河南省郑州市2020版中考数学试卷(I)卷

合集下载

2023年河南省郑州市中考数学一模试卷(含解析)

2023年河南省郑州市中考数学一模试卷(含解析)

2023年河南省郑州市中考数学一模试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km记做“+2km”,那么向西走1km应记做( )A. ―2kmB. ―1kmC. 1kmD. +2km2. 星载原子钟是卫星导航系统的“心脏”,对系统定位和授时精度具有决定性作用.“北斗”三号卫星导航系统装载国产高精度星载原子钟,保证“北斗”优于20纳秒的授时精度.1纳=1×10―9秒,那么20纳秒用科学记数法表示为( )A. 2×10―8秒B. 2×10―9秒C. 20×10―9秒D. 2×10―10秒3. 如图1是由6个相同的小正方块组成的几何体,移动其中一个小正方块,变成图2所示的几何体,则移动前后( )A. 主视图改变,俯视图改变B. 主视图不变,俯视图改变C. 主视图不变,俯视图不变D. 主视图改变,俯视图不变4. 把一块等腰直角三角板和一把直尺按如图所示的位置构成,若∠1=25°,则∠2的度数为( )A. 15°B. 20°C. 25°D. 30°5. 下列调查中,最适宜采用普查的是( )A. 调查郑州市中学生每天做作业的时间B. 调查某批次新能源汽车的电池使用寿命C. 调查全市各大超市蔬菜农药残留量D. 调查运载火箭的零部件的质量6. 如图,五线谱由五条等距离的平行横线组成,同一条直线上的三个点A,B,C都在横线上,若线段AB=6,则线段BC的长是( )A. 4B. 3C. 2D. 17. 若关于x的方程x2+ax+1=0有两个相等的实数根,则a值可以是( )A. 2B. 1C. 0D. ―18.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=2,则△ADE的周长为( )A. 6B. 9C. 12D. 159. 已知点(―3,y1)、(―1,y2)、(1,y3)在下列某一函数图象上,且y3<y1<y2,那么这个函数是( )A. y=3xB. y=3x2C. y=3x D. y=―3x10. 如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为( )A. m(cosα―sinα)B. m(sinα―cosα)C. m(cosα―tanα)D. msinα―mcosα二、填空题(本大题共5小题,共15.0分)11. 数学具有广泛的应用性.请写出一个将基本事实“两点之间,线段最短”应用于生活的例子: .12. 不等式组―2x <6,x ―2<0的解集是______.13. 甲乙两人参加社会实践活动,随机选择“做社区志愿者”和“做交通引导员”两项中的一项,那么两人同时选择“做社区志愿者”的概率是______.14.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,m),C(3,m +6),反比例函数y =k x(x >0)的图象同时经过点B 与点D ,则k的值为______.15. 如图,△ABC 与△BDE 均为等腰直角三角形,点A ,B ,E 在同一直线上,BD ⊥AE ,垂足为点B ,点C 在BD 上,AB =2,BE =5.将△ABC 沿BE 方向平移,当这两个三角形重叠部分的面积等于△ABC 面积的一半时,△ABC 平移的距离为 .三、解答题(本大题共8小题,共75.0分。

数学_2020年河南省郑州市中考数学一模试卷_复习

数学_2020年河南省郑州市中考数学一模试卷_复习

2020年河南省郑州市中考数学一模试卷一、选择题(每小题3分,共30分,下列各小题均有四个答案,其中只有一个是正确的) 1. −√3的相反数是( ) A. √3 B. −√3 C. √33 D. −√332. 华为Mate 30 5G 系列是近期相当火爆的5G 国产手机,它采用的麒麟990 5G 芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为( ) A. 1.03×109 B. 10.3×109 C. 1.03×1010 D. 1.03×1011 3. 下列运算正确的是( )A. 3x −2x =xB. 3x +2x =5x 2C. 3x ⋅2x =6xD. 3x ÷2x =234. 如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体A 放到小正方体B 的正上方,则它的( )A. 左视图会发生改变B. 俯视图会发生改变C. 主视图会发生改变D. 三种视图都会发生改变5. 如图,平行四边形ABCD 中,AB =3,BC =5.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( )A. 52B. 53 C. 1 D. 26. 郑州市某中学获评“2019年河南省中小学书香校园”,学校在创建过程中购买了一批图书.已知购买科普类图书花费12000元,购买文学类图书花费10500元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本,求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x 元,则可列方程为( ) A.12000x−5−10500x=100 B.10500x−12000x−5=100 C.12000x−10500x−5=100 D.10500x−5−12000x=1007. 2019年9月8日第十一届全国少数民族传统体育运动会在郑州奥体中心隆重开幕,某单位得到了两张开幕式的门票,为了弘扬劳动精神,决定从本单位的劳动模范小李、小张、小杨、小王四人中选取两人去参加开幕式,那么同时选中小李和小张的概率为( ) A. 116 B. 112 C. 18 D. 168. 已知有理数a ≠1,我们把11−a 称为a 的差倒数,如:2的差倒数是11−2=−1,−1的差倒数是11−(−1)=12,如果a 1=−2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,那么a 2020的值是( ) A. −2 B. 13 C. 23 D. 329. 用三个不等式a >b ,ab >0,1a >1b 中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( ) A. 0 B. 1 C. 2 D. 310. 使用家用燃气灶烧开同一壶水所需的燃气量y (单位:m 3)与旋钮的旋转角度x (单位:度)(0∘<x ≤90∘)近似满足函数关系y =ax 2+bx +c(a ≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为 ( )A. 33∘B. 36∘C. 42∘D. 49∘二、填空题(每小题3分,共15分) 11. 计算:(√3−1)0+(12)−2=________.12. 如图,五边形ABCDE 是正五边形.若l 1 // l 2,则∠1−∠2=________∘.13. 如果一元二次方程9x 2−6x +m =0有两个不相等的实数根,那么m 的值可以为________. 14. 如图,四边形ABCD 和四边形ACED 都是平行四边形,点R 为DE 的中点,BR 分别交AC ,CD 于点P ,Q .平行四边形ABCD 的面积为6,则图中阴影部分的面积为________.15. 如图,在矩形ABMN 中,AN =1,点C 是MN 的中点,分别连接AC ,BC ,且BC =2,点D 为AC 的中点,点E 为边AB 上一个动点,连接DE ,点A 关于直线DE 的对称点为点F ,分别连接DF ,EF .当EF ⊥AC 时,AE 的长为________.三、解答题(共75分)16. 已知分式1−mm2−1÷(1+1m−1).(1)请对分式进行化简;(2)如图,若m为正整数,则该分式的值对应的点落在数轴上的第________段上.(填写序号即可)17. 某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:数b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为________;②一分钟仰卧起坐成绩的中位数为________;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.18. 在△ABC中,∠BAC=90∘,AD是BC边上的中线,点E为AD的中点,过点A作AF // BC 交BE的延长线于点F,连接CF.(1)求证:AD=AF;(2)填空:①当∠ACB=________∘时,四边形ADCF为正方形;②连接DF,当∠ACB=________∘时,四边形ABDF为菱形.19. 某校“趣味数学”社团开展了测量本校旗杆高度的实践活动.“综合与实践”小组制订了测量方案,并完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,该小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如表(不完整)测量项目任务一:两次测量A,B之间的距离的平均值x=6m任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin26.5∘≈0.45,cos26.5∘≈0.89,tan26.5∘≈0.50,sin33∘≈0.54,cos33∘≈0.84,tan33∘≈0.65)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?20. 如图,在平面直角坐标系中,已知点B(0, 4),等边三角形OAB的顶点A在反比例函数(x>0)的图象上.y=kx(1)求反比例函数的表达式;(2)把△OAB沿y轴向上平移a个单位长度,对应得到△O′A′B′.当这个函数的图象经过△O′A′B′一边的中点时,求a的值.21. 《郑州市城市生活垃圾分类管理办法》于2019年12月起施行.某社区要投放A,B两种垃圾桶,负责人小李调查发现:若购买A种垃圾桶80个,B种垃圾桶120个,则共需付款6880元;若购买A种垃圾桶100个,B种垃圾桶100个,则共需付款6150元.(1)求A,B两种垃圾桶的单价各为多少元?(2)若需要购买A,B两种垃圾桶共200个,且B种垃圾桶不多于A种垃圾桶数量的1,如何3购买使花费最少,最少费用为多少元?请说明理由.22. (一)发现探究在△ABC中,AB=AC,点P在平面内,连接AP并将线段AP绕点A顺时针方向旋转与∠BAC相等的角度,得到线段AQ,连接BQ.【发现】如图1,如果点P是BC边上任意一点,则线段BQ和线段PC的数量关系是________;【探究】如图2,如果点P为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);(二)拓展应用【应用】如图3,在△DEF中,DE=8,∠EDF=60∘,∠DEF=75∘,P是线段EF上的任意一点,连接DP ,将线段DP 绕点D 顺时针方向旋转60∘,得到线段DQ ,连接EQ .请直接写出线段EQ 长度的最小值.23. 如图,在平面直角坐标系中,直线y =−12x +n 与x 轴,y 轴分别交于点B ,点C ,抛物线y =ax 2+bx +32(a ≠0)过B ,C 两点,且交x 轴于另一点A(−2, 0),连接AC .(1)求抛物线的表达式;(2)已知点P 为第一象限内抛物线上一点,且点P 的横坐标为m ,请用含m 的代数式表示点P 到直线BC 的距离;(3)抛物线上是否存在一点Q (点C 除外),使以点Q ,A ,B 为顶点的三角形与△ABC 相似?若存在,直接写出点Q 的坐标;若不存在,请说明理由.2020年河南省郑州市中考数学一模试卷答案1. A2. C3. A4. C5. D6. D7. D8. A9. A 10. C 11. 5 12. 72 13. 0 14. 54 15. √33或√3216. 原式=1−m m 2−1÷m−1+1m−1=1−m(m+1)(m−1)⋅m−1m=1−1m+1=m+1−1 m+1=mm+1;①17. 9,45全年级女生实心球成绩达到优秀的有65人;②同意,理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀18. 证明:∵ ∠BAC=90∘,AD是BC边上的中线,∵ AD=CD=BD,∵ 点E为AD的中点,∴ AE=DE,∵ AF // BC,∴ ∠AFE=∠DBE,∵ ∠AF=∠DEB,∴ △AEF≅△DEB(AAS),∴ AF=BD,∴ AD=AF;45,3019. 旗杆GH的高度为14.5米(1)任务三:没有太阳光,或旗杆底部不可能达到相等.20. ∵ 点B(0, 4),等边三角形OAB的顶点A在反比例函数y=kx(x>0)的图象上,∴ 点A的坐标为(2√3, 2),∴ 2=2√3,得k=4√3,即反比例函数的表达式是y=4√3x;当反比例函数y=4√3x过边A′B′的中点时,∵ 边O′A′的中点是(√3, 3+a),∴ 3+a=√3√3,得a=1;当反比例函数y=4√3x过边O′A′的中点时,∵ 边A′B′的中点是(√3, 1+a),∴ 1+a=√3√3,得a=3;由上可得,a 的值是1或3.21. A 种垃圾桶的单价为50元,B 种垃圾桶的单价为30元;购买A 种垃圾桶150个,B 种垃圾桶50个花费最少,最少费用为7125元 22. BQ =PC23. 点C(0, 32),则直线y =−12x +n =−12x +32,则点B(3, 0), 则抛物线的表达式为:y =a(x −3)(x +2)=a(x 2−x −6), 故−6a =32,解得:a =−14,故抛物线的表达式为:y =−14x 2+14x +32;过点P 作y 轴的平行线交BC 于点G ,作PH ⊥BC 于点H ,则∠HPG =∠CBA =α,tan∠CBA =OC OB =12=tanα,则cosα=√5, 设点P(m, −14m 2+14m +32),则点G(m, −12m +32), 则PH =PGcosα=√5(−14m 2+14m +32+12m −32)=−√510m 2+3√510m ; ①当点Q 在x 轴上方时,则点Q ,A ,B 为顶点的三角形与△ABC 全等,此时点Q 与点C 关于函数对称轴对称, 则点Q(1, 32);②当点Q 在x 轴下方时,(1)当∠BAQ =∠CAB 时,△QAB ∽△BAC , 则ABAC =AQ AB ,由勾股定理得:AC =5,AQ =AB 2AC=2552=10,过点Q 作QH ⊥x 轴于点H ,由△HAQ ∽△OAC 得:AQ AC =QH OC=QH OA,∵ OC =32,AQ =10,∴ QH =6,则AH =8,OH =18−2=6, ∴ Q(6, −6);根据点的对称性,当点Q 在第三象限时,符合条件的点Q(−5, −6); 故点Q 的坐标为:(6, −6)或(−5, −6);(2)当∠BAQ =∠CBA 时,则直线AQ // BC,直线BC表达式中的k为:−12,则直线AQ的表达式为:y=−12x−2…②,联立①②并解得:x=5或−2(舍去−2),故点Q(5, −72),BC AB =√4545,而ABAQ=√2454,故BCAB≠ABAQ,即Q,A,B为顶点的三角形与△ABC不相似,故舍去,Q的对称点(−4, −72)同样也舍去,即点Q的为:(−4, −72)、(5, −72)均不符合题意,都舍去;综上,点Q的坐标为:(1, 32)或(6, −6)或(−5, −6).。

