第1课时 三角形内角和定理的证明.ppt
合集下载
三角形内角和定理-PPT课件
请你帮小明把想法化为实际行动. 证明:过点A作PQ∥BC,则 ∠1=∠B(两直线平行,内错角相等), ∠2=∠C(两直线平行,内错角相等), 又∵∠1+∠2+∠3=1800 (平角的定义),
P AQ 132
B
C
∴ ∠BAC+∠B+∠C=1800 (等量代换).
小明的想法已经变为现实,由此你受到什么启发?
同学们,你们知道其中的道理吗?
2
1 .知识目标
(1)三角形的内角和定理的证明. (2)掌握三角形内角和定理,并初步学会利用辅助线证题. (3)理解掌握三角形内角和定理的推论及其应用.
2 .教学重点
(1)三角形内角和定理的证明. (2)三角形内角和定理的推论.
3.教学难点
(1)三角形内角和定理的证明方法. (2)三角形的外角、三角形内角和定理的推论.
2
∴∠DAE=∠B(等量代换) ∴ AD∥BC(同位角相等,两直线平行)
·B
C
这里是运用了公理
“同位角相等,两直
线平如图,在△ABC中, ∠1是它的一个
C
外角, E为边AC上一点,延长BC到D,连接DE.
求证: ∠1 >∠2.
E5
3
4 A
1
B
F
证明:∵ ∠1是△ABC 的一个外角 (已知) ∴ ∠1 >∠3 (三角形的一个外角大于任何一个和它不相邻的内角) ∵∠3是△CDE 的一个外角 (外角定义) ∴∠3 >∠2 (三角形的一个外角大于任何一个和它不相邻的内角) ∴ ∠1 >∠2 (不等式的性质)
又∵∠1+∠2+∠3=180°(平角的定义), ∴ ∠A+∠B+∠ACB=180°(等量代换). 你还有其它方法来证明三角形内角和定理吗?
三角形内角和ppt课件完整版
度或边长。
余弦函数
cosA = b/c,表示邻边与斜边的 比值,同样用于直角三角形中。
正切函数
tanA = a/b,表示对边与邻边的比 值,常用于求解直角三角形的角度。
三角函数在解三角形中应用
已知两边及夹角求第三边
01
利用正弦定理或余弦定理求解。
已知三边求角度
02
利用余弦定理求解角度,再结合三角形内角和为180度求解其他
算错误。
公式选择
根据已知条件选择合适的公式 进行计算,避免使用错误的公
式导致结果不准确。
精度问题
在计算过程中要注意精度问题, 避免因舍入误差导致结果不准
确。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义 三角形三个内角的度数之和等于180度。
三角形内角和定理的证明 可以通过多种方法证明,如平行线性质、外角性质等。
角度。
已知两角及一边求其他边和角
03
利用正弦定理和三角形内角和求解。
边长比例与角度关系探讨
边长比例对角度的影响
在三角形中,边长比例的变化会影响角度 的大小,如等腰三角形底角相等。
VS
角度对边长比例的影响
角度的变化也会影响三角形的边长比例, 如直角三角形中,30度角所对的直角边等 于斜边的一半。
典型问题解决方法分享
建筑设计
建筑设计中经常涉及到三角形的面积计算,如屋顶、窗户等部分的 设计。
物理问题
在物理问题中,三角形的面积计算也经常出现,如求解力的大小和方 向等。
误区提示和易错点剖析
01
02
03
04
底和高的对应
在计算三角形面积时,一定要 注意底和高的对应关系,避免
余弦函数
cosA = b/c,表示邻边与斜边的 比值,同样用于直角三角形中。
正切函数
tanA = a/b,表示对边与邻边的比 值,常用于求解直角三角形的角度。
三角函数在解三角形中应用
已知两边及夹角求第三边
01
利用正弦定理或余弦定理求解。
已知三边求角度
02
利用余弦定理求解角度,再结合三角形内角和为180度求解其他
算错误。
公式选择
根据已知条件选择合适的公式 进行计算,避免使用错误的公
式导致结果不准确。
精度问题
在计算过程中要注意精度问题, 避免因舍入误差导致结果不准
