直线的参数方程教案
直线的参数方程说课稿
小组讨论:学生分组讨论直 线的参数方程,加深理解
实例解析:通过实例解析, 帮助学生掌握直线的参数方
程的应用
归纳总结:总结直线的参数 方程的要点,帮助学生巩固
记忆
总结归纳
回顾直线的参数方程的概念和公 式
总结本节课的重点和难点
添加标题
添加标题
添加标题
添加标题
强调直线的参数方程在实际问题 中的应用
布置作业和思考题,引导学生进 一步巩固所学知识
添加标题
添加标题
增强学生对数学美的欣赏和感悟 能力
培养学生合作学习和交流的能力
02
教学内容
直线的参数方程概念
直线的参数方程 定义
参数方程中参数 的物理意义
直线的参数方程 与普通方程的转 换
参数方程在几何 图形中的应用
参数方程的建立
直线的参数方程定义
参数方程的几何意义
参数方程的建立过程
参数方程的应用实例
小组讨论法的优 势和局限性
04
教学过程
导入新课
复习旧课,引出新课
创设情境,激发兴趣
展示教学目标,明确学习任务 引导学生观察、思考、探究
知识讲解
直线的参数方程 的定义和形式
参数方程与普通 方程的转换方法
参数t的几何意义 和物理意义
参数方程的应用 场景和解题思路
案例分析
教学目标:掌握直线的参数方程的概念和 性质,理解参数t的几何意义。
YOUR LOGO
THANK YOU
汇报人:XX
参数方程的应用
参数方程的概念和形式 参数方程的应用场景 参数方程在解题中的优势 参数方程应用的注意事项
03
教学方法
启发式教学
直线参数方程教案
直线参数方程教案教案标题:直线参数方程教案教学目标:1. 理解直线的参数方程表示方法;2. 掌握求解直线参数方程的方法;3. 能够应用直线参数方程解决实际问题。
教学准备:1. 教师准备:教学课件、黑板、彩色粉笔、直尺、计算器等;2. 学生准备:纸、铅笔、直尺、计算器等。
教学过程:一、导入(5分钟)1. 教师通过引入直线方程的概念,提醒学生之前学习过的直线方程形式;2. 引导学生思考,直线是否可以用参数方程来表示。
二、讲解直线参数方程的概念(10分钟)1. 教师通过示意图,引导学生理解参数方程的概念;2. 解释直线参数方程的定义和意义;3. 提供直线参数方程的一般形式:x = x₁ + at, y = y₁ + bt,并解释各个参数的含义。
三、求解直线参数方程的步骤(15分钟)1. 教师通过示例,详细讲解求解直线参数方程的步骤;2. 强调确定直线上的一点和直线的方向向量的重要性;3. 指导学生如何通过已知条件确定直线上的一点和直线的方向向量。
四、练习与讨论(15分钟)1. 学生个人或小组完成练习题,求解给定直线的参数方程;2. 学生互相讨论解题思路和答案,教师进行指导和纠正。
五、应用实例(10分钟)1. 教师提供一个实际问题,引导学生将其转化为直线参数方程的求解;2. 学生个人或小组完成实际问题的求解,并展示解题过程和答案。
六、总结与拓展(5分钟)1. 教师对本节课的内容进行总结,强调直线参数方程的重要性和应用;2. 引导学生思考,直线参数方程在其他数学领域的应用。
七、作业布置(5分钟)1. 布置相关作业,巩固直线参数方程的求解方法;2. 鼓励学生自主拓展,寻找更多直线参数方程的应用实例。
教学反思:教案中通过导入、讲解、练习、应用等环节,全面引导学生理解和掌握直线参数方程的概念、求解方法和应用实例。
通过练习和应用实例的训练,能够提高学生对直线参数方程的理解和运用能力。
同时,鼓励学生自主拓展,培养学生对数学知识的独立思考和应用能力。
《2-3 直线的参数方程》教案
选修4-4 2-3直线的参数方程(第二课时)一、教学目标:知识与技能:掌握直线的参数方程。
过程与方法:.通过直线参数方程的应用,培养学生综合运用所学知识分析问题和解决问题的能力,进一步体会数形结合、转化等数学思想。
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二重难点:教学重点:对直线的参数方程的考查。
教学难点:直线的参数方程中参数t 的几何意义。
三、教学方法:自主学习与合作交流.四、教学过程(一)复习引入:(1)经过定点00(,)M x y ,倾斜角为α的直线的参数方程为⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)。
【师生活动】教师提出如下问题让学生加强认识:①直线的参数方程中哪些是变量?哪些是常量?②参数t 的取值范围是什么? ③参数t 的几何意义是什么?总结如下:①00,x y ,α是常量,,,x y t 是变量; ②t R ∈;③由于||1e =,且0M M te =,得到0M M t =,因此t 表示直线上的动点M 到定点0M 的距离.当0M M 的方向与数轴(直线)正方向相同时,0t >;当0M M 的方向与数轴(直线)正方向相反时,0t <;当0t =时,点M 与点0M 重合.(2)直线 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)与曲线()y f x =交于12,M M 两点,对应的参数分别为12,t t 。
(1)曲线的弦12M M 的长是多少?(2)线段12M M 的中点M 对应的参数t 的值是多少?12121M M t t =-(), 1222t t t +=() 【设计意图】复习直线的参数方程,体会参数的几何意义。
(二)基础练习1.直线 的倾斜角为________________。
2.已知直线l 1:⎩⎨⎧x =1+3t ,y =2-4t (t 为参数)与直线l 2:2x -4y =5相交于点B ,求B 点坐标 ________。
直线的参数方程 教案
直线的参数方程教案教案标题:直线的参数方程教案目标:1. 理解直线的参数方程的定义和概念;2. 掌握求解直线的参数方程的方法;3. 能够应用直线的参数方程解决实际问题。
教学重点:1. 直线的参数方程的定义和概念;2. 求解直线的参数方程的方法。
教学难点:1. 运用直线的参数方程解决实际问题。
教学准备:1. 教师准备:教学投影仪、白板、黑板、彩色粉笔、教案、课件;2. 学生准备:课本、笔记本。
教学过程:一、导入(5分钟)1. 引入直线的概念,复习直线的一般方程和斜率截距方程。
二、知识讲解(15分钟)1. 介绍直线的参数方程的概念和定义;2. 讲解直线的参数方程的一般形式和求解方法;3. 通过示例演示如何将直线的一般方程或斜率截距方程转化为参数方程。
三、示范演练(15分钟)1. 给出一些直线的一般方程或斜率截距方程,要求学生转化为参数方程;2. 学生跟随教师的指导进行演练。