2024年河南省中考数学试卷正式版含答案解析

2024年河南省中考数学试卷正式版含答案解析

绝密★启用前2024年河南省中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图,数轴上点P表示的数是( )A. −1B. 0C. 1D. 22.据统计,2023年我国人工智能核心产业规模达5784亿元.数据“5784亿”用科学记数法表示为( )A. 5784×108B. 5.784×1010C. 5.784×1011D. 0.5784×10123.如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B. 50°C. 40°D. 30°4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A.B.C.D.5.下列不等式中,与−x>1组成的不等式组无解的是( )A. x>2B. x<0C. x<−2D. x>−36.如图,在▱ABCD中,对角线AC,BD相交于点O,点E为OC的中点,EF//AB 交BC于点F.若AB=4,则EF的长为( )A. 12B. 1 C. 43D. 27.计算(a·a···a⏟a个)3的结果是( )A. a5B. a6C. a a+3D. a3a8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19B. 16C. 15D. 13⏜的中点,连接BD,CD.以点D为圆心,BD的长为半径在⊙O内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是( )A. 当P=440W时,I=2AB. Q随I的增大而增大C. I每增加1A,Q的增加量相同D. P越大,插线板电源线产生的热量Q越多第II卷(非选择题)二、填空题:本题共5小题,每小题3分,共15分。

郑州市2020版中考数学试卷(I)卷

郑州市2020版中考数学试卷(I)卷

郑州市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)已知a、b在数轴上对应的点如图1所示,下列结论正确的是()A . a>bB . |a|<|b|C . -a<-bD . a<-b2. (2分)将161000用科学记数法表示为()A . 0.161×B . 1.61×C . 16.1×D . 161×3. (2分)如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′//AB,则∠BAB′的度数为()A . 30°B . 35°C . 40°D . 50°4. (2分)方程x2-8x+6=0的左边配成完全平方式后,所得的方程是().A . (x-6)2=10B . (x-4)2=10C . (x-6)2=6D . (x-4)2=65. (2分) (2017八上·贵港期末) 不等式组的最小整数解是()A . 0B . ﹣1C . 1D . 26. (2分)如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A .B .C .D .7. (2分)(2013·扬州) 某几何体的三视图如图所示,则这个几何体是()A . 三棱柱B . 圆柱C . 正方体D . 三棱锥8. (2分)(2018·威海) 一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A .B .C .D .9. (2分)某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是()A . 平均数为30B . 极差为5C . 中位数为31D . 众数为2910. (2分)(2020·抚顺模拟) 为了践行“绿水青山就是金山银山”的理念.地计划将420亩荒山进行绿化,实际绿化时,工作效率是原计划的1.5倍,进而比原计划提前2天完成绿化任务,设原来平均每天绿化荒山x亩,可列方程为()A .B .C .D .11. (2分)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE=()A . 1B . 2C . 3D . 412. (2分)(2018·北区模拟) 如图,直线y=﹣x+2与y轴交于点A,与反比例函数y= (k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=2BO,则反比例函数的解析式为()A . y=B . y=﹣C . y=D . y=﹣13. (2分) (2017八下·郾城期末) 如图,点O为四边形ABCD内任意一点,E,F,G,H分别为OA,OB,OC,OD的中点,则四边形EFGH的周长为()A . 9B . 12C . 18D . 不能确定14. (2分)二次函数y=x2-(12-k)x+12,当x>1时,y随着x的增大而增大,当x<1时,y随着x的增大而减小,则k的值应取()A . 12B . 11C . 10D . 9二、填空题 (共5题;共5分)15. (1分)计算=________ .16. (1分) (2017七下·武进期中) 已知m+n=,mn=5,则(2-m)(2-n)的值为________.17. (1分) (2016八下·红桥期中) 如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,EF=2 ,则AB的长为________.18. (1分)(2019·南岸模拟) 如图,AB为⊙O的直径,C为圆上(除A、B外)一动点,∠ACB的角平分线交⊙O于D,若AC=8,BC=6,则BD的长为________.19. (1分)(2020·南充) 笔记本5元/本,钢笔7元/支,某同学购买笔记本和钢笔恰好用去100元,那么最多可以购买钢笔________支.三、解答题 (共7题;共80分)20. (10分)(2017·盂县模拟) 计算题(1)计算: +20170﹣| ﹣2|+1(2)计算:÷(2x﹣)21. (10分)(2019·绍兴) 小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图。

2020年河南省中考数学试卷(解析版)

2020年河南省中考数学试卷(解析版)

