从三个方向看物体的形状(一)
《从三个方向看物体的形状》PPT课件 (公开课)2022年北师大版 (1)
4x
平方米的地砖?如果某
种地砖的价格是a元/平 2x
客厅
方米,那么购买所需地
砖至少需要多少元? 4y
随堂测评:
1.计算:
3x2 5x①3
(5a2b)②(2a2)
(5an1b)③(2a.)
(2x)3(④2x2y)
(x2 yz3)2(x⑤2y)3
收获感悟:
本节课你学到了什么? 发现了什么? 有什么收获?
19.圆柱、圆锥
20.下面是由一些棱长为1 cm的正方体小木块搭建成的几何体 分别从正面、左面、上面看得到的平面图形.
(1)请你观察它是由多少块小木块组成的; (2)在从上面看得到的平面图形中标出相应位置小木块的个数.
20.(1)10块 (2)图略
21.如图,是由一些大小相同的小正方体组成的简单几何体从 正面和上面观察到的图形.
例题解析:
例1 计算:
(1)2 xy 2 ( 1 xy ) 3
(2) 2a2b3 (3a)
(3)7xy2z(2xyz)2
(4)(2a2bc3)(3c5)(1ab2c)
3
43
知识加油站:
(1)进行单项式乘法,应先确定结果的符 号,再把同底数幂分别相乘,这时容易出 现的错误是将系数相乘与相同字母指数相
4.如图是由八个相同小正方体组成的几何体,从正面看到的图
形是( C )
5.(2015·北京改编)如图是从三个方向观察到的形状图,该几
何体是( C )
A.圆椎 B.圆柱 C.正三棱柱 D.正三棱锥
6.将一包卷筒卫生纸按如图所示的方式摆放在桌面上,从上
面看到的平面图形是( D )
7.由一个圆柱体与一个长方体组成的几何体如图所示,则从
从3个方向看物体的形状知识点总结
从3个方向看物体的形状知识点总结一、引言在我们日常生活中,我们经常需要观察和描述物体的形状。
而要准确地描述一个物体的形状,我们需要从不同的方向进行观察。
在本文中,我们将讨论三个常用的观察物体形状的方向,分别是从上方、从前方和从侧方观察。
通过对这三个方向的观察,我们可以更全面地认识一个物体的形状。
二、从上方观察物体形状从上方观察物体的形状,主要关注物体的水平轮廓。
通过这个角度观察,我们可以看到物体的上表面以及物体的外轮廓。
例如,当我们从上方观察一个圆盘时,我们可以看到一个圆形的上表面,以及一个圆形的外轮廓。
同样地,当我们从上方观察一个长方体时,我们可以看到一个矩形的上表面,以及一个矩形的外轮廓。
通过从上方观察物体的形状,我们可以获得物体的基本几何形状信息。
三、从前方观察物体形状从前方观察物体的形状,主要关注物体的正面轮廓。
通过这个角度观察,我们可以看到物体的正面形状以及物体的外轮廓。
例如,当我们从前方观察一个球体时,我们可以看到一个圆形的正面,以及一个圆形的外轮廓。
同样地,当我们从前方观察一个长方体时,我们可以看到一个矩形的正面,以及一个矩形的外轮廓。
通过从前方观察物体的形状,我们可以更直观地了解物体的表面特征和外形。
四、从侧方观察物体形状从侧方观察物体的形状,主要关注物体的垂直轮廓。
通过这个角度观察,我们可以看到物体的侧面形状以及物体的外轮廓。
例如,当我们从侧方观察一个圆柱体时,我们可以看到一个圆形的侧面,以及一个圆形的外轮廓。
同样地,当我们从侧方观察一个长方体时,我们可以看到一个矩形的侧面,以及一个矩形的外轮廓。
通过从侧方观察物体的形状,我们可以更全面地了解物体的体积和结构。
五、总结通过从不同方向观察物体的形状,我们可以更全面地认识和描述一个物体。
从上方观察物体的形状可以让我们了解物体的水平轮廓和基本几何形状;从前方观察物体的形状可以让我们更直观地了解物体的表面特征和外形;从侧方观察物体的形状可以让我们更全面地了解物体的体积和结构。
《第一章4从三个方向看物体的形状》学历案-初中数学北师大版12七年级上册
《从三个方向看物体的形状》学历案(第一课时)一、学习主题本学习主题为“从三个方向看物体的形状”。
主要教学内容涉及平面图形及三维几何体,学生通过实际操作观察不同视角下的物体形态,加深对图形、立体感和空间理解的能力。
该课程在数学知识的学习过程中起着至关重要的基础性作用。
二、学习目标1. 理解物体从不同角度观察时的形态变化。
2. 掌握三个基本视角(正视、侧视、俯视)的变换及相应图形特征。
3. 培养学生的空间想象能力和图形转换思维。
4. 引导学生利用几何图形的特征和空间感,描述和理解立体物体的基本形状。
5. 提高学生的逻辑思维和操作实践能力,激发其对几何学科的兴趣和爱好。
三、评价任务评价任务贯穿于整个学习过程,主要包括以下方面:1. 学生是否能准确理解不同视角下的物体形态变化;2. 学生能否快速判断出给定图形属于何种视角下的投影;3. 学生能否运用所学知识描述物体形状并绘制出相应的三视图;4. 学生在小组合作中表现出的协作能力和实际操作能力。
通过这些评价任务,能够全面地评价学生的学习成果和综合应用能力。
四、学习过程1. 导入新课:教师通过展示不同视角下物体的图片或实物,引导学生感知和发现不同视角下的差异,激发学习兴趣。
2. 知识讲解:教师详细讲解三个基本视角(正视、侧视、俯视)的概念及特点,并通过实例演示不同视角下的图形变化。
3. 操作实践:学生动手操作,利用几何模型或画图工具,尝试从不同角度观察并绘制出物体的三视图。
4. 小组讨论:学生分组进行讨论,分享观察和绘制过程中的心得体会,互相评价和指导。
5. 教师点评:教师根据学生的操作实践和小组讨论情况,进行点评和总结,强调重点和难点内容。
6. 巩固练习:学生完成相关的练习题,巩固所学知识,提高应用能力。
五、检测与作业1. 检测:通过课堂小测验或作业形式,检测学生对不同视角下物体形态变化的理解程度和操作实践能力。
2. 作业:布置相关作业,如绘制实际物体的三视图或根据给定三视图还原物体形状等,旨在巩固学生所学知识并提高其应用能力。
从三个方向看物体的形状北师大版七年级数学上册
•
4.根据结构来梳理。按照情节的开端 、发展 、高潮 和结局 来划分 文章层 次,进而 梳理情 节。
•
5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。
•
6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。
13. 在如图所示的几何体中,从正面、左面、上面看到的 形状图中有矩形的是__①__②___. (写出所有正确答案 的序号)
14. 如图是由10 个同样大小的小正方体摆成的几何体. 将小正方体①移走后,则关于新几何体的从正面、 左面、上面看到的形状图描述正确的是( A )
A.从上面看形状图不变,从左面看形状图不变 B.从正面看形状图改变,从左面看形状图改变 C.从上面看形状图不变,从正面看形状图不变 D.从正面看形状图改变,从上面看形状图改变
第一章 生活中的立体图形
第4课 从三个方向看物体的形状(1)
新课学习
知识点1 从三个方向看物体的形状 (1)要全面了解一个几何体的形状,必须从3个不同的
方向进行观察,分别是从正面看、从左面看、从 上面看. (2)从不同的方向观察同一物体时通常可看到不同的 图形,从正面看可以分清物体的长和高,从左面 看可以分清物体的高与宽,从上面看可以分清物 体的长和宽.