四、拓展应用(15分钟)1. 提供一些实际问题,要求学生运用直线的参数方程解决;2. 学生独立或小组合作完成拓展应用题。
五、讲评与总结(10分钟)1. 教师对学生的演练和拓展应用进行讲评;2. 总结直线的参数方程的求解方法和应用。
六、作业布置(5分钟)1. 布置课后作业:完成课后习题中与直线的参数方程相关的题目。
教学反思:本节课通过引入直线的概念,再结合直线的一般方程和斜率截距方程,引出了直线的参数方程的概念和定义。
通过示例演示和学生的跟随指导进行演练,加深了学生对直线的参数方程求解方法的理解和掌握。
通过拓展应用,培养了学生运用直线的参数方程解决实际问题的能力。
在讲评与总结环节,对学生的答案进行了讲评,巩固了学生的学习成果。
最后,布置了课后作业,巩固学生的学习效果。
整节课教学内容紧凑,学生参与度高,达到了预期的教学目标。
直线的参数方程课时教案(第一课时)
课时教案一、课题直线的参数方程(第一课时,共两课时)二、教学目的1.了解直线参数方程的条件以及参数的几何性质2.能根据直线的几何条件,写出直线的参数方程3.通过观察、探索、发现的过程,发展学生数学核心素养的“知识理解”、“知识迁移”、“知识创新”三级目标。
三、课型与教法新授课引导—发现模式四、教学重点直线参数方程的构建五、教学难点从动点M点的坐标变成直线l的参数方程的转化、t的几何意义、证明直线的参数方程、辨别是否是直线的标准参数方程六、教学过程探究一建立已知直线的参数方程1.复习引入(1)若点是直线l上的两相异点,则直线l的方向向量为,倾斜角为时,直线单位方向向量为;(2)已知两个向量),则共线的充要条件是;(3)如果直线l过定点,且倾斜角为,则直线l的方程为。
2. 讲授新课问题1 如图1,位于原点的机器人以单位速度沿单位方向向量行走时间t到达点M,求M点的坐标。
借助前面准备的知识由三角函数的定义不难得到,写成方程即。
问题2 如图2,如果初始位置不在原点,而在点,其他条件不变,求点M的坐标。
借助前面问题1和坐标的定义,不难得到,写成方程即。
问题3一般地,设直线l过点,且倾斜角为,点为其上任意一点,求M点的坐标。
可以提示学生引入参数t,则学生可类比得到(t为参数),此即为过点且倾斜角为的直线l的参数方程。
问题4 你能写出具体推导过程吗?指导学生利用向量法证明,同时指导学生借助点斜式方程进行证明。
探究二直线参数方程中t的几何意义问题5直线的参数方程(t为参数)中哪些是变量?哪些是常量?很容易由问题1,2,3得出是变量,是常量。
问题6 参数的几何意义是什么?为什么?结合参数方程的推导过程,可以引导学生从,且,得到,也可由。
由此可知|t|表示直线上的动点到定点的距离,即为参数的几何意义。
问题7参数t的取值范围是什么?t的正负与点的位置之间有什么关系?由中的正负可确定和的大小,从而确定的正负与点位置之间的关系,再利用图3可知:当时,点在点的上方;当时,点在点的下方;当时,点与点重合。
直线的参数方程教案
直线的参数方程教案直线的参数方程教案一、教学目标1. 知识与技能(1)掌握直线的参数方程的概念;(2)掌握直线的一般方程与参数方程的互相转化方法;(3)能够根据直线的参数方程绘制直线的图像。
2. 过程与方法(1)引导学生通过观察、实验等方式发现直线的参数方程的特点;(2)通过讲解和举例引导学生理解直线的参数方程的定义及其性质;(3)通过练习题巩固学生对直线的参数方程的掌握程度;(4)通过绘制直线的图像帮助学生加深对直线的参数方程的理解。
3. 情感、态度和价值观培养学生观察、发现、分析和解决问题的能力,培养学生的数学思维能力和创新能力。
二、教学重点与难点1. 教学重点掌握直线的参数方程的概念和性质,掌握直线的一般方程与参数方程的互相转化方法。
2. 教学难点能够根据直线的参数方程绘制直线的图像。
三、教学过程1. 导入新课通过展示几何平面坐标系上的一条直线图像,引导学生观察,思考直线的方程与参数方程之间的关系,并提问学生:你对直线的参数方程有什么了解?2. 探究活动(1)教师用实物或几何软件展示一条直线和坐标系,并选取直线上两个点A(x1, y1)和B(x2, y2)。
(2)教师引导学生观察并发现直线上每个点都可以由参数t确定,并写出该点的坐标为(x, y),并尝试找出x和y与t之间的关系。
(3)学生根据已知的两个点的坐标、点A和点B的参数t值,写出点A和点B的参数方程。
(4)通过实际计算验证参数方程是否正确。
3. 理论总结通过探究活动,引导学生总结直线的参数方程的定义和性质,并帮助学生理解直线的参数方程与一般方程的转化方法。
4. 拓展(1)教师提问:已知直线的参数方程x = 2 + 3t,y = -1 + t ,如何将其转化为一般方程?(2)学生尝试将参数方程转化为一般方程,并进行实际计算和验证。
5. 练习巩固(1)教师出示几道直线的参数方程的题目,要求学生逐步转化为一般方程,并进行计算验证。
(2)学生独立完成练习题,并核对答案。
直线的参数方程教案(新的)优秀教案
课题:直线的参数方程<第一课时>课型:新授课教学目的要求:1、知识与技能:掌握直线的参数方程,明确参数t的几何意义会灵活应用。
2、过程与方法:通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合等数学思想3、情感态度与价值:通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度教学重点:分析直线的几何条件,选择适当的参数写出直线的参数方程教学难点:从直线的几何条件联系到向量法,并选择“有向线段的数量”为参数。
关键:参数的选择课时进度:第一课时教学方法:先学后教,当堂训练教具:多媒体课件步骤及时间分配内容备注教学构想教学流程阶段教师活动学生活动教学素材达成目标导入出示学习目标提问:我们学过经过定点,倾斜角为的直线的普通方程,那么怎样建立直线的参数方程呢?学习目标1.怎样选择参数t,建立直线的参数方程?2.直线的方向向量与MM有怎样的关系?3.直线的参数方程是什么?4.参数t的几何意义是什么?5.参数t的几何意义的应用.1名学生回答学生明确学习目标阅读教材完成【自学指导1】导学案教材导学案教材导学案通过回忆所学知识,为学生推导直线的参数方程做好准备让学生明确学习任务把新知识化成小问题逐一突破教学流程探究新知当堂训练例题解读1.当点M在直线上运动时,根据直线的几何条件,你认为应当怎样选择参数?2.你能写出直线的参数方程吗?板书1. 直线的参数方程教师提出如下问题让学生加强认识:①直线的参数方程中哪些是变量?哪些是常量?②参数的取值范围是什么?③参数的几何意义是什么?