2020年河南省中考数学试卷(解析版)考试时间:100分钟满分:120分{题型:选择题}一、选择题:本大题共10小题,每小题3分,合计30分.{题目}1.(2020·河南)2的相反数是()A.-2B.12C.12D. 2{答案}A{解析}本题考查了相反数的概念,解答的关键是理解相反数的意义.解:方法一:2的相反数是-2;方法二:2对应的点在原点的右边且到原点的距离为2个单位长度,所以它的相反数对应的点在原点的左边,到原点的距离也是2个单位长度,即这个数是-2.因此本题选A.{分值}3{章节:[1-1-2-3]相反数}{考点:相反数的定义}{类别:20中考题}{难度:1-最简单}{题目}2.(2020·河南)如下摆放的几何体中,主视图与左视图有可能不同的是( ){答案}D{解析}本题考查了三视图的识别,解题的关键是理解三视图的概念.【解题思路】从正面看,得到的是几何体的主视图,主视图反映的是物体的“长”与“高”;从左面看,得到的是几何体的左视图,左视图反映的是物体的“宽”与“高”.解:A的主、左视图都是长方形;B的主、左视图是三角形;C的主、左视图都是圆;D的主视图是长方形,左视图也是长方形,但这两个长方形的长可能不一样,因此本题选D.{分值}3{章节:[1-29-2]三视图}{考点:简单几何体的三视图}{类别:20中考题}{难度:1-最简单}{题目}3.(2020·河南)要调查下列问题,适合采用全面调查(普查)的是( )A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程{答案}C{解析}本题考查了普查与抽样调查,解题的关键是掌握普查与抽样调查的概念,明确哪些情况不适合普查.解:选项A中,了解中央电视台《开学第一课》的收视率的调查涉及范围广,不适合普查;选项B中,城市居民6月份人均网上购物数量多,分布广,不适合普查;选项C中,由于气象卫星即将发射,每一个零部件都不能有任何的疏忽懈怠,必须一个一个检查,要采用普查方式;选项D 中调查的对象的数量多,分布广,不适合普查,因此本题选C.{分值}3{章节: ××}{考点:全面调查}{类别:20中考题} {难度:2-简单}{题目}4.(2020·河南)如图, 1l ∥2l ,3l ∥4l ,若∠1=70°,则∠2的度数为( )A.100° B.110° C.120° D.130° {答案}B{解析}本题考查了平行线的性质,解题的关键是灵活运用平行线的性质. 解:∵直线l 1∥l 2,∴∠3=∠1=70°,∵3l ∥4l ,∴∠3+∠2=180°,∴ ∠2=110°,因此本题选B . {分值}3{章节:[1-5-3]平行线的性质}{考点:平行线}{考点:同位角相等两直线平行}{考点:同旁内角互补两直线平行} {类别:20中考题}{难度:2-简单}{题目}5.(2020·河南)电子文件的大小常用B ,KB ,MB ,GB 等作为单位,其中1012GB MB ,1012MB KB ,1012KB B .某视频文件的大小约为1GB ,1GB 等于( )A. 302BB. 308BC. 10810BD. 30210B {答案}A{解析}本题考查了同底数幂的乘法及单位换算,1012GB MB ,101010202=222MB KB KB ,202010302222KB B B ,因此本题选A . {分值}3{章节:[1-14-1]整式的乘法}{考点:整式}{考点:同底数幂的乘法} {类别:20中考题} {难度:2-简单}{题目}6.(2020·河南)若点A(-1,1y ),B(2, 2y ),C(3, 3y )在反比例函数6y x的图象上,则1y ,2y ,3y 的大小关系是( )A.1y >2y >3y B.2y >3y >1y C.1y >3y >2yD.3y >2y >1y{答案}C{解析}本题考查了反比例函数的性质,解题的关键是掌握掌握反比例函数的性质,反比例函数中k <0,可知图象在二、四象限,∴1y >0,2y <0,3y <0;在第四象限,y 随x 的增大而增大,∵3>2,∴3y >2y ,故1y >3y >2y ,因此本题选C .{分值}3{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数的性质} {类别:20中考题} {难度:3-中等难度}{题目}7.(2020·河南)定义运算:m ☆n =21mn mn .例如: 4☆2=2424217.则1☆x =0方程的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根 {答案}A{解析}本题考查了本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的情况的判别方法.由定义新运算可得210x x ,∴214111450,所以方程有两个不相等的实数根,因此本题选A . {分值}3{章节:[1-21-2-2]公式法}{考点:新定义}{考点:根的判别式} {类别:20中考题} {难度:3-中等难度}{题目}8.(2020·河南)国家统计局统计数据显示,我国快递业务逐年增加,2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x ,则可列方程为( )A. 5000(12)7500xB. 50002(1)7500xC. 25000(1)7500x D. 250005000(1)5000(1)7500x x {答案}C{解析}本题考查了本题考查了列一元二次方程解决实际问题,解题的关键是掌握增长率问题中的数量关系,由于2019年的快递业务收入可用5000(1+x)2表示,又2019年的快递业务收入是7500亿元,可列方程是25000(1)7500x ,因此本题选C . {分值}3{章节:[1-21-4]实际问题与一元二次方程}{考点:实际问题中的一元二次方程}{考点:一元二次方程的应用—增长率问题} {类别:20中考题} {难度:3-中等难度}{题目}9.(2020·河南)如图,在△ABC 中,∠ACB=90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(-2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A. (32,2) B. (2,2) C. (114,2) D. (4,2){答案}B{解析}本题考查了平移的性质、平面直角坐标系点的坐标、相似三角形的判定及性质等知识. ∵点A ,B 的坐标分别为(-2,6)和(7,0), ∴OC=2,AC=6,OB=7,∴BC=9,正方形的边长为2.将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,设正方形与x 轴的两个交点分别为G 、F , ∴EF ⊥x 轴,EF=GF=DG=2,∴EF ∥AC ,D 点的纵坐标为2, ∴EF BF AC BC ,即269BF,∴BF=3,∴OG=OB-BF-GF=7-3-2=2,∴ D点的横坐标为2,∴点D的坐标为 (2,2).{分值}3{章节:[1-27-1-2]相似三角形的性质}{考点:点的坐标}{考点:点的坐标的应用} {考点:正方形的性质} {考点:平行线分线段成比例} {考点:平移的性质}{类别:20中考题}{难度:4-较高难度}{题目}10.(2020·河南)如图,在△ABC中,AB=BC,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为( )A.{答案}D{解析}本题考查了中垂线的判定和性质、解直角三角形,四边形的面积计算等知识.连接BD,设BD与AC交于点E.∵分别以点A、C为圆心,AC的长为半径作弧,两弧交于点D,∴AD=AC=CD,∴△ACD是等边三角形,∠DAC=60°,∵AB=BC,AD=CD,∴BD垂直平分AC,∴∠AEB=90°,∵∠BAC=30°, AB=∴,AE=32,∴AC=3.在Rt ADE中,∵∠DAC=60°,∠AED=90°,AE=32,∴∴323,∴四边形ABCD的面积为:1233332,因此本题选D.{分值}3{章节:[1-28-1-2]解直角三角形}{考点:等边三角形的判定与性质}{考点:特殊角的三角函数值}{考点:解直角三角形} {考点:垂直平分线的判定} {考点:三角形的面积}{类别:20中考题}{难度:4-较高难度}{题型:填空题}二、填空题:本大题共5小题,每小题3分,合计15分.{题目}11.(2020·河南)请写出一个大于1且小于2的无理数 .{答案答案不唯一){解析}本题考查了无理数的概念,解题的关键是掌握无理数的定义及初中阶段无理数的类型.如果写成开不尽方形式的无理数,只需被开方数大于1小于4即可.{分值}3{章节:[1-6-3]实数}{考点:无理数}{类别:20中考题}{难度:1-最简单}{题目}12.(2020·河南)已知关于x的不等式组x ax b,其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为 .{答案}x a{解析}本题考查了不等式组的解法并在数轴上表示不等式组的解集,解题的关键是会寻找两个不等式解集的公共部分.由数轴可知:a b,故不等式组x ax b的解集为x a.{分值}3{章节:[1-9-3]一元一次不等式组} {考点:解一元一次不等式组}{类别:20中考题}{难度:2-简单}{题目}13.(2020·河南)如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是 .{答案}1 4{解析}本题考查了概率在生活中的应用,解题的关键是根据题意画出树状图或者列表.红、黄、蓝、绿四种颜色分别编号:红为1,黄为2,蓝为3,绿为4.则可画树状图如下:由树状图可知,自由转动转盘两次,共有16种等可能的结果,两次颜色相同的结果有4种,∴P(两次颜色相同)=41= 164.{分值}3{章节:[1-25-2]用列举法求概率}{考点:概率的意义}{考点:两步事件放回}{类别:20中考题}{难度:3-中等难度}{题目}14.(2020·河南)如图,在边长为ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为 .{答案}1{解析}本题考查了正方形的性质、全等三角形的判定和性质,勾股定理、三角形中位线的判定和性质.解:连结CH,并延长CH交AD边于点M,连结EM.∵四边形ABCD为正方形,∴AD∥BC,∴∠MDH=∠CFH,∠DMH=∠FCH,∵H是DF的中点,∴DH=FH,∴△DMH≌△FCH,∴DM=CF,MH=CH,∵F是BC的中点,E为AB的中点,AB=CB=∴,∴,∴22222 ME,∵G是EC的中点,H为CM的中点,∴12GH ME=1.{分值}3{章节:[1-17-1]勾股定理}{考点:全等图形}{考点:全等三角形的性质}{考点:全等三角形的判定ASA,AAS}{考点:与中点有关的辅助线} {考点:勾股定理}{考点:正方形的性质} {考点:三角形中位线}{类别:20中考题}{难度:4-较高难度}{题目}15.(2020·河南)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交弧BC于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为 .{答案}1 3{解析}本题考查了弧长公式、轴对称的性质、勾股定理等知识.∵∠BOC=60°,OD平分∠BOC交弧BC于点D,∴∠DOC=30°,∵OB=2,∴弧长CD=302 1801803n r,∴欲使阴影部分的周长最小,只需CE+DE的长度最小即可.作D点关于OB的对称点D′,连结CD′交OB于点E,则有CE+DE=CE+D′E=CD′,此时CE+DE的长度最小.由作图可知,点D′必在以O为圆心,以OB为半径的圆上,且弧BD=弧BD′=30°,∴弧CD′=90°,∴∠COD′=90°,又∵OC=OD′=2,∴CD′=即CE+DE=∴阴影部分周长的最小值为13.{分值}3{章节:[1-24-4]弧长和扇形面积}{考点:勾股定理}{考点:圆心角、弧、弦的关系}{考点:弧长的计算}{考点:最短路线问题}{考点:最值问题} {类别:20中考题} {难度:5-高难度}{题型:解答题}三、解答题:本大题共8小题,合计75分.{题目}16.(2020·河南)先化简,再求值:21111aa a ,其中51a .{解析}本题考查了分式的化简求值,解题的关键是熟练掌握分式的运算法则.