(课件)三角形内角和的证明与应用

合集下载

《三角形的内角和》课件(城南小学陈少兴)

《三角形的内角和》课件(城南小学陈少兴)

在一个三角形中,∠1=140°, ∠3=25 °,求∠2的度数。 1
2 32° 110° 180-140-25=15(度)
40°
180-(140+25)=15(度) ∠1=( )° ∠2=(
30
58 )°
【P85做一做】 2.看图求角的度数:
2.
(P88 第9题)
在一个三角形中,∠1=140°, ∠3=25 °,求∠2的度数。 180-140-25=15(度) 180-(140+25)=15(度)
∠1+∠2+∠3=?
阅读书本P85,边读边思考: (1)三角形的内角和是多少? (2)课本介绍了哪几种验证方法?
• 阅读书本后请同学自己尝试动手进行验证。 • 有困难的同学可以请教同伴、老师; • 验证成功的同学与同伴交流你的做法。
三角形的内角和与三 角形的形状和大小无关。
【P85做一做】 1.看图求角的度数:
不能
360 720
讨论:把同样的两个等腰直角三角形拼成正 方形或一个更大的三角形,它们的内角和分别 是多少度?
2 5 2 5 4 3 5 2 4 1 3 6 6
1
3
4
1
180 °x2= 360 °
2 5
1
3
4
6
6
180 °x2-90 °-90 ° = 180 °
帕斯卡—— 法国数学家、物理学家、思想家。
60
42
ห้องสมุดไป่ตู้
50
3.判断。 (1)小三角形的内角和小于大三角形的 内角和。( ) (2)三角形中任意两个内角的度数和一定 大于第三个内角的度数 。 ( ) (3)任何三角形的内角和都是180°。( )


三角形内角和定理-PPT课件

三角形内角和定理-PPT课件

请你帮小明把想法化为实际行动. 证明:过点A作PQ∥BC,则 ∠1=∠B(两直线平行,内错角相等), ∠2=∠C(两直线平行,内错角相等), 又∵∠1+∠2+∠3=1800 (平角的定义),
P AQ 132
B
C
∴ ∠BAC+∠B+∠C=1800 (等量代换).
小明的想法已经变为现实,由此你受到什么启发?
同学们,你们知道其中的道理吗?
2
1 .知识目标
(1)三角形的内角和定理的证明. (2)掌握三角形内角和定理,并初步学会利用辅助线证题. (3)理解掌握三角形内角和定理的推论及其应用.
2 .教学重点
(1)三角形内角和定理的证明. (2)三角形内角和定理的推论.
3.教学难点
(1)三角形内角和定理的证明方法. (2)三角形的外角、三角形内角和定理的推论.
2
∴∠DAE=∠B(等量代换) ∴ AD∥BC(同位角相等,两直线平行)
·B
C
这里是运用了公理
“同位角相等,两直
线平如图,在△ABC中, ∠1是它的一个
C
外角, E为边AC上一点,延长BC到D,连接DE.
求证: ∠1 >∠2.
E5
3
4 A
1
B
F
证明:∵ ∠1是△ABC 的一个外角 (已知) ∴ ∠1 >∠3 (三角形的一个外角大于任何一个和它不相邻的内角) ∵∠3是△CDE 的一个外角 (外角定义) ∴∠3 >∠2 (三角形的一个外角大于任何一个和它不相邻的内角) ∴ ∠1 >∠2 (不等式的性质)
又∵∠1+∠2+∠3=180°(平角的定义), ∴ ∠A+∠B+∠ACB=180°(等量代换). 你还有其它方法来证明三角形内角和定理吗?

《三角形内角和》课件

《三角形内角和》课件

《三角形内角和》课件一、教学目标1、知识与技能目标学生理解并掌握三角形内角和定理,能够运用定理解决相关的几何计算和证明问题。

2、过程与方法目标通过测量、剪拼、推理等活动,培养学生的动手操作能力、逻辑推理能力和数学思维能力。

3、情感态度与价值观目标让学生在探究过程中体验成功的喜悦,激发学生学习数学的兴趣,增强学生的自信心和团队合作精神。

二、教学重难点1、教学重点三角形内角和定理的证明及应用。

2、教学难点三角形内角和定理的证明思路的形成。

三、教学方法讲授法、讨论法、实验法四、教学过程1、导入新课通过展示一个三角形的图片,提问学生:“大家知道三角形的三个内角之和是多少度吗?”引发学生的思考和讨论,从而引出本节课的主题——三角形内角和。

