,此时只有一个交点M .M 即为所求.若此圆与直线l 相离,此时无交点.即不存在这样的M 点使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .⑶ 旋转法作图:有些作图题,需要将某些几何元素或图形绕某一定点旋转适当角度,以使已知图形与所求图形发生联系,从而发现作图途径.【例7】 已知:直线a 、b 、c ,且a b c ∥∥.求作:正ABC ∆,使得A 、B 、C 三点分别在直线a 、b 、c 上.【分析】 假设ABC ∆是正三角形,且顶点A 、B 、C 三点分别在直线a 、b 、c 上.作AD b ⊥于D ,将ABD ∆绕A 点逆时针旋转60︒后,置于'ACD ∆的位置,此时点'D 的位置可以确定.从而点C 也可以确定.再作60BAC ∠=︒,B 点又可以确定,故符合条件的正三角形可以作出.【解析】 作法:⑴ 在直线a 上取一点A ,过A 作AD b ⊥于点D ;⑵ 以AD 为一边作正三角形'ADD ;⑶ 过'D 作''D C AD ⊥,交直线c 于C ;⑷ 以A 为圆心,AC 为半径作弧,交b 于B (使B 与'D 在AC 异侧).⑸ 连接AB 、AC 、BC 得ABC ∆.ABC ∆即为所求.【例8】 已知:如图,P 为AOB ∠角平分线OM 上一点.求作:PCD ∆,使得90P ∠=︒,PC PD =,且C 在OA 上,D 在OB 上.【解析】 ⑴ 过P 作PE OB ⊥于E .⑵ 过P 作直线l OB ∥;⑶ 在直线l 上取一点M ,使得PM PE =(或'PM PE =);⑷ 过M (或'M )作MC l ⊥(或'M C l ⊥),交OA 于C (或'C )点;⑸ 连接PC (或'PC ),过P 作PD PC ⊥(或''PD PC ⊥)交OB 于D (或'D )点.连接,PD CD (或',''PD C D ).则PCD ∆(或''PC D ∆)即为所求.⑷ 位似法作图:利用位似变换作图,要作出满足某些条件的图形,可以先放弃一两个条件,作出与其位似的图形,然后利用位似变换,将这个与其位似得图形放大或缩小,以满足全部条件,从而作出满足全部的条件.【例9】 已知:一锐角ABC ∆.求作:一正方形DEFG ,使得D 、E 在BC 边上,F 在AC 边上,G 在AB 边上.【分析】 先放弃一个顶点F 在AC 边上的条件,作出与正方形DEFG 位似的正方形''''D E F G ,然后利用位似变换将正方形''''D E F G 放大(或缩小)得到满足全部条件的正方形DEFG .【解析】 作法:⑴ 在AB 边上任取一点'G ,过'G 作''G D BC ⊥于'D⑵ 以''G D 为一边作正方形''''D E F G ,且使'E 在'BD 的延长线上.⑶ 作直线'BF 交AC 于F .⑷ 过F 分别作''FG F G ∥交AB 于G ;作''FE F E ∥交BC 于E .⑸ 过G 作''GD G D ∥交BC 于D .则四边形DEFG 即为所求.⑸ 面积割补法作图:对于等积变形的作图题,通常在给定图形或某一确定图形上割下一个三角形,再借助平行线补上一个等底等高的另一个三角形,使面积不变,从而完成所作图形.【例10】 如图,过ABC ∆的底边BC 上一定点,P ,求作一直线l ,使其平分ABC ∆的面积.【分析】 因为中线AM 平分ABC ∆的面积,所以首先作中线AM ,假设PQ 平分ABC ∆的面积,在AMC ∆中先割去AMP ∆,再补上ANP ∆.只要NM AP ∥,则AMP ∆和AMP ∆就同底等高,此时它们的面积就相等了.所以PN 就平分了ABC ∆的面积.【解析】 作法:⑴ 取BC 中点M ,连接,AM AP ;⑵ 过M 作MN AP ∥交AB 于N ;⑶ 过P 、N 作直线l .直线l 即为所求.【例11】 如图:五边形ABCDE 可以看成是由一个直角梯形和一个矩形构成.⑴ 请你作一条直线l ,使直线l 平分五边形ABCDE 的面积;⑵ 这样的直线有多少条?请你用语言描述出这样的直线.【解析】 ⑴ 取梯形AFDE 的中位线MN 的中点O ,再取矩形BCDF 对角线的交点'O ,则经过点O ,'O 的直线l 即为所求;⑵ 这样的直线有无数条.设⑴中的直线l 交AE 于Q ,交BC 于R ,过线段RQ 中点P ,且与线段AE 、BC 均有交点的直线均可平分五边形ABCDE 的面积.【例12】 (07江苏连云港)如图1,点C 将线段AB 分成两部分,如果AC BC AB AC=,那么称点C 为线段AB 的黄金分割点. 某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为1S ,2S ,如果121S S S S =,那么称直线l 为该图形的黄金分割线. ⑴ 研究小组猜想:在ABC △中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是ABC △的黄金分割线.你认为对吗?为什么?⑵ 请你说明:三角形的中线是否也是该三角形的黄金分割线?⑶ 研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF CE ∥,交AC 于点F ,连接EF (如图3),则直线EF 也是ABC △的黄金分割线.