微生物发酵工程

合集下载

微生物与发酵工程

微生物与发酵工程

4、扩大培养和接种
▪ 扩大培养:
▪ 扩大培养是将培养到对数期的菌体分开, 分头进行培养,以促使菌体数量快速增加 ,能在短时间里得到大量的菌体
▪ 接种:
▪ 有了用于生产的充足的菌体,在接种时要 注意什么事项呢?
▪ 接种过程中要注意防在菌体生长的稳定期产生。
2. 举例:
▪ 发酵生产常采用天然成分的液体培养基。而且 ,经常用野生的植物淀粉、甘蔗渣、秸秆,以 及乙醇、醋酸等石化产品代替粮食来配制培养
3、灭菌
▪ 灭菌的原因:
▪ 在发酵过程中如混入其他微生物,将与菌 种形成竞争关系,对发酵过程造成不良影 响。
▪ 举例:
▪ 如果在谷氨酸发酵过程中混人放线菌,则 放线菌分泌的抗生素就会使大量的谷氨酸 棒状杆菌死亡。如果在青霉素生产过程中 污染了杂菌,这些杂菌则会分泌青霉素酶 ,将合成的青霉素分解掉。
▪ 代谢产物:蒸馏、萃取、离子交换等方法 。
▪ 菌体本身:过滤、沉淀。
从自然界分离的菌种
诱变育种 扩大培养
基因工程 生产用菌种
诱变育种 原料
接种
发酵罐
灭菌
发酵条件控制
培养基配置
分离 提纯
微生物菌体
代谢产物
产品
四、发酵工程的应用
1. 在医药方面:
1) 发酵工程能生产人们所需的药品。例 如:通过青霉发酵能生产青霉素。
1、菌种的选育
1. 选育的方法:
1) 从自然界中先分离出相应的菌种; 2) 利用诱变筛选出符合生产要求的优良菌种 ; 3) 利用基因工程、细胞工程的方法构建工程细胞或
工程菌。
2. 举例:
▪ 可将人工合成的人的胰岛素基因与大肠杆菌的质 粒结合,形成重组DNA,再把重组DNA导入大 肠杆菌细胞内形成工程菌。通过筛选则可培养出 能生产人的胰岛素的菌种。