2、探究活动(1)测量法让学生分组,用量角器测量三角形三个内角的度数,并计算它们的和。

通过测量,学生可能会得到不同的结果,但大致都在 180°左右。

(2)剪拼法给每个学生发放一个三角形纸片,让学生将三角形的三个内角剪下来,然后拼在一起,观察拼成的角的度数。

学生发现三个内角拼在一起形成了一个平角,即 180°。

3、定理证明引导学生思考如何用数学方法证明三角形内角和定理。

可以通过作平行线的方法来证明。

如图,在△ABC 中,过点 A 作直线 EF∥BC。

因为 EF∥BC,所以∠B =∠EAB,∠C =∠FAC(两直线平行,内错角相等)。

因为∠EAB +∠BAC +∠FAC = 180°(平角的定义),所以∠B +∠BAC +∠C = 180°,即三角形内角和为 180°。

4、例题讲解(1)已知在△ABC 中,∠A = 50°,∠B = 60°,求∠C 的度数。

解:因为三角形内角和为 180°,所以∠C = 180°∠A ∠B = 180°50° 60°= 70°(2)在△ABC 中,∠A ∠B = 30°,∠C = 4∠B,求∠A、∠B、∠C 的度数。

北师大版小学四年级下册数学《三角形的内角和》课件

北师大版小学四年级下册数学《三角形的内角和》课件
等腰三角形(36°):顶角是90°,两个底角各为45°,所以内角和为90° + 45° + 45° = 180°。解析:等腰三角形的两个底角相等,且与顶角之和为180°,因此内角和为180°。
答案及解析
直角三角形(45°)
一个角是90°,另外两个角各为45°,所以内角和为90° + 45° + 45° = 180°。解析:直角三角形中有 一个90°的角,另外两个锐角的和为90°,因此内角和为180°。
进阶题答案及解析
我们可以使用拼接法来证明任意三角形的内角和为180°。将三角形的三个内角分别标记为A、B和C, 将它们拼接成一个平角,即A + B + C = 180°。
答案及解析
要点一
如果一个三角形的两个内角之和 是90°,那么第三个角是9…
三角形的三个内角的和为180°,如果两个角的和是90°,那 么第三个角的度数就是180° - 90° = 90°。
在数学问题解决中的应用
代数问题
在代数问题中,三角形内角和定理可以与其他数学概念结合 使用,例如方程组、不等式等。通过引入三角形内角和定理 ,可以简化代数问题的求解过程。
三角函数
三角形内角和定理是学习三角函数的基础之一。通过理解三 角形的角度关系,可以进一步学习三角函数的性质和应用。
04
教学方法与手段
情感态度与价值观
培养学生对数学的兴趣和热爱,提高他们的探索精 神和合作意识。
教学内容概述
80%
三角形内角和的定义
三角形内角和是指一个三角形的 三个内角的度数之和。
100%
三角形内角和定理
任意三角形的内角和等于180度 。
80%
三角形内角和的应用

三角形内角和ppt课件完整版

三角形内角和ppt课件完整版
度或边长。
余弦函数
cosA = b/c,表示邻边与斜边的 比值,同样用于直角三角形中。
正切函数
tanA = a/b,表示对边与邻边的比 值,常用于求解直角三角形的角度。
三角函数在解三角形中应用
已知两边及夹角求第三边
01
利用正弦定理或余弦定理求解。
已知三边求角度
02
利用余弦定理求解角度,再结合三角形内角和为180度求解其他
算错误。
公式选择
根据已知条件选择合适的公式 进行计算,避免使用错误的公
式导致结果不准确。
精度问题
在计算过程中要注意精度问题, 避免因舍入误差导致结果不准
确。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义 三角形三个内角的度数之和等于180度。
三角形内角和定理的证明 可以通过多种方法证明,如平行线性质、外角性质等。
角度。
已知两角及一边求其他边和角
03
利用正弦定理和三角形内角和求解。
边长比例与角度关系探讨
边长比例对角度的影响
在三角形中,边长比例的变化会影响角度 的大小,如等腰三角形底角相等。
VS
角度对边长比例的影响
角度的变化也会影响三角形的边长比例, 如直角三角形中,30度角所对的直角边等 于斜边的一半。
典型问题解决方法分享
建筑设计
建筑设计中经常涉及到三角形的面积计算,如屋顶、窗户等部分的 设计。
物理问题
在物理问题中,三角形的面积计算也经常出现,如求解力的大小和方 向等。
误区提示和易错点剖析
01
02
03
04
底和高的对应
在计算三角形面积时,一定要 注意底和高的对应关系,避免