确。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义 三角形三个内角的度数之和等于180度。
三角形内角和定理的证明 可以通过多种方法证明,如平行线性质、外角性质等。
角度。
已知两角及一边求其他边和角
03
利用正弦定理和三角形内角和求解。
边长比例与角度关系探讨
边长比例对角度的影响
在三角形中,边长比例的变化会影响角度 的大小,如等腰三角形底角相等。
VS
角度对边长比例的影响
角度的变化也会影响三角形的边长比例, 如直角三角形中,30度角所对的直角边等 于斜边的一半。
典型问题解决方法分享
建筑设计
建筑设计中经常涉及到三角形的面积计算,如屋顶、窗户等部分的 设计。
物理问题
在物理问题中,三角形的面积计算也经常出现,如求解力的大小和方 向等。
误区提示和易错点剖析
01
02
03
04
底和高的对应
在计算三角形面积时,一定要 注意底和高的对应关系,避免
《三角形的内角和》优质ppt课件
角之比为1:2:3,求这个三角形
的最大内角。
02
题目3:判断下列各组角能否
构成一个三角形的内角,并说
明理由。
03
A. 30°, 40°, 110°
04
B. 60°, 60°, 60°
05
C. 20°, 50°, 120°
06
学生自主思考、提问及讨论环节
01
02
03
问题1
三角形的内角和为什么是 180°?
应用举例
例1
计算五边形的内角和。
解
五边形可以划分为3个三角形,因此五边形的内角和 = 3 × 180° = 540°。
例2
计算正六边形的内角和。
解
正六边形可以划分为4个三角形,因此正六边形的内角 和 = 4 × 180° = 720°。
例3
已知一个多边形的内角和为1080°,求这个多边形的边 数。
有助于培养逻辑思维和空间想象能力
预习下一讲内容:《全等三角形》
了解全等三角形的定 义和性质
通过实例和练习加深 对全等三角形相关知 识的理解和应用
掌握全等三角形的判 定方法
谢谢您聆听
THANKS
《三角形的内角和》优质ppt 课件
CONTENTS
• 三角形基本概念与性质 • 三角形内角和定理推导 • 三角形内角和定理应用举例 • 拓展:多边形内角和计算方法
探讨 • 练习题与课堂互动环节 • 课程小结与预习提示
01
三角形基本概念与性质
三角形定义及分类
三角形定义
由不在同一直线上的三条线段首 尾顺次连接所组成的封闭图形。
已知三角形一个内角及相邻两边,求另一 个内角的大小。
已知三角形三边长度,利用余弦定理求任 一内角的大小。
八年级数学上册教学课件《三角形的内角和定理(第1课时)》
②在△ABC中,∠A :∠B:∠C=1:2:3,则△ABC是 ____直__角___三角形 ;
③在△ABC中, ∠A= ∠B+10°, ∠C= ∠A + 10°, 则∠A= 60°, ∠ B= 50°,∠ C= 70°.
探究新知
7.5 三角形的内角和定理
素养考点 3 利用三角形的内角和定理解决实际问题
∵∠B=38°(已知),∠BAD=40°(已证),
∴∠ADB=180°-38°-40°=102°(等式的性质).
巩固练习
7.5 三角形的内角和定理
如图,在△ABC中, ∠BAC=40 °, ∠B=75 °,AD是
△ABC的角平分线,求∠ADB的度数.
解:由∠BAC=40 °, AD是△ABC的角平分线,得
数学 八年级 上册
7.5 三角形的内角和定理
7.5 三角形的内角和定理 (第1课时)
导入新知
7.5 三角形的内角和定理
情
一天,三类三角形通过对自身的特点,讲出了
境 自己对三角形内角和的理解,请同学们作为小判官
引 给它们评判一下吧. 入
不对,我有一
个钝角,所以
我的形状最 大,那我的 内角和最大.
我的内角和才
是最大的.
我的形状最 小,那我的 内角和最小.
素养目标
7.5 三角形的内角和定理
2. 会运用三角形内角和定理进行计算.