{答案}解:21111aa a =111111a a a a a a=111a a aa a =1a当51a时,原式=1a 115{分值}8{章节:[1-15-2-2]分式的加减}{考点:多个分式的乘除} {考点:两个分式的加减}{考点:分式的混合运算} {难度:3-中等难度} {类别:20中考题}{题目}17.(2020·河南)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g ,与之相差大于10g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:收集数据:从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g )如下: 甲:501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 511 499 499 501整理数据:整理以上数据,得到每袋质量x g 的频数分布表.分析数据:根据以上数据,得到以下统计量.根据以上信息,回答下列问题:(1)表格中的a= ,b= ;(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.{解析}本题考查了频数分布表及频数分布表以及方差、中位数、平均数的概念,解题的关键是读懂统计表,从统计表中得到必要的信息.{答案}解:(1)将乙组数据按从小到大顺序排列:487,490,491,493,498,499,499,499,499,501,501,501,502,502,502,503,505,505,506,511,∵第10个数据为501,第11个数据也为501,∴5015015012a g;∵设定分装的标准质量为每袋500g,与之相差大于10g为不合格,∴当一个数据小于490g或大小于510g时,该产品为不合格,∵小于490g的数据有2个,大于510g的数据有1个,∴甲组数据中产品的不合格率为:b=3÷20=15%;(2)工厂选择乙分装机,理由是:比较甲,乙两台分装机器的统计量可知,甲与乙的平均数相同,中位数相差不大,乙的方差较小,且不合格率更低.以上分析说明,乙机器的分装合格率更高,且稳定性更好.所以,乙机器的分装效果更好,工厂应选购乙机器.{分值}9{章节:[1-20-2-1]方差}{考点:调查收集数据的过程与方法}{考点:频数(率)分布表}{考点:统计表}{考点:统计的应用问题}{考点:中位数}{考点:方差}{考点:方差的实际应用}{考点:统计量的选择}{考点:数据分析综合题}{难度:3-中等难度}{类别:20中考题}{题目}18.(2020·河南)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据: sin220.37,s220.93co,tan220.40 1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.{答案}{解析}本题考查了解直角三角形的应用,解题的关键是能将实际问题转化为解直角三角形问题. {答案}解:(1)过A 点作AE ⊥BC ,交BC 延长线于点E ,交MP 于点F ,设AE=x m . 在Rt ACE 中,∠ACE= 45°,∴AE=CE=x m , ∵BC=16m ,∴BE=x +16;在Rt ABE 中,∠ABE= 22°,∴tan 22AEBE, 0.416xx ,解得:10.67x , 由题意,易知四边形BEFM 为矩形,∴EF=BM=1.6m , ∴AF=10.67+1.6=12.27≈12.3(m ).(2)本次测量的误差为:12.6-12.3=0.3(m ),宜多测量几次,取这几次计算结果的平均数,可以尽可能地减小误差.{分值}9{章节:[1-28-2-2]非特殊角}{考点:解直角三角形}{考点:解直角三角形的应用—测高测距离}{考点:解直角三角形的应用-仰角}{难度:3-中等难度} {类别:20中考题}{题目}19.(2020·河南)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下. 方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠; 方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b ;按照方案二所需费用为2y (元),且22y k x .其函数图象如图所示.(1)求1k 和b 的值,并说明它们的实际意义; (2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.{解析}本题考查了一次函数的性质及其实际应用,解题的关键是能根据实际问题概括出一次函数模型.值得一提的是本题涉及到两条直线,要一一求解,需要一定的耐心. {答案}解:(1)直线11y k x b 经过(0,30)和(10,180)两点, ∴13010180b k b ,解得:11530k b ,1k 表示每次健身费用按六折优惠后的费用为15元, b 表示暑期专享卡每张30元;(2)∵每次健身费用按六折优惠后的费用为15元, ∴打折前的每次健身费用为:15÷0.6=25(元),∵不购买学生暑期专享卡,每次健身费用按八折优惠, ∴2k =25×0.8=20(元);(3)当x =8时,1153015830150y x (元) ,220208160y x (元),∵150<160,∴选择方案一所需费用更少. {分值}9{章节:[1-19-2-2]一次函数}{考点:待定系数法求一次函数的解析式}{考点:两直线相交或平行问题}{考点:方案比较}{考点:其他一次函数的综合题} {难度:3-中等难度} {类别:20中考题}{题目}20.(2020·河南)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发现了一种简易操作工具——三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线上,且AB 的长度与半圆的半径相等;DB 与AC 垂直于点B ,DB 足够长.使用方法如图2所示,若要把∠MEN 三等分,只需适当放置三分角器,使DB 经过∠MEN 的顶点E ,点A 落在边EM 上,半圆O 与另一边EN 恰好相切,切点为F ,则EB ,EO 就把∠MEN 三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A ,B ,O ,C 在同一直线上,EB ⊥AC ,垂足为为B , . 求证: .{解析}本题考查了三角形全等的判定,解题的关键是熟悉判定三角形全等的各种判定方法.{答案}已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为为B, AB=OB,EN切半圆O于点F.求证: ∠1=∠2=∠3 .证明:连接OF.∵EB⊥AC,∴∠ABE=∠OBE=90°,又∵AB=OB,EB=EB,∴△ABE≌△OBE,∴∠1=∠2.∵EN切半圆O于点F,∴OF⊥EF,又∵OB⊥EB且OF=OB,∴EO平分∠BEF,∴∠3=∠2,∴∠1=∠2=∠3.{分值}10{章节:[1-24-2-2]直线和圆的位置关系}{考点:全等三角形的性质}{考点:全等三角形的判定SAS}{考点:与全等有关的作图问题}{考点:三角形的角平分线}{考点:角平分线的判定}{考点:切线的性质}{考点:数学文化}{难度:3-中等难度}{类别:20中考题}y x x c与x轴正半轴,y轴正半轴分别交于点{题目}21.(2020·河南)如图,抛物线22A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长y的取值范围.度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标Q{解析}本题考查了二次函数图象与几何图形的综合问题,解题的关键是灵活运用数形结合思想,发现各图象、图形之间的关系.{答案}解:∵抛物线22yx x c 与y 轴正半轴交于点B , ∴B 点的坐标为(0,c ), 0c .∵OA=OB ,且A 点在x 轴正半轴上, ∴A 点的坐标为(c ,0),∵抛物线22yx x c 经过点A , ∴202c c c ,解得10c (舍去), 23c .∴抛物线的解析式为223yx x .∵222314yx x x ,∴抛物线顶点G 的坐标为(1,4).(2) 抛物线223yx x 的对称轴为直线x =1. ∵点M ,N 到对称轴的距离分别为3个单位长度和5个单位长度, ∴点M 的横坐标为-2或4,点N 的横坐标为-4或6, ∴点M 的纵坐标为-5,点N 的纵坐标为-21. 又∵点M 在点N 的左侧,∴当点M 的坐标为(-2,-5)时,点N 的坐标为(6,-21),所以214Qy ; 当点M 的坐标为(4,-5)时,点N 的坐标为(6,-21),所以215Qy .{分值}10{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质}{考点:求二次函数的函数值}{考点:二次函数y =ax2+bx+c 的性质}{考点:最值问题} {难度:3-中等难度} {类别:20中考题}{题目}22.(2020·河南)小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段BC=8cm ,点A 是线段BC 的中点,过点C 作CF ∥BD ,交DA 的延长线于点F ,当△DCF 为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:(1)根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段BD ,CD ,FD 的长度,得到下表的几组的值是 ;②“线段CF 的长度无需测量即可得到”.请简要说明理由.(2)将线段BD 的长度作为自变量x ,CD 和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象; (3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF 为等腰三角形时,线段BD 长度的近似值(结果保留一位小数).{解析}本题考查了函数图象的综合运用,主要是通过已知点的数据,确定未知点数据,再绘出图象,从图象查看相关数据,正确画出函数图象是解题关键.{答案}解:(1)①5.0;② 由题意可得,△ACF ≌△ABD ,∴CF=BD ; (2) CD y 的图象如图所示.(3) CF y 的图象如图所示.△DCF为等腰三角形时,线段BD的长度约为3.5cm或5.0cm或6.3cm.(答案不唯一){分值}10{章节:[1-19-1-2] 函数的图象}{考点:函数的图象}{考点:正比例函数的图象}{考点:阅读理解}{考点:动态问题}{考点:数学思想}{难度:5-高难度}{类别:20中考题}{题目}23.(2020·河南)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为.连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当=60°时,△DEB′的形状为,连接BD,可求出BBCE′的值为;(2)当0°<<360°且≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′、E、C、D为顶点的四边形是平行四边形时,请直接写出BEB E′的值.{解析}本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.{答案}解: (1)(2)①两个结论仍成立.证明:连接BD.∵AB=AB′,∠BAB′=,∴∠AB′B=902,∵∠B′AD=90,AD=AB′,∴∠AB ′D=1352,∴∠EB ′D=∠AB ′D-∠AB ′B=45°. ∵DE ⊥BB ′,∴∠EDB ′=∠EB ′D=45°, ∴△DEB ′是等腰直角三角形,∴DB DE′. ∵四边形ABCD 为正方形,∴BDCDBDC=45°. ∴DB DE ′=BD CD, ∵∠EDB ′=∠BDC ,∴∠EDB ′+∠EDB=∠BDC+∠EDB , 即∠BDB ′=∠CDE. ∴△B ′DB ∽△EDC ,∴2BB BD CE CD′;②3或1.思路提示:分两种情况.情形一,如图,当点B ′在BE 上时,由BB CE′,设BB ′=2m ,.∵CE ∥B ′D ,CE=B ′D ,∴B ′,在等腰直角三角形DEB ′中,斜边B ′, ∴B ′E=DE=m 。