请你说明理由.⑷ 如图4,点E 是ABCD Y 的边AB 的黄金分割点,过点E 作EF AD ∥,交DC 于点F ,显然直线EF 是ABCD Y 的黄金分割线.请你画一条ABCD Y 的黄金分割线,使它不经过ABCD Y 各边黄金分割点.【解析】 ⑴ 直线CD 是ABC △的黄金分割线.理由如下: 设ABC △的边AB 上的高为h . 12ADC S AD h=g △,12BDC S BD h =g △,12ABC S AB h =g △, ∴ADC ABC S AD S AB =△△,BDC ADC S BD S AD=△△. 又∵点D 为边AB 的黄金分割点,∴AD BD AB AD =.∴ADC BDC ABC ADC S S S S =△△△△.A CB 图1 AD图2 C A D 图3 C F E E 图4∴直线CD 是ABC △的黄金分割线.⑵ ∵三角形的中线将三角形分成面积相等的两部分, 此时1212S S S ==,即121S S S S ≠, ∴三角形的中线不可能是该三角形的黄金分割线.⑶ ∵DF CE ∥,∴DEC △和FCE △的公共边CE 上的高也相等,∴DEC FCE S S =△△.设直线EF 与CD 交于点G ,∴DGE FGC S S =△△. ∴ADC FGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形,BDC BEFC S S =△四边形. 又∵ADC BDC ABC ADC S S S S =△△△△,∴BEFC AEF ABC AEF S S S S =四边形△△△. ∴直线EF 也是ABC △的黄金分割线.⑷ 画法不惟一,现提供两种画法; 画法一:如答图1,取EF 中点G ,再过点G 作一直线分别交AB ,DC 于M ,N 点,则直线MN 就是ABCD Y 的黄金分割线.画法二:如答图2,在DF 上取一点N ,连接EN ,再过点F 作FM NE ∥交AB 于点M , 连接MN ,则直线MN 就是ABCD Y 的黄金分割线.E M (答案图1)E M (答案图2)。
初中几何尺规作图总结归纳
初中几何尺规作图总结归纳在初中数学学习中,几何部分是一个复杂而又有趣的内容。
其中,几何尺规作图是一个重要的知识点,通过使用尺规和直尺进行各种图形的构建和分析。
在本文中,我将对初中几何尺规作图进行总结和归纳,从理论到实践,为大家提供一个全面的了解。
理论基础几何尺规作图的基础是尺规和直尺。
在进行尺规作图时,我们需要使用一支尺子和一根没有刻度的直尺。
尺规的长度一般为15cm或30cm,在作图时要注意尺规的摆放和固定,以确保精确度和准确性。
作图步骤尺规作图的步骤一般分为三个部分:已知条件、构图、证明。
已知条件:根据题目给出的已知条件,我们首先要明确图形的特征和要求。
这是解决问题的起点,只有明确了已知条件,我们才能正确地进行后续的构图和证明。
构图:根据已知条件,我们需要使用尺规和直尺进行图形的构建。
构图时,要注意使用正确的工具和技巧,例如画垂线、平行线等。
同时,要保持手的稳定和准确的测量,以确保最终的作图结果正确无误。
证明:在完成构图后,我们需要对所得图形进行证明。
证明的过程中,需要运用尺规作图的基本原理和性质,进行推理和论证。
通过合理的推导过程,我们可以得出图形的性质和结论,进一步巩固和应用几何知识。
基本作图方法1. 作点:通过特定的条件,我们可以通过尺规作图的方式,在平面上标出一个点。
常见的作点方法有:作单位线段、作等分线段、作垂直平分线等。
2. 作线段:通过已知条件,我们可以使用尺规和直尺作出特定长度的线段。
作线段的方法包括:作单位线段的倍数、作等线段、作半线段等。
3. 作角:在几何尺规作图中,我们可以通过作线段和作弧的方式来构建特定的角度。
常见的作角方法有:作等角、作垂直角、作等分角等。
4. 作垂线和平行线:作垂线和平行线是几何尺规作图中常用的方法之一。
通过作垂线和平行线,我们可以解决很多与角度和线段有关的问题。
几何尺规作图的应用几何尺规作图在实际生活中有着广泛的应用。
例如,在建筑设计中,我们可以通过几何尺规作图来绘制房屋的平面图和立体图。
初中尺规作图详细讲解(含图)
初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法. 最简单的尺规作图有如下三条:⑴ 经过两已知点可以画一条直线;⑵ 已知圆心和半径可以作一圆;⑶ 两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法. 用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点. 一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴ 三等分角问题:三等分一个任意角;⑵ 倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶ 化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”. 