1.会用平行线的性质与平角的定义证明三角 形内角和等于180°.
探究新知
7.5 三角形的内角和定理
知识点 1 三角形的内角和定理 我们在小学已经知道,任意一个三角形的内角和等于180°. 与三角形的形状、大小无关,所以它们的说法都是错误的.
三角形内角和说课ppt课件
感谢观看
THANKS
三角形内角和的基础知识
三角形的定义和分类
三角形是由不在同一直线上的三条线段首尾顺次 相接所组成的图形。根据边长特点,三角形可以 分为等边三角形、等腰三角形和普通三角形。
等腰三角形有两边长度相等,对应的两角也相等 ,另一个角为顶角。
等边三角形三边长度相等,三个内角相等,均为 60°。
普通三角形三边长度和三个内角均不相等。
电子工程
在电子工程中,三角形内角和定理可以用于计算电路中的 电阻、电容、电感等元件的参数,以及确定电路的性能和 稳定性。
05
三角形内角和定理的拓展和
深化理解
对称三角形内角和定理的拓展
总结词
揭示规律,拓展思维
详细描述
通过对称三角形的案例分析,揭示三角形内角和定理背后的规律,引导学生拓展 思维,探索不同证明方法的可能性。
三角形内角和说课 ppt课件
• 引言 • 三角形内角和的基础知识 • 三角形内角和的证明方法 • 三角形内角和的应用 • 三角形内角和定理的拓展和深化
理解 • 总结与回顾
目录
01
引言
主题和目的
主题
探究三角形的内角和
目的
通过多种方法证明三角形内角和为180度,并运用该结论解决实际问题
背景和重要性
03
这种证明方法较为抽象,但可以借助计算机软件进行计算 和验证。
04
三角形内角和的应用
在几何学中的应用
证明定理
三角形内角和定理是几何学中最 基本的定理之一,它可以应用于
证明其他定理和性质。
计算角度
通过三角形内角和定理,我们可以 快速计算出三角形的内角大小,以 及一个角度相对于其他角度的大小 。
三角形内角和定理的证明证明教学PPT课件
15、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要在路上,就没有到不了的地方。 16、你若坚持,定会发光,时间是所向披靡的武器,它能集腋成裘,也能聚沙成塔,将人生的不可能都变成可能。 17、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者
1 2 1800 BDC(等式性质).
BDC BAC ABD ACD(等量代换).
即BDC BAC B C.
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。
A
M
B
N
C
F
D
练一练
A
1、 如图,已知AD是△ABD
34
和△ACD的公共边.求证:
∠BDC=∠BAC+∠B+∠C
12
B
D
证法一:
∵在△ABD中, ∠1=180°-∠B-∠3,
C
在△ADC中, ∠2=180°-∠C-∠4(三角形内角和定理),
又∵∠BDC=360°-∠1-∠2(周角定义)
∴∠ BDC =360°-( 180°-∠B-∠3 )-( 180°-∠C-∠4 )
= ∠B+∠C+∠3+∠4.
又 ∵ ∠BAC = ∠3+∠4,
∴ ∠ BDC = ∠B+∠C+ ∠BAC (等量代换)
A
证法二:
连接BC.
B
1
D
2
C
在ABC中,BAC ABD ACD 1 2 1800,
1 2 1800 BDC(等式性质).
BDC BAC ABD ACD(等量代换).
即BDC BAC B C.
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。
A
M
B
N
C
F
D
练一练
A
1、 如图,已知AD是△ABD
34
和△ACD的公共边.求证:
∠BDC=∠BAC+∠B+∠C
12
B
D
证法一:
∵在△ABD中, ∠1=180°-∠B-∠3,
C
在△ADC中, ∠2=180°-∠C-∠4(三角形内角和定理),
又∵∠BDC=360°-∠1-∠2(周角定义)
∴∠ BDC =360°-( 180°-∠B-∠3 )-( 180°-∠C-∠4 )
= ∠B+∠C+∠3+∠4.
又 ∵ ∠BAC = ∠3+∠4,
∴ ∠ BDC = ∠B+∠C+ ∠BAC (等量代换)
A
证法二:
连接BC.