河南省2020年中考数学试题(Word版,含答案与解析)

河南省2020年中考数学试题(Word版,含答案与解析)

河南省2020年中考数学试卷一、选择题(共10题;共20分)1.2的相反数是( )A. −12B. 12C. 2D. -2 【答案】 D【考点】相反数及有理数的相反数【解析】【解答】2的相反数是-2,故答案为:D.【分析】根据相反数的定义“只有符号不同的两个数互为相反数”即可求解.2.如下摆放的几何体中,主视图与左视图有可能不同的是( ) A. B.C. D.【答案】 D【考点】简单几何体的三视图【解析】【解答】A.圆柱的主视图和左视图都是长方形,故此选项不符合题意;B.圆锥的主视图和左视图都是三角形,故此选项不符合题意;C.球的主视图和左视图都是圆,故此选项不符合题意;D.长方体的主视图是长方形,左视图可能是正方形,故此选项符合题意,故答案为:D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形;认真观察实物图,其中看得到的棱长用实线表示,看不到的棱长用虚线的表示,按照要求画出主视图和左视图即可判断求解.3.要调查下列问题,适合采用全面调查(普查)的是( )A. 中央电视台《开学第--课》 的收视率B. 某城市居民6月份人均网上购物的次数C. 即将发射的气象卫星的零部件质量D. 某品牌新能源汽车的最大续航里程【答案】 C【考点】全面调查与抽样调查【解析】【解答】A 、中央电视台《开学第--课》 的收视率适合采用抽样调查方式,故不符合题意;B、某城市居民6月份人均网上购物的次数适合采用抽样调查方式,故不符合题意;C、即将发射的气象卫星的零部件质量适合采用全面调查方式,故符合题意;D、某品牌新能源汽车的最大续航里程适合采用抽样调查方式,故不符合题意,故答案为:C.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.4.如图,l1//l2,l3//l4,若∠1=70°,则∠2的度数为()A. 100°B. 110°C. 120°D. 130°【答案】B【考点】平行线的性质【解析】【解答】如图,∵l3//l4,∴∠1+∠3=180º,∵∠1=70º,∴∴∠3=180º-70º=110º,∵l1//l2,∴∠2=∠3=110º,故答案为:B.【分析】由平行线的性质“两直线平行,同旁内角互补”可求得∠3的度数;再由平行线的性质“两直线平行,同位角相等”可求得∠2的度数.5.电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B,某视频文件的大小约为1GB,1GB等于()A. 230BB. 830BC. 8×1010BD. 2×1030B【答案】A【考点】同底数幂的乘法【解析】【解答】依题意得1GB=210MB=210×210KB=210×210×210B= 230B故答案为:A.【分析】由题意把1GB用B表示出来,根据“同底数幂相乘,底数不变,指数相加”即可求解.6.若点A(−1,y1),B(2,y1),C(3,y3)在反比例函数y=−6x的图像上,则y1,y2,y3的大小关系为()A. y1>y2>y3 B. y2>y3>y1 C. y1>y3>y2 D. y3>y2>y1【答案】C【考点】反比例函数的性质,反比例函数图象上点的坐标特征【解析】【解答】解:∵点A(−1,y1),B(2,y1),C(3,y3)在反比例函数y=−6x的图象上,∴y1=−6−1=6,y2=−62=−3,y3=−63=−2,∵−3<−2<6,∴y1>y3>y2,故答案为:C.【分析】根据点A(−1,y1),B(2,y1),C(3,y3)在反比例函数y=−6x的图象上,可以求得y1,y2,y3的值,从而可以比较出y1,y2,y3的大小关系.7.定义运算:m☆n=mn2−mn−1.例如:4☆2=4×22−4×2−1=7.则方程1☆x=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根【答案】A【考点】一元二次方程根的判别式及应用【解析】【解答】解:根据定义得:1☆x=x2−x−1=0,∵a=1,b=−1,c=−1,∴Δ=b2−4ac=(−1)2−4×1×(−1)=5>0,∴原方程有两个不相等的实数根,故答案为:A【分析】先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案.8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x.则可列方程为()A. 5000(1+2x)=7500B. 5000×2(1+x)=7500C. 5000(1+x)2=7500D. 5000+5000(1+x)+5000(1+x)2=7500【答案】C【考点】一元二次方程的实际应用-百分率问题【解析】【解答】设我国2017年至2019年快递业务收入的年平均增长率为x,∵2017年至2019年我国快递业务收入由500亿元增加到7500亿元∴可列方程: 5000+5000(1+x)+5000(1+x)2=7500,故答案为:C.【分析】设我国2017年至2019年快递业务收入的年平均增长率为x,根据增长率的定义即可列出一元二次方程.9.如图,在ΔABC中,∠ACB=90°.边BC在x轴上,顶点A,B的坐标分别为(−2,6)和(7,0).将正方形OCDE沿x轴向右平移当点E落在AB边上时,点D的坐标为()A. (32,2) B. (2,2) C. (114,2) D. (4,2)【答案】B【考点】坐标与图形性质,平移的性质,解直角三角形【解析】【解答】解:由题意知:C(−2,0),∵四边形COED为正方形,∴CO=CD=OE,∠DCO=90°,∴D(−2,2),E(0,2),如图,当E落在AB上时,∵A(−2,6),B(7,0),∴AC=6,BC=9,由tan∠ABC=ACBC =EO′O′B,∴69=2O′B,∴O′B=3,∴OO′=7−3=4,OC′=2,∴D(2,2).故答案为:B【分析】先画出E落在AB上的示意图,如图,根据锐角三角函数求解O′B的长度,结合正方形的性质,从而可得答案.10.如图,在ΔABC中,AB=BC=√3 ,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A. 6√3B. 9C. 6D. 3√3【答案】 D【考点】解直角三角形,几何图形的面积计算-割补法【解析】【解答】连接BD交AC于O,由作图过程知,AD=AC=CD,∴△ACD为等边三角形,∴∠DAC=60º,∵AB=BC,AD=CD,∴BD垂直平分AC即:BD⊥AC,AO=OC,在Rt△AOB中,AB=√3,∠BAC=30°∴BO=AB·sin30º= √32,AO=AB·cos30º= 32,AC=2AO=3,在Rt△AOD中,AD=AC=3,∠DAC=60º,∴DO=AD·sin60º= 3√32,∴S四边形ABCD=SΔABC+SΔADC= 12×3×√32+12×3×3√32=3√3,故答案为:D.【分析】连接BD交AC于O,由已知得△ACD为等边三角形且BD是AC的垂直平分线,然后解直角三角形解得AC、BO、BD的值,进而代入三角形面积公式即可求解.二、填空题(共5题;共5分)11.请写出一个大于1且小于2的无理数:________.【答案】√2(答案不唯一).【考点】实数大小的比较【解析】【解答】大于1且小于2的无理数可以是√2,√3,π−2等,故答案为:√2(答案不唯一).【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.12.已知关于x的不等式组{x>ax>b,其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为________.【答案】x>a【考点】实数在数轴上的表示,在数轴上表示不等式组的解集【解析】【解答】∵由数轴可知,a>b,∴关于x的不等式组{x>ax>b的解集为x>a,故答案为:x>a.【分析】先根据数轴确定a,b的大小,再根据确定不等式组的解集原则:大大取大,小小取小,大小小大中间找,小小大大找不了(无解)确定解集即可.13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是________.【答案】14【考点】列表法与树状图法【解析】【解答】画树状图得:∵共有16种等可能的结果,两次颜色相同的有4种情况,∴两个数字都是正数的概率是416=14,故答案为:14.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次颜色相同的情况数,再利用概率公式求解即可求得答案.14.如图,在边长为2√2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H 分别是EC,FD的中点,连接GH,则GH的长度为________.【答案】1【考点】矩形的判定与性质,正方形的判定与性质【解析】【解答】过E作EP⊥DC,过G作GQ⊥DC,过H作HR⊥BC,垂足分别为P,R,R,HR 与GQ相交于I,如图,∵四边形ABCD是正方形,∴AB=AD=DC=BC=2√2,∴∠A=∠ADC=90°,∴四边形AEPD是矩形,∴EP=AD=2√2,∵点E,F分别是AB,BC边的中点,∴PC=12DC=√2,FC=12BC=√2∵EP⊥DC,GQ⊥DC,∴GQ//EP ∵点G是EC的中点,∴GQ是ΔEPC的中位线,∴GQ=12EP=√2,同理可求:HR=√2,由作图可知四边形HIQP是矩形,又HP= 12FC,HI= 12HR= 12PC,而FC=PC,∴HI=HP,∴四边形HIQP是正方形,∴IQ=HP=√22,∴GI=GQ−IQ=√2−√22=√22=HI∴ΔHIG 是等腰直角三角形,∴GH=√2HI=1故答案为:1.【分析】过E作EP⊥DC,过G作GQ⊥DC,过H作HR⊥BC,HR与GQ相交于I,分别求出HI和GI的长,利用勾股定理即可求解.15.如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交狐BC于点D.点E为半径OB上一动点若OB=2,则阴影部分周长的最小值为________.【答案】2√2+π3【考点】弧长的计算【解析】【解答】解:∵C阴影=CE+DE+CD⌢,∴C阴影最短,则CE+DE最短,如图,作扇形OCB关于OB对称的扇形OAB,连接AD交OB于E,则 CE =AE,∴CE +DE =AE +DE =AD,此时 E 点满足 CE +DE 最短,∵∠COB =∠AOB =60°,OD 平分 CB,⌢ ∴∠DOB =30°,∠DOA =90°,∵OB =OA =OD =2,∴AD =√22+22=2√2,而 CD ⌢ 的长为: 30π×2180=π3, ∴ C 阴影 最短为 2√2+π3.故答案为: 2√2+π3.【分析】如图,先作扇形 OCB 关于 OB 对称的扇形 OAB, 连接 AD 交 OB 于E ,再分别求解 AD,CD⌢ 的长即可得到答案. 三、解答题(共8题;共72分)16.先化简,再求值: (1−1a+1)÷aa 2−1 ,其中 a =√5+1 【答案】 解:原式= a a+1·(a+1)(a−1)a = a −1 ,当 a =√5+1 时,原式= √5+1−1=√5 .【考点】利用分式运算化简求值【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 值代入计算即可.17.为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋 500g ,与之相差大于 10g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取 20 袋,测得实际质量(单位: g )如下:甲: 501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505 乙: 505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 512 499 499 501[整理数据]整理以上数据,得到每袋质量 x(g) 的频数分布表.[分析数据]根据以上数据,得到以下统计量.根据以上信息,回答下列问题:(1)表格中的 a = ________ b = ________(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.【答案】 (1)501;15%(2)解:选择乙分装机;根据方差的意义可知:方差越小,数据越稳定,由于 S 甲2=42.01>S 乙2=31.81 ,所以乙分装机.