直至1837 年,万芝尔(Pierre Laurent Wantzel )首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882 年,德国数学家林德曼(Ferdinand Lindemann )证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径r 1时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19 世纪出现的伽罗华理论. 尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意. 数学家Underwood Dudley 曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个著名问题:⑴ 正多边形作法·只使用直尺和圆规,作正五边形. ·只使用直尺和圆规,作正六边形. ·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的.·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的.·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是 2 的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题.⑵ 四等分圆周只准许使用圆规,将一个已知圆心的圆周 4 等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战.尺规作图的相关延伸:用生锈圆规(即半径固定的圆规)作图1. 只用直尺及生锈圆规作正五边形2. 生锈圆规作图,已知两点A、B ,找出一点C使得AB BC CA.3. 已知两点A、B ,只用半径固定的圆规,求作C使C是线段AB的中点.4. 尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达. 10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的 2 点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、直线与弧交点、两直线交点 ,在已有一个圆的情况下,那么凡是尺规能作的,单用直尺也能作出! . 五种基本作图: 初中数学的五种基本尺规作图为:1.做一线段等于已知线段2.做一角等于已知角3. 做一角的角平分线4.过一点做一已知线段的垂线5.做一线段的中垂线 下面介绍几种常见的尺规作图方法: ⑴ 轨迹交点法: 解作图题的一种常见方法 . 解作图题常归结到确定某一个点的位置 . 如果这两个点的位置是由两个条件确定的,先放弃其中一个条件,那么这个点的位置就不确定而形成一个轨迹;若改 变放弃另一个条件,这个点就在另一条轨迹上,故此点便是两个轨迹的交点 交点来解作图题的方法称为轨迹交点法,或称交轨法、轨迹交截法、轨迹法例 1】 电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇 相等,到两条高速公路 m 、 n 的距离也必须相等,发射塔 P 应修建在什么位置?分析】 这是一道实际应用题,关键是转化成数学问题,根据题意知道,点 P 应满足两个条件,一是在线段 AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点 P 应是它们的交点 .解析】 ⑴ 作两条公路夹角的平分线 OD 或 OE ;⑵ 作线段 AB 的垂直平分线 FG ;则射线 OD , OE 与直线 FG 的交点 C 1 , C 2 就是发射塔的位置 .例 2】 在平面直角坐标系中,点 A 的坐标是 (4 , 0) , O 是坐标原点,在直线 y x 3上求一点 P ,使 AOP是等腰三角形,这样的 P 点有几个?解析】 首先要清楚点 P 需满足两个条件,一是点 P 在 y x 3上;二是 AOP 必须是等腰三角形 .其次,寻找P 点要分情况讨论,也就是当 OA OP 时,以 O 点为圆心, OA 为半径画圆,与直线有两个点 P 1、 P 2; 当 OA AP 时,以 A 点为圆心, OA 为半径画圆,与直线无交点;当 PO PA 时,作 OA 的垂直平分线,. 这个利用轨迹的A 、B 的距离必须C2G与直线有一交点 P 3,所以总计这样的 P 点有 3个.分析】 设⊙M 是符合条件的圆,即其半径为 r ,并与 ⊙O 及⊙O '外切,显然,点 M 是由两个轨迹确定的,即M 点既在以 O 为圆心以 R r 为半径的圆上, 又在以 O'为圆心以 R' r 为半径的圆上, 因此所求圆的圆 心的位置可确定 . 若⊙O 与⊙O'相距为 b ,当 2r b 时,该题无解,当 2r b 有唯一解;当 2r b 时, 有两解 .解析】 以当⊙O 与 ⊙O '相距为 b ,2r b 时为例:⑴ 作线段 OA R r , O' B R' r .