B
1
D
2
C
在ABC中,BAC ABD ACD 1 2 1800,
三角形的内角和(PPT课件)2024新版
忽视三角形形状的多样性,认为只有某些特殊形状的三角 形才具有内角和为180度的性质。实际上,所有三角形的内 角和均为180度,与形状无关。
拓展延伸:多边形内角和探讨
多边形的定义及分类
由三条或三条以上的线段首尾顺 次连接所组成的平面图形叫做多 边形。按照边数可分为三边形、 四边形、五边形等。
多边形内角和的计算 公式
在建筑设计中,需要测量建筑物的各个角度,以确保建筑物的稳定性和
美观性。三角形内角和的原理可以帮助建筑师快速准确地计算角度。
02
屋顶角度设计
屋顶的角度设计对于建筑物的排水、采光和保温等方面都有重要影响。
利用三角形内角和的原理,建筑师可以设计出合理的屋顶角度。
03
楼梯角度计算
在楼梯设计中,需要计算楼梯的倾斜角度,以确保人们上下楼梯时的舒
艺术创作
在艺术创作中,艺术家经常需要运用几何原理来构图和设计。三角形内角和的原理可以帮 助艺术家创造出具有美感和平衡感的作品。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义
01
三角形的三个内角之和等于180度。
三角形内角和的验证方法
02
通过测量、撕拼、折叠等方法验证三角形的内角和为180度。
可以通过三角形内角和定理和 邻补角的性质来证明三角形外 角和定理。
03
三角形外角性质与计算
三角形外角定义及性质
三角形外角的定义
三角形的一边与另一边的延长线组成的角,叫做三角形的外 角。
三角形外角的性质
三角形的外角等于与它不相邻的两个内角之和。此外,三角 形的一个外角大于任何一个和它不相邻的内角。
方法二:通过撕拼法 证明
从而得到∠A + ∠B + ∠C = 180度。
拓展延伸:多边形内角和探讨
多边形的定义及分类
由三条或三条以上的线段首尾顺 次连接所组成的平面图形叫做多 边形。按照边数可分为三边形、 四边形、五边形等。
多边形内角和的计算 公式
在建筑设计中,需要测量建筑物的各个角度,以确保建筑物的稳定性和
美观性。三角形内角和的原理可以帮助建筑师快速准确地计算角度。
02
屋顶角度设计
屋顶的角度设计对于建筑物的排水、采光和保温等方面都有重要影响。
利用三角形内角和的原理,建筑师可以设计出合理的屋顶角度。
03
楼梯角度计算
在楼梯设计中,需要计算楼梯的倾斜角度,以确保人们上下楼梯时的舒
艺术创作
在艺术创作中,艺术家经常需要运用几何原理来构图和设计。三角形内角和的原理可以帮 助艺术家创造出具有美感和平衡感的作品。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义
01
三角形的三个内角之和等于180度。
三角形内角和的验证方法
02
通过测量、撕拼、折叠等方法验证三角形的内角和为180度。
可以通过三角形内角和定理和 邻补角的性质来证明三角形外 角和定理。
03
三角形外角性质与计算
三角形外角定义及性质
三角形外角的定义
三角形的一边与另一边的延长线组成的角,叫做三角形的外 角。
三角形外角的性质
三角形的外角等于与它不相邻的两个内角之和。此外,三角 形的一个外角大于任何一个和它不相邻的内角。
方法二:通过撕拼法 证明
从而得到∠A + ∠B + ∠C = 180度。
2024版《三角形的内角和》完整版课件
全等三角形条件判断及证明方法论述
SSS全等条件
三边分别相等的两个三角形全等。
SAS全等条件
两边和它们的夹角分别相等的两个三角形全等。
全等三角形条件判断及证明方法论述
ASA全等条件
两角和它们的夹边分别相等的两个三 角形全等。
AAS全等条件