(2)图中共有 9 个小正方体.
重难易错
7.在正方体,圆柱,圆锥,球中,从正面、左面、上面看
到的形状图均一样的几何体是
球体 .
8. 如图,是由10个完全相体,在保证该几何体
的从上面、从正面、从左面看到的图形都不变的情 况下,最多还能放_____个1小正方体.
《从三个方向看物体的形状》典型例题
《从三个方向看物体的形状》典型例题例1召集几个同伴到一起,共同回忆《盲人摸象》的故事,然后,大家一起交流这个故事给予的启示,并就正在学习的《画立体图形》知识,说一说这个故事对学习数学知识有何帮助.例2 如图所示的圆锥的三视图是__________.A.正视图与侧视图是三角形,俯视图是圆B.正视图与侧视图是三角形,俯视图是圆和圆心C.正视图是圆和圆心,俯视图和侧视图是三角形D.正视图和俯视图是三角形,侧视图是圆和圆心例3一个物体的正视图是三角形,试说出该物体的形状.例4 根据给出的三视图,确定它们对应的立体图形并画出示意图(如图).例5 画出图所示物体的三视图.图中箭头表示画正视图时的观察方向.例6试分析如图所示物体的正视图、左视图和俯视图,物体是由什么基本几何体组成的?参考答案例1分析熟悉故事情节,才能悟透其中的含意,能从语文知识中找到对学数学的启示,这正是综合素质的体现,而这种综合素质正是每一个学生所应具备的.答案本题没有固定答案.《盲人摸象》传达了从不同角度感受同一个事物会得到不同结果的内涵,正如同从不同方向看同一个几何体的结果不一样是异曲同工.这也启示我们,若要解决同一个数学问题,思考角度不同,去找到不同的解决方案.例2 分析本题考查画立体图形的三视图的能力,由物体摆放的方式、位置可知:正视图和侧视图都是等腰三角形,俯视图为圆.答案:A说明:物体摆放的方式位置不同,视图也会有所区别,千万不能因为物体形状相同,就认为它的视图也一样了.例3 分析只给出一个视图的条件来判定物体的形状,根据常见的立体图形分类,正视图不可能是球或圆柱,那么可能是圆锥、棱锥或三棱柱,显然,答案不唯一,这是一个开放题.说明:由视图描述物体的形状要借助于三个视图综合分析、想象,仅仅一个方向的视图只能了解物体的部分信息.同时,合理猜想,结合生活经验估测也非常重要.例4 解:根据三视图可知,它应是一个带槽的立方体,是在一个长方体中间切下去一个三棱柱.示意图如图.说明:这是一个在日常生活中也可见到的带凹槽的立体图形,凹下去的槽是什么形状只有靠正视图及俯视图才可以判断.例5 分析按箭头所示方向观察这个物体时,只能看这个物体上用阴影表示的两个面.它们都是长方形,但长、高及大小都不相同.两个长方形之间没有空隙,所以正视图(如图)是由两个长方形组成的,二者是互相连接的,一个在上,一个在下.左视图(如图)也是一上一下两个长方形组成的,二者左侧对齐.俯视图(如图)是由上向下看到的两个长方形,较小的一个在另一个的内部,且有一条边在较大的长方形的边上.解说明初学者必须注意的一件事是:苦思苦想不如亲身实践,即观察实物.就此题而言,用两个一大一小的纸盒(太小了不利于观察,形状比较接近于图中的长方体更好),按图所示的情况摆好并进行观察,这是很容易办到的事情.实在没有纸盒、木块等,在一块砖上适当立半块砖也可以.总之,要在实践中提高观察力和空间想象力.例6分析不妨先细看俯视图.俯视图是由一个长方形和一个圆两部分组成的.其中长方形比较大,圆比较小,位于长方形的中央.再与正视图、左视图联系起来进行观察.正视图与左视图各是由两个长方形组成的.它们中下半部分的长方形比较大,恰好与俯视图中的长方形组成长方体的三视图.正视图与在视图中的上半部分(小长方形)恰好与俯视图中的圆组成圆柱的三视图.由正、左视图可以断定,如图所表示的物体是由两部分组成,一上一下,一大一小,之间没有空隙.上述文字叙述可以用下面图形表示.解这个物体是由一个长方体和一个圆柱组成的,圆柱被放置在长方体的上面,其下底面在长方体的上底面的中央.说明(1)这类问题的应用价值极大,如建筑施工,机械制造、设备安装等等.(2)形状比较复杂的物体经常可以看做是由几个形状简单的物体组合而成的.所谓“组合”包括“叠加”(把几个物体连接在一起)和从一个物体上“挖掉”几个立体图形两种情况.无论哪种情况,本题的“分析”都是很有借鉴价值的.(3)如果没有记住长方体和圆柱的三视图,本题的解出恐怕只能是“愿望”,教学中要注意寻找身边的模型.。
1.4从三个方向看物体的形状(1)
用小立方块搭出符合下列三视图的几何体:
主视图
左视图
俯视图
由4个小立方体搭成的一个物体, 它的主视图与左视图如图所示:
主视图 左视图
你能搭出这个几何体 并画出它的俯视图吗?
如图是由几个小立方块所搭几何体的 俯视图,小正方形中的数字表示在该 位置小立方块的个数,请画出这个几
块。
1如图,这是一幅电热水壶的主视图,则它的俯视图是( D )
A
B
C
D
2一物体及其正视图如下所示,则它的左视图与俯视图分别是右侧图形中的 ( B)
A ①② B ③② C ①④ D ③④
3一个几何体的三视图如图所示,那么这个几何体是( C )。
甲、乙、丙、丁四人分别面对面从在一 个四边形桌子旁边,桌上一张纸写着数 字“9”,甲说他看到的是“6”,乙说 他看到的是“ ”,丙说他看到的是 “ ”,丁说他看到的是“9”,则下 A.甲在丁的对面列,说乙法在甲正的确左的边,是丙在丁的右边
盒
,
我
得
仔 细
(1)
瞧 瞧
主视图
!
(2) 俯视图
上面
正面
(3) 左视图
进 步 的 阶 梯(2)
从三个方向看右图,得到
小 心
以下三个图形,请同学们
地 说出哪一个是主视图?哪
试 一个是左视图?哪一个是
一 俯视图?