⑵ 分别以 O , O '为圆心,以 R r , R' r 为半径作圆,两圆交于 M 1,M 2 两点. ⑶ 连接 OM 1 , OM 2 ,分别交以 R 为半径的 ⊙O 于 D 、C 两点. ⑷ 分别以 M 1,M 2 为圆心,以 r 为半径作圆 . ∴⊙M 1,⊙M 2 即为所求 .思考】若将例 3 改为: “设⊙O 与⊙O '相离,半径分别为 R 与 R' ,求作半径为 r (r R)的圆,使其与 ⊙O 内切,与 ⊙O'外切. ”又该怎么作图?⑵ 代数作图法: 解作图题时,往往首先归纳为求出某一线段长,而这线段长的表达式能用代数方法求出,然 后根据线段长的表达式设计作图步骤 . 用这种方法作图称为代数作图法 .【例 4】 只用圆规,不许用直尺,四等分圆周(已知圆心).【分析】 设半径为 1. 可算出其内接正方形边长为 2 ,也就是说用这个长度去等分圆周 .我们的任务就是做出这 个长度 . 六等分圆周时会出现一个 3的长度 .设法构造斜边为 3 ,一直角边为 1的直角三角形, 2 的 长度自然就出来了 .【解析】 具 体做法:⑴ 随便画一个圆 . 设半径为 1.⑵ 先六等分圆周 . 这时隔了一个等分点的两个等分点距离为例 3】 设⊙O 与 ⊙O '相离,半径分别为 R 与 R',求作半径为 r 的圆,使其与 ⊙O 及⊙O'外切 .rMDO' O R'RrCMAB⑶ 以这个距离为半径, 分别以两个相对的等分点为圆心, 同向作弧, 交于一点 .( “两个相对的等分点其实就是直径的两端点啦! 两弧交点与 “两个相对的等分点 ”形成的是一个底为 2,腰为 3 的等腰三 角形. 可算出顶点距圆心距离就是 2 .) ⑷ 以 2 的长度等分圆周就可以啦!例 5】 求作一正方形,使其面积等于已知 ABC 的面积 .分析】 设 ABC 的底边长为 a ,高为 h ,关键是在于求出正方形的边长 x ,使得 x 2 1 ah ,所以 x 是 1a 与h 的22 比例中项 .解析】 已知:在 ABC 中,底边长为 a ,这个底边上的高为 h ,求作:正方形 DEFG ,使得: S 正方形 DEFG S ABC作法:⑴ 作线段 MD 1 a ;2⑵ 在 MD 的延长线上取一点 N ,使得 DN h ;⑶ 取 MN 中点 O ,以 O 为圆心, OM 为半径作 ⊙O ; ⑷ 过 D 作 DE MN ,交⊙O 于 E , ⑸ 以 DE 为一边作正方形 DEFG . 正方形 DEFG 即为所求 .分析】 先利用代数方法求出点 M 与圆心 O 的距离 d ,再以 O 为圆心, d 为半径作圆,此圆与直线 l 的交点即 为所求 .解析】 ⑴ 作Rt OAB ,使得: A 90 ,OA r , AB a .例 6】 在已知直线 l 上求作一点 M ,使得过 M 作已知半径为 r 的 ⊙O 的切线,其切线长为a.a⑵ 以O 为圆心,OB 为半径作圆若此圆与直线l相交,此时有两个交点M1,M2.M1,M2 即为所求.若此圆与直线l相切,此时只有一个交点M.M即为所求.若此圆与直线l 相离,此时无交点.即不存在这样的M 点使得过M 作已知半径为r 的⊙O的切线,其切线长为 a.⑶ 旋转法作图:有些作图题,需要将某些几何元素或图形绕某一定点旋转适当角度,以使已知图形与所求图形发生联系,从而发现作图途径.例7】已知:直线a、b、c,且a∥b∥c.求作:正ABC ,使得A、 B 、C三点分别在直线a、b、c上.ab分析】假设ABC是正三角形,且顶点 A 、 B 、C三点分别在直线a、b、c上.作AD b于D,将ABD绕A点逆时针旋转60 后,置于ACD'的位置,此时点D' 的位置可以确定.从而点C也可以确定. 再作BAC 60 , B 点又可以确定,故符合条件的正三角形可以作出.解析】作法:⑴ 在直线a上取一点A,过A作AD b于点 D ;⑵ 以AD 为一边作正三角形ADD ' ;⑶ 过D'作D'C AD ' ,交直线 c 于C;⑷ 以A为圆心,AC为半径作弧,交b于B(使B与D'在AC异侧).⑸ 连接AB 、AC 、BC 得ABC .ABC 即为所求.例8】已知:如图,P 为AOB 角平分线OM 上一点.求作:PCD ,使得P 90 ,PC PD,且C在OA上,D在OB上.解析】 ⑴ 过 P 作 PE OB 于 E .⑵ 过 P 作直线 l ∥OB ;⑶ 在直线 l 上取一点 M ,使得 PM PE (或 PM ' PE );⑷ 过M (或M')作MC l (或 M'C l ),交OA 于C (或C')点;⑸ 连接PC (或PC' ),过 P 作PD PC (或PD' PC')交OB 于D (或 D')点. 连接 PD,CD (或 PD',C'D').则 PCD (或 PC'D')即为所求 .⑷ 位似法作图: 利用位似变换作图,要作出满足某些条件的图形,可以先放弃一两个条件,作出与其位似的 图形,然后利用位似变换,将这个与其位似得图形放大或缩小,以满足全部条件,从而作出 满足全部的条件 .【例 9】 已知:一锐角 ABC .求作:一正方形 DEFG ,使得 D 、 E 在BC 边上, F 在AC 边上, G 在AB 边上.