微生物发酵工程

微生物发酵工程

微生物发酵工程微生物发酵工程是一门应用生物学领域的重要学科,它利用生物转化功能强大的微生物来生产各种化学物质。

这项技术在药品、食品、饮料、化妆品、环境保护等领域都有广泛的应用。

本文将从微生物发酵的定义、应用、工程设计等多个方面进行探讨。

一、微生物发酵的定义及原理微生物发酵是指利用微生物的代谢能力和酶的功能,通过适宜的培养条件,将底物转化成目标产物的过程。

它是一种自然而又复杂的生物反应过程,其基本原理可以归纳为底物与微生物的相互作用。

1. 微生物的选择酿酒、面包等产物需要酵母菌;乳酸、醋等食品需要乳酸菌和醋酸菌;抗生素需要青霉菌、链霉菌等。

不同的产品需要不同种类的微生物。

2. 培养条件的控制温度、pH、氧气供应、营养物质的添加等都是微生物发酵过程中需要控制的因素。

这些因素会影响微生物的生长速率和产物生成率。

3. 酶的作用微生物在发酵过程中产生的酶在催化底物转化成产物的反应中起到了关键的作用。

不同的产物需要特定的酶来完成转化。

二、微生物发酵的应用微生物发酵技术的应用广泛,以下主要介绍几个方面的应用。

1. 食品工业微生物发酵在食品工业中应用非常广泛。

例如,酸奶、豆豉、泡菜、味精等都是通过微生物发酵得到的。

微生物在发酵过程中可以产生有益的物质,例如乳酸、醋酸、氨基酸等,为食品增添了特殊的风味和营养价值。

2. 药品工业抗生素是微生物发酵的重要应用之一。

青霉素、链霉素等都是通过微生物发酵生产的。

此外,微生物发酵还可以用于生产维生素、氨基酸等药用物质。

3. 环境保护微生物发酵技术在环境保护领域也有广泛的应用。

例如废水处理中利用微生物的能力来分解有机物,减少污染物的排放。

还可以通过微生物发酵来处理有机废弃物,降低对环境的影响。

三、微生物发酵工程的设计与优化微生物发酵工程的设计是实现高效产物合成的关键。

以下是一些常用的优化策略。

1. 培养基优化培养基的成分对微生物的生长和产物生成起到重要的影响。

通过合理调整培养基的组成,可提高产物的生成效率。

微生物发酵工程

微生物发酵工程

3. 农业领域
在农业领域,微生物 发酵工程主要用于有 机肥、生物农药等的 生产。例如,通过微 生物发酵工程可以将 有机废弃物转化为有 机肥料,同时也可以 产生具有杀虫效果的 生物农药
4. 环保领域
在环保领域,微生物发酵工程主要用于废水 处理、垃圾处理等。例如,通过微生物发酵 工程可以将有机废水中的有机物转化为二氧 化碳和水,从而达到废水处理的目的
微生物发酵工程的基本原理 是利用微生物的生长和代谢 活动,在特定的条件下产生 有用的物质
这些物质可以是微生物自身 产生的,也可以是通过微生 物转化其他物质条件下会生长和繁殖,同时 进行一系列的代谢活动。这些代谢活动会产 生各种有用的物质,如氨基酸、酶、抗生素 等
-
1 微生物发酵工程的基本原理 2 微生物发酵工程的应用 3 微生物发酵工程的意义
微生物发酵工程
微生物发酵工程,也称为微生物生物技术,是一种利 用微生物在特定条件下产生有用物质的技术
x
这种技术广泛应用于医药、食品、农业、环保等领域 ,为人类的生产和生活带来了巨大的便利
1
微生物发酵工程的基本原理
3. 环保和可持续发展
随着环保意识的不断提高,未来 微生物发酵工程将会更加注重环 保和可持续发展。通过研究和开 发新的技术和设备,我们可以实 现更加环保和可持续的微生物发 酵过程
总之,微生物发酵工程作为一 种重要的生物技术,在未来将 会在各个领域发挥更大的作用
-
20XX
感谢您的聆听
ADD YOUR TITLE ADD YOUR TITLE HERE.ADD YOUR TITLE.ADD YOUR TITLE. HERE.ADD YOUR TITLE.ADD YOUR TITLE
微生物发酵工程的应用 非常广泛,下面列举几