2024版《三角形的内角和》优质ppt课件

2024版《三角形的内角和》优质ppt课件

《三角形的内角和》优质ppt课件CONTENTS•三角形基本概念与性质•三角形内角和定理推导•三角形内角和定理应用举例•拓展:多边形内角和计算方法探讨•练习题与课堂互动环节•课程小结与预习提示三角形基本概念与性质01三角形定义及分类三角形定义由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。

三角形分类按边可分为等边三角形、等腰三角形和不属于以上两种的其他三角形;按角可分为锐角三角形、直角三角形和钝角三角形。

三角形边长与角度关系三角形边长关系任意两边之和大于第三边,任意两边之差小于第三边。

三角形角度关系三角形内角和等于180°,外角和等于360°。

三边相等,三个内角均为60°。

等边三角形等腰三角形直角三角形锐角三角形和钝角三角形有两边相等,且两底角相等;顶角的平分线、底边上的中线和高互相重合(简称“三线合一”)。

有一个角为90°,斜边中线等于斜边一半;两锐角互余,且满足勾股定理。

除上述特殊三角形外,其余均为普通锐角三角形或钝角三角形,它们不具有特殊的性质。

特殊三角形性质介绍三角形内角和定理推导02直观感受法01通过测量不同类型的三角形的三个内角,并求和,观察结果是否接近或等于180度。

02利用三角形纸片的撕拼,将三个内角拼在一起,观察是否能拼成一个平角。

拼图验证法将三角形三个内角剪下,并尝试拼合,观察是否能拼成一个平角。

通过动画演示,将三角形三个内角旋转、平移拼接,直观展示三角形内角和为180度的过程。

过三角形一个顶点做对边的平行线,利用平行线的性质及平角的定义进行证明。

延长三角形的一条边,并作出与之相邻的外角,通过外角性质及平角的定义进行证明。

利用向量的加法运算及共线向量定理进行证明。

平行线性质证明外角性质证明向量法证明几何证明法三角形内角和定理应用举例03求角度问题已知三角形两个内角,求第三个内角的大小。

已知三角形一个内角及相邻两边,求另一个内角的大小。

三角形内角和说课ppt课件

三角形内角和说课ppt课件

感谢观看
THANKS
三角形内角和的基础知识
三角形的定义和分类
三角形是由不在同一直线上的三条线段首尾顺次 相接所组成的图形。根据边长特点,三角形可以 分为等边三角形、等腰三角形和普通三角形。
等腰三角形有两边长度相等,对应的两角也相等 ,另一个角为顶角。
等边三角形三边长度相等,三个内角相等,均为 60°。
普通三角形三边长度和三个内角均不相等。
电子工程
在电子工程中,三角形内角和定理可以用于计算电路中的 电阻、电容、电感等元件的参数,以及确定电路的性能和 稳定性。
05
三角形内角和定理的拓展和
深化理解
对称三角形内角和定理的拓展
总结词
揭示规律,拓展思维
详细描述
通过对称三角形的案例分析,揭示三角形内角和定理背后的规律,引导学生拓展 思维,探索不同证明方法的可能性。
三角形内角和说课 ppt课件
• 引言 • 三角形内角和的基础知识 • 三角形内角和的证明方法 • 三角形内角和的应用 • 三角形内角和定理的拓展和深化
理解 • 总结与回顾
目录
01
引言
主题和目的
主题
探究三角形的内角和
目的
通过多种方法证明三角形内角和为180度,并运用该结论解决实际问题
背景和重要性
03
这种证明方法较为抽象,但可以借助计算机软件进行计算 和验证。
04
三角形内角和的应用
在几何学中的应用
证明定理
三角形内角和定理是几何学中最 基本的定理之一,它可以应用于
证明其他定理和性质。
计算角度
通过三角形内角和定理,我们可以 快速计算出三角形的内角大小,以 及一个角度相对于其他角度的大小 。