板书2 t 的几何意义当堂训练例题解读(1)已知直线与抛物线交于A,B两点,(1)判断点)2,1(M是否在直线l上,倾斜角为多少?(2)写出直线l的参数方程(3)线段AB的长度(4)点到A,B两点的距离之积通过例题我们得到哪些结论?板书3 t的几何意义的应用思考,讨论,研究2名同学回答针对性训练11名同学回答多名同学回答阅读教材完成【自学指导2】并总结参数的几何意义针对性训练21名同学回答学生练习小组合作相互交流根据学生做题情况可采取兵教兵环节学生通过做题小组合作讨论总结出结论2名同学回答导学案导学案导学案教材导学案综合运用所学知识,获取直线的方向向量,把向量坐标化,得到直线的参数方程,培养学生探索精神,体会数形结合思想.通过对点M的拖拽,体会参数的几何意义通过本题训练,使学生进一步体会直线的参数方程,并能利用参数解决有关问题,培养学生从分析问题和解决问题能力以及动手能力.通过特殊到一般,及时让学生总结有关结论,为进一步应用打下基础,培养归纳、概括能力.使学生对本节课所学知识有一个系统全面的认识。
《直线的参数方程》教学案3
《直线的参数方程》教学案3教学目标1. 了解直线参数方程的条件及参数的意义.2. 能根据直线的几何条件,写出直线的参数方程及参数的意义.3. 通过观察、探索、发现的创造性过程,培养创新意识.教学重点直线参数方程的定义及方法教学难点选择适当的参数写出曲线的参数方程.教学用具PPT 课件 多媒体教学过程直线的参数方程经过点M 0(x 0,y 0),倾斜角为α(α≠π2)的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),其中参数t 的几何意义是:|t |是直线l 上任一点M (x ,y )到点M 0(x 0,y 0)的距离,即|t |=|M 0M →|.课堂互动1.若直线l 的倾斜角α=0,则直线l 的参数方程是什么? 【提示】 参数方程为⎩⎪⎨⎪⎧x =x 0+t ,y =y 0.(t 为参数)2.如何理解直线参数方程中参数的几何意义?【提示】 过定点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α,(t 为参数),其中t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段M 0M →的长度,即|t |=|M 0M →|.①当t >0时,M 0M →的方向向上; ②当t <0时,M 0M →的方向向下;例题讲解已知直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t ,(t 为参数).(1)求直线l 的倾斜角;(2)若点M (-33,0)在直线l 上,求t ,并说明t 的几何意义.【思路探究】 将直线l 的参数方程化为标准形式,求得倾斜角,利用参数的几何意义求得t .【自主解答】 (1)由于直线l :⎩⎪⎨⎪⎧x =-3+t cos π6,y =2+t sin π6(t 为参数)表示过点M 0(-3,2)且斜率为tan π6的直线,故直线l 的倾斜角α=π6.(2)由(1)知,直线l 的单位方向向量e =(cos π6,sin π6)=(32,12). ∵M 0(-3,2),M (-33,0),∴M 0M →=(-23,-2)=-4(32,12)=-4e ,∴点M 对应的参数t =-4,几何意义为|M 0M →|=4,且M 0M →与e 方向相反(即点M 在直线l 上点M 0的左下方).规律方法1.一条直线可以由定点M 0(x 0,y 0),倾斜角α(0≤α<π)惟一确定,直线上的动点M (x ,y )的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),这是直线参数方程的标准形式.2.直线参数方程的形式不同,参数t 的几何意义也不同,过定点M 0(x 0,y 0),斜率为ba 的直线的参数方程是⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (a 、b 为常数,t 为参数).变式训练设直线l 过点P (-3,3),且倾斜角为5π6.(1)写出直线l 的参数方程;(2)设此直线与曲线C :⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数)交于A ,B 两点,求|PA |·|PB |.【解】 (1)直线l 的参数方程为 ⎩⎪⎨⎪⎧x =-3+t cos 56π=-3-32t ,y =3+t sin 56π=3+t 2.(t 为参数)(2)把曲线C 的参数方程中参数θ消去,得4x 2+y 2-16=0. 把直线l 的参数方程代入曲线C 的普通方程中,得 4(-3-32t )2+(3+12t )2-16=0. 即13t 2+4(3+123)t +116=0.由t 的几何意义,知 |PA |·|PB |=|t 1·t 2|, 故|PA |·|PB |=|t 1·t 2|=11613.课堂作业1.直线⎩⎪⎨⎪⎧x =-2+t cos 60°,y =3+t sin 60°(t 为参数)的倾斜角α等于( )A .30°B .60°C .-45° D.135°【解析】 由直线的参数方程知倾斜角α等于60°,故选B. 【答案】 B2.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α(α为参数,0≤a <π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)【解析】 直线表示过点(1,-2)的直线. 【答案】 A3.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1C.22 D .-22【解析】 消去参数t ,得方程x +y -1=0, ∴直线l 的斜率k =-1. 【答案】 B4.(2013·濮阳模拟)若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t(t 为参数)与直线4x +ky =1垂直,则常数k =________.【解析】 将⎩⎪⎨⎪⎧x =1-2ty =2+3t 化为y =-32x +72,∴斜率k 1=-32,显然k =0时,直线4x +ky =1与上述直线不垂直. ∴k ≠0,从而直线4x +ky =1的斜率k 2=-4k.依题意k 1k 2=-1,即-4k ×(-32)=-1,∴k =-6.【答案】 -6课后作业(时间40分钟,满分60分)一、选择题(每小题5分,共20分)1.