微生物学与发酵工程的关系

微生物学与发酵工程的关系

微生物学与发酵工程的关系微生物学是研究微生物的科学,而发酵工程是利用微生物进行工业生产的一门学科。

微生物学与发酵工程之间存在着紧密的联系和互相促进的关系。

微生物学为发酵工程提供了理论基础和实验依据,而发酵工程则是微生物学研究成果的应用和发展。

微生物学为发酵工程提供了丰富的微生物资源。

微生物是发酵工程的基础和关键。

通过对各种微生物的研究和分离,可以得到适合发酵生产的菌种。

微生物学家通过对微生物的形态、生理、遗传等方面的研究,为发酵工程提供了合适的菌种选择和培养条件的优化。

微生物学的发展也推动了发酵工程的进步,新的微生物资源的发现使得发酵工程的应用范围更加广泛。

微生物学为发酵工程提供了发酵过程的理论基础。

微生物学研究了微生物的代谢途径、生长规律、产物合成等方面的原理,为发酵工程的设计和优化提供了重要的依据。

通过对微生物代谢途径的研究,可以了解微生物在不同条件下的生长和代谢特点,从而调节发酵条件以提高产物的合成效率。

微生物学还研究了微生物的基因工程和代谢工程,通过改造微生物的基因组和代谢途径,可以实现对发酵过程的精确控制和产物的改良。

发酵工程的实践应用也促进了微生物学的发展。

发酵工程的需求推动了微生物学技术的创新和改进。

在大规模发酵生产中,微生物的培养、发酵条件的控制、产物的提取纯化等都需要微生物学的技术支持。

同时,发酵工程中的问题和挑战也促使微生物学家进行更深入的研究,以提供更好的解决方案和技术支持。

微生物学与发酵工程的关系可以用一个相互促进的循环来描述。

微生物学为发酵工程提供了理论和实验基础,为发酵工程的发展提供了支持;而发酵工程的应用和需求则推动了微生物学的研究和创新。

两者相互依赖、相互促进,共同推动了微生物学和发酵工程的发展。

总的来说,微生物学与发酵工程之间存在着紧密的关系。

微生物学为发酵工程提供了微生物资源和理论基础,而发酵工程则是微生物学研究成果的应用和发展。

微生物学与发酵工程的合作促进了两个领域的发展,为工业生产和科学研究提供了重要的支持和推动。

微生物工程

微生物工程

微生物复习资料1.发酵工程:即微生物工程。

是渗透有工程学的微生物学,是传统的发酵技术与基因工程、细胞工程、蛋白质工程等相结合,具体包括菌种选育、菌体生产、代谢产物的发酵以及微生物机能的利用等。

发酵:借助微生物在有氧或无氧条件下的生命活动,来制备微生物菌体本身,或其代谢产物的过程。

2.菌种:用于发酵过程作为活细胞催化剂的微生物,包括细菌、放线菌、酵母菌和霉菌四大类。

来源于自然界大量的微生物,从中经分离并筛选出有用菌种,再加以改良,贮存待用于生产。

3.培养基:供微生物、植物和动物组织生长和维持用的人工配制的养料,一般都含有碳水化合物、含氮物质、无机盐(包括微量元素)以及维生素和水等。

有的培养基还含有抗菌素和色素,用于单种微生物培养和鉴定。

4.菌种退化:菌种的发酵能力降低、繁殖能力降低、发酵产品的得率降低5.下游技术:发酵液、动植物细胞培养液、酶反应液和动植物组织细胞与体液等中提取、分离纯化、富集生物产品的过程称为下游加工过程6.工业微生物育种方法:A、自然选育;B、生产选育;C、诱变育种;D、细胞工程育种E、基于代谢调节的育种;F、代谢工程育种G、基因重组育种;H、蛋白质工程育种;J、组合生物合成育种;K、反向生物工程育种7.菌种选育目的:改善菌种的特性,使产量提高,改进质量、降低成本、改革工艺、方便管理及综合利用等8.影响微生物生长的环境因素:温度ph 氧9.好氧发酵罐:机械搅拌式通风发酵罐、自吸式发酵罐、气升式发酵罐和塔式发酵罐10.影响种子质量的主要因素1、培养基:2、种龄与接种量3、斜面冷藏时间4、温度:温度直接影响生长和酶的合成;5、pH值:对微生物有明显的影响。

[调节方法有三种方法:用酸碱溶液中和法;使用缓冲溶液法;使用生理缓冲剂.]6、通气搅拌:[溶解氧的作用:参与菌体呼吸作用]7、泡沫:8、染菌的控制9、种子罐级数11)大规模工业生产的培养方法A、固体培养(曲法培养):浅盘固体培养,深层固体培养B、液体培养:浅盘液体培养,液体深层培养(目前几乎所有的好气发酵均采用此法);C、载体培养:用天然(或人工)多孔材料代替麦麸之类固态基质作微生物生长的载体,营养成分可严格控制。