试
左视图
正视图 俯视图
从
进 步 的 阶 梯(3)
上 面
看
如右图所示的三棱柱的
小 心 地
主视图为 (1) ; 俯视图为 (3) ;
七年级数学北师大版上册课时练第1章《从三个方向看物体的形状》 练习测试卷 含答案解析(1)
课时练第1单元从三个方向看物体的形状一、选择题(本大题共12小题,共36分)1.下列几何体中,从正面看是长方形的是()A. B. C. D.2.如图所示,该几何体从上面看到的图形是()A. B.C. D.3.下面四个几何体中,从左面看到的图形为圆的是()A. B.C. D.4.如图是由四个相同的小立方块搭成的几何体,这个几何体从正面看到的图形是()A. B.C. D.5.将图中的直角三角形绕直角边AB所在直线旋转一周,从正面看所得几何体的形状图为()A. B. C. D.6.如图所示,该几何体从上面看到的图形为()A. B.C. D.7.如图是一个几何体从不同方向看到的图形,则这个几何体是()A. B.C. D.8.某几何体由大小相同的小立方块搭成,从上面看这个几何体的形状如图(小正方形中的数字表示该位置的小立方块的个数),从左面看该几何体的形状图是()A. B.C. D.9.如图是从三个方向看到的由一些相同的小正体构成的几何体的形状图,则构成这个几何体的小正方体的个数是()A.8B.7C.6D.510.一个粮仓从不同方向看到的图形如图所示(单位:m),则它的体积是()A.21 3B.30 3C.45 3D.63 311.在一张桌子上摆放着一些碟子,从三个方向看到的图形如图所示,则这张桌子上碟子共有()A.4个B.8个C.12个D.17个12.一个几何体由若干个大小相同的小正方体组成,它从上面看到的图形和从左面看到的图形如图所示,那么组成该几何体所需小正方体的个数最少为()A.4B.5C.6D.7二、填空题(本大题共4小题,共12分)13.将19个棱长为a的正方体按如图所示的方式摆放,则这个几何体的表面积是.14.如图是从三个方向看到的由若干个棱长为1的小正方体组合而成的几何体的形状图,则这个几何体的表面积是.15.在桌上摆有一些大小相同的正方体木块,从正面和从左面看到的由这些大小相同的正方体木块摆成的图形的形状图如图所示,则要摆出这样的图形至少需要个正方体木块,最多需要个正方体木块.16.如图,一个正方体由27个大小相同的小立方块搭成.现从中取走若干个大小相同的小立方块,得到一个新的几何体,若新几何体与原正方体的表面积相等,则最多可以取走____个小立方块.三、解答题(本大题共5小题,共52分)17.把两个相同的小正方体和一个圆锥按如图所示的方式放在一起,请你分别画出从正面、左面和上面看这个立体图形时所得到的图形.18.如图所示是从一个几何体的正面和上面看到的图形,求该几何体的体积.( 取3.14)19.某学校设计了如图所示的雕塑,取名“阶梯”,现在工厂师傅打算用油漆喷刷所有暴露面,经测量,已知每个小立方体的棱长为0.5m.(1)请分别画出从正面、左面、上面三个方向看到的雕塑的形状图;(2)请你帮助工人师傅计算一下,需要喷刷油漆的总面积是多少.20.用大小相同的小立方块搭一个几何体,使它从正面和上面看到的形状图如图所示.从上面看到的形状图中,小正方形中的字母表示在该位置上小立方块的个数.(1)b,c各表示几?(2)这个几何体最少由多少个小立方块搭成?最多由多少个小立方块搭成?(3)满足条件的搭法共有多少种?其中从左面看到的的形状图共有多少种?请在所给网格图中画出从左面看到的形状图中的任意一种.21.将棱长为a的小正方体摆成如图所示的形状.(1)求该物体的表面积;(2)依图中摆放方法类推,如果该物体摆放了20层,求该物体的表面积.参考答案1.A2.B3.D4.D5.C6.C7.B8.C9.A10.C11.C12.B13.54a214.2215.61616.1617.解:分别从正面、左面和上面看这个立体图形时所得到的图形如图所示.18.解:该几何体由圆柱和长方体组成,所以它的体积就是长方体的体积加圆柱的体积.长方体的体积为25×30×40=30000( 3),圆柱的体积为 ××32≈10048( 3),所以该几何体的体积=长方体的体积+圆柱的体积≈30000+10048=40048( 3).19.解:(1)从三个方向看到的雕塑的形状图如图.(2)从正面和左面看到的平面图的面积都是0.5×0.5×6=1.5(平方米),从上面看到的平面图的面积是0.5×0.5×5=1.25(平方米),因为从左面看和从右面看是一样的,从正面看和从后面看是一样的,所以喷刷油漆的总面积为1.5×2+1.5×2+1.25=7.25(平方米).20.(1)b=1,c=3.(2)最少由9个小立方块搭成,最多由11个小立方块搭成.(3)满足条件的搭法共有7种,如图所示:从左面看到的形状图共有4种,如图所示:(画出一种即可)21.解:(1)从六个方向(前、后、左、右、上、下)去看,每个方向都可以看到6个边长为a 的正方形,则该物体的表面积为6×6 2=36 2.(2)从六个方向(前、后、左、右、上、下)看这个物体,每个方向都可以看到1+2+3+⋯+20=210个边长为a的正方形,则该物体的表面积为6×210 2=1260 2.。
数学课件-1从三个方向看物体的形状
从正面看到的物体形状 从上面看到的物体形状 从正面看到的物体形状 从左面看到的物体形状
反映了 物体左右方向的尺寸 反映了 物体上下方向的尺寸
从上面看到的物体形状 反映了 物体前后方向的尺寸 从左面看到的物体形状
长对正,高平齐,宽相等
巩固练习
1. 如图是一些相同的小立方体拼接成的几何体的
三种视图,拼接这个几何体所用的小立方体有几
谢谢观赏
You made my day!
主视图
左视图
俯视图
例题讲解
方法与分析: (1)以俯视图为基础,在俯视图内确定正方体的个数; (2)主视图第n列的层数为俯视图第n列中最大的数字; (3)左视图第n列的层数为俯视图第n层中最大的数字;
例题讲解 3.长方体从正面看与从上面看如图所示,则这个 长方体的体积是( 24 )
例题讲解
方法与分析:通过不同方向看到的图形还原物体
个?
8个
巩固练习 2.如图是由几个边长为2的小正方体搭成的几何体 的三视图,那么搭成这个几何体的体积为多少?
解析:该几何体由6个棱长为2的正方体组成, 每个立方体体积为:23=8,所以该图形的体积 为48。
巩固练习
3. 一个几何体由一些大小相同的小正方体组成, 如 所需图是小它正的方主体视的图个和数俯最视少图为,( 4那么) ,组最成多该为几(何5体)
六个:上、下、左、右、前、后 我们至少要从几个方面才能把物体看完整呢?