下列可以作为直线2x -y +1=0的参数方程的是( )A.⎩⎪⎨⎪⎧ x =1+t ,y =3+t (t 为参数)B.⎩⎪⎨⎪⎧x =1-t ,y =5-2t (t 为参数)C.⎩⎪⎨⎪⎧x =-t ,y =1-2t (t 为参数)D.⎩⎪⎨⎪⎧x =2+255t ,y =5+55t (t 为参数)【解析】 题目所给的直线的斜率为2,选项A 中直线斜率为1,选项D 中直线斜率为12,所以可排除选项A 、D.而选项B 中直线的普通方程为2x -y +3=0,故选C.【答案】 C2.(2013·许昌模拟)极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-t y =2+t(t 为参数)所表示的图形分别是( )A .直线、直线B .直线、圆C .圆、圆D .圆、直线【解析】 ∵ρ=cos θ,∴ρ2=ρcos θ,即x 2+y 2=x ,即(x -12)2+y 2=14,∴ρ=cos θ所表示的图形是圆.由⎩⎪⎨⎪⎧x =-1-ty =2+t (t 为参数)消参得:x +y =1,表示直线.【答案】 D3.原点到直线⎩⎪⎨⎪⎧x =3+4t y =-32+3t (t 为参数)的距离为( )A .1B .2C .3D .4【解析】 消去t ,得3x -4y -15=0, ∴原点到直线3x -4y -15=0的距离 d =|3×0-4×0-15|32+-42=3. 【答案】 C4.直线⎩⎪⎨⎪⎧x =1+12ty =-33+32t ,(t 为参数)和圆x 2+y 2=16交于A 、B 两点,则AB 的中点坐标为( )A .(3,-3)B .(-3,3)C .(3,-3)D .(3,-3)【解析】 将x =1+t 2,y =-33+32t 代入圆方程,得(1+t 2)2+(-33+32t )2=16,∴t 2-8t +12=0,则t 1=2,t 2=6, 因此AB 的中点M 对应参数t =t 1+t 22=4,∴x =1+12×4=3,y =-33+32×4=-3,故AB 中点M 的坐标为(3,-3).【答案】 D二、填空题(每小题5分,共10分)5.(2013·湖南高考)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a ,(t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.【解析】 直线l :⎩⎪⎨⎪⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1.又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3. 【答案】 36.(2012·广东高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θ,y =5sin θ(θ为参数,0≤θ≤π2)和⎩⎪⎨⎪⎧x =1-22t ,y =-22t (t 为参数),则曲线C 1与C 2的交点坐标为________.【解析】 曲线C 1和C 2的普通方程分别为⎩⎪⎨⎪⎧x 2+y 2=5x -y =1(0≤x ≤5,0≤y ≤5)①②联立①②解得⎩⎪⎨⎪⎧x =2,y =1.∴C 1与C 2的交点坐标为(2,1).【答案】 (2,1)三、解答题(每小题10分,共30分)7.化直线l 的参数方程⎩⎨⎧x =-3+ty =1+3t,(t 为参数)为普通方程,并求倾斜角,说明|t |的几何意义.【解】 由⎩⎨⎧x =-3+t ,y =1+3t消去参数t ,得直线l 的普通方程为3x -y +33+1=0.故k =3=tan α,即α=π3.因此直线l 的倾斜角为π3.又⎩⎨⎧x +3=t ,y -1=3t .得(x +3)2+(y -1)2=4t 2,∴|t |=x +32+y -122.故|t |是t 对应点M 到定点M 0(-3,1)的向量M 0M →的模的一半.8.已知曲线C 的极坐标方程是ρ=4cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =22t +1,y =22t ,(t 为参数)求直线l 与曲线C 相交所成的弦的弦长.【解】 由ρ=4cos θ,得ρ2=4ρcos θ.∴直角坐标方程为x 2+y 2-4x =0,即(x -2)2+y 2=4.直线l 的参数方程⎩⎪⎨⎪⎧x =22t +1,y =22t .(t 为参数)化为普通方程为x -y -1=0. 曲线C 的圆心(2,0)到直线l 的距离为12=22,所以直线l 与曲线C 相交所成的弦的弦长为24-12=14. 9.(2013·江苏高考)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C的普通方程,并求出它们的公共点的坐标.【解】 因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1,得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0. 同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎪⎨⎪⎧y =2x -1,y 2=2x ,解得公共点的坐标为(2,2),(12,-1).教后反思。
教案直线的参数方程
课题:直线的参数方程(1)教学设计教学目标:(一)知识目标1.了解直线参数方程的建立过程,会与普通方程进行互化;2. 初步掌握运用参数方程解决问题,理解其中参数t 的几何意义. (二)能力目标1.通过思考引入,让学生感受学习直线参数方程的必要性;2.通过学习直线的参数方程探究直线与圆锥曲线的位置关系,培养学生数形结合以及运算求解能力. (三)情感目标1.培养学生的探究,研讨,综合自学应用能力;2.培养学生分析问题,解决问题的能力. 教学重点:1.联系数轴、向量积等知识;2.求出直线的参数方程. 教学难点:通过向量法,建立参数t 与点在直角坐标系中的坐标y x ,之间的联系. 教学过程: 一、学前准备(1)若由a b →→与共线,则存在实数λ,使得 . (2)设e →为a →方向上的 ,则a →=︱a →︱e →.(3)已知=AB y x B y x A 则),,(),,(2211.==y x ),( . (4)经过点00(,)M x y ,倾斜角为()2παα≠的直线的普通方程为 .(5)直线0=++C By Ax 的斜率=k ,倾斜角α与斜率k 的关系为 . 