两角和一角的对边分别相等的两个三 角形全等。
全等三角形条件判断及证明方法论述
三角形的一个内角与它相邻的外角之和等于180°。
内外角之差关系
三角形的一个内角与它不相邻的两个外角之差等于180°。
应用场景
内外角关系在解决三角形的问题中有着广泛的应用,如计算三角形的 内角和、判断三角形的形状、证明三角形的全等或相似等。
04
三角形面积计算公式推导与应 用
基于底和高计算面积公式推导
勾股定理内容:在直角三 角形中,直角边的平方和 等于斜边的平方。
已知直角三角形的两条直 角边,求斜边长度。
应用举例
已知直角三角形的一条直 角边和斜边,求另一条直 角边长度。
特殊角度(30°、45°、60°)边长关系分析
当直角三角形中一个 锐角为30°时
邻边(较长的直角边) 与斜边的比值为√3:2。
THANKS
对边(较短的直角边) 与斜边的比值为1:2。
特殊角度(30°、45°、60°)边长关系分析
当直角三角形中一个锐角为45°时(等腰直角三角形) 两直角边相等。
对边与斜边的比值为1:√2。
特殊角度(30°、45°、60°)边长关系分析
当直角三角形中一个锐角为60° 时
对边(较短的直角边)与斜边 的比值为1:2。
特殊三角形性质
等腰三角形性质
两腰相等,两底角相等;三线合 一(底边上的中线、高线和顶角
三角形内角和定理证明ppt课件
(1) ∠ACD是△ABC的
CD
(2)∵∠ +∠ ∠ +∠
∴∠ = ∠
+∠ =180°(三角形三个内角的和等于180° )
=180°(平角的定义)
+∠
(
)
推论:三角形的一个外角等于与它不相邻的两个内角的和.
公理、定理及由它们直接推出来的 结论(推论),以后可以直接运用. 9
练一练:
已知:如图,AD是△ABC的角平分线,E是BC延长 线上一点,∠EAC=∠B,求证:∠ADE=∠DAE
B
∠A+∠B+∠AOB=180°(三角形三个内角的和等于180°)
O
∴∠A+∠B=180°-∠AOB
在⊿COD中 同理可得
∠C+∠D=180°-∠COD
∵∠AOB与∠COD是对顶角
C
D
∴∠AOB=∠COD
∴∠A+∠B=∠C+∠D( 等量代换)
8
A
议一议:
B
如图所示:把△ABC的边BC延长,得到∠ACD.
∠2= ∠B(两直线平行,同位角相等)
∵∠1+∠2+∠ACB=180°(平角的定义)
∴ ∠A+∠B+∠ACB=180°(等量代换).
1
2 C
辅助线
D
6
A
E
你还有什么
不同的方法?
B
P
AC
Q
B
H
C
B
A
E
C
7
试一试:
已知:如图,AC、BD相交于点O, 求证:∠A+∠B=∠C+∠D.
A 证明:
在⊿AOB中
CD
(2)∵∠ +∠ ∠ +∠
∴∠ = ∠
+∠ =180°(三角形三个内角的和等于180° )
=180°(平角的定义)
+∠
(
)
推论:三角形的一个外角等于与它不相邻的两个内角的和.
公理、定理及由它们直接推出来的 结论(推论),以后可以直接运用. 9
练一练:
已知:如图,AD是△ABC的角平分线,E是BC延长 线上一点,∠EAC=∠B,求证:∠ADE=∠DAE
B
∠A+∠B+∠AOB=180°(三角形三个内角的和等于180°)
O
∴∠A+∠B=180°-∠AOB
在⊿COD中 同理可得
∠C+∠D=180°-∠COD
∵∠AOB与∠COD是对顶角
C
D
∴∠AOB=∠COD
∴∠A+∠B=∠C+∠D( 等量代换)
8
A
议一议:
B
如图所示:把△ABC的边BC延长,得到∠ACD.
∠2= ∠B(两直线平行,同位角相等)
∵∠1+∠2+∠ACB=180°(平角的定义)
∴ ∠A+∠B+∠ACB=180°(等量代换).
1
2 C
辅助线
D
6
A
E
你还有什么
不同的方法?