三个:前面、左边、上面, 因为数学中的几何体可以认为是对称的.
知识讲解
根据观察者的角度:从正面看到的图叫做主视图. 从左面看到的图叫做左视图.从上面看到的图叫做俯视图.
从上面看 从左面看
主视图
左视图
北师大版数学七年级上册1.4《从三个方向看物体的形状》课件(25张PPT)
不识庐山真面目,只缘身在此山中.
从本节的例子可知,给定几何体的形状,可以确定从三个不同方向看到的形状图;
解:几何体的三种形状图如图所示. 例2.用小立方体搭一个几何体,使得它从正面和上面看到的图形如图所示,搭建这样的几何体,最多要用几个小立方块?最少要用几
个小立方块?
解:搭建这样的几何体,最多用17块小立方块,最少用11块小立方块.
5.分别从正面、左面、上面看一个由若干个正方体组成的立体图形,得到的平面图形如下图所示,你能搭出这个立体图形吗?动手试
试看!
从本节的例子可知,给定几何体的形状,可以确定从三个不同方向看到的形状图;
谈谈你在本节课的收获:
从上面看 C.从上面看到的图
D.三种一样
不识庐山真面目,只缘身在此山中.
从本节的例子可知,给定几何体的形状,可以确定从三个不同方向看到的形状图;
例3.如图是一个几何体的三种形状图(含有数据),则这
个几何体的侧面展开图的面积等于( A ).
1
1
2
2
从正面看 从左面看
从上面看
A.2π
B.π
C.4
D.2
随堂练习
1.从正面看如图所示的立体图形得到的图形是( B ).
A
B
C
D
随堂练习
2.从正面看由一些大小相同的小正方体组成的几何体的形 状图如图所示,其中正方形中的数字表示在该位置上的小正方 体的个数,那么,从左面看这个几何体的形状图是( A ).
解法一:先摆出这个几何体,再画出 它的从正面看和从左面看的形状图.
21 12
探究新知
解法二:根据从上面看的图联想确定从正面看到的图有3列, 从左面看的图有2列,再根据数字确定每列方块的个数. 由此可得形状图如下:
从三个方向看物体的形状知识点总结
从三个方向看物体的形状知识点总结
嘿,朋友们!今天咱要来聊聊从三个方向看物体的形状这个超有趣的知识点!
比如说一个正方体吧,从正面看,哇哦,那就是一个标准的正方形呀,方方正正的,就像咱做人要堂堂正正一样。
从侧面看呢,嘿,还是个正方形,这多稳定呀。
再从上面看,哎呀呀,居然还是个正方形呢!是不是很神奇呀!
再看看一个圆柱体。
正面看,是个长方形,就好像是一条通往未知的道路。
侧面看呢,那就是个圆形啦,多圆润呀,就像我们要处事圆滑一些。
从上面往下看,嘿,也是个圆形呢,感觉就像一个温暖的小窝。
就像我们每个人都有不同的面,物体也是呀!有时候我们从一个角度看,觉得它是这样的,但换个角度呢,哇,完全不一样啦!这多像我们对人的看法呀,不能只从一个方面就给人家下定论嘛,得多角度去了解呀!
你想想看,要是我们只从一个方向去认识一个东西,那不是太片面了吗?就好比只看到人家的缺点,却没发现人家的优点,那多可惜呀!我们得像探索物体的形状一样,全面地去了解周围的一切。
而且呀,这个知识点在生活中也超有用的呢!当我们要摆放东西的时候,就得考虑从不同方向看过去是否合适呀,对不对?
所以呀,从三个方向看物体的形状可太重要啦,它让我们能更加全面、深入地认识这个五彩斑斓的世界,也让我们学会换个角度去看待问题和人。
它就像一把钥匙,打开我们认知世界的新大门,让我们能发现更多的美和奇妙呢!怎么样,是不是超级有意思呀!。
专题1.10 从三个方向看物体的形状(知识梳理与考点分类讲解)-2023-2024学年七年级数学上册
专题1.10从三个方向看物体的形状(知识梳理与考点分类讲解)一、知识梳理【知识点】从不同方向看几何体1、从不同方向看几何体,往往会看到不同的形状图,一般从三个方向看:从正面看,从左面看,从上面看,看到的图形分别称为主视图、左视图、俯视图。
2、常见的几何体从不同方向看到的形状图二、考点分类讲解【题型一】画从三个方向看到的几何体的形状图【例1】如图是由五个相同的小正方体搭成的几何体,如果从正面、上面、左面三个不同的方向去观察它,分别能得到什么样的平面图形【分析】先得出从正面、上面、左面看到的小立方体的个数及位置,再画出相应的图形即可.解:从正面、上面、左面看到的图形如图:【点拨】本题考查了从不同的角度看物体,掌握解答的方法是关键.【变式】如图,是由若干个完全相同的小正方体组成的一个几何体,请画出这个几何体从正面看、从左面看和从上面看到的平面图形.(用阴影表示)【分析】想象出从三个方向看的图形,画出即可;解:三个平面图形如图所示:从正面看:从左面看:从上面看:【点拨】本题考查了几何体的从不同方向看的图形,空间想象能力是本题的解题关键.【题型二】从不同方向看到的平面图形猜想原几何体【例2】如图,是一个几何体分别从正面、左面、上面看的形状图.(1)该几何体名称是;(2)根据图中给的信息,求该几何体的表面积和体积.【答案】(1)长方体;(2)表面积280cm2,体积300cm3【分析】(1)根据从不同方向看到的图形判定几何体的形状即可;(2)根据长方体的表面积公式及体积公式进行求解即可.解答:(1)解:这个几何体是长方体,故答案为:长方体;(2)这个长方体的表面积=2×(10×5+5×6+10×6)=280(cm2).体积=10×5×6=300(cm3).【点拨】本题考查根据从不同方向看到的图形判定几何体,几何体的表面积等知识,熟练掌握和灵活运用相关知识是解题的关键.【变式1】小明和小彬观察同一个物体,从俯视图看都是一个等腰梯形,但小明所看到的主视图如图()1所示,小彬看到的主视图如图()2所示.你知道这是一个什么样的物体?小明和小彬分别是从哪个方向观察它的?【答案】底面为等腰梯形的四棱柱【分析】根据题意,俯视图是一个等腰梯形,而(1)与(2)的形状的相同的,故可知道小明和小彬是从不同方向观察它的,(1)由虚线表示是等腰梯形的上底.故可知道该几何体是等腰梯形的四棱柱.【详解】底面为等腰梯形的四棱柱(如图所示).小明是从前面观察的,而小彬则是从后面观察的(答案不唯一).【点拨】本题考查的三视图的综合知识,考生应从等腰梯形下手,从而可知道该几何体的形状.【变式2】某几何体从三个方向看到的图形分别如图:(1)该几何体是(2)求该几何体的体积?(结果保留π)【答案】(1)圆柱(2)π,3π试题分析:(1)根据几何体的三视图即可判定这个几何体为圆柱;(2)先求几何体的底面圆的面积,再计算体积即可.