二、新课讲授探究新知(预习教材P35~P36,找出疑惑之处)1、选择怎样的参数,才能使直线上任一点M 的坐标,x y 与点0M 的坐标00,x y 和倾斜角α 联系起来呢?由于倾斜角可以与方向联系,M 与0M 可以用距离或线段0M M 数量的大小联系,这种“方向”和“有向线段数量大小”启发我们想到利用向量工具建立直线的参数方程. 如图,在直线上任取一点(,)M x y ,则0MM = ,而直线l 的单位方向向量e →=( , )因为M 0//e,所以存在实数t R ∈,使得0MM = ,即有()()00,cos ,sin x x y y t αα--=,因此,经过点00(,)M x y ,倾斜角为()2παα≠的直线的参数方程的标准形式为:)(sin cos 00为参数t t y y t x x ⎩⎨⎧+=+=αα当堂训练(1)经过点)5,1(0M ,倾斜角为3π的直线l 的参数方程为 . (2)直线)(20cos 20sin 3为参数t s t y t x ⎝⎛=+=︒︒的倾斜角是( )︒20.A ︒70.B ︒110.C ︒160.D2、直线l 的参数方程的几种形式直线的参数方程形式不是唯一的,令ααsin ,cos ==b a ,则直线参数方程的标准形式可以是)1,0,(22200=+≥⎩⎨⎧+=+=b a b t bty y atx x 为参数直线的参数方程的一般式可以写成)(00为参数t dt y y ctx x ⎩⎨⎧+=+=,这里R d c ∈,,其中122=+d c 时,t有明确的几何意义,当122≠+d c 时,t 没有明确的几何意义. 直线的参数方程的一般式化为直线的参数方程的标准式的方法:),,0,,0()()(2222222222222222022220b dc da d c c t t d c db dcd a d c c t t d c d t d c d c d y y t d c d c c x x =+-=+-'=⋅+-≤=+=+'=⋅+≥⎪⎪⎩⎪⎪⎨⎧⋅+++=⋅+++=时,令,时,令其中,3、直线的参数方程中参数的几何意义x参数t 的绝对值表示参数t 所对应的点M 到定点M 0t =.由于α为直线的倾斜角,且),0[πα∈,α是第二象限角,0sin ≥α.所以e的方向总是向上的,当M M 0与e (直线的单位方向向量)同向时,0>t ,当M M 0与e反向时,0<t ,当M 与M 0重合时,0=t .4、用直线l 的参数方程求弦长和弦的中点坐标的方法①已知直线l 过),(00y x M ,倾斜角为α,l 与圆锥曲线相交于B A ,两点,则求弦长AB 的方法如下:将直线l 的参数方程)(sin cos 00为参数t t y y t x x ⎩⎨⎧+=+=αα代入圆锥曲线的方程,消去y x ,得到关于t 的一元二次方程,由判别式∆和韦达定理得到21t t +,21t t 的值,代入弦长公式21221214)(t t t t t t AB -+=-=,M 到两交点的距离之积为21t t MB MA =∙. ②弦的中点坐标对应的参数221t t t +=,先计算221tt t +=,再把t 代入直线l 的参数方程,即得到弦中点的坐标.三、知识应用例.已知直线:10l x y +-=与抛物线2y x =交于A 、B 两点,求线段AB 的长和点(1,2)M -到A ,B 两点的距离之积.四、课堂检测直线)(,2333,211为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+-=+=和圆1622=+y x 交于B A ,两点,则B A ,的中点坐标为( ))3,3.(-A )3,3.(--B )3,3.(-C )3,3.(-D五 、课堂小结(1)经过点00(,)M x y ,倾斜角为()2παα≠的直线的参数方程的标准形式为:)(s i n c o s 00为参数t t y y t x x ⎩⎨⎧+=+=αα,其中参数t 具有明确的意义. (2)直线的标准方程主要用来解决过定点的直线与圆锥曲线相交时的弦长或距离,它可以避免求交点时解方程组的繁琐运算,但是应用直线的参数方程时,应先判别是否是标准形式,再考虑t 的几何意义.(3)弦长公式21221214)(t t t t t t AB -+=-=,定点M 到两交点的距离之积为21t t MB MA =∙.弦的中点坐标对应的参数221t t t +=. 六、高考衔接(2016江苏)在平面直角坐标系xoy 中,已知直线l 的参数方程为)(23211为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧=+=,椭圆C 的参数方程为)(sin 2cos 为参数θθθ⎩⎨⎧==y x .设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.七、作业布置课本p39 习题2.3第3题 八、课后反思。
直线的参数方程教案
直线的参数方程教案一、教学目标1.理解直线的参数方程的概念和基本思想;2.掌握直线的参数方程的求解方法;3.能够应用直线的参数方程解决相关问题。
二、教学内容1.直线的参数方程的定义和思想;2.直线的参数方程的求解方法;3.直线参数方程的应用。
三、教学重难点1.直线参数方程的概念和思想;2.直线参数方程的求解方法。
四、教学过程1. 引入教师可以通过一个生活中的例子引入直线的参数方程,如一辆汽车在直线道路上的行驶。
引导学生思考,如何用一个参数来描述汽车在直线上的位置。
2. 知识讲解2.1 直线的参数方程的定义直线的参数方程是指用参数的形式来表示直线上的点的坐标。
一般形式为:x = x0 + t * ay = y0 + t * b其中,(x0, y0)为直线上的一点,(a, b)为直线的方向向量,t为参数。
2.2 直线参数方程的求解方法求解直线的参数方程,可以根据直线上的已知点和方向向量来确定参数方程的具体形式。
步骤如下:1.确定直线上的一点(x0, y0)和方向向量(a, b);2.应用参数方程的定义,写出直线的参数方程。
3. 实例演练教师可以选择一些具体实例,引导学生运用直线的参数方程解决问题。
例如,求直线L上距离(1, 2)最近的点。
解:已知直线L的参数方程为:x = 3 + ty = -1 + t点(1, 2)到直线L上的任意点(3 + t, -1 + t)的距离可以表示为:d = sqrt((1 - 3 - t)^2 + (2 + 1 - t)^2)为了求d最小,可以对d求导,令导数为零。
通过求导和解方程,可得t = 1。
代入参数方程,得(4, 0)。
故直线L上距离(1, 2)最近的点为(4, 0)。