数学课件-3三角形内角和定理的证明

数学课件-3三角形内角和定理的证明
6.5 三角形内角和定理的证明
认识推理
❖ 所谓归纳推理,就是从个别性知识推出一般性结论的推理。 归纳推理:根据一类事物的部分对象具有某种性质,推出这 类事物的所有对象都具有这种性质的推理,叫做归纳推理( 简称归纳)。归纳是从特殊到一般的过程,它属于合情推理 ,归纳推理善于发现结论。
❖ 例如:在一个平面内,直角三角形内角和是180度;锐角三角 形内角和是180度;钝角三角形内角和是180度;直角三角形 ,锐角三角形和钝角三角形是全部的三角形;所以,平面内 的一切三角形内角和都是180度。
证法二
已知:如图△ABC. 求证:∠A+∠B+∠C=1800.
A
E
1
B
32
C
D
证明:作BC的延长线CD,过点C作CE∥AB,则 ∠1=∠A(两直线平行,内错角相等), ∠2= ∠B(两直线平行,同位角相等).
这里的 CD,CE称为 辅助线,辅助 线通常画成
虚线.
又∵∠1+∠2+∠3=1800 (平角的定义), ∴ ∠A+∠B+∠ACB=1800 (等量代换).
∴ ∠BAC + ∠ABC + ∠ACB= 180 °1 2 3 4 (等量代换)
D
B
C
试一试
根据下面的图形,写出相应的证明.
A
Q
R
B
P
C(1)SQPNA
S
Q
PN
R
BM T C
(2)
A
R
MT
B
C
(3)
你还能想出其它证法吗?
三角形内角和定理
三角形内角和定理 三角形三个内角的和等于1800.
△ABC中,∠A+∠B+∠C=1800.

三角形的内角和(PPT课件)2024新版

三角形的内角和(PPT课件)2024新版
忽视三角形形状的多样性,认为只有某些特殊形状的三角 形才具有内角和为180度的性质。实际上,所有三角形的内 角和均为180度,与形状无关。
拓展延伸:多边形内角和探讨
多边形的定义及分类
由三条或三条以上的线段首尾顺 次连接所组成的平面图形叫做多 边形。按照边数可分为三边形、 四边形、五边形等。
多边形内角和的计算 公式
在建筑设计中,需要测量建筑物的各个角度,以确保建筑物的稳定性和
美观性。三角形内角和的原理可以帮助建筑师快速准确地计算角度。
02
屋顶角度设计
屋顶的角度设计对于建筑物的排水、采光和保温等方面都有重要影响。
利用三角形内角和的原理,建筑师可以设计出合理的屋顶角度。
03
楼梯角度计算
在楼梯设计中,需要计算楼梯的倾斜角度,以确保人们上下楼梯时的舒
艺术创作
在艺术创作中,艺术家经常需要运用几何原理来构图和设计。三角形内角和的原理可以帮 助艺术家创造出具有美感和平衡感的作品。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义
01
三角形的三个内角之和等于180度。
三角形内角和的验证方法
02
通过测量、撕拼、折叠等方法验证三角形的内角和为180度。
可以通过三角形内角和定理和 邻补角的性质来证明三角形外 角和定理。
03
三角形外角性质与计算
三角形外角定义及性质
三角形外角的定义
三角形的一边与另一边的延长线组成的角,叫做三角形的外 角。
三角形外角的性质
三角形的外角等于与它不相邻的两个内角之和。此外,三角 形的一个外角大于任何一个和它不相邻的内角。
方法二:通过撕拼法 证明
从而得到∠A + ∠B + ∠C = 180度。

2024版《三角形的内角和》完整版课件

2024版《三角形的内角和》完整版课件

全等三角形条件判断及证明方法论述
SSS全等条件
三边分别相等的两个三角形全等。
SAS全等条件
两边和它们的夹角分别相等的两个三角形全等。
全等三角形条件判断及证明方法论述
ASA全等条件
两角和它们的夹边分别相等的两个三 角形全等。
AAS全等条件
两角和一角的对边分别相等的两个三 角形全等。
全等三角形条件判断及证明方法论述
三角形的一个内角与它相邻的外角之和等于180°。
内外角之差关系
三角形的一个内角与它不相邻的两个外角之差等于180°。
应用场景
内外角关系在解决三角形的问题中有着广泛的应用,如计算三角形的 内角和、判断三角形的形状、证明三角形的全等或相似等。
04
三角形面积计算公式推导与应 用
基于底和高计算面积公式推导
勾股定理内容:在直角三 角形中,直角边的平方和 等于斜边的平方。
已知直角三角形的两条直 角边,求斜边长度。
应用举例
已知直角三角形的一条直 角边和斜边,求另一条直 角边长度。
特殊角度(30°、45°、60°)边长关系分析
当直角三角形中一个 锐角为30°时
邻边(较长的直角边) 与斜边的比值为√3:2。
THANKS
对边(较短的直角边) 与斜边的比值为1:2。
特殊角度(30°、45°、60°)边长关系分析
当直角三角形中一个锐角为45°时(等腰直角三角形) 两直角边相等。
对边与斜边的比值为1:√2。
特殊角度(30°、45°、60°)边长关系分析
当直角三角形中一个锐角为60° 时
对边(较短的直角边)与斜边 的比值为1:2。
特殊三角形性质
等腰三角形性质
两腰相等,两底角相等;三线合 一(底边上的中线、高线和顶角