发酵工程全部知识点总结

发酵工程全部知识点总结

发酵工程全部知识点总结一、发酵工程的基本概念1. 发酵的定义发酵是指利用微生物或其代谢物来改变物质的过程。

主要包括酵母、细菌、真菌等微生物。

2. 发酵工程的定义发酵工程是指利用发酵微生物代谢特性,通过合理调控环境条件,进行微生物发酵过程中的相关技术。

二、发酵微生物1. 酵母酵母是发酵工程中最常用的微生物,广泛应用于酒类、面包、啤酒等食品工业中。

2. 细菌细菌在发酵工程中也有重要的应用,如益生菌、酸奶中的乳酸菌等。

3. 真菌真菌发酵应用广泛,包括酵素生产、抗生素生产、食品添加剂等。

三、发酵工程的基本过程1. 液体发酵液体发酵是将发酵微生物培养在液体培养基中,通过控制培养基成分、通气、温度等条件来进行微生物代谢产物的生产。

2. 固体发酵固体发酵是将发酵微生物培养在固体底物中,通过控制底物成分、湿度、通气等条件来进行微生物代谢产物的生产。

3. 半固体发酵半固体发酵是将发酵微生物培养在半固体底物中,采用液态和固态发酵的优点来进行微生物代谢产物的生产。

四、发酵工程的主要设备和工艺1. 发酵罐发酵罐是发酵工程的主要设备之一,根据不同的发酵工艺和需求,可以采用不同类型的发酵罐。

2. 发酵工艺发酵工艺是指在发酵过程中,针对不同的微生物和产物特性,进行合理的发酵条件控制和操作流程。

3. 发酵控制系统发酵控制系统是指在发酵工程中,通过自动化设备和仪器,实现对发酵条件如温度、pH 值、通气、搅拌等的精确控制。

五、发酵工程的应用范围1. 食品工业发酵工程在食品工业中应用广泛,如酿造啤酒、制作酸奶、发酵面包、制作酱油等。

2. 医药工业发酵工程在医药工业中应用广泛,如生产抗生素、激素、酶制剂等。

3. 燃料工业发酵工程在燃料工业中也有应用,如生物乙醇、生物柴油等。

4. 化学工业发酵工程在化学工业中也有应用,如生产乳酸、丙酮、丙二醇等。

六、发酵工程的发展趋势1. 发酵工程技术的进步随着科技的不断进步,发酵工程的技术也在不断提高,发酵设备和工艺不断更新。

微生物发酵工程的特点

微生物发酵工程的特点

微生物发酵工程的特点
1. 微生物发酵工程可神奇啦!就像一个魔法盒子,能把普通的原料变得大不一样。

比如说酿酒,利用微生物的发酵,就能把粮食变成香醇的美酒,这不是很奇妙吗?
2. 它的高效性简直让人惊叹!好比是一辆飞速前进的列车,快速地产生我们需要的东西。

像生产酸奶,通过微生物发酵,短时间内就能得到美味的酸奶,这多厉害呀!
3. 微生物发酵工程的多样性太让人惊喜啦!如同一个巨大的宝库,有着无穷无尽的可能。

比如生产各种生物制剂,不同的微生物发挥着不同的作用,能创造出这么多不同的产物,难道不酷吗?
4. 它的适应性真的很强啊!就像一个顽强的战士,不管在什么环境下都能战斗。

在各种极端条件下,微生物都可以进行发酵,为我们带来需要的东西,怎能不让人佩服?
5. 微生物发酵工程还有着惊人的灵活性呢!仿佛是一个百变精灵,可以根据我们的需求随时调整。

像根据市场需求调整发酵产物的种类和产量,多么灵活呀,是不是很赞?
6. 它的可持续性更是让人充满希望!恰似一股源源不断的清泉,为未来提供动力。

利用微生物发酵来生产清洁能源,既环保又可持续,这是多么美好的事情啊!
总的来说,微生物发酵工程就是这么神奇、高效、多样、适应、灵活、可持续,给我们的生活带来了巨大的改变和惊喜!。