B
P
AC
Q
B
H
C
B
A
E
C
7
试一试:
已知:如图,AC、BD相交于点O, 求证:∠A+∠B=∠C+∠D.
A 证明:
在⊿AOB中
《三角形的内角和》ppt课件
在数学教育中的价值
三角形内角和定理是初中数学中的重要内容之一,对于培养学生的逻辑思维、推理能力和数学素 养具有重要意义。
02
三角形内角和的基本概念
角度与三角形的关系
三角形是由三条边和三个角组成的几何图形。 角度是描述两条射线之间的夹角大小的量度。 三角形中的角度与边长之间存在一定的关系,如正弦、余弦定理等。
基于三角形内角和定理,可以推 导出许多三角恒等式,这些恒等 式在解决三角函数问题时非常有 用。例如,正弦定理、余弦定理
等。
三角函数的应用
在物理学、工程学、天文学等领 域中,经常需要使用三角函数来 解决实际问题。而三角形内角和 定理是解决这些问题的关键之一。
在实际问题中的应用
建筑设计
在建筑设计中,经常需要使用三 角形内角和定理来计算角度、长 度等参数,以确保建筑物的稳定
性和美观性。
地图绘制
在地图绘制中,三角形内角和定理 被用来确定地图上两点之间的角度, 从而保证地图的准确性和可靠性。
导航定位
在导航定位中,三角形内角和定理 被用来计算航向、俯仰角等参数, 以确保飞机、船舶等交通工具的正 确航行方向。
05
总结与回顾
三角形内角和的总结
三角形内角和的定义
三角形内角和是指三角形三个内角的度数之和。
培养空间思维
学习三角形内角和定理有 助于培养学生的空间思维 能力和几何直觉。
回顾与思考
01
回顾三角形内角和定理的证明过程,加深对定 理的理解。
02
思考三角形内角和定理在现实生活中的应用, 提高解决实际问题的能力。
03
探究其他几何图形的内角和性质,拓展几何知 识面。
THANKS
内角和为180度的结论。
三角形内角和定理是初中数学中的重要内容之一,对于培养学生的逻辑思维、推理能力和数学素 养具有重要意义。
02
三角形内角和的基本概念
角度与三角形的关系
三角形是由三条边和三个角组成的几何图形。 角度是描述两条射线之间的夹角大小的量度。 三角形中的角度与边长之间存在一定的关系,如正弦、余弦定理等。
基于三角形内角和定理,可以推 导出许多三角恒等式,这些恒等 式在解决三角函数问题时非常有 用。例如,正弦定理、余弦定理
等。
三角函数的应用
在物理学、工程学、天文学等领 域中,经常需要使用三角函数来 解决实际问题。而三角形内角和 定理是解决这些问题的关键之一。
在实际问题中的应用
建筑设计
在建筑设计中,经常需要使用三 角形内角和定理来计算角度、长 度等参数,以确保建筑物的稳定
性和美观性。
地图绘制
在地图绘制中,三角形内角和定理 被用来确定地图上两点之间的角度, 从而保证地图的准确性和可靠性。
导航定位
在导航定位中,三角形内角和定理 被用来计算航向、俯仰角等参数, 以确保飞机、船舶等交通工具的正 确航行方向。
05
总结与回顾
三角形内角和的总结
三角形内角和的定义
三角形内角和是指三角形三个内角的度数之和。
培养空间思维
学习三角形内角和定理有 助于培养学生的空间思维 能力和几何直觉。
回顾与思考
01
回顾三角形内角和定理的证明过程,加深对定 理的理解。
02
思考三角形内角和定理在现实生活中的应用, 提高解决实际问题的能力。
03
探究其他几何图形的内角和性质,拓展几何知 识面。
THANKS
内角和为180度的结论。
《三角形的内角和》PPT课件 精品
第1课时 三角形的内角和
人教版八年级上册
课前准备
任意三角形纸片、剪刀、量角器、直尺
学习目标
重点 1
经历探究活动的 过程,多角度探 索并证明三角形 内角和定理,体 会证明的必要性;
【推理能力】
难点 2
获取添加辅助线 的思路和方法, 能用平行线的性 质证明三角形内 角和等于180°;
【几何直观、推理能力】
辅助线通常画成虚线.