三角形的内角和ppt课件

三角形的内角和ppt课件
三角形分类
按边可分为等边三角形、等腰三 角形和一般三角形;按角可分为 锐角三角形、直角三角形和钝角 三角形。
三角形边长与角度关系
三角形边长关系
任意两边之和大于第三边,任意两边之差小于第三边。
三角形角度关系
三角形内角和为180°,外角和为360°。
特殊三角形性质介绍
等边三角形性质 三边相等,三个角都是60°。
01
02
03
知识掌握情况
学生自我评价对于三角形 内角和的定义、性质以及 推导过程有清晰的认识和 理解。
解决问题能力
学生能够运用三角形内角 和的知识解决一些简单的 三角形角度计算问题。
学习态度与习惯
学生表现出积极的学习态 度和良好的学习习惯,能 够认真听讲、积极思考并 主动发言。
课后作业布置及要求
作业内容
判断形状类问题解析
已知三边判断形状
01
通过三边关系判断三角形的形状,如等边、等腰或一般三角形

已知两角及夹边判断形状
02
根据角边角(ASA)或角角边(AAS)关系判断三角形的形状

已知三角判断形状
03
通过三角形内角和定理及三角形形状的判断条件进行综合分析

一题多解类问题探讨
多种方法求角度
除了直接应用三角形内角和定理 外,还可以利用正弦、余弦定理
若三角形中三边相等,则三个角也 相等,每个角均为60°,可以快速判 断出所有角的大小。
05
典型例题解析与思路拓展
求角度类问题解析
1 2
已知两角求第三角
通过三角形内角和定理,直接计算第三角的度数 。
已知两边及夹角求其他角
利用正弦、余弦定理求解其他角度。

11.2.1三角形的内角和 公开课ppt课件

11.2.1三角形的内角和 公开课ppt课件
22
我不但三边之和比你长, 你的三边之和。是比我长,
而且三个内角之和也比 但三个内角之和并不比我
你大!

你同意谁的说法呢?为什么?
23
这节课你学到了什么?
P13 练习
24
(两直线平行,内错角相等)
∠B=∠2
(两直线平行,同位角相等)
∵∠1+∠2+∠ACB=180°
A
∴∠A+∠B+∠ACB=180° (等量代换) B
E
1 2
C
D
12
证法三 内错角+同旁内角
过A作AE∥BC,
∴∠B=∠BAE
(两直线平行,内错角相等)
∠EAB+∠BAC+∠C=180°
(两直线平行,同旁内角互补)
E
A
∴∠B+∠C+∠BAC=180°
(等量代换)
B
C
13
三角形内角和定理: 三角形的内角和等于1800. 即在△ABC中, ∠A +∠B +∠C=180 °
14
பைடு நூலகம்
15
例1、 如图:在△ABC中,∠BAC=40°, ∠B=75°,AD是△ABC的角平分线。 求∠ADB的度数?
在△ABD中,
A
∠ADB=180°-∠B-∠BAD,
19
例:
已知△ABC, ∠A +∠B= 90 °,求∠C的度数。
解:∵ ∠A+∠B+ ∠C=180 ° ∴ ∠C=180 °-( ∠A +∠B) =180 °- 90 ° = 90 °
20
例3
我的一个角是多少 度?
1800÷3=60°

《三角形的内角和》ppt课件

《三角形的内角和》ppt课件
在数学教育中的价值
三角形内角和定理是初中数学中的重要内容之一,对于培养学生的逻辑思维、推理能力和数学素 养具有重要意义。
02
三角形内角和的基本概念
角度与三角形的关系
三角形是由三条边和三个角组成的几何图形。 角度是描述两条射线之间的夹角大小的量度。 三角形中的角度与边长之间存在一定的关系,如正弦、余弦定理等。
基于三角形内角和定理,可以推 导出许多三角恒等式,这些恒等 式在解决三角函数问题时非常有 用。例如,正弦定理、余弦定理
等。
三角函数的应用
在物理学、工程学、天文学等领 域中,经常需要使用三角函数来 解决实际问题。而三角形内角和 定理是解决这些问题的关键之一。
在实际问题中的应用
建筑设计
在建筑设计中,经常需要使用三 角形内角和定理来计算角度、长 度等参数,以确保建筑物的稳定
性和美观性。
地图绘制
在地图绘制中,三角形内角和定理 被用来确定地图上两点之间的角度, 从而保证地图的准确性和可靠性。
导航定位
在导航定位中,三角形内角和定理 被用来计算航向、俯仰角等参数, 以确保飞机、船舶等交通工具的正 确航行方向。
05
总结与回顾
三角形内角和的总结
三角形内角和的定义
三角形内角和是指三角形三个内角的度数之和。
培养空间思维
学习三角形内角和定理有 助于培养学生的空间思维 能力和几何直觉。
回顾与思考
01
回顾三角形内角和定理的证明过程,加深对定 理的理解。
02
思考三角形内角和定理在现实生活中的应用, 提高解决实际问题的能力。
03
探究其他几何图形的内角和性质,拓展几何知 识面。
THANKS
内角和为180度的结论。