微生物工程与发酵工程

微生物工程与发酵工程

微生物工程与发酵工程微生物工程与发酵工程是一门涵盖微生物学、生物工程学和化学工程学等多个学科知识的综合性学科。

本文将从微生物工程与发酵工程的基本概念、应用领域以及发展前景等方面进行探讨。

微生物工程与发酵工程是利用微生物生长、代谢和功能特性,通过工程手段加工产品的一门学科。

微生物是一类生命活动较为简单的生物体,但却在自然界中发挥着不可或缺的作用。

微生物工程利用这些微生物可控地合成有用的物质,如酶、抗生素、有机酸等。

而发酵工程则是在具体产品的生产过程中,通过对微生物生长环境、培养基和发酵条件的控制,达到最佳生产效果。

微生物工程与发酵工程的应用领域非常广泛。

在食品工业中,微生物工程与发酵工程被广泛应用于酿造、发酵、酸奶、酵素等食品的生产过程中,提高了产品的质量和产量。

在制药工业中,利用微生物工程生产抗生素和其他药物,为人类的健康提供了重要保障。

在环境保护领域,微生物工程与发酵工程可以用来处理废水、废气等环境问题,起到净化环境、保护生态的作用。

随着科学技术的不断发展,微生物工程与发酵工程的前景非常广阔。

在新药开发领域,微生物工程可以利用基因重组技术合成更多更有效的药物,为医疗健康领域带来更多新的突破。

在能源领域,微生物工程可以研发利用微生物生产生物燃料的技术,为替代传统石油能源提供新的途径。

在环境领域,微生物工程可以利用微生物降解有害物质、净化环境等技术,为环境保护和生态建设贡献力量。

总而言之,微生物工程与发酵工程作为一门前沿交叉学科,将继续在多个领域发挥重要作用,为人类的生产生活、医疗健康、环境保护等方面提供更多更好的解决方案。

未来,随着科学技术的不断进步和创新,微生物工程与发酵工程必将迎来更加美好的发展前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 重要关注:菌种、防污染
15:42
16
发酵过程技术优化
高产量
微生物生理、遗传、营养及环境因素
高转化率 微生物代谢途径和过程条件
高效率
微生物反应动力学和系统优化
低成本
技术综合及产业化技术集成
环境友好 开发清洁生产技术
15:42
17
发酵过程技术优化
条件 确定
初始条件
过程分析
过程强化
过程 优化
1. 基于组学技术的高通量菌种改造和筛选 菌种改造
22
发酵工业的范围
➢ 微生物菌体 ➢ 酶制剂 ➢ 代谢产物 ➢ 生物转化 ➢ 微生物特殊技能的利用
• 消除环境污染 • 保持生态平衡 • 微生物湿法冶金 • 利用基因工程菌株开拓发酵工程新领域
15:42
23
➢ 微生物菌体
传统菌体 发酵工业
酵母发酵 菌体蛋白(单细胞蛋白)发酵
面包酵母
现代菌体 发酵工业
四环素 (Tetracycline)
罗红霉素 (Roxithromycin)
15:42
12