【考点】频数(率)分布表,平均数及其计算,中位数,方差【解析】【解答】解:(1)把乙组数据从下到大排序为:487 490 491 493 498 499 499 499 499 501 501 501 502 502 502 503 505 505 506 512 ,可得中位数= 501+5012=501 ;根据已知条件可得出产品合格的范围是 490≤x ≤510 ,甲生产的产品有3袋不合格,故不合格率为 320×100%=15% .故a=501, b =15% .【分析】(1)把乙的数据从小到大进行排序,选出10、11两项,求出他们的平均数即为乙组数据的中位数;由题可得合格产品的范围是 490≤x ≤510 ,根据这个范围,选出不合格的产品,除以样本总量就可得到结果;(2)根据方差的意义判断即可;18.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m,(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93 ,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【答案】(1)解:如图,过点A作AE⊥MN交MN的延长线于点E,交BC的延长线于点D,设AD的长为xm,∵AE⊥ME,BC∥MN,∴AD⊥BD,∠ADC=90°,∵∠ACD=45°,∴CD=AD=xm,BD=BC+CD=(16+x)m,由题易得,四边形BMNC为矩形,∵AE⊥ME,∴四边形CNED为矩形,∴DE=CN=BM= 1.6m,在Rt△ABD中,tan∠ABD=ADBD =x16+x=0.40,解得:x≈10.7,即AD=10.7m,AE=AD+DE=10.7+1.6=12.3m,答:观星台最高点A距离地面的高度为12.3m.(2)解:本次测量结果的误差为:12.6-12.3=0.3m,减小误差的合理化建议:多次测量,求平均值.【考点】解直角三角形的应用﹣仰角俯角问题【解析】【分析】(1)过点A作AE⊥MN交MN的延长线于点E,交BC的延长线于点D,根据条件证出四边形BMNC为矩形、四边形CNED为矩形、三角形ACD与三角形ABD均为直角三角形,设AD的长为xm,则CD=AD=xm,BD=BC+CD=(16+x)m,在Rt△ABD中,解直角三角形求得AD的长度,再加上DE的长度即可;(2)根据(1)中算的数据和实际高度计算误差,建议是多次测量求平均值.19.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠;设某学生暑期健身x(次),按照方案一所需费用为y1,(元),且y1=k1x+b;按照方案二所需费用为y2(元) ,且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【答案】(1)解:由图象可得:y1=k1x+b经过(0,30)和(10,180)两点,代入函数关系式可得:{30=b180=10k1+b,解得:{b=30k1=15,即k1=15,b=30,k1=15表示的是每次健身费用按六折优惠是15元,b=30表示购买一张学生暑期专享卡的费用是30元;(2)解:设打折前的每次健身费用为a元,由题意得:0.6a=15,解得:a=25,即打折前的每次健身费用为25元,k2表示每次健身按八折优惠的费用,故k2=25×0.8=20;(3)解:由(1)(2)得:y1=15x+30,y2=20x,当小华健身8次即x=8时,y1=15×8+30=150,y2=20×8=160,∵150<160,∴方案一所需费用更少,答:方案一所需费用更少.【考点】两一次函数图象相交或平行问题,一次函数的实际应用,通过函数图象获取信息并解决问题【解析】【分析】(1)用待定系数法代入(0,30)和(10,180)两点计算即可求得k1和b的值,再根据函数表示的实际意义说明即可;(2)设打折前的每次健身费用为a元,根据(1)中算出的k1为打六折之后的费用可算得打折前的每次健身费用,再算出打八折之后的费用,即可得到k2的值;(3)写出两个函数关系式,分别代入x=8计算,并比较大小即可求解.20.我们学习过利用用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的人们根据实际需爱,发明了一种简易操作工具--------三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB 与AC重直F点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点在A,B,O,C同一直线上, EB⊥AC,垂足为点B,▲求证:▲【答案】解:已知:如图2,点在A,B,O,C同一直线上, EB⊥AC,垂足为点B,E在BD上,ME 过点A,AB=OB=OC,EN为半圆O的切线,切点为F.求证:EB,EO为∠MEN的三等分线.证明:如图,连接OF.则∠OFE=90°,∵EB⊥AC,EB与半圆相切于点B,∴∠ABE=∠OBE=90°,∵BA=BO.EB=EB,∴△EAB≌△EOB∴∠AEB=∠BEO,∵EO=EO.OB=OF,∠OBE=∠OFE =90°,∴△OBE≌△OFE,∴∠OEB=∠OEF,∴∠AEB=∠BEO=∠OEF,∴EB,EO为∠MEN的三等分线.故答案为:E在BD上,ME过点A,AB=OB=OC,EN为半圆O的切线,切点为F. EB,EO为∠MEN的三等分线.【考点】垂径定理,圆周角定理,切线的性质,数学常识【解析】【分析】由垂直的定义可得∠ABE=∠OBE=90°,根据全等三角形的性质得, ∠OEB=∠OEF,,再根据圆的切线的性质可得∠AEB=∠BEO=∠OEF,即EB,EO为∠MEN的三等分线.21.如图,抛物线y=−x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧) ,且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【答案】(1)解:∵抛物线y=−x2+2x+c与y轴正半轴分别交于点B,∴B点坐标为(c,0),∵抛物线y=−x2+2x+c经过点A,∴﹣c2+2c+c=0,解得c1=0(舍去),c2=3,∴抛物线的解析式为y=−x2+2x+3∵y=−x2+2x+3=﹣(x-1)2+4,∴抛物线顶点G坐标为(1,4).(2)解:抛物线y=−x2+2x+3的对称轴为直线x=1,∵点M,N到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为﹣4或6,点M的纵坐标为﹣5,点N的纵坐标为﹣21,又∵点M在点N的左侧,∴当M坐标为(﹣2,﹣5)时,点N的坐标为(6,﹣21),则﹣21≤ y Q≤4当当M坐标为(4,﹣5)时,点N的坐标为(6,﹣21),则﹣21≤ y Q≤﹣5,∴y Q的取值范围为﹣21≤ y Q≤4或﹣21≤ y Q≤﹣5.【考点】坐标与图形性质,待定系数法求二次函数解析式,二次函数y=ax^2+bx+c的性质【解析】【分析】(1)根据OA=OB,用c表示出点A的坐标,把A的坐标代入函数解析式,得到一个关于c的一元二次方程,解出c的值,从而求出函数解析式,求出顶点G的坐标.(2)根据函数解析式求出函数图像对称轴,根据点M,N到对称轴的距离,判断出M,N的横坐标,进一步得出M,N的纵坐标,求出M,N点的坐标后可确定y Q的取值范围.22.小亮在学习中遇到这样一个问题:如图,点D是弧BC上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF//BD,交DA 的延长线于点F.当ΔDCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:(1)根据点D在弧BC上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几组对应值.操作中发现:①"当点D为弧BC的中点时,BD=5.0cm".则上中a的值是②"线段CF的长度无需测量即可得到".请简要说明理由;(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当ΔDCF为等腰三角形时,线段BD长度的近似值.(结果保留一位小数).【答案】(1)解:①点D为弧BC的中点时,由圆的性质可得:{AB=AC∠BAD=∠CADAD=AD,∴△ABD≌△ACD,∴CD=BD=5.0,∴a=5.0;②∵CF//BD,∴∠BDA=∠CFA,∵{∠BDA=∠CFA∠BAD=∠CAFAD=AF,∴△ACF≌△ABD,∴CF=BD,∴线段CF的长度无需测量即可得到;(2)解:函数y CD的图象如图所示:(3)解:由(1)知CF=BD=x,画出y CF的图象,如上图所示,当ΔDCF为等腰三角形时,① CF=CD,BD为y CF与y CD函数图象的交点横坐标,即BD=5.0cm;② CF=DF,BD为y CF与y DF函数图象的交点横坐标,即BD=6.3cm;③ CD=DF,BD为y CD与y DF函数图象的交点横坐标,即BD=3.5cm;综上:当ΔDCF为等腰三角形时,线段BD长度的近似值为3.5cm或5.0cm或6.3cm.【考点】圆的综合题【解析】【分析】(1)①点D为弧BC的中点时,△ABD≌△ACD,即可得到CD=BD;②由题意得△ACF≌△ABD,即可得到CF=BD;(2)根据表格数据运用描点法即可画出函数图象;(3)画出y CF的图象,当ΔDCF为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD的近似值.23.将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α.连接BB′,过点D作DE 垂直于直线BB′,垂足为点E,连接DB′,CE,的值为(1)如图1,当α=60°时,ΔDEB′的形状为________ ,连接BD,可求出BB′CE________;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出BE的值.B′E【答案】(1)等腰直角三角形;√22(2)解:①两个结论仍然成立连接BD,如图所示:∵AB=AB′,∠BAB′=α∴∠ABB′=90°−α2∵∠B′AD=α−90°,AD=AB′∴∠AB′D=135°−α2∴∠EB′D=∠AB′D−∠AB′B=45°∵DE⊥BB′∴∠EDB′=∠EB′D=45°∴△DEB′是等腰直角三角形∴DB′DE=√2∵四边形ABCD为正方形∴BDCD=√2,∠BDC=45°∴BDCD =DB′DE∵∠EDB′=∠BDC∴∠B′DB=∠EDC ∴△B′DB∼△EDC∴BB′CE =BDCD=√2∴结论不变,依然成立②若以点B′,E,C,D为顶点的四边形是平行四边形时,分两种情况讨论第一种:以CD为边时,则CD//B′E,此时点B′在线段BA的延长线上,如图所示:此时点E与点A重合,∴BE=CE=B′E,得BEB′E=1;②当以CD为对角线时,如图所示:此时点F为CD中点,∵DE⊥BB′∴CB′⊥BB′∵∠BCD=90°∴△BCF∼△CB′F∼△BB′C∴BCCF =CB′B′F=BB′CB′=2∴BB′=4B′F∴BE=6B′F,B′E=2B′F∴BEB′E=3综上:BEB′E的值为3或1.【考点】正方形的性质,相似三角形的判定与性质,旋转的性质【解析】【解答】解:(1)由题知∠BAB′=60°,∠BAD=90°,AB=AD=AB′∴∠B′AD=30°,且△ABB′为等边三角形∴∠AB′B=60°,∠AB′D=12(180°−30°)=75°∴∠DB′E=180°−60°−75°=45°∵DE⊥BB′∴∠DEB′=90°∴∠B′DE=45°∴△DEB′为等腰直角三角形连接BD,如图所示∵∠BDC=∠B′DE=45°∴∠BDC−∠B′DC=∠B′DE−∠B′DC即∠BDB′=∠CDE∵CDBD =DEDB′=√22∴△BDB′∼△CDE∴BB′CE =√22故答案为:等腰直角三角形,√22【分析】(1)根据题意,证明△ABB′是等边三角形,得∠AB′B=60,计算出∠DB′E=45°,根据DE⊥BB′,可得ΔDEB′为等腰直角三角形;证明△BDB′∼△CDE,可得BB′CE的值;(2)①连接BD,通过正方形性质及旋转,表示出∠EB′D=∠AB′D−∠AB′B=45°,结合DE⊥的值;②分为以CD为BB′,可得ΔDEB′为等腰直角三角形;证明△B′DB∼△EDC,可得BB′CE边和CD为对角线两种情况进行讨论即可.。