分析】 先放弃一个顶点 F 在 AC 边上的条件, 作出与正方形 DEFG 位似的正方形 D 'E 'F ' G' ,然后利用位似变换将正方形 D'E'F 'G '放大(或缩小)得到满足全部条件的正方形DEFG .解析】 作 法:⑴ 在 AB 边上任取一点 G',过 G'作G'D' BC 于 D'⑵ 以G'D '为一边作正方形 D'E'F'G',且使 E'在 BD '的延长线上 . ⑶ 作直线 BF'交 AC 于 F .⑷ 过F 分别作 FG ∥F'G'交 AB 于G ;作 FE ∥F'E'交BC 于E . ⑸ 过G 作GD ∥G'D'交 BC 于 D . 则四边形 DEFG 即为所求 .A⑸ 面积割补法作图:对于等积变形的作图题,通常在给定图形或某一确定图形上割下一个三角形,再借助平行线补上一个等底等高的另一个三角形,使面积不变,从而完成所作图形.【例10】如图,过ABC的底边BC上一定点,P ,求作一直线l ,使其平分ABC的面积.分析】因为中线AM 平分ABC的面积,所以首先作中线AM ,假设PQ平分ABC的面积,在AMC 中先割去AMP ,再补上ANP .只要NM ∥ AP ,则AMP 和AMP就同底等高,此时它们的面积就相等了. 所以PN 就平分了ABC的面积.解析】作法:⑴ 取BC中点M ,连接AM ,AP;⑵ 过M 作MN∥AP交AB于N;⑶ 过P、N 作直线l . 直线l 即为所求.例11】如图:五边形ABCDE 可以看成是由一个直角梯形和一个矩形构成⑴ 请你作一条直线l ,使直线l 平分五边形ABCDE 的面积;⑵ 这样的直线有多少条?请你用语言描述出这样的直线.解析】⑴ 取梯形AFDE 的中位线MN 的中点O ,再取矩形BCDF 对角线的交点O ' ,则经过点O,O'的直线l 即为所求;⑵ 这样的直线有无数条. 设⑴中的直线l 交AE于Q,交BC于R,过线段RQ中点P ,且与线段AE、BC均有交点的直线均可平分五边形ABCDE的面积.例12】(07江苏连云港)如图1,点C将线段AB分成两部分,如果AC BC,那么称点C 为线段AB的黄金分AB AC割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2 ,如果S1 S2,那么称直线S S1 l 为该图形的黄金分割线.⑴ 研究小组猜想:在△ABC 中,若点 D 为AB边上的黄金分割点(如图 2 ),则直线CD是△ABC 的黄金分割线.你认为对吗?为什么?⑵ 请你说明:三角形的中线是否也是该三角形的黄金分割线?⑶ 研究小组在进一步探究中发现: 过点 C 任作一条直线交 AB 于点 E ,再过点 D 作直线 DF ∥CE ,交AC 于点F ,连接EF (如图3),则直线 EF 也是△ABC 的黄金分割线.请你说明理由.⑷ 如图 4 ,点 E 是 ABCD 的边 AB 的黄金分割点, 过点 E 作 EF ∥ AD ,交 DC 于点 F ,显然直线EF 是 ABCD 的黄金分割线.请你画一条 ABCD 的黄金分割线, 使它不经过 ABCD 各边黄金分割 点.解析】 ⑴ 直线 CD 是△ABC 的黄金分割线.理由如下:设 △ ABC 的边 AB 上的高为 h .1112 BD h , S △ABC 2AB h ,S △ ADC ADS △BDC BDS△ ABCABS △ ADC AD又∵点 D 为边 AB 的黄金分割点,∴AD BDS △ ADC S △ BDC . AB ADS△ ABC S △ ADC∴直线 CD 是 △ ABC 的黄金分割线.⑵ ∵ 三角形的中线将三角形分成面积相等的两部分, 此时 S 1 S 2 1S ,即 S1 S2 ,2 S S 1 ∴三角形的中线不可能是该三角形的黄金分割线.⑶ ∵ DF ∥ CE ,∴ △DEC 和 △FCE 的公共边 CE 上的高也相等,设直线 EF 与CD 交于点 G ,∴ S △ DGE S △ FGC . ∴ S △ ADCS四边形 AFGDS △ FGCS四边形 AFGDS△ DGES△ AEF ,∴直线 EF 也是 △ ABC 的黄金分割线. ⑷ 画法不惟一,现提供两种画法;A C B图 11 S△ADC2 AD h ,S△ BDCS△ DECS△FCE又∵S△ ADC S △ BDC S△ AEFS四边形BEFCS△ ABC,∴S△ ADCS△ ABCS△ AEF图2图3图4S△ BDCS四边形 BEFC .答案图 1) 答案图 2)画法一:如答图1,取EF中点G ,再过点G作一直线分别交AB,DC于M,N点,则直线MN 就是ABCD 的黄金分割线.画法二:如答图2,在DF上取一点N,连接EN ,再过点 F 作FM∥NE交AB于点M,连接MN ,则直线MN 就是ABCD 的黄金分割线.。
5种基本作图方法的原理
5种基本作图方法的原理5种基本作图方法的原理概括如下:
一、直角坐标图
1. 建立直角坐标系,X Y轴代表变量。
2. 根据数据在坐标平面标出点的位置。
3. 连接点可得到曲线图形。
4. 显示变量之间的数量对应关系。
5. 直观显示曲线变化趋势和模式。
二、极坐标图
1. 极坐标以极轴和角度表示平面上的点。
2. 适合表示角度分布规律的数据。
3. 通过极角和半径长度描绘图形。
4. 常用于表示周期性和对称分布模式。
三、柱形图