人教版四年级下册数学《三角形的内角和》课件(共15张PPT)

人教版四年级下册数学《三角形的内角和》课件(共15张PPT)

量一量

180°

请同学们每人再画一个三角形,量一量, 看看内角和是多少度。
给大家10分钟的时间,前后桌四人 为一个小组,小组内一起讨论讨论, 想出验证方法,待会请各小组代表 进行分享。
剪一剪,拼一拼
不为三角形内角和
剪一剪,拼一拼
3
1
2
3
平角:180°
3
1
2
3
1
2
3
平角:180°
剪一剪 拼一拼
3
平角:180°
折一折,拼一拼
1
1 22
33
平角:180°
折一折 拼一拼
1
1
2
2
3
3
平角:180°
1
1
2
2
3
3
平角:180°
一、测量法 二、剪拼法 三、折拼法
结论:三角形的内角和是180°。
①和②两个三角形的内角和各是多少度?
18①是多少度?
人教版小学数学四年级下册
三角形的内角和
授课人:
说一说:你知道三角形的哪些特性?
三个顶点 三条边 三个角(内角)
三角形的内角和:三角形的三个内角之和。
说一说:关于三角形的内角和,你们知道什么?
三角形的内角和是180°
①号三角形内角和是多少呢? 三角形无论什么大小、形状,内角和都是180°


②号三角形的内角和呢?
55° 35°
180°- 35°- 90°=55°
50° 65° 65°
30°
120° 30°
180°- 50°- 65°=65° 180°- 30°- 120°=30°
课堂 小结

《三角形的内角和》PPT课件

《三角形的内角和》PPT课件
三角形内角和性质
三角形内角和与角度关系
三角形内角和为180度
在任何三角形中,三个内角的和总是 等于180度。
角度互余关系
在一个三角形中,如果两个角的和小 于90度,则这两个角互为余角。
角度互补关系
在直角三角形中,两个锐角的角度和 为90度,它们互为补角。
三角形内角和与边长关系
边长与角度关系
在三角形中,边长越长, 对应的角度越大;边长越 短,对应的角度越小。
步骤四
将剪下来的三个角拼在 一起,观察是否能拼成
一个平角。
实验结果分析与讨论
结果分析
通过实验操作,我们发现三角形ABC的三个内角拼在一起后,能够形成一个平角,即三角形的内角和为 180度。
讨论
实验结果验证了三角形的内角和定理,即任意三角形的内角和都等于180度。这一结论在数学和几何学中 有着广泛的应用,对于解决与三角形相关的问题具有重要意义。同时,实验结果也说明了实验操作的准确 性和可靠性。
通过不断练习和挑战自我,可 以提高自己的几何思维能力和 解题能力。
THANKS
感谢观看
《三角形的内角 和》PPT课件
目录
• 课程引入 • 三角形内角和定理 • 三角形内角和性质 • 三角形内角和计算 • 实验操作与探究 • 拓展延伸与应用举例
01
课程引入
三角形的定义与分类
三角形的定义
由不在同一直线上的三条线段首尾 顺次相接所组成的图形叫做三角形。
三角形的分类
根据三角形的边长和角度,可以将 三角形分为等边三角形、等腰三角 形、直角三角形等。
三角形内角和概念
三角形内角和的定义
三角形三个内角的度数之和。
三角形内角和的性质
任意三角形的内角和都等于180度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
C
这里的结论,以后可以直接运用.
同学们你们掌握了吗, 课后认真复习哦
P A
1 3 2
Q
C 所作的辅助 线是证明的 一个重要组 成部分,要在 证明时首先 叙述出来.
开启
智慧
已知:如图,△A B C. 求证:∠A +∠B +∠C=180°
A
还有其他证明方法吗?
B
C
试一试P211