4. 拓展应用教师可以引导学生思考直线参数方程在其他几何问题中的应用,如求两直线的交点、求直线与平面的交点等。
五、教学本节课我们学习了直线的参数方程的概念、基本思想和求解方法。
通过实例演练,我们掌握了如何应用直线的参数方程解决相关问题。
直线的参数方程教案
课题直线的参数方程课型复习课教学目标知识与技能目标:掌握直线的参数方程及其应用;过程与方法目标:通过直线参数方程中参数的区别,使学生能够达到灵活地应用直线的参数方程来解决求交点和距离问题,提高用代数方法解决几何问题的能力以及抽象概括、分析总结的能力;情感与态度目标:通过讲练结合,师生互动,生生互动的教学活动过程,让学生体会成功的愉悦,提高数学学习的兴趣,从而树立数学学习的信心。
教学重点掌握直线的参数方程的两种形式及其应用;教学难点1、两种参数方程中参数的区别;2、灵活应用参数方程;教学方法本节课的学习采用的是“问题探究式”的教学方法,通过归纳知识点和层层深入的问题配置,启发学生思维,激发学习兴趣。
教学手段采用多媒体辅助教学教学环节教学内容师生互动设计意图复习引入引题(1):求过点(0,1),且倾斜角为32π的直线的参数方程引题(2):求过点(-1,2),且与向量a=(-2,1)平行的直线的参数方程引出新课:由已知条件,选择合适的直线的参数方程;两种参数方程中参数有何区别?两种参数方程如何相互转化?两种参数方程应用于哪些方面?怎样选择适当的参数方程求解问题?带着这几个问题我们学习本节课---直线的参数方程。
教师提问学生回答提问重点公式为本节课的应用做铺垫进而引出新课。
新课讲解讲授新课:高考命题方向一——方程间的相互转化例1:设直线的参数方程为)(41035Rttytx∈⎩⎨⎧-=+=(1)求直线的直角坐标方程;(2)化为标准形式的参数方程.小结:消参的方法高考命题方向二——直线参数方程的应用例2:直线L经过点A(2,-4),倾斜角为43π(1)求直线L的参数方程;教师启发引导,学生思考,整理思路,然后独立完成.给学生探索空间,并体会参数方程中参数的意义,提高学生发散思维能力。
教学环节教学内容师生互动设计意图例题讲解(2)设直线L1:x-y=0,L1与L的交点为B,求点B的坐标.例3:求直线:⎩⎨⎧-=+=tytx11与圆x2+y2=4的交点坐标.小结:利用直线的参数方程求交点坐标的方法.例4:在例2的(2)中,求|AB|.例5:已知直线L的参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=tytx211231设L与圆x2+y2=4相交于两点A、B,求点P(1,1)到A、B两点的距离之积.例6:求例3中的两交点间的距离.小结与反思:利用直线的参数方程求距离问题的方法.教师启发引导,学生思考,整理思路,然后独立完成.让学生明确解题思路、步骤,解题时有章可循注重通法。
直线参数方程教案
直线参数方程教案一、教学目标1. 理解直线参数方程的概念及意义。
2. 学会将直线的标准参数方程和一般参数方程进行转换。
3. 能够运用直线参数方程解决实际问题。
二、教学内容1. 直线参数方程的定义及表示方法。
2. 直线参数方程与直角坐标方程的互化。
3. 直线参数方程的应用。
三、教学重点与难点1. 重点:直线参数方程的概念、表示方法及应用。
2. 难点:直线参数方程与直角坐标方程的互化。
四、教学方法1. 采用讲授法,讲解直线参数方程的概念、表示方法及应用。
2. 利用数形结合法,引导学生直观地理解直线参数方程与直角坐标方程的关系。
3. 运用实例分析法,让学生学会运用直线参数方程解决实际问题。
五、教学准备1. 投影仪或黑板。
2. 直线参数方程的相关教案、PPT等教学资源。
3. 练习题及答案。
教案一、导入(5分钟)1. 复习直线的直角坐标方程。
2. 提问:如何用参数表示直线上的一点?二、新课讲解(20分钟)1. 讲解直线参数方程的概念。
参数方程:对于一条直线,设其上任意一点P的坐标为(x, y),参数为t,则直线上的点P可以表示为(x=x0+at, y=y0+bt),其中a、b、t为常数。
2. 讲解直线参数方程的表示方法。
标准参数方程:对于直线y=kx+b,其标准参数方程为x=x0+at,y=y0+bt,其中a=1/k,b=y0-bx0。
一般参数方程:对于直线ax++c=0,其一般参数方程为x=x0+at,y=y0+bt,其中a、b、t为常数,且满足at+by0+c=0。
3. 讲解直线参数方程与直角坐标方程的互化。
将直线参数方程中的t表示为x或y的函数,代入直角坐标方程中,即可得到直线参数方程与直角坐标方程的互化关系。
三、实例分析(10分钟)1. 分析直线参数方程在实际问题中的应用。
举例:一辆火车以每小时60公里的速度沿着直线轨道行驶,从原点出发,经过3小时后,离原点的距离为180公里,求火车的行驶路线方程。
直线参数方程教案
直线参数方程教案教学目标:1. 理解直线参数方程的概念和特点;2. 学会将直线参数方程转换为普通方程;3. 能够应用直线参数方程解决实际问题。
教学重点:1. 直线参数方程的概念和特点;2. 直线参数方程与普通方程的转换方法。
教学难点:1. 直线参数方程的理解和应用;2. 直线参数方程与普通方程的转换。
教学准备:1. 教学课件或黑板;2. 直线参数方程的相关例题和练习题。
教学过程:一、导入(5分钟)1. 引入直线的概念,引导学生回顾直线的普通方程;2. 提出直线参数方程的概念,引导学生思考直线参数方程的特点和应用。
二、直线参数方程的概念和特点(15分钟)1. 讲解直线参数方程的定义和形式;2. 解释直线参数方程的特点,如参数的意义和直线的截距式表示;3. 通过示例展示直线参数方程的应用,如直线的倾斜角和斜率的计算。
三、直线参数方程与普通方程的转换(20分钟)1. 讲解直线参数方程与普通方程的转换方法;2. 引导学生通过转换方法将直线参数方程转化为普通方程;3. 通过示例和练习题巩固转换方法。
四、直线参数方程的应用(15分钟)1. 讲解直线参数方程在实际问题中的应用,如物体的运动轨迹和工程中的直线测量;2. 引导学生运用直线参数方程解决实际问题;3. 通过示例和练习题巩固直线参数方程的应用。
五、总结和作业布置(5分钟)1. 总结直线参数方程的概念、特点和应用;2. 强调直线参数方程与普通方程的转换方法的重要性;3. 布置相关作业,巩固所学内容。
教学反思:在教学过程中,要注意通过示例和练习题让学生充分理解和掌握直线参数方程的概念和应用。
要引导学生思考直线参数方程的特点和与普通方程的关系,提高学生的数学思维能力。