思路 添加平行线 (转化法) (辅助线)
利用平行线的 性质,转移角
① 依据平角定义,得到180°; ② 两直线平行,同旁内角互补.
知识点二 运用三角形内角和定理
将正确答案填到相应的横线上。
① 在△ABC中,∠A=30°,∠B = 65°,则∠C =___8_5_°__ ② 在△ABC中,∠C= 42°,∠A = ∠B,则∠B = ___6_9_°__ ③ 在△ABC中,∠A=∠B =∠C,则∠A = ___6_0_°__ ④ 在△ABC中,∠C= 36°,∠A:∠B = 1:2,则∠B = ___9_6_°__
隐含条件:三角形三个内角的和等于180°
例1 如图,在△ABC 中, ∠BAC =40°, ∠B =75°,AD 是 △ABC的角平分线.求∠ADB 的度数.
C
解:由∠BAC = 40°, AD是△ ABC
的角平分线,得
D
∠BAD = 1 ∠BAC = 20°.
2
在△ABD中,
A
B
∠ADB =180°-∠B-∠BAD
三角形三个内角的和等于180°.
画图写出
已知:△ABC.
A
已知求证
求证:∠A+∠B+∠C=180°.
证明过程 ?
人教版八年级上册
课前准备
任意三角形纸片、剪刀、量角器、直尺
学习目标
重点 1
经历探究活动的 过程,多角度探 索并证明三角形 内角和定理,体 会证明的必要性;
【推理能力】
难点 2
获取添加辅助线 的思路和方法, 能用平行线的性 质证明三角形内 角和等于180°;
【几何直观、推理能力】
辅助线通常画成虚线.
思路 添加平行线 (转化法) (辅助线)
利用平行线的 性质,转移角
① 依据平角定义,得到180°; ② 两直线平行,同旁内角互补.
知识点二 运用三角形内角和定理
将正确答案填到相应的横线上。
① 在△ABC中,∠A=30°,∠B = 65°,则∠C =___8_5_°__ ② 在△ABC中,∠C= 42°,∠A = ∠B,则∠B = ___6_9_°__ ③ 在△ABC中,∠A=∠B =∠C,则∠A = ___6_0_°__ ④ 在△ABC中,∠C= 36°,∠A:∠B = 1:2,则∠B = ___9_6_°__
隐含条件:三角形三个内角的和等于180°
例1 如图,在△ABC 中, ∠BAC =40°, ∠B =75°,AD 是 △ABC的角平分线.求∠ADB 的度数.
C
解:由∠BAC = 40°, AD是△ ABC
的角平分线,得
D
∠BAD = 1 ∠BAC = 20°.
2
在△ABD中,
A
B
∠ADB =180°-∠B-∠BAD
三角形三个内角的和等于180°.
画图写出
已知:△ABC.
A
已知求证
求证:∠A+∠B+∠C=180°.
证明过程 ?
七年级下册冀教版数学【授课课件】第1课时 三角形的内角和定理
探究新知
证明:三角形的内角和等于180°.
A
B
C
已知:△ABC(如图),
求证:∠A+∠B+∠ACB=180°.
探究新知
如图,延长BC到点D,作CE//AB .
∵CE//AB,
∴∠1=∠4(两直线平行,内错角相等),
∠2=∠5(两直线平行,同位角相等).
∵∠3+∠4+∠5=180°(平角的定义),
学习难点:三角形内角和定理演绎推理的过程及应用.
导入新课 (创设情境)
三角形内角和等于180°.
关于三角形的内角,你都知道哪些结论?
小学阶段,都有哪些方法来验证这个结论?
探究新知
3
1
2
从这种剪拼的过程中,你能得到什么启示?
探究新知
A
B
C
从这种剪拼的过程中,你能想到什么方法
证明“三角形的内角和等于180°”?
当堂训练
变式1 :在△ABC中,∠A=30°,∠B= ∠C , 求∠C 的
度数.