根据下面的图形,写出相应的证明. A Q B R Q C
S
―行家” 看“门 道”
A
S
P
随堂练习

3、如图,直线AB∥CD,在AB、CD外有一点P,连结 PB、PD,交CD于E点。 则∠ B、 ∠ D、 ∠ P 之间是否存在一定的大小关系? 他们是怎样的,并加以证明? A C P E B
D
☞ 读一读P207
用运动变化的观点 理解和认识数学
在△ABC中,如果BC不动,把点A―压”向BC,那么当点A越 来越接近BC时, ∠A就越来越大(越来越接近1800),而∠B和 ∠C,越来越小(越来越接近00).由此你能想到什么?
∴四边形AQPR是平行四边形
(平行四边形的定义)
A Q R P C
∴ ∠ QPR= ∠ A
(平行四边形的对角相等) B
∠ RPC= ∠ B(两直线平行,同位角相等)
∠ QPB= ∠ C(两直线平行,同位角相等)
∵ ∠ QPB+ ∠ QPR + ∠ RPC=180 ° (1平角=180 ° )
∴ ∠ A+ ∠ B+ ∠ C=180 ° (等量代换)
“行家” 看“门道”
A
1
3 2
E
C
D
这里的 CD,CE称为 辅助线,辅助 线通常画成 虚线.
又∵∠1+∠2+∠3=1800 (平角的定义), ∴ ∠A+∠B+∠ACB=1800 (等量代换). 你还有其它方法来证明三角形内角和定理吗?.议一议P208Fra bibliotek一题 多解
在证明三角形内角和定理时,小明的想法是把三个角 “凑”到A处,他过点A作直线PQ∥BC(如图),他的想法可 以吗? 请你帮小明把想法化为实际行动. 证明:过点A作PQ∥BC,则 ∠1=∠B(两直线平行,内错角相等), ∠2=∠C(两直线平行,内错角相等), B 又∵∠1+∠2+∠3=1800 (平角的定义), ∴ ∠BAC+∠B+∠C=1800 (等量代换). 小明的想法已经变为现实,由此你 受到什么启发?你有新的证法吗?
1 2 B C D
三角形内角和定理的证明
回顾与思考 ☞
言必有“据”
我们知道三角形三个内角的和等于1800.你还记得这个 结论的探索过程吗? A (1)如图,当时我们是 1 把∠A移到了∠1的位 置,∠B移到了∠2的位 置.如果不实际移动 3 1 2 ∠A和∠B,那么你还有 B 2 C D 其它方法可以 达到同 样的效果?
A A
B
C B C
如果BC不动,把点A―拉离”BC,那么当A越来越远离BC 时,∠A就越来越小(越来越接近00),而∠B和∠C则越来越大, 它们的和越来越接近1800, 当把点A拉到无穷远时,便有 AB∥AC,∠B和∠C成为同旁内角,它们的和等于1800.由此你 能想到什么?
回味无穷 掌握几何命题证明的方法,步 骤,格式及注意事项. 三角形内角和定理. 结论: 直角三角形的两个锐 角互余. 探索证明的思路的方法: 由“
解得 X=180 °
即三角形的内角和为180 °
三种语言

三角形内角和定理
三角形内角和定理 三角形三个内角的和等于1800. △ABC中,∠A+∠B+∠C=1800. ∠A+∠B+∠C=1800的几种变形: ∠A=1800 –(∠B+∠C). ∠B=1800 –(∠A+∠C). ∠C=1800 –(∠A+∠B). ∠A+∠B=1800-∠C. B 0-∠A. ∠B+∠C=180 ∠A+∠C=1800-∠B.
证明:
过A点作射线AD,过B点作BE ∥ AD,过C 点作CF∥AD 则BE ∥ CF(平行与同一条直线的两直线平行)
∴∠1=∠2,∠3=∠4 (两直线平行,内错角相等). ∠EBC+ ∠FCB=180 ° (两直线平行,同旁内角互补) A E F 即∠1+ ∠ABC+ ∠ACB+∠4= 180 ° 又∵ ∠BAC= ∠2+ ∠3 ∴ ∠BAC + ∠ABC + ∠ACB= 180 °1 2 3 4 (等量代换)
随堂练习

1、直角三角形的两锐角之和是多少度?等边三角 形的一个内角是多少度?请证明你的结论.
C A
A
B
B
C
结论: 直角三角形的两个锐角互余;等边三 角形每个内角60° 以后可以直接运用.
随堂练习