2015‒2018年我国零售市场全身用抗感染用药不同类别分布状况
2014‒2018年我国β-内酰胺类全身用抗细菌用药市场各类别分布状况
15:42
13
15:42
14
发酵工程发展简史
(4) 1950‒1960 诱变技术与代谢控制发酵技术的建立 (5) 1960‒1970 开拓发酵原料时期(石油发酵时期)
——DNA/RNA内切酶、外切酶,DNA连接酶等 ➢ 饲料酶制剂:木聚糖酶、-葡聚糖酶、纤维素酶等
15:42
25
➢ 代谢产物
第一类:维持生物体内生命过程的必需物质,存在于所有生物体内。
第二类: 并不是所有的生物体内都存在,它们对维持生物体生命活 动不起重要作用,但具有生理活性的物质。
15:42
26
杀虫剂——苏云金杆菌、蜡样芽孢杆菌、 侧孢芽孢杆菌、白僵菌、绿僵菌
疫苗
新的菌体发酵产品:药用功能菌体
茯苓菌——茯苓 担子真菌——灵芝、香菇 虫草头孢菌 密环菌
15:42
24
➢ 酶制剂
广泛用于医药工业、食品、轻工业、石油化工
➢ 酶试剂盒:医用诊断、工业分析等 ➢ 药用酶制剂:胆固醇氧化酶、葡萄糖氧化酶等 ➢ 食品工业用酶制剂:果胶酶、淀粉酶等 ➢ 基因重组技术用酶制剂:核酸酶
阿莫西林
6-APA
15:42
10
(3) 1940‒1950通气搅拌纯培养技术的建立
1943年 链霉素(streptomycin)
(第二个抗生素)
抗结核
赛尔曼·A·瓦克斯曼
1952年 诺贝尔生理学或医学奖
15:42
11
其他抗生素
青霉素 (Penicillin)
头孢菌素 (Cephalosporin)
微生物发酵工程
15:42
2
目录
CONTENT
发酵工程定义及在生物技术中的地位 发酵工程发展简史 发酵工业的特点及其应用范围 工业发酵的类型与典型过程 发酵工程发展趋势及应用前景 《发酵工程》《酶工程》主要内容
15:42
3
发酵工程在生物技术中的地位
15:42
4
发酵工程上中下游技术
优良菌株的选 育和保藏(菌 种筛选、代谢 路径改造等)
代谢产物应用
PITERA是天然酵母的发酵液滤液,这种 过滤液里面含有多种氨基酸、维生素、矿物 质、有机酸以及多糖类粘性物质。
15:42
27
➢ 微生物转化
我国创制的二步发酵法 Vc合成路线
醋酸霉菌
假单胞菌
烯醇化 内酯化
D-山梨醇
山梨糖
2-O-D-古洛糖酸
Vc
15:42
28
微生物转化 降解石油的微生物很多,据报道有200多种。
《战国策·魏策二》记载, 相传 “帝女令仪狄作酒而美, 进之禹,禹饮而甘之,遂疏仪 狄而绝酒旨。曰,后世必有以 酒亡其国者。”
15:42
中国六千年酒文化
《柳叶刀》(2018.8.23)
6
自然发酵阶段
从上古到北魏时期(386‒534年) 22种制醋方法
酒石酸(1769年)
15:42
7
(2) 1900‒1940纯培养技术的建立
15:42
18
常用的工业微生物
15:42
19
工业菌种改良
15:42
20
诱变育种
1H NMR
15:42
PD UV 7 min UV 9 min HNO2 6 min DES 30 min MW 2 min US 20 min US 30 min
21
常用的菌种保藏方法
培养皿
冻存管
试管斜面
15:42
2. 基于组学和生物信息学代谢途径分析优化
发酵工艺 3. 基于实时代谢流分析、代谢途径模型与自动控制技 优化 术的发酵过程优化控制
发酵产物 4. 基于发酵液及产品特性的高效率、低成本、高质量 分离纯化 和环境友好的提取精制技术集成
综合治理 5. 基于源头防治与过程监控的资源节约与废物资源化 技术优化 清洁生产技术集成
补料分批发酵 单极恒化器连续发酵
连续发酵
多极恒化器连续发酵
单菌种发酵
细胞再循环的单极恒化器连续发酵
中游 技术
上游 技术
上中下游相互关联!
发酵过程控制 (发酵条件控制、 无菌环境控制、 过程分析等)
下游 技术
分离纯化产品(固 液分离技术、细胞 破壁技术、产物纯 化技术、产品检验 和包装技术等)
15:42
5
2. 发酵工程发展简史 (1) 1900之前 自然发酵阶段
杜康“有饭不尽,委之空桑, 郁结成味,久蓄气芳,本出于 代,不由奇方。”
(6) 1970年以后 基因工程菌发酵时期、 细胞大规模培养技术全面发展
(7) 近年来
现代生物技术和过程工程技术 为基础的现代发酵工业突飞猛进。
15:42
15
3. 发酵工程的特点及其应用范围
➢ 常温常压,反应安全、条件简单
特 ➢ 较廉价原料生产较高价值产品 点 ➢ 专一性、高选择性地进行复杂化合物特定部位的生物转化修饰
多氯联苯、多环芳烃、杂环化合物 药用物质 放射性核素 金属
15:42
29
4. 工业发酵的类型与典型过程
按照微生物对 氧的需求不同
按照培养基 的物理性状
按照发酵 工艺流程
按照菌的种类
15:42
厌氧发酵 需氧发酵 兼性厌氧发酵 液体发酵(深层液体发酵)
固体发酵
浅盘固体发酵
分批发酵
深层固体发酵(机械通风制曲)
青霉素——二战中最伟大的“救命药”
金黄色 葡萄球菌
青霉菌
1945年诺贝尔生理学或医学奖
(弗莱明、佛罗理、钱恩)
15:42
8
1945年实现了青霉素的工业化生产
固 体 表 面 培 养
液 体 深 层 培 养
15:42
9
青霉素类药物
发酵、提取分离
Penicillium
青霉素 G
青霉素 酰基转移酶
人工合成
相关文档
最新文档