1. 使用矩形柱表示分类数据的大小。
2. 柱的高度表示数量或类别的大小。
3. 便于直观比较不同类别的数量差异。
4. 可以绘制简单或分组组合柱形图。
四、饼图
1. 将数据用扇形切片表示,圆心角大小对应数量。
2. 饼图周长表示总量,弧长表示类别比例。
3. 直观展示部分与整体的占比情况。
4. 常用于结构比、成分分析等数据。
五、流程图
1. 以框图和箭头表示事件或工作的流程。
2. 顺序或分支关系一目了然。
3. 直观描述复杂流程的步骤或结构。
4. 用于操作流程、组织结构、逻辑关系表达。
这5种都是基础而重要的作图方法,原理简单直观,应用广泛,掌握后可以绘制出清晰有效的统计图表,进行数据分析和呈现。
组合应用也可以实现更丰富的作图展示效果。
初中尺规作图总结
初中尺规作图总结一、引言初中数学学习中,尺规作图是一个重要的内容。
尺规作图是通过使用直尺、圆规等绘图工具进行准确、规范的绘制图形的方法。
在初中阶段,学生主要学习了直线的作图、角的作图以及等腰三角形、菱形等特殊图形的作图方法。
本文将总结初中尺规作图相关的基本知识和作图方法,帮助初中生更好地掌握这一技能。
二、直线的作图1. 已知一点和一条直线,作与该直线垂直的直线步骤:1.以已知直线上的一点为圆心,画一个任意半径的圆;2.在圆上任取一点,分别与已知直线上的点相连;3.分别以这两条线段为直径作圆;4.两个圆的交点即为垂直于已知直线的直线。
2. 已知两点,作两点之间的线段步骤:1.以其中一个点为圆心,另一个点到该点的距离为半径作圆;2.以另一个点为圆心,与上述圆的交点为半径作圆;3.两个圆的交点即为所求线段的两个端点。
三、角的作图1. 已知一条边和一个角,作与给定角相等的角步骤:1.在给定角的一边上选择一个点A;2.以A为圆心,以给定边的长度为半径作圆;3.以给定角的另一边为直径作弧交于点B;4.连接B与A,所得线段即为所求角的一边。
2. 两直线相交成的角步骤:1.已知两直线AB和CD相交于点E;2.以E为圆心,任意半径作圆与两直线交于两点F、G;3.以F和G为圆心分别作等半径的圆;4.两个圆的交点分别连接到E点,所得线段即为所求角的一边。
四、特殊图形的作图1. 等腰三角形的作图步骤:1.已知底边和底边上的一个高;2.以底边上的点为圆心,高为半径作圆、两条连线;3.连接两个圆的交点与底边上的点,所得线段即为所求等腰三角形的两边。
2. 正方形的作图步骤:1.已知正方形的一条边;2.将该边平分,并在平分点处以该边长为边长作正方形;3.连接正方形的四个顶点,所得线段即为所求正方形的四条边。
五、总结尺规作图是初中数学学习中的重要内容,通过尺规作图的练习,可以帮助学生巩固几何知识,提高几何思维能力。
本文总结了初中数学中常见的尺规作图方法,包括直线的作图、角的作图以及特殊图形的作图。
初二数学几何作图基本作图方法与技巧
初二数学几何作图基本作图方法与技巧在初二数学的学习中,几何作图是一项非常重要的内容。
它不仅能够帮助我们更直观地理解几何概念和定理,还能培养我们的动手能力和空间想象力。
接下来,就让我们一起来了解一下初二数学几何作图中常见的基本作图方法与技巧。
一、作一条线段等于已知线段这是几何作图中最基础的操作之一。
首先,我们需要准备好直尺和圆规。
步骤如下:1、用直尺画出一条射线。
2、以射线的端点为圆心,以已知线段的长度为半径,用圆规在射线上截取一段,所得到的线段就等于已知线段。
这个作图方法的关键在于圆规半径的调整要准确,以确保作出的线段长度与已知线段相等。
二、作一个角等于已知角这个作图稍微复杂一些,但按照以下步骤来做,也能轻松完成。
1、先作一条射线,作为新角的一边。
2、以已知角的顶点为圆心,任意长为半径画弧,交已知角的两边于两点。
3、以新角一边的端点为圆心,以刚才同样的长度为半径画弧,交新角的这边于一点。
4、以这点为圆心,量取已知角弧上两点之间的距离为半径画弧,与前弧相交。
5、连接新角一边的端点和这个交点,就得到了与已知角相等的角。
在这个作图过程中,要注意每一步的操作都要准确,特别是弧的半径和弧上两点之间距离的量取。
三、作已知线段的垂直平分线垂直平分线的作图在解决很多几何问题时都非常有用。
步骤如下:1、分别以线段的两个端点为圆心,以大于线段一半长度为半径画弧,两弧分别在线段两侧相交。
2、连接这两个交点,所得到的直线就是线段的垂直平分线。
这里要注意圆规半径的选择,一定要大于线段长度的一半,否则两弧可能无法相交。
四、作已知角的平分线角平分线的作图可以帮助我们更好地理解角的性质。
具体步骤:1、以角的顶点为圆心,任意长度为半径画弧,交角的两边于两点。
2、分别以这两个交点为圆心,以大于两点之间距离一半的长度为半径画弧,两弧在角内相交。
3、连接角的顶点和这个交点,这条射线就是角的平分线。
同样,圆规半径的选择要恰当,以保证作图的准确性。
初中数学 尺规作图
返回目录
答图1
第七单元 图形与变换
返回目录
(2) 在 (1) 所 作 的 图 中 , 若 ∠ BAD = 45° , 且 ∠ CAD = 2 ∠ BAC , 证 明:△BEF为等边三角形.
证明:∵AC=AD,AF平分∠CAD,
∴∠CAF=∠DAF,AF⊥CD.
∴∠AFC=90°.