六、直线参数方程的图形分析(15分钟)1. 使用课件或黑板展示直线参数方程的图形;2. 分析直线参数方程中参数t的变化对直线位置的影响;3. 引导学生观察直线参数方程的图形特征,如直线倾斜角的变化和截距的变化。
第16-17节直线的参数方程教案
第16、17节:直线的参数方程(1)(2)教学目标:1.了解直线的参数方程的推导过程,进一步理解参数方程的重要性;2.体会参数方程在解题中的应用;3.通过本节学习,进一步明确求曲线的参数方程的一般步骤。
教学重点:直线的参数方程的推导过程及其参数方程在解题中的应用。
教学难点:直线的参数方程的推导过程。
授课类型:新授课教学过程:一、复习引入:我们学过的直线的普通方程都有哪些?1.点斜式:2.斜截式:3.两点式:4.截距式:5.一般式:二.新课讲解:经过点M 0(x 0,y 0),倾斜角为α)2(πα≠的直线l 的普通方程是y-y 0=tan α(x-x 0),怎样建立直线l 的参数方程呢?经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程是为参数)t t y y t x x (.sin ,cos 00⎩⎨⎧+=+=αα 思考:参数方程中t 的几何意义是什么?重合。
与点则点,的方向向下;若,则的方向向上;若则,的方向总是向上,若的单位方向向量直线000M M 0t M M 0t M M 0t e l ,=<>=t 三.例题讲解21.:10l x y y x +-==例已知直线与抛物线交于A,B 两点,求线段AB 的长度和点M(-1,2)到A,B两点的距离之积。
探究:思考:例2的解法对一般圆锥曲线适用吗?把“中点”改为“三等分点”,直线l 的方程怎样求?例3.当前台风中心P 在某海滨城市O 向东300Km 处生成,并以40km/h 的速度向西偏北45度方向移动.已知距台风中心250km 以内的地方都属于台风侵袭的范围,那么经过多长时间后该城市开始受到台风侵袭?12121212(),,.(1)2y f x M M t t M M M M M t =直线与曲线交于两点,对应的参数分别为曲线的弦的长是多少?()线段的中点对应的参数的值是多少?2214,y A B +=2x 例。
经过点M(2,1)作直线L ,交椭圆16于两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线的参数方程教学目标:1. 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用.2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想.3. 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度.教学重点:联系数轴、向量等知识,写出直线的参数方程.t(数轴上的点坐标)与点在直角坐标系中的坐标之间教学难点:通过向量法,建立参数y,x的联系.教学方式:启发、探究、交流与讨论.教学手段:多媒体课件.教学过程:一、回忆旧知,做好铺垫教师提出问题:1.曲线参数方程的概念及圆与椭圆的参数方程.2.直线的方向向量的概念.3.在平面直角坐标系中,确定一条直线的几何条件是什么?4.已知一条直线的倾斜角和所过的一个定点,请写出直线的方程.5.如何建立直线的参数方程?这些问题先由学生思考,回答,教师补充完善,问题5不急于让学生回答,先引起学生的思考.【设计意图】通过回忆所学知识,为学生推导直线的参数方程做好准备.二、直线参数方程探究1.回顾数轴,引出向量数轴是怎样建立的?数轴上点的坐标的几何意义是什么?教师提问后,让学生思考并回答问题.t,那的坐标为,数轴上点所对应的点为,数教师引导学生明确:如果数轴原点为O1AM 么:OAOMOM?tOAOAOA方②当与方向与数轴的正方向一致,且①为数轴的单位方向向量,;0t?OM的方向与数轴正方向一致时),;向一致时(即0t?OMOMOA 的方向与数轴正方向相反时),与方向相反时(即当;0t? M与O重合时,;当.教师用几何画板软件演示上述过程.③t|OM|?【设计意图】回顾数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备.2.类比分析,异曲同工任意一条平面直角坐标系中的)类比数轴概念,问题:(1 直线能否定义成数轴?就有两种)把直线当成数轴后,直线上任意一点(2两种坐标坐标.怎样选取单位长度和方向才有利于建立这之间的关系?选取结论:教师提出问题后,引导学生思考并得出以下lll的(向上M平行且方向上的定点直线为原点,与直线0llle 的正方向,同时在直线确定直线时)或向右(的倾斜角为0时)的单位向量倾斜角不为0ll(一于是,直线上确定进行度量的单位长度,这时直线上的点就有了两种坐标就变成了数轴.维坐标和二维坐标).在规定数轴的单位长度和方向时,与平面直角坐标系的单位长度和方向保持一致,有利于建立两种坐标之间的联系.正方单位长度、【设计意图】使学生明确平面直角坐标系中的任意直线都可以在规定了原点、向后成为数轴,为建立直线参数方程作准备.选好参数,柳暗花明3.l MM在直线满足怎样的几何条件?上运动时,点1问题():当点ll运动就上点当成数轴后,直线M让学生充分思考后,教师引导学生得出结论:将直线te?MMMMt决M变化,但无论向量怎样变化,都有在数轴上的坐标等价于向量.因【设此点00lt M的位置,从而可以选择的参数方程.作为参数来获取直线定了点.计意图】明确参数le的单位方向向量?如何确定直线)(问题2:那么终教师启发学生:如果所有单位向量起点相同,以把起点的集合就是一个圆.为了研究问题方便,可就是一点放在原点,这样所有单位向量的终点的集合.个单位圆.因此在单位圆中来确定直线的单位方向向量.??l的从而明确直线教师引导学生确定单位方向向量,在此基础上启发学生得出,),sine?(cos?来确定.方向向量可以由倾斜角???0sin??0?le时,当的单位方向向量,所以直线的方向总是向上.综合运用所学知识,获取直线的方向向量,培养学生探索精神,体会数形结合思【设计意图】想.等价转化,深入探究4.t的坐标分别为,M表示?问题:如果点,怎样用参数M、))(x,y(x,y yx,000教师启发学生回顾向量的坐标表示,待学生通过独立思考并写出参数方程后再全班交流.过程如下:????),y?yy)?(x?xxMM?(x,y)?(, ),,(因为,),sin(cose?)?[0,00000Rt?teMM//eMM?又,使得,所以存在实数,即00??.),sin?t(cos?(x?x,yy)00??sinty?y?xx??tcos,,于是00??siny?y?x?x?tcost.,即00?)