解:(1)圆柱(2)圆柱底面积=22=2ππ⎛⎫⨯ ⎪⎝⎭圆柱体积V=3π【题型三】由部分形状图确实基他形状图【例3】如图,这是一个由小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数,请你画出它从正面和左面看到的形状图.【分析】分别利用小立方块的个数得出其形状,进而画出从正面和左面看到的形状图.解:如图所示:.【点拨】本题主要考查从不同方向看几何体,再从上面看得到的图形的相应位置写上数字进行求解是解题的关键.【变式】如图①是一些小正方体所搭立体图形从上面看到的图形,方格中的数字表示该位置的小正方体的个数,请在如图②所示的方格纸中分别画出这个立体图形从正面和左面看到的图形.【分析】根据图中所示各位置小正方体的个数,从正面能看到8个正方形,分三列,各列从左到右分别是3个、3个、2个;从左面能看到8个正方形,分三列,各列从左到右分别是3个、2个、3个.解:如图所示.【点拨】本题是考查作图简单图形的三视图,解题的关键是能正确辨认从正面、上面、左面观察到的简单几何体的平面图形.【题型四】由三个不同方向看到的几何体的形状图求小正方体的个数【例4】一个几何体由几个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图①所示,其中小正方形中的数字表示在该位置的小立方块的个数.(1)请画出图①从正面、左面看到的这个几何体的形状图;(2)在图①的各个位置标上序号如图②,从正面、左面、上面看到的几何体的形状图不变的情况下,图②哪个位置的数字可以变?可以变为几?【答案】(1)见解析;(2)位置⑤可以变,可以变为2或3【分析】(1)由题意可知:从正面看,这个几何体共有3列,每列小正方体的数目分别是3,3,1;从左面看,这个几何体共有2列,每列小正方体的数目分别是3,2,3.(2)观察图②可知①与④的位置都有3个小正方体,则从正面、左面、上面看到的几何体的形状图不变的情况下,图②中位置⑤的数字可以变化,最多为3,据此即可求解.解:(1)从正面看,这个几何体共有3列,每列小正方体的数目分别是3,3,1;从左面看,这个几何体共有2列,每列小正方体的数目分别是3,2,3.如图所示(2)观察图②可知①与④的位置都有3个小正方体,则从正面、左面、上面看到的几何体的形状图不变的情况下,位置⑤可以变,可以变为2或3.【点拨】本题考查了从不同方向看几何体,熟练掌握从不同方向看到的形状图的画图方法是解题的关键.【变式1】如图是由若干个正方体小木块搭建成的几何体从正面看,从左面看和从上面看得到的形状图,在从上面看得到的形状图中写出该位置正方体小木块的个数(写出其中一种即可).【分析】由俯视图可得该组合几何体最底层的小木块的个数,由主视图和左视图可得第二层和第三层小木块的个数,依此将得到的正方体的个数在俯视图上标出来即可;解:∵从上面看图中有6个正方形,∴最底层有6个正方体小木块,由从正面看和从左左面看可得第二层至少有3个正方体小木块,第三层有1个正方体小木块,从上面看得到的形状图中该位置正方体小木块的个数如图所示:(答案不唯一)【点拨】本题考查了从不同方向看几何体,解决本类题目不但有丰富的数学知识,而且还应有一定的空间想象能力.【变式2】如图,由一些大小相同的小正方体搭成的几何体的从上面看到的图形,请画出该几何体从正面与左面看到的图形.【分析】直接利用从上面看到的图形以及所标小正方体的个数,进而得出从正面与左面看到的图形.解:该几何体从正面与左面看到的图形如图所示,【点拨】本题主要考查从不同方向看几何体,根据从上面看得到的图形的数字进行求解是解题的关键.【题型五】由二个不同方向看到的几何体的形状图求小正方体的最多(少)个数【例5】用若干相同的小正方体搭成一个几何体,使它从正面和上面看到的形状如图.(1)这样的几何体只有一种吗?(2)它最多需要多少个小正方体?最少需要多少个小正方体?(3)画出搭成几何体所用正方体最多时的从左面看的视图.【答案】(1)不是一种,有多种;(2)最多需要16个小正方体,最少需要10个小正方体;(3)见解析【分析】由从上面看得到的形状可知,第一层最少需要7个正方体;由从正面看到的形状可知,第二层最少需要2块,最多需要6块;第三层最少需要一块,最多需要3块.解:(1)由于左侧两列的小正方体的数量不确定,所以不是一种,有多种.(2)搭这样的几何体最多时,第一层需要7块,第二层需要6块,第三次那个需要3块,共需要++=个小正方体;76316++=个小正方体最少时,第一层需要7块,第二层需要2块,第三次那个需要1块,共需要,72110(3)【点拨】本题考查从不同方向看几何体,能根据题中描述还原几何体是解答的关键.【变式1】一个几何体是由若干个大小相同的小正方体搭成,从左面、上面看到的这个几何体的形状图如图所示,这样的几何体只有一种吗?它最多需要多少个小正方体?最少需要多少个小正方体?【答案】不止一种,最多需要15个小正方体,最少需要10个小正方体【分析】利用从上看的图形,在从上面看到的图上写出最多以及最少时小正方体的个数,可得结论.【详解】结合左面看到的几何体,在从上面看到的图上写出最多以及最少时小正方体的个数,如图:最多有:333221115++++++=(个),最少有:311211110++++++=(个),即可知:这样的几何体不止一种,最多需要15个小正方体,最少需要10个小正方体.【点拨】本题考查从不同角度观看几何体的知识,解题的关键是具有一定的空间想象力,属于中考常考题型.【变式2】用小立方块搭一个几何体,使它从正面看和从上面看的形状图如图所示,从上面看的形状图中的小正方形中字母表示该位置小立方块的个数,试回答下列问题:(1)a ,b ,f 各表示几?(2)这个几何体最少由几个小立方块搭成?最多呢?(3)当=1c ,2d e ==时,画出这个几何体从左面看的形状图(小格子以0.5cm 做边长).【答案】(1)==1a b ,3f =;(2)9,11(3)见解析【分析】(1)结合从正面看和从上面看到的图形判断即可;(2)结合图形,判断中间一列小正方形的个数即可;(3)根据题意,画出图形即可.(1)解:由题意可知,从正面看的图形中,最左侧一列只有1个正方形,所以==1a b ,从正面看的图形中,最右侧一列有3个正方形,且从上面看的图形中,最右侧一列只有1个正方形,所以3f =;(2)从正面看的图形中,中间一列有2个正方形,且从上面看的图形中,中间一列有3个正方形,所以当c d e ,,中有一个为2,另外两个为1时,正方形个数最少,最少为1121139+++++=(个);当2c d e ===时,正方形个数最多,最多为11222311+++++=(个);(3)3)当=1c ,2d e ==时,从左面看为:【点拨】本题主要考查不同角度看立体图形,掌握空间想象能力是解题的关键.。