第七单元 图形与变换
步骤与原理
已知:直线 AB 和 AB 外一点 C,求作:AB
的垂线,使它经过点 C
过一 点作 已知 直线 的垂
线
点 在 直 线 外
作法:1.任意取点 K,使点 K 和点 C 在 AB
的两旁;2.以点 C 为圆心,CK 长为半径画
弧,交 AB 于点 D,E;3.分别以点 D,E 为
于点D和点E,若∠B=50°,则∠CAD的度数是
A.30° C.50°
B.40° D.60°
返回目录
( A)
第七单元 图形与变换
返回目录
2.如图,已知平行四边形AOBC的顶点O(0,0),B(4,0),C(5, 3 ),
∠AOB=60°,点B在x轴正半轴上,按以下步骤作图:①分别以点O,A
为圆心,大于
初中数学 尺规作图
知识梳理
河南中考
核心知识
第七单元 图形与变换
人教:七上P125-131 八上P35-42,P48-50,P62-63 北师:七下P55-57 八下P18-19,P25-26 华师:八上P85-92
返回目录
知识梳理
返回目录
第七单元 图形与变换
一、五种基本尺规作图
步骤与原理
作一条线段等 作法:1.作射线AM;2.以点A为圆
初中数学尺规作图知识点总结
初中数学尺规作图知识点总结:尺规作图:近几年直接考察尺规作图的题目很少出现。
即使出现也是结合其他问题,分值一般2-3分,难易度为易。
考察内容:①拼图:即图形的组合,例如用等腰梯形拼菱形②位似图形的画法。
③常见图形的基本做法,例如角的平分线,突破方法:①熟练掌握基本的几何做法,②从画图本质上理解作图的原理③根据给定的条件,结合图形特点作图,注意保留作图痕迹。
线段的基本作图做一条线段等于已知线段,圆规截取法。
初中数学角的基本作图知识点总结:做一个角等于已知角,用圆规画弧,截取,构造三角形全等初中数学角平分线的基本作图知识点总结:两次画弧,注意每一次的不同,找准交点。
初中数学垂直平分线的基本作图知识点总结:以线段的两个端点为圆心,大于线段长度的1/2为半径画4条弧,分别于两个点,过两个点做直线就可以初中数学三角形的基本作法知识点总结:根据三角形的全等画SSS,SAS,ASA,HL初中数学圆的基本作法知识点总结:利用圆规根据题目要求画圆,初中数学方位角知识点总结:借助量角器和三角板画出相应的角度就可以。
初中数学位似图形的做法知识点总结:先连接几个对应点,找出位似中心,再用圆规截取。
初中数学方位角知识点总结:借助量角器和三角板画出相应的角度就可以。
初中数学正多边形的做法知识点总结:先画圆,再对圆分割为相应的份数,连线就可以。
初中数学平行线的作法知识点总结:①靠,用直尺靠紧三角板,②推直尺到预定位置③画,画直线就可以初中数学尺规画五角星知识点总结:根据圆的分割法画图初中数学5个基本尺规作图方法1.作一个角等于已知角;2.作已知角的角平分线;3.做已知线段的垂直平分线;4.过一点作已知直线的垂线;5.过直线外一点做已知直线的平行线。
初中尺规作图详细讲解(含图)【范本模板】
初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法。
用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题"。
直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题。
若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意。
数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形。
初中数学五种作图基本概念及技巧
初中数学五种作图基本概念及技巧一、基本概念1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图.2.基本作图:最基本、最常用的尺规作图,通常称基本作图.3.五种常用的基本作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)平分已知角;(4)作线段的垂直平分线.(5)经过一点作已知直线的垂线4.掌握以下几何作图语句:(1)过点×、点×作直线××;或作直线××,或作射线××;(2)连结两点×、×;或连结××;(3)在××上截取××=××;(4)以点×为圆心,××为半径作圆(或弧);(5)以点×为圆心,××为半径作弧,交××于点×;(6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××;(7)延长××到点×,或延长××到点×,使××=××.5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了。
如:(1)作线段××=××;(2)作∠×××=∠×××;(3)作××(射线)平分∠×××;(4)过点×作××⊥××,垂足为×;(5)作线段××的垂直平分线××.二、尺规作图基本步骤和作图语言1、作线段等于已知线段已知:线段a 求作:线段AB,使AB=a 作法:(1)作射线AC (2)在射线AC上截取AB=a ,则线段AB就是所要求作的线段2、作角等于已知角已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)作射线O′A′.(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.3、作角的平分线已知:∠AOB, 求作:∠AOB内部射线OC,使:∠AOC=∠BOC,作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,大于1/2DE的长为半径作弧,在∠AOB内,两弧交于点C.(3)作射线OC.OC就是所求作的射线.4、作线段的垂直平分线(中垂线)或中点已知:线段AB求作:线段AB的垂直平分线作法:(1)分别以A、B为圆心,以大于AB的一半为半径在AB两侧画弧,分别相交于E、F两点。
初中五个基本作图的原理
初中五个基本作图的原理
1. 精度原理:作图时要求测量、绘制的线条、角度和尺寸等要精确无误,保证图形的准确性和符合要求。