已知:在△ABC中,∠C= 90゜ 求证:∠A+∠B=90 ゜
证明:在△ABC中
∵∠A+∠B+∠C=180゜(三角形内角和定理) ∠C= 90゜(已知) B ∴∠A+∠B+90゜=180゜(等量代换) ∴∠A+∠B=180゜-90゜= 90゜ (等式性质) 即∠A+∠B=90゜ A
一、复习“三角形内角和定理”
我们已经知道:
三角形的三个内角之和等于180゜。
A
A
即:在△ABC中, 有 ∠A+∠B+∠C=180゜
BB C C
二、论证“三角形内角和定理”
怎样验证三角形 的三个角的和等于180°呢??
在前面我们是采用拼接的方法来说明的。
即把∠A撕下来放在∠1的位置上, 把∠B撕下来放在∠2的位置上。这时就 可得∠ACB和∠1和∠2组成了一条直线, 得到∠ACB+∠1+∠2=180゜,就可说 明∠A+∠B+∠C=180゜了。 A
(2)根据前面的公理和定理,你能用自己的语言说说这一 结论的证明思路吗?你能用比较简捷的语言写出这一证明 过程吗?与同伴交流. 三角形内角和定理 三角形三个内角的和等于1800.
例题欣赏P207

已知:如图, ∠A、∠B、∠C 是△ABC 的三内角. 求证:∠A+∠B+∠C=1800. 分析:延长BC到D,过点C作 射线CE∥AB,这样,就相当于 B 把∠A移到了∠1的位置,把 ∠B移到了∠2的位置. 证明:作BC的延长线CD,过点C 作CE∥AB,则 ∠1=∠A(两直线平行,内错角相等), ∠2= ∠B(两直线平行,同位角相等).
N
R
P (1)
Q
B
P
N
M
A R C
(3)
(2)
T
C
M
B
T
你还能想出其它证法吗?
开启
智慧
证明:过A作AE∥BC, ∴∠B=∠BAE (两直线平行,内错角相等) ∠EAB+∠BAC+∠C=180°
(两直线平行,同旁内角互补)
∴∠B+∠C+∠BAC=180° (等量代换) E A
B
C
证明:过点P作PQ ∥ AC交AB于Q点, 作PR ∥ AB交AC于R点。
A
C
这里的结论,以后可以直接运用.
随堂练习P208

A
我是最 棒的
1.直角三角形的两锐角之和是多少度?等边三角形的一个 内角是多少度?请证明你的结论. A
B A B C B C D E
C
已知:如图在△ABC中,DE∥BC,∠A=600, ∠C=700. 求证: ∠ADE=500..
结论: 直角三角形的两个锐角互余. 以后可以直接运用.
你试过了吗?.
1 2 B C D E

但是组成的BC和CD真的就是一条直 线吗?
很明显,这是无法确定的
A E
1 2 B C D
如果△ABC是画在一块不能分割的平面上,如 在黑板上,这时就不可能做到把∠A、∠B撕下来再 分别放在∠1、∠2的位置上,那么又如何论证 ∠A+∠B+∠C= 180゜呢?
A E
C
随堂练习

2、已知:如图在△ABC中, DE∥BC,∠A=600, ∠C=700. 求证: ∠ADE=500
证明: ∵ DE ∥ BC (已知)
∴ ∠ AED= ∠ C(两直线平行,同位角相等) D ∵ ∠ C=700(已知) ∴ ∠ AED= 700 (等量代换) B A E C
(第2题) ∵ ∠ A+ ∠ AED+ ∠ ADE=1800(三角形的内角和定理) ∠ A=600(已知) ∴ ∠ ADE=1800—600—700=500(等量代换) 即∠ ADE= 500
小结 拓展
因”导“果”,执“果”索“因 ”.
与同伴交流,你是如何提高证
小结
拓展
小结:本节课你有什么收获? 我们证明了三角形内角和定理。 证明的基本思想是:运用辅助线将原 三角形中处于不同位置的三个内角集 中在一起,拼成一个平角,辅助线是 联系命题的条件和结论的桥梁。
三种语言

三角形内角和定理
三角形内角和定理 三角形三个内角的和等于1800. △ABC中,∠A+∠B+∠C=1800. ∠A+∠B+∠C=1800的几种变形: ∠A=1800 –(∠B+∠C). ∠B=1800 –(∠A+∠C). ∠C=1800 –(∠A+∠B). ∠A+∠B=1800-∠C. B 0-∠A. ∠B+∠C=180 ∠A+∠C=1800-∠B.
相关文档
最新文档