1.4.2从三个方向看物体的形状(教案)
2.在实践活动和小组讨论中,要更加灵活地调整时间,确保每个学生都有充分的参与和展示机会。
3.提供分层练习,让不同水平的学生都能得到适当的挑战和成就感。
4.教学中要更多地关注学生的反馈,及时调整教学方法,以提高教学效果。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三视图的基本概念。三视图包括主视图、左视图和俯视图,它们分别代表从物体的正面、左面和上面看到的形状。三视图是表达物体几何形状的重要工具,它在工程制图、建筑设计等领域具有广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过一个简单物体的三视图,展示如何从这些视图推断出物体的实际形状,以及如何在实际中应用这些视图。
1.4.2从三个方向看物体的形状(教案)
一、教学内容
本节课选自《初中数学》七年级下册1.4.2节“从三个方向看物体的形状”。教学内容主要包括:了解三视图的概念,掌握从正面、左面、上面三个方向观察物体,并能够准确地画出物体的三视图。具体内容包括:
1.认识三视图:主视图、左视图、俯视图;
2.学习从三个方向观察物体,理解物体的形状;
本节课将围绕以上核心素养目标展开教学,旨在培养学生的综合运用能力,提高数学学科素养。
三、教学难点与重点
1.教学重点
(1)掌握三视图的概念:主视图、左视图、俯视图;
(2)学会从正面、左面、上面三个方向观察物体,并能够准确地画出物体的三视图;
(3)能够通过三视图识别和描述物体的形状。
举例:
-重点讲解三视图的定义和作用,强调每个视图所代表的空间方向;
2.培养学生的几何直观:在观察和绘制三视图的过程中,引导学生把握物体的几何特征,增强几何直观能力;
从三个方向看物体的形状口诀
从三个方向看物体的形状口诀大家好,今天咱们聊聊怎么看物体的形状,特别是从三个不同的方向来看,嘿嘿,这听起来是不是有点复杂?其实,咱们可以用点小口诀,简单又好记,保证让你瞬间变身小达人,走到哪儿都能轻松应对。
1. 从上往下看1.1. 俯视的魔力首先,从上往下看,这个角度就像是我们在鸟巢里俯瞰大地,真是太有趣了!比如说,看看一块蛋糕,嘿,你会发现它的形状和颜色都特别诱人。
这个时候,蛋糕的层次感会特别明显,巧克力层、奶油层,都在你眼前一览无余,简直是视觉的盛宴,真想一口吃掉!不过,别急哦,想清楚再下手,要不然一口下去,噗——满嘴都是奶油,尴尬不?1.2. 不一样的风景再来,想象一下你在观察一棵树。
站在上面往下看,树的枝叶像一把把伞,遮天蔽日,根本看不到树干。
哎呀,这让人想起了《西游记》里的孙悟空,真是个会飞的猴子,从天上看,下面的世界别提多精彩了!不过,这样一看,树下的小鸟和小虫子都被你“捉”到了,真是个大观察者呢!2. 从前往后看2.1. 正面直观好啦,接下来我们从前往后看,嘿,这可是个绝妙的角度哦。
就像站在舞台前面看演员,真是个好戏上演。
比如一辆车,你从前面看,车头圆润的样子,似乎在微笑着招呼你。
你忍不住想,嘿,这车是不是准备带我去兜风呢?想象一下,阳光灿烂的日子,风从窗外吹进来,那感觉,简直不要太爽!2.2. 背后的故事不过,从后面看车又是另一番风味。
车尾灯闪烁,像是在说“别跟着我”,这时候你可能会思考,嘿,车里坐着什么人呢?难道是一位神秘的旅行者,正在前往未知的冒险?这种从后看物体的感觉,总是让人心里痒痒的,想去揭开那层神秘的面纱。
3. 从侧面看3.1. 侧面更立体最后,咱们从侧面看,哇,这个角度真是让人眼前一亮。
就像是看一个立体的雕塑,深深的轮廓立马呈现出来。
比如你看一座山,从侧面看,山的陡峭和曲线都显现无遗,恍若一位勇士昂首挺胸,迎风而立!这时你可能会想,哎呀,登顶的挑战在向你招手,是不是该试试爬一爬?3.2. 隐藏的细节而且,从侧面观察物体,还能发现很多细节,比如一个瓶子,侧面看,曲线优美,真是个完美的造型。
《从三个方向看物体的形状》复习要点
《从三个方向看物体的形状》复习要点《从三个方向看物体的形状》复习要点
知识点
(1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。
将人的视线规定为平行投影线,然后正对着物体看
过去,将所见物体的轮廓用正投影法绘制出来该图形称
为视图。
一个物体有六个视图:从物体的前面向后面投射所
得的视图称主视图--能反映物体的前面形状,从物体的
上面向下面投射所得的视图称俯视图--能反映物体的上
面形状,从物体的左面向右面投射所得的视图称左视图
--能反映物体的左面形状,三视图就是主视图、俯视图、左视图的总称。
(2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。
三视图是从三个不同方向对同一个物体进行投射的
结果,另外还有如剖面图、半剖面图等做为辅助,基本
能完整的表达物体的结构。
一个视图只能反映物体的一个方位的形状,不能完
整反映物体的结构形状。
三视图是从三个不同方向对同
一个物体进行投射的结果,另外还有如剖面图、半剖面
图等做为辅助,基本能完整的表达物体的结构。
主俯长对正、主左高平齐、俯左宽相等
即:
主视图和俯视图的长要相等
主视图和左视图的高要相等
左视图和俯视图的宽要相等。
在许多情况下,只用一个投影不加任何注解,是不能完整清晰地、表达和确定形体的形状和结构的。
三个形体在同一个方向的投影完全相同,但三个形体的空间结构却不相同。
可见只用一个方向的投影来表达形体形状是不行的。
一般必须将形体向几个方向投影,才能完整清晰地表达出形体的形状和结构。
《从三个方向看物体的形状》 教案 (公开课)2022年北师大版 (8)