2. 稳定原理:作图时要保证图形的稳定性,避免因摆放或绘图工具不合适而引起的误差和偏差。
3. 美观原理:作图时要根据需要制定美观的图形,使其具有良好的视觉效果和整体感。
4. 经济原理:作图时要考虑经济性,尽可能地利用绘图工具和人力资源,降低制图成本。
5. 逻辑原理:作图时要遵循逻辑性,从整体上考虑图形的组成、结构和关系,使之符合逻辑顺序和科学规律。
初中数学知识点总结:掌握五种基本作图
初中数学知识点总结:掌握五种基本作图知识点总结一、差不多作图的有关概念:1.尺规作图:用没有刻度的直尺和圆规来作图的方法,叫做尺规作图。
2.五种差不多作图:五种差不多作图是尺规作图的基础,数学中的五种差不多作图是指作一条线段等于已知线段、作一个角等于已知角、作一个角的角平分线、过定点作已知直线的垂线、作线段的垂直平分线。
二、差不多作图的原理和步骤:1.原理:边边边公理2.步骤:作图题的方法与证明题解法不相同,关于作图题第一将文字叙述转化为数学语言,即要写出题目的已知、求作、作法、证明。
三、尺规作图的优点:尺规作图只能使用圆规和无刻度的直尺这两种工具。
工具虽少但能正确地画出的图形,比度量法画出的图形更精确。
常见考法(1)考查五种差不多作图中的一种,要求写出已知、求证、作法、证明过程。
有时考题不要求写作法,但要求保留作图痕迹;(2)利用尺规作图和勾股定理画出数轴上的无理数点;(3)利用尺规作图作一些正多边形(如正三角形、正六边形等)。
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”因此不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。
误区提醒事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。
不记住那些基础知识,如何会向高层次进军?专门是语文学科涉猎的范畴专门广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时刻让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。
初中数学各项作图方法及原理
数学作图方法及原理作一角等于已知角已知:∠AOB.求作:∠A1O1B1=∠AOB.[作法]1)作射线O1A1,2)以O为圆心,任意长为半径作弧交OA于C,交OB于D,3)以O1为圆心,以同样长(OC长)为半径,作弧交O1A1于C1,4)以C1为圆心,CD长为半径作弧交前弧于D1,5)过D1作射线O1B1.∠A1O1B1为所求.[原理]因为尺规作一个相同的角,实际上是构造全等三角形,且两三角形都是等腰三角形。
第一次用圆规确定两腰长度,第二次用圆规确定底边长度。
所以实际上是确定三条边的长度,即“边边边”。
作线段的中线[作法]分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线,得到两个交点,连接这两个交点。
[原理]等腰三角形的高垂直平分底边。
作角平分线[作法]首先把角的顶点作为圆心,适当长为半径画圆交两条角的边于A,B再以A,B为圆心以大于1/2 AB长为半径画圆交于点D 连结角的顶点和D就是角的平分线[原理]三角形的全等(SSS)(DA=DB A到顶点的距离=B到顶点的距离 D到顶点的线段是公共边)作垂直平分线[作法]分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。
得到两个交点,连接两个交点。
[原理]到线段的两个端点的距离相等的点在线段垂直平分线上,所以做相同半径的弧,则两段弧上的点到两个端点的距离相等,所以就是线段垂直平分线作直线垂线[作法](直线外一点)以直线外一点A为圆心,以大于点到直线的距离为半径作弧,交直线于B.C两点,再分别以B.C为圆心,以大于0.5BC的长为半径做弧,分别交于D.E两点,最后连结DE.(直线上一点)直线l上有一点B,以B为圆心,任意长为半径画弧,交直线l于点C,D。
分别以C,D为圆心,大于CB长为半径画弧,交于点E,连接BE。
即BE为线段AB的垂线段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学作图方法及原理
作一角等于已知角
已知:∠AOB.求作:∠A1O1B1=∠AOB.
[作法]
1)作射线O1A1,
2)以O为圆心,任意长为半径作弧交OA于C,交OB于D,
3)以O1为圆心,以同样长(OC长)为半径,作弧交O1A1于C1,
4)以C1为圆心,CD长为半径作弧交前弧于D1,
5)过D1作射线O1B1.
∠A1O1B1为所求.
[原理]因为尺规作一个相同的角,实际上是构造全等三角形,且两三角形都是等腰三角形。
第一次用圆规确定两腰长度,第二次用圆规确定底边长度。
所以实际上是确定三条边的长度,即“边边边”。
作线段的中线
[作法]分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线,得到两个交点,连接这两个交点。
[原理]等腰三角形的高垂直平分底边。
作角平分线
[作法]首先把角的顶点作为圆心,适当长为半径画圆交两条角的边于A,B
再以A,B为圆心以大于1/2 AB长为半径画圆交于点D 连结角
的顶点和D
就是角的平分线
[原理]三角形的全等(SSS)(DA=DB A到顶点的距离=B到顶点的距离 D到顶点的线段是公共边)
作垂直平分线
[作法]分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。
得到两个交点,连接两个交点。
[原理]到线段的两个端点的距离相等的点在线段垂直平分线上,所以做相同半径的弧,则两段弧上的点到两个端点的距离相等,所以就是线段垂直平分线
作直线垂线
[作法](直线外一点)以直线外一点A为圆心,以大于点到直线的距离为半径作弧,交直线于B.C两点,再分别以B.C为圆心,以大于0.5BC的长为半径做弧,分别交于D.E两点,最后连结DE.
(直线上一点)直线l上有一点B,以B为圆心,任意长为半径画弧,交直线l于点C,D。
分别以C,D为圆心,大于CB长为半径画弧,交于点E,连接BE。
即BE为线段AB的垂线段。