(x,yM,倾斜角为的直线的参数方程为因此,经过定点00?costx?x??0t为参数).(??sin?ty?y?0教师提出如下问题让学生加强认识:①直线的参数方程中哪些是变量?哪些是常量?t②参数的取值范围是什么?t的几何意义是什么?③参数?t,x,y y,x是常量,总结如下:①,是变量;00R?t ②;tteMM?tM?M表示直线上的动点M③由于,得到,且,因此到定点1?|e|00t?0MMMM M的方向与数轴(直的方向与数轴(直线)正方向相同时,;当的距离.当000t?0t?0M;当与点线)正方向相反时,时,点M重合.0【设计意图】把向量转化为坐标,获得了直线的参数方程,在此基础上分析直线参数方程的特点,体会参数的几何意义.三、运用知识,培养能力2交于A,B两点,求线段AB的长度和点到例1.已知直线与抛物线xy?01?l:x?y?1,2)(?M A,B两点的距离之积.先由学生思考并动手解决,教师适时点拨、引导,鼓励一题多解,学生可能有以下解法:x?y?1?0?2.解法一:由,得(*)?0x?x?1?2y?x?设,,由韦达定理得:.1x????1,B(x,y)x?x?x,A(xy)2121221122?4xx?2?5?AB?1?k10(x?x)?.211251??1?5?)解得*由(,x??,x12225?3?53.?,y??y21225?5?1?53??1?53所以.((,)A,),B2222?1?53?5?1?53?5则2222)?)(2??(?1?MAMB?(?1??)?)(2?2222.2?4?5?3?5?3?3?ll,所以它的参数方程是解法二、因为直线的倾斜角为过定点M,且4?32??cost1?x??x??1?t????42tt 为参数).(为参数),即(??32???sinty?2?t?y?2???4?22?2t?t2?0,把它代入抛物线的方程,得?2?10?2?10,.解得?t?t1222t的几何意义得:,由参数10??t?tAB21MA?MB?tt?2.21在学生解决完后,教师投影展示学生的解答过程,予以纠正、完善.然后进行比较:在解决直线上线段长度问题时多了一种解决方法.【设计意图】通过本题训练,使学生进一步体会直线的参数方程,并能利用参数解决有关线段长度问题,培养学生从不同角度分析问题和解决问题能力以及动手能力.?cost?x?x?0t为参数)与曲线交于(两点,对应的参数分探究:直线M,M)y?f(x?21?sint?y?y?0别为.tt,21(1)曲线的弦的长是多少?MM21t的值是多少?M对应的参数(2)线段的中点MM21先由学生思考,讨论,最后师生共同得到:t?t()1MM?t?t,21?t(2)21212【设计意图】通过特殊到一般,及时让学生总结有关结论,为进一步应用打下基础,培养归纳、概括能力.22yx l??1,交椭圆作直线的中例2、经过点于A,B两点.如果点M恰好为线段AB(2,1)M164l的方程.点,求直线l上的定点写出直线的参数方程,然后与椭圆的方程联立,M作为直线分析:引导学生以l0t?tt?t,的斜率.教师板书,过程如下:,则由求出直线A,B设两点对应的参数分别为2121?cost?2?x?lt为参数),的参数方程为(解:设过点的直线(2,1)M??sint?1?y?代入椭圆方程,整理得22???)?84(cos?(3sin?2sin?1)t0?.因为点M在椭圆内,这个方程必有两个实根,设A,B两点对应的参数分别为,tt,21??)?4(cos2sin.则???tt212??3sin1t?t???0cos?2sin.因为点M为线段AB,即的中点,所以210?21?l.的斜率于是直线??k?tan21l的方程是,即.因此,直线2)?(x?y?1?0?y4?x?22教师引导学生课下用其他方法解决.l的方程怎样的解法对一般圆锥曲线适用吗?把“中点”改为“三等分点”,直线:例2思考求?由学生课下解决.【设计意图】体会直线参数方程在解决弦中点问题时的作用.四、自主解决,深入理解42?2xy相交于A,B的直线和抛物线两点,斜率为,设线段已知过点AB的中点为M,(2,0)P3的坐标.M求点.本题由学生独立完成,教师补充完善.34???.解:设过点的直线AB的倾斜角为,,由已知可得:??sincos(2,0)P553?t2?x???5t所以,直线的参数方程为(为参数).?4?ty??5?22,整理得.代入x?2y0??15t?508ttt?15的相应参数是,中点M21?t?162341所以点M的坐标是.)(,416【设计意图】注重知识的落实,通过问题的解决,使学生进一步理解所学知识.五、归纳总结,提升认识先让学生从知识、思想方法以及对本节课的感受等方面进行总结.教师在学生总结的基础上再进行概括.1.知识小结本节课联系数轴、向量等知识,推导出了直线的参数方程,并进行了简单应用,体会了直线参数方程在解决有关问题时的作用.2.思想方法小结在研究直线参数方程过程中渗透了运动与变化、类比、数形结合、转化等数学思想.【设计意图】对学习内容有一个整体的认识,培养归纳、概括能力.六、布置作业,巩固提高1. 教材P39—1,3 ;x?x?at?0ltt的请思考参数为参数)(为常数,2. 思考题:若直线,的参数方程为b,a?y?y?bt?0意义.【设计意图】使学生进一步巩固所学知识,加深对知识的理解,为学有余力的学生提供思考的空间.七、板书设计直线的参数方程1.直线的参数方程教案设计说明 3.例题分析2.弦长公式本节课研究了直线的参数方程,并进行了简单的应用.本节课注重知识的产生过程,培养学生综合运用所学知识分析问题和解决问题的能力.在教学过程中渗透运动与变化、数形结合、类比、转化等数学思想,关注学生的参与和知识的落实.本节课选择直线的参数方程的参数是比较困难的,这是因为从确定直线的几何条件较难联想到“距离”.因此在教学中除了复习预备知识以外,还复习了数轴.联系数轴上点的坐标的几何意义,类比得到平面直角坐标系中的任意一条直线都可以当成数轴,这样直线上任意一点tt建立直线的参数方从而,为直线参数方程中的参数.因此可以选择坐标表示,就可以用坐标.?之间关系的问题.及倾斜角程就转化为建立坐标与坐标这样设计既注重了知识的产生t y,x00过程,又使学生深刻理解了参数的几何意义.在教学过程中,注重以教师为主导,学生为主体的教学模式.在实施教学和完成教学目标的过程中,适时将学生分组讨论、师生对话、学生动手、学生归纳小结等方式服务于“参数方程”知识的重点和难点的教学中,充分体现了以人为本,鼓励全体学生参与以及重视学法指导的教学新理念.本节课恰当地利用多媒体辅助教学,增强了教学中的直观性.。