1.4 从三个方向看物体的形状〔第1课时〕〖教学目的〗〖知识与技能目标:〗1.在观察的过程中初步体会从不同方向观察物体可能看到不同的图形.2.能识别简单物体的三视图.〖过程与方法:〗1.经历从不同方向观察物体的活动过程,开展空间观念,积累数学活动经验.2.能在与他人交流的过程中,合理清晰地表达自己的思维过程.〖情感态度与价值观:〗有意识地培养学生学习数学的积极的情感,激发对空间与图形学习的好奇心,初步形成与他人合作交流的意识.〖教学重点、难点:〗重点:1.经历从不同方向观察物体和与他人合作交流,开展空间观念.2.初步体会从不同方向观察同一物体可能看到的不同的图形.3.能识别简单的三视图.难点:识别简单的三视图.〖教学方法:〗发现式教学法.结合一些具体的实物的情境,通过从不同方向观察,发现从不同方向观察同一物体可能看到不同的图形,然后过渡到讨论立方体及其简单组合体的三视图.〖教具准备:〗一个茶杯、一个暖水瓶、一块长方体的橡皮及假设干个长方体、圆锥、圆柱、正方体.〖教学过程:〗Ⅰ.创设现实情景,引入新课Ⅰ.创设问题情境,引入新课问:“横看成岭侧成峰,远近上下各不同.不识庐山真面目,只缘身在此山中.〞这是宋代诗人苏轼的?题西林壁?,谁来告诉我这首诗的意思呢?答:这首诗说的是:从前面看,觉得庐山是一座又开阔又高大的山岭;从侧面看,又觉得庐山是一座险峻陡峭的顶峰;再从远处和近处,从高处和低处看庐山,总觉得它千姿百态,变化无穷.我实在说不出到底什么才是庐山的真面目,因为我自己就在庐山中呀.Ⅱ.讲授新课将实物一个暖水瓶、一个茶杯、一块橡皮按顺序摆放好,暖水瓶放在中间,其余的放在两旁.并将这个实物组合放在教室中间,让同学们从不同方向观察,并将观察得到的画在一张纸上。
同学们通过充分的交流和操作,会发现从不同的方向观察同一物体,可能得到不同的图形.其中我们重点研究三个方向上看到的图。
即主视图:从正面看到的图,左视图:从左面看到的图,俯视图:从上面看到的图.下面我们看几个由小正方体组成的图如以以下列图所示:当我们从正面看就得到主视图;从左面看就得到左视图;从上面看就得到俯视图.(如以以下列图所示)Ⅲ.例题[例1]桌子上放着一个长方体和圆柱(如以以下列图),说出以下三幅图分别是_____.[例2]画出以下几何体的主视图、左视图和俯视图.分析:先由学生板演,并深入学生中去对接受较差的学生以帮助、关心.解:[例3]甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9〞,甲说他看到的是“6〞,乙说他看到的是“〞,丙说他看到的是“〞,丁说他看到的是“9〞,那么以下说法正确的选项是( )A.甲在丁的对面,乙在甲的左边,丙在丁的右边B.丙在乙的对面,丙的左边是甲,右边是乙C.甲在乙的对面,甲的右边是丙,左边是丁D.甲在丁的对面,乙在甲的右边,丙在丁的右边解:由图可知应选择D.Ⅳ..随堂练习(课本第十七页)1.一辆汽车从小明面前经过,小明的拍摄了一组照片.请按照汽车被摄入镜头的先后顺序给下面的照片编号,并与同伴进行交流.(图片见课本第十七页最下面) 分析:学生可以自己先想像,然后在小组内交流,教师可深入学生中去,学生的答案可能不惟一,但只要能用自己的语言合理的说明,就应予以鼓励.解:可以是②①⑤④③.2.画出下面几何体的主视图,左视图与俯视图.解:Ⅴ.课时小结这节课经历从不同的方向看物体的活动过程,开展了空间观念,在观察中初步体会从不同方向观察同一物体可能会看到不同图形,从而能够识别和画出简单几何体的三视图.Ⅵ.课后作业课本习题1.6及做一做.〖板书设计:〗§从三个方向看物体的形状一、主视图:从正面看到的图.左视图:从左面看到的图.俯视图:从上面看到的图.二、例题讲解三、课堂练习从三个方向看物体的形状〔第2课时〕〖教学目的:〗〖知识与技能目标:〗1.尽可能地搭出由小立方块组成的不同的几何体,并观察画出这个几何体的三视图.2.能根据每个位置的小立方块的个数及其中一种视图画出另外两种视图.〖过程与方法:〗1.经历搭建几何体的过程,从不同方向观察,并画出三视图,培养学生的空间观念,积累丰富的数学活动实验.2.能够充分地与同学交流、合作,能比较清晰地表达自己的思路,培养解决问题的能力.〖情感态度与价值观:〗有意识培养学生学习数学的信心和克服困难的勇气,从中体味成功的快乐.〖教学重点、难点:〗重点:1.搭建简单的几何体,通过观察画出三视图.2.通过小立方块搭建几何体的俯视图及相应位置上方块的个数,画出这个几何体的主视图和左视图.难点:利用空间想像力,由搭建的几何体的俯视图及相应位置上的小立方块的个数画出这个几何体的主视图和左视图.〖课前准备:〗学生阅读材料?晶体--自然界的多面体?〖教学方法:〗尝试发现法.教师引导学生经过尝试,先尽可能地搭出不同的几何体,然后观察发现几何体的三视图.〖教具准备:〗假设干个小立方块.〖教学过程:〗Ⅰ.提出问题,引入新课我们知道,不同方向观察同一物体可能会看到不同的图形.问:什么是主视图?什么是左视图?什么是俯视图呢?答:从正面看到的图叫主视图;从左面看到的图叫左视图;从上面看到的图叫俯视图.问:现在我们每个桌子上都有5个一样大小的小立方块,你能搭出多少种几何体?观察后,你能画出它们的三视图吗?Ⅱ.讲授新课分组活动:现在,我们就以同桌为单位,用5个小立方块搭建几何体,要尽可能地搭出不同的几何体,再从不同的方向看一看自己所搭的几何体,想一想,它们的三视图如何画?点评:第一种搭法.(如以以下列图所示)画出这个几何体的三视图.下面我们再来看同学们搭成的四种几何体,我们分四组分别画出它们的三视图,然后我们以组为单位,交流、验证画出的三视图是否合理.几何体(1) (2)(3)(4)的三视图。
从三个方向看物体的形状重难点题型
从三个方向看物体的形状-重难点题型【知识点1 从不同的方向观察物体】我们常从物体的正面、上面和左面(或右面)三个不同的方向观察物体,然后秒绘出观察到的形状,这样就可以把一个立体图形的特征转化为平面图形的特征.【知识点2 从三个方向看到的物体的形状图】(1)从正面看到的物体的形状和从上面看到的物体的形状,共同反映了物体左右方向的尺寸。
(2)从正面看到的物体的形状和从左面看到的物体的形状,共同反映了物体上下方向的尺寸。
(3)从上面看到的物体的形状和从左面看到的物体的形状,共同反映了物体前后方向的尺寸。