2020年郑州市九年级中招适应性测试数学试卷和参考答案

2020年郑州市九年级中招适应性测试数学试卷和参考答案

2020年初中中招适应性测试数学试题卷(满分120分,考试时间100分钟)一、选择题(每小题3分,共30分) 1. 计算-7+4的结果是( )A .3B .-3C .11D .-112. 下列运算中,正确的是( )A .347x x x ⋅=B .65x x -=C .222()x y x y +=+D .347x y xy +=3. 一个几何体的三视图如图所示,该几何体是( )A .立方体B .四棱柱C .圆锥D .直三棱柱第3题图4. 在攻击人类的病毒中,某类新型冠状病毒体积较大,直径约为0.000 000 125米,含约3万个碱基,拥有RNA 病毒中最大的基因组,比艾滋病毒和丙型肝炎的基因组大三倍以上,比流感的基因组大两倍.0.000 000 125用科学记数法表示为( ) A .61.2510-⨯B .71.2510-⨯C .61.2510⨯D .71.2510⨯5. 将一副直角三角板ABC 和EDF 如图放置(其中∠A =60°,∠F =45°),使点E 落在AC 边上,且ED ∥BC ,则∠AEF 的度数为( ) A .145° B .155° C .165°D .170°第5题图6. 某校八年级三班进行中国诗词知识竞赛,共有10组题目,该班得分情况如下表:全班40名同学的成绩的众数和中位数分别是( )A .76,78B .76,76C .80,78D .76,807. 若关于x 的一元二次方程2320mx x -+=有两个不相等的实数根,则实数m 的取值范围是( )A .98m >B .98m <C .809m m <≠且D .908m m <≠且俯视图左视图主视图AB C DEF8.如图,在平面直角坐标系中,□OABC的顶点A在x轴上,OC=4,∠AOC=60°,且以点O为圆心,任意长为半径画弧,分别交OA,OC于点D,E;再分别以点D,E为圆心,大于12DE的长度为半径画弧,两弧相交于点F,过点O作射线OF,交BC于点P,则点P的坐标为()A.(4,B.(6,C.(4)D.(6)第8题图9.如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC中点,E为边AB上一动点(不与A,B点重合),以点D为直角顶点,以射线DE为一边作∠MDN=90°,另一条边DN与边AC交于点F.下列结论中正确结论是()①BE=AF;②△DEF是等腰直角三角形;③无论点E,F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E,F的位置不同发生变化.A.①③B.②③C.①②第9题图D.①②③④10.如图,在正方形ABCD中,边长CD为3 cm.动点P从点Acm/s的速度沿AC方向运动到点C停止.动点Q同时从点A出发,以1 cm/s的速度沿折线AB→BC方向运动到点C停止.设△APQ的面积y(cm2),运动时间为x(s),则下列图象能反映y 与x之间关系的是()A.B.C.D.QAB CDEFMN二、填空题(每小题5分,共15分)11.计算:(π-3.14)0-.12.不等式组2123x ax b-<⎧⎨->⎩的解集为-1<x<1,则(a+2)(b-2)的值等于________.13.如图,电路图上有编号为①②③④⑤共5个开关和一个小灯泡,闭合开关①或同时闭合开关②③或同时闭合开关④⑤都可使小灯泡发光,任意闭合电路上其中的两个开关,小灯泡发光的概率为__________.OGFE DCB第13题图第14题图第15题图14.如图,正方形ABCD边长为2,E是AB的中点,以E为圆心,线段ED的长为半径作半圆,交直线AB于点M,N.分别以线段MD,ND为直径作半圆,则图中阴影部分的面积为__________.15.如图,矩形ABCD中,AB=3,BC=4,对角线AC,BD相交于点O,点E是AD边上一动点,将△AEO沿直线EO折叠,点A落在点F处,线段EF,OD相交于点G.若△DEG 是直角三角形,则线段DE的长为__________.三、解答题(共8小题,共75分)16.(8分)先化简,再求值:22121121x xxx x x--⎛⎫-+÷⎪+++⎝⎭,其中2cos60x=︒.17.(9分)期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生,请按要求回答下列问题:【收集数据】(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有_________;(只要填写序号即可)①随机抽取一个班级的48名学生;②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各抽取4名学生;④从全年级学生中随机抽取48名男生;【整理数据】(2)将抽取的48名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下:①C 类和D 类部分的圆心角度数分别为_________,_________; ②估计全年级A ,B 类学生大约一共有_________名;(3)学校为了解其他学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:18. (9分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC ,BC 交于点E ,F .过点F 作⊙O 的切线交AB 于点M . (1)求证:MF ⊥AB ;(2)若⊙O 的直径是6,填空:①连接OF ,OM ,当FM =_________时,四边形OMBF 是平行四边形; ②连接DE ,DF ,当AC =__________时,四边形CEDF 是正方形.19. (9分)图1是一台实物投影仪,图2是它的示意图,折线B -A -O 表示固定支架,AO 垂直水平桌面OE 于点O ,点B 为旋转点,BC 可转动,当BC 绕点B 顺时针旋转时,投影探头CD 始终垂直于水平桌面OE ,经测量: AO =6.4 cm ,CD =8 cm ,AB =40 cm ,BC =45 cm . (1)如图2,∠ABC =70°,BC ∥OE .A 类50%C 类D 类B 类25%①填空:∠BAO=_________°;②投影探头的端点D到桌面OE的距离是________cm;(2)如图3,将(1)中的BC向下旋转,∠ABC=30°时,求投影探头的端点D到桌面OE的距离.(参考数据:sin70°≈0.94,cos70°≈0.34,sin40°≈0.64,cos40°≈0.77)图1图2图320. (9分)在学习函数时,我们经历了“确定函数的表达式—利用函数图象研究其性质—运用函数解决问题”的学习过程.在画函数图象时,我们通过列表、描点、连线的方法画出了所学的函数图象.同时,我们也学习过绝对值的意义00a a a a a ⎧=⎨-<⎩≥()().结合上面经历的学习过程,现在来解决下面的问题: 在函数1y kx b =-+中,当x =0时,y =-2;当x =1时,y =-3. (1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请直接画出此函数的图象并写出这个函数的两条性质;(3)函数3y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式31kx b x -+-≤的解集.21. (10分)某宝网店销售甲、乙两种电器,已知甲种电器每个的售价比乙种电器多60元,马老师从该网店购买了3个甲种电器和2个乙种电器,共花费780元. (1)该店甲、乙两种电器每个的售价各是多少元?(2)根据销售情况,店主决定用不少于10 800元的资金购进甲、乙两种电器,这两种电器共100个,已知甲种电器每个的进价为150元,乙种电器每个的进价为80元.若所购进电器均可全部售出,请求出网店所获利润W (元)与甲种电器进货量m (个)之间的函数关系式,并说明当m 为何值时所获利润最大?最大利润是多少?22. (10分)已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中AB =AC ,AD =AE ,∠BAC =90°,∠DAE =90°. (1)观察猜想如图1,连接BE ,CD 交于点H ,再连接CE ,那么BE 和CD 的数量关系和位置关系分别是___________,____________; (2)探究证明将图1中的△ABC 绕点A 逆时针旋转到图2的位置时,分别取BC ,CE ,DE 的中点P ,M ,Q ,连接MP ,PQ ,MQ ,请判断MP 和MQ 的数量关系和位置关系,并说明理由; (3)拓展延伸已知AB,AD =4,在(2)的条件下,将△ABC 绕点A 旋转的过程中,若∠CAE =45°,请直接写出此时线段PQ 的长.ABC DEH图1图2H EDCB AQPMABCDE备用图(11分)如图,抛物线y=ax2+bx过A(4,0),B(1,-3)两点,点C,B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)点P是抛物线上一动点,当△ABP的面积为3时,求出点P的坐标;(3)若点M在直线BH上运动,点N在x轴上运动,点R是坐标平面内一点,当以点C,M,N,R为顶点的四边形为正方形时,请直接写出此时点R的坐标.备用图分原式5...............)1(211)2(2)1(1112222x x x x x x x x x x x x x --=+-=-+⨯-=-+⨯++--=分原式时,当8................423)12()12(12212222--=+-+-=--=+=⨯+=xx x 2020年九年级适应性测试数学 参考答案一、选择题(每小题3分,共30分)1. B2. A3. D4. B5. C6. A7. D8. B9.C 10. D 二、填空题(每小题3分,共15分) 11.2- 12.12- 13.53 14. 52 15.4521或 三、解答题(共8个小题,共75分) 16.(8分)解:17. (9分) 解:(1)②、③;..............2分(填对一个,两个都给满分)(2)① 60°,30°;..............4分 ②432(名);..............7分 故答案为:60°、30°、432;(3)本题答案不唯一,以下两个答案仅供参考:答案一:第一中学成绩较好,两校平均分相同,极差、方差小于第二中学,说明第一中学学生两极分化较小,学生之间的差距较第二中学小. ..............9分答案二:第二中学成绩较好,两校平均分相同,A 、B 类的频率和大于第一中学,说明第二中学学生及格率较第一中学学生好...............9分18. (9分) 解:(1)证明:如图,连接OF . ∵CD 是Rt △ABC 斜边AB 上的中线,∴CD =AD = BD .∴∠DCB =∠DBC. ∵CO=OF , ∴∠OCF =∠OFC. ∴∠DBC =∠OFC. ∴OF ∥AB .∵FM 是⊙O 的切线,∴∠ OFM =90°, ∴∠ FMB =90°,∴MF ⊥ AB ...............5分 (2)① 3;................7分② 26.................9分(说明:此题方法不唯一,其它方法对应给分)19. (9分)解:(1)①160;................2分②36;................5分(3)过点DE ⊥OE 于点H ,过点B 作BM ⊥CD ,与DC 延长线相交于点M ,过A 作AF ⊥BM 于点F ,如图3,则∠MBA =70°,∵∠ABC =30°,∴∠CBM =40°. ∴MC =BC ·sin40°=28.8,AF =AB ·sin70°=37.6. FO =AF +AO =37.6+6.4=44.∴DH =FO -MC -CD =44-28.8-8=7.2cm .答:投影探头的端点D 到桌面OE 的距离为7.2cm ............................9分 (说明:此题方法不唯一,其它方法对应给分)20.(9分)解:分所以函数表达式为:解得分别代入表达式,得把分别代入表达式,得)把(3.............31.3,1,.313,1.212,01--=-==-=+--==-=+-==x y b k b k y x b y x(2)如图所示:…………5分函数性质举例:①函数图象关于直线x =1对称(或函数图象是个轴对称图形); ②函数的最小值是-3;③当1≤x 时,y 随x 的增大而减小,当x >1时,y 随x 的增大而增大;.10800)100(80150≥-+m m .135或(写对两个即可)……7分(3)-3≤x <0或1≤x ≤3……………………9分21.(10分)解:(1)设甲种台灯每个的售价为x 元,乙种台灯每个的售价为y 元.根据题意可得⎩⎨⎧=+=-.78023,60y x y x 解得⎩⎨⎧==.120,180y x答:该店甲种台灯每个的售价为180元,乙种台灯每个的售价为120元. ………4分(2)①若购进甲种台灯m 个,则乙种台灯为(100﹣m )个.根据题意可得,解得m ≥40. ………………6分根据题意,可得W =(180﹣150)m +(120﹣80)(100﹣m )= -10m +4000. ……8分 ∵-10 < 0,∴W 随m 的增大而减小,且m ≥40,所以40≤m <100.∴当m =40时,W 最大,W 最大值为3600,答:当m =40时,所获利润最大,最大利润为3600元. …………10分(说明:此题方法不唯一,其它方法对应给分)22.(10分)解:(1)BE =CD 、BE ⊥CD ;………………2分(2)PM =MQ ,PM ⊥MQ .∵△ABC 和△ADE 是两个不全等的等腰直角三角形,∴ AC =AB ,AE =AD ,∠CAB =∠EAD =90°.∴∠CAD =∠BAE .∴△CAD ≌△BAE .………………4分∴ CD =BE .△CAD 和△BAE 中,AC ⊥AB ,AD ⊥AE ,∴CD ⊥BE. ………………6分∵BC 、CE 、DE 的中点分别为P 、M 、Q ,∴ PM =21BE ,MQ =21CD ,PM ∥BE ,MQ ∥CD . ∴ PM =MQ ,PM ⊥MQ . ………………8分(3) ………………10分(说明:此题方法不唯一,其它方法对应给分)⎩⎨⎧-==.4,1b a 23.(11分)解:(1)把点A (4,0),B (1,-3)的坐标分别代入抛物线y =ax 2+bx 中,得⎩⎨⎧+=-+=.3,4160b a b a 解得,∴抛物线表达式为y =x 2-4x . ………………………3分(2)①若点P 在直线AB 上方,如图.分别连接PA ,PB ,过P 点作PD ⊥BH 交BH 于点D ,设点P (m ,m 2-4m ),则点D (1,m 2-4m ).根据题意,得BH=AH =3,HD =m 2﹣4m ,PD =m ﹣1,∴S △ABP =S △ABH +S 四边形HAPD ﹣S △BPD ,即 3=×3×3+(3+m ﹣1)(m 2﹣4m )﹣(m ﹣1)(3+m 2﹣4m ),∴3m 2﹣15m +6=0,即m 2﹣5m +2=0.解得m 1=2175+,m 2=2175-, ∴点P 1坐标为(2175+,2171+), 点P 2坐标为(2175-,2171-). …………………7分 ②若点P 在直线AB 下方,图略.可得,m 2﹣5m +6=0.解得m 1=2,m 2=3,点P 3坐标为(2,-4),点P 4坐标为(3,-3).…………………9分(2)点R 1(4,-1);点R 2(-2,-5);点R 3(0,-2);点R 4(6,2). ………11分 (说明:此题方法不唯一,其它方法对应给分)。