解: ∵在△ABC中, ∠A=30°,∠B=∠C,
∠A+∠B+∠C=180°(三角形内角和定理),
∴ 30°+2∠C=180°,
解得∠C=75° .
当堂训练
变式 2:在△ABC中,∠A =
∠B
=
∠C
,求∠C 的度数.
置的重要手段.
当堂训练
例1
说出各图中∠1的度数.
∠1=40°
∠1=68°
当堂训练
例2
如图,在△ABC中,∠A=30°,∠B=65°,求
∠C 的度数.
解:∵∠A+∠B+∠C=180°
《三角形的内角和》PPT课件
三角形内角和性质
三角形内角和与角度关系
三角形内角和为180度
在任何三角形中,三个内角的和总是 等于180度。
角度互余关系
在一个三角形中,如果两个角的和小 于90度,则这两个角互为余角。
角度互补关系
在直角三角形中,两个锐角的角度和 为90度,它们互为补角。
三角形内角和与边长关系
边长与角度关系
在三角形中,边长越长, 对应的角度越大;边长越 短,对应的角度越小。
步骤四
将剪下来的三个角拼在 一起,观察是否能拼成
一个平角。
实验结果分析与讨论
结果分析
通过实验操作,我们发现三角形ABC的三个内角拼在一起后,能够形成一个平角,即三角形的内角和为 180度。
讨论
实验结果验证了三角形的内角和定理,即任意三角形的内角和都等于180度。这一结论在数学和几何学中 有着广泛的应用,对于解决与三角形相关的问题具有重要意义。同时,实验结果也说明了实验操作的准确 性和可靠性。
通过不断练习和挑战自我,可 以提高自己的几何思维能力和 解题能力。
THANKS
感谢观看
《三角形的内角 和》PPT课件
目录
• 课程引入 • 三角形内角和定理 • 三角形内角和性质 • 三角形内角和计算 • 实验操作与探究 • 拓展延伸与应用举例
01
课程引入
三角形的定义与分类
三角形的定义
由不在同一直线上的三条线段首尾 顺次相接所组成的图形叫做三角形。
三角形的分类
根据三角形的边长和角度,可以将 三角形分为等边三角形、等腰三角 形、直角三角形等。
三角形内角和概念
三角形内角和的定义
三角形三个内角的度数之和。
三角形内角和的性质
任意三角形的内角和都等于180度。
三角形内角和与角度关系
三角形内角和为180度
在任何三角形中,三个内角的和总是 等于180度。
角度互余关系
在一个三角形中,如果两个角的和小 于90度,则这两个角互为余角。
角度互补关系
在直角三角形中,两个锐角的角度和 为90度,它们互为补角。
三角形内角和与边长关系
边长与角度关系
在三角形中,边长越长, 对应的角度越大;边长越 短,对应的角度越小。
步骤四
将剪下来的三个角拼在 一起,观察是否能拼成
一个平角。
实验结果分析与讨论
结果分析
通过实验操作,我们发现三角形ABC的三个内角拼在一起后,能够形成一个平角,即三角形的内角和为 180度。
讨论
实验结果验证了三角形的内角和定理,即任意三角形的内角和都等于180度。这一结论在数学和几何学中 有着广泛的应用,对于解决与三角形相关的问题具有重要意义。同时,实验结果也说明了实验操作的准确 性和可靠性。
通过不断练习和挑战自我,可 以提高自己的几何思维能力和 解题能力。
THANKS
感谢观看
《三角形的内角 和》PPT课件
目录
• 课程引入 • 三角形内角和定理 • 三角形内角和性质 • 三角形内角和计算 • 实验操作与探究 • 拓展延伸与应用举例
01
课程引入
三角形的定义与分类
三角形的定义
由不在同一直线上的三条线段首尾 顺次相接所组成的图形叫做三角形。
三角形的分类
根据三角形的边长和角度,可以将 三角形分为等边三角形、等腰三角 形、直角三角形等。
三角形内角和概念
三角形内角和的定义
三角形三个内角的度数之和。
三角形内角和的性质
任意三角形的内角和都等于180度。
相关主题