【题型1 由立体图形判断物体三个方向的形状图】【例1】(2021春•道里区期末)从上面看如图几何体得到的平面图形是()A.B.C.D.【变式1-1】(2021•阜南县模拟)如图所示的几何体从上面看到的形状是()A.B.C.D.【变式1-2】(2020•西山区模拟)如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.【变式1-3】(2021•江宁区二模)如图(1),将正方体左上部切去一个小三棱柱(图中M、N都是正方体的棱的中点),得到如图(2)所示的几何体,从正面、上面、左面看(2)中的几何体,看到的图形面积分别为S正、S上、S左,则()A.S正=S上=S左B.S正<S上=S左C.S上<S左<S正D.S上<S左=S正【题型2 由组合图形判断物体三个方向的形状图】【例2】(2020•延边州模拟)如图,大正方体上面正中间放置小正方体,小正方体6个表面写了数字1到6,且所相对面两个数字之和都是7,则这个几何体从左面看到的形状为()A.B.C.D.【变式2-1】(2020•开福区模拟)图①是一个正四棱锥,切去上面小的正四棱锥后得到一正四棱台(上、下底均为正方形),如图②所示,箭头所指是从上面观察,则其从上面看到的形状是()A.B.C.D.【变式2-2】(2020秋•铁西区期末)如图1是用5个相同的小立方块搭成的几何体,若由图1变化至图2,则从正面、上面、左面看到的形状图发生变化的是()A.从正面看到的形状图B.从左面看到的形状图C.从上面看到的形状图D.从上面、左面看到的形状图【变式2-3】(2020秋•辽阳期末)如图所示的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体从三个方向看到的形状图,正确的是()A.仅从正面看到的形状图不同B.仅从左面看到的形状图不同C.仅从上面看到的形状图不同D.从三个方向看到的形状图都相同【知识点3 判断几何体的形状】根据从不同方向观察物体得到的形状图所具有的特征来判断物体的形状.(1)长宽高的关系:从正面看到的图形和从上面看到的图形长度相等,从正面看到的图形和从左面看到的图形高度相等。
七年级数学上册第1章《从三个方向看物体的形状》知识全解(北师大版)
1.4从三个方向看物体的形状新知概览:知识全解知识点1从不同方向看物体的形状知识详解:从不同方向看物体的形状图分为从几何体正面看到的图形;从几何体左面看到的图形;从几何体上面看到的图形.知识警示:从不同方向看物体得到的形状图分别体现了几何体长、高、宽,其中从正面看得到的图形体现了物体的长和高,从左面看得到的图形体现了物体的宽和高,从上面看得到的图形体现了物体的宽和长.【试练例题1】小杰观察如图1-4-1的热水瓶时,从正面得到得到的是( ),从左面得到得到的是( ), 从上面得到得到的是()思路引导:从不同方向看物体得到的图形是由观察方位决定图形形状,热水瓶从正面和左面看到瓶盖、瓶颈、瓶体及瓶把的形状,但应注意二者瓶把位置的差异;正上面往下看,看到的一定是热水瓶圆形的上口和圆形的热水瓶底及左侧的杯柄.解:A,B,C方法:组合图形的从三个方向看物体形状得到的图形,此时应该认真分析参与组合的几何体的一些重要特征及位置关系,然后通过这些特征做出最终的判断.知识点2常见几何体的从三个方向看物体形状知识详解:几种常见几何体的从三个方向看物体形状A. B. C. D.正面方向1-4-1知识警示:(1)所有几何体中正方体、球体从三个方向看物体形状得到的图形完全相同,即正方体从三个方向看物体形状得到的图形都是正方形,球体从三个方向看得到的图形都是圆;(2)圆锥从上面方向得到的图形是圆及中间一点,棱锥从上面方向得到的图形是多边形及中间一点,且此点和多边形各个顶点相连接.【试练例题2】下面四个几何体中,从正面方向得到的图形与其它几何体的从正面方向得到的图形不同的是( )思路引导:选项A 、B 、D 的从正面方向得到的图形都是长方形,只有选项C 的A B C D从正面方向得到的图形是三角形与其它三个几何体的从正面方向得到的图形不同.解:C方法:解题的关键是明确从正面方向得到的图形的意义,并能进行立体图形与平面图形的相互转化.知识点3小立方体搭建的几何体的从三个方向得到的图形的画法知识详解:从三个方向得到的图形包括从正面方向得到的图形、从左面方向得到的图形和从上面方向得到的图形,从正面方向得到的图形主要反映物体的长和高,从左面方向得到的图形主要反映物体的宽和高,从上面方向得到的图形主要反映物体的长和宽,因此从正面方向得到的图形与从左面方向得到的图形的高相等,从正面方向得到的图形与从上面方向得到的图形长相等,从左面方向得到的图形与从上面方向得到的图形宽相等.由立体图形到三个方向看物体得到的图形的过程,要注意两点:一是长、宽、高的关系;二是上下、左右、前后的关系.知识警示:三个方向看物体得到的图形与几何体颜色无关,只与几何体形状有关.【试练例题3】分别画出图1-4-2中几何体的从正面方向得到的图形、从左面方向得到的图形、从上面方向得到的图形.思路引导:从正面看从左往右4列正方形的个数依次为1,3,1,1;从左面看从左往右3列正方形的个数依次为3,1,1;从上面看从左往右4列正方形的个数依次为1,3,1,1.解:1-4-2俯视图左视图主视图方法:画小立方体搭建的几何体的从三个方向看物体形状得到的图形,就是从不同方向看这个几何体有几列,则相应其它方向看物体得到的图形画几列,每列有几层,则相应其它方向看物体得到的图形就画几层.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
演)。
自学检测一(5分钟)
1、物体的三视图分别从 正面 、左面 、 上面 看;
• 从正面、左面和上面三个不同的方向 看同一个物体,所得到的平面图形就 是这个物体的三视图,三视图分主视 图、左视图和俯视图。
从正面看 从左面看
主视图
左视图
4、从三个方向看物体的形状(一)
学习目标(1分钟)
1、在观察的过程中,体会从不同方向观察 同一物体可能看到不一样的结果;
2、明确物体的三视图及画法(从正面看、左 面看、上面看);
自学指导一(5分钟)
• 仔细阅读课本第16页至第17页的内容,并回 答和思考以下内容:
1、物体的三视图分别 从 、 、 看; 2、判断一个物体从正面、左面、上面看时所呈
1、完成课本17页——18页习题1.6 2、如图所示几何体的俯视图是( D )
↗
A.
B.
C.
D.
正面
3、一个几何体的三视图完全相同,该
几何体可以是 球或.正方体(写出一个即可)
2、补充:想想正方体、长方体、圆柱、 圆锥、球的三视图是怎样的?
自学检测二(5分钟)
1、6个小立方块可能的摆放方式:(画出它 的三视图)
……
2、正方形的三视图
俯 左
3、长方体的三视图
俯
左
长方体
4、圆柱的三视图
俯
左
圆柱
5、圆锥的三视图
俯
左 圆锥
5、球的三视图
主视图 左视图 俯视图
当堂训练(15分钟)
从上面看 俯视图
2、请说出下面三幅图分别是从哪个方向 看到的?
左
上
前
பைடு நூலகம்
3、随堂练习(P17页) 画出右图几何体的主视图、 左视图、俯视图(从正面、 左面、上面)。
主视图 左视图 俯视图
自学指导二(6分钟)
1、完成17页“做一做”,与同伴交流你 的搭法,画出你从正面、左面、上面看到 的几何体形状图(让四个学生到黑板进行 板演);