河南省2024年中考数学试卷(含答案)

河南省2024年中考数学试卷(含答案)

三、解答题(本大题共 8 个小题,共 75 分)
16.(1)计算:
t;
(2)化简: 㼒
tt
㼒t 㼒
S.
17.为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球 联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.
技术统计表
2.【答案】C
【解析】【解答】解: 5784 亿=578400000000= .imS
.
故答案为:C.
【分析】用科学记数法表示较大的数,一般表示成 a×10n 的形式,其中 1≤a<10,n 等于原数的整数位数减去 1,
据此可得答案.小技巧备注:“亿”后有 8 位,即 5784 亿为 12 位数.
3.【答案】B
(2)性质探究 根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质. 如图 2,四边形 ABCD 是邻等对补四边形, у ⺁,AC 是它的一条对角线.
①写出图中相等的角,并说明理由;
②若 у ,⺁ у ⺁, ⺁ у ,求 AC 的长(用含 m,n, 的式子表示).
(3)拓展应用
如图 3,在
∴∠BDC=180°-∠BAC=120°,
∵D 的 的中点 ,
∴BD=CD,
又∵AD=AD,
∴△ABD≌△ACD(SSS),
∴∠BAD=∠CAD=
=30°,∠ADB=∠ADC= ⺁ у ,
∴∠ABD=180°-∠BAD-∠BDA=90°, 在 Rt△ABD 中, tan∠BAD=tan30°= ⺁ у S ⺁ у , 解得 BD=4.
∴ 扇形 ⺁ у
Sу .
故答案为:C.

郑州市2020年(春秋版)中考数学试卷(I)卷

郑州市2020年(春秋版)中考数学试卷(I)卷

郑州市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)估计介于()A . 0.4与0.5之间B . 0.5与0.6之间C . 0.6与0.7之间D . 0.7与0.8之间2. (2分)如图,三条直线a、b、c相交于一点,则∠1+∠2+∠3=()A . 360°B . 180°C . 120°D . 90°3. (2分)下列因式分解正确的是()A . x3﹣x=x(x﹣1)B . x2﹣y2=(x﹣y)2C . ﹣4x2+9y2=(2x+3y)(2x﹣3y)D . x2+6x+9=(x+3)24. (2分)有些色彩图案,不仅是轴对称图形,而且颜色也“对称”,如果考虑颜色的“对称”,如图只有一条对称轴,把其中无色小正方形中的两个涂上红色使整个图形是轴对称图形,共有()种方案.A . 4B . 5C . 6D . 多于65. (2分) (2017八上·海淀期末) 石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A . 1×10﹣6B . 10×10﹣7C . 0.1×10﹣5D . 1×1066. (2分)如图,△ABC内接于⊙O,∠OBC=42°,则∠A的度数为()A . 84°B . 96°C . 116°D . 132°7. (2分)(2017·市中区模拟) 如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A . y=x+5B . y=x+10C . y=﹣x+5D . y=﹣x+108. (2分)如图,梯子共有7级互相平行的踏板,每相邻两级踏板之间的距离都相等.已知梯子最上面一级踏板的长度A1B1 = 0.5m,最下面一级踏板的长度A7B7 = 0.8m.则第五级踏板A5B5的长度为()A . 0.6mB . 0.65mC . 0.7mD . 0.75m9. (2分) (2017八下·门头沟期末) 2022年将在北京—张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示:则下列说法中正确的是()A . > ,应该选取B选手参加比赛;B . < ,应该选取A选手参加比赛;C . ≥ ,应该选取B选手参加比赛;D . ≤ ,应该选取A选手参加比赛.10. (2分) (2020七上·无锡期末) 我国古代对于利用方程解决实际问题早有研究,《九章算术》中提到这么一道“以绳测井”的题:以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?这道题大致意思是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设井深为x尺,则求解井深的方程正确的是()A . 3(x+4)=4(x+1)B . 3x+4=4x+1C . x+4= x+1D . x﹣4= x﹣1二、填空题 (共8题;共9分)11. (1分) -的相反数是________ .12. (1分)(2018·陕西) 点O是平行四边形ABCD的对称中心,AD>AB,E、F分别是AB边上的点,且EF = AB;G、H分别是BC边上的点,且GH= BC;若S1,S2分别表示∆EOF和∆GOH的面积,则S1,S2之间的等量关系是________13. (1分) (2020九上·苏州期末) 若方程的两个根为x1 , x2 ,则的值为________.14. (1分) (2017八下·路南期中) 如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=________度.15. (1分)(2019·上海模拟) 为了了解初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳次数的测试,将所得数据进行处理,共分成4组,频率分布表(不完整)如下表所示.如果次数在110次(含110次)以上为达标,那么估计该校初三毕业生一分钟跳绳次数的达标率约为________.16. (2分)已知一次函数y=ax+b(a<0)的图象与x的交点坐标是(3,0),那么关于x的方程ax+b=0的解是 ________,关于x的不等式ax+b>0的解集是________ .17. (1分) (2017八上·杭州月考) 如图,CE 平分∠ACB,且CE⊥DB,∠DAB=∠DBA,又知 AC=18,△CDB 的周长为 28,则 BD 的长为________.18. (1分)已知双曲线y=和y=的部分图象如图所示,点C是y轴正半轴上一点,过点C作AB∥x轴分别交两个图象于点A、B.若CB=2CA,则k=________ .三、解答题 (共8题;共64分)19. (5分) (2017七下·永城期末) 计算: +|3﹣ |+ ﹣ +|4﹣ |.20. (5分) (2016七上·潮南期中) 先化简,再求值:﹣(a2+2a)+3(a2﹣3a﹣),其中a=﹣2.21. (5分)(2019·三明模拟) 如图,AB是⊙O的直径,点D , E在⊙O上,∠B=2∠ADE ,点C在BA的延长线上.(Ⅰ)若∠C=∠DAB ,求证:CE是⊙O的切线;(Ⅱ)若OF=2,AF=3,求EF的长.22. (13分)(2018·咸宁) 近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.使用次数012345人数11152328185(1)这天部分出行学生使用共享单车次数的中位数是________,众数是________,该中位数的意义是________;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?23. (10分)(2018·遵义模拟) 某商场第一次用10000元购进甲、乙两种商品,销售完成后共获利2200元,其中甲种商品每件进价60元,售价70元;乙种商品每件进价50元,售价65元.(1)求该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,且购进甲、乙商品的数量分别与第一次相同,甲种商品按原售价出售,而乙种商品降价销售,要使第二次购进的两种商品全部售出后,获利不少于1800元,乙种商品最多可以降价多少元?24. (5分)阅读理解题:下面利用45°角的正切,求tan22.5°的值,方法如下:解:构造Rt△ABC,其中∠C=90°,∠B=45°,如图.延长CB到D,使BD=AB,连接AD,则∠D= ∠ABC=22.5°.设AC=a,则BC=a,AB=BD= a.又∵CD=BD+CB=(1+ )atan22.5°=tan∠D= ﹣1请你仿照此法求tan15°的值.25. (15分) (2012·桂林) 如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.26. (6分)(2017·信阳模拟) 综合题(1)操作发现:如图①,在正方形ABCD中,过A点有直线AP,点B关于AP的对称点为E,连接DE交AP于点F,当∠BAP=20°时,则∠AFD=________°;当∠BAP=α°(0<α<45°)时,则∠AFD=________;猜想线段DF,EF,AF之间的数量关系:DF﹣EF=________AF(填系数);(2)数学思考:如图②,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=120°”,其他条件不变,则∠AFD=________;线段DF,EF,AF之间的数量关系是否发生改变,若发生改变,请写出数量关系并说明理由;(3)类比探究:如图③,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=α°”,其他条件不变,则∠AFD=________°;请直接写出线段DF,EF,AF之间的数量关系:________.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共64分)19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、25-1、25-2、25-3、26-1、26-2、26-3、。

河南省郑州市2020年中考数学试卷(II)卷

河南省郑州市2020年中考数学试卷(II)卷

河南省郑州市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·西华模拟) ﹣的倒数是()A . ﹣B .C . ﹣2D . 22. (2分)函数y=中,自变量x的取值范围是()A . x≥-2B . x>-2C . x>0D . x≠-23. (2分) (2016八上·绵阳期中) 当(﹣6n)m=﹣6mn成立,则()A . m、n必须同时为正奇数B . m、n必须同时为正偶数C . m为奇数D . m为偶数4. (2分) (2019九上·温岭月考) 如图图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .5. (2分)下面计算正确的是()A . x3÷x3=0B . x3﹣x2=xC . x2•x3=x6D . x3÷x2=x6. (2分)有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A . 10B .C . 2D .7. (2分)(2019·合肥模拟) 2018年第一季度,某企业营收入比2017年同期增长12%,2019年第一季度营收入比2018年同期增长10%,设2018年和2019年第一季度营收入的平均增长率为x,则可列方程()A . 2x=12%+10%B . (1+x)2=1+12%+10%C . 1+2x=(1+12%)(1+10%)D . (1+x)2=(1+12%)(1+10%)8. (2分)下列语句中,不是命题的个数是()①两点确定一条直线吗?②在线段AB上任取一点③作∠A的平分线AM ④两个锐角的和大于直角A . 1B . 2C . 3D . 49. (2分) (2019九上·宜兴月考) 在平面直角坐标系中,直线经过点A(-3,0),点B(0,),点P的坐标为(1,0),与轴相切于点O,若将⊙P沿轴向左平移,平移后得到(点P的对应点为点P′),当⊙P′与直线相交时,横坐标为整数的点P′共有()A . 1个B . 2个C . 3个D . 4个10. (2分)(2017·台州) 如图,矩形EFGH四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的时,则为()A .B . 2C .D . 4二、填空题 (共8题;共8分)11. (1分) (2018八下·柳州期末) 化简:(2 )2=________.12. (1分)(2017·宜宾) 分解因式:xy2﹣4x=________.13. (1分) (2020七上·江都期末) 2019年4月21日上午中国扬州鉴真国际半程马拉松赛在扬州马拉松公园鸣枪开赛,来自世界各地35000名选手开始了激烈角逐,35000用科学记数法可以表示为________.14. (1分) (2019七上·萧山月考) 以-273°C为基准,记作0°K,则-272°C记作1°K,那么100°C记作________.15. (1分) (2018八下·东台期中) 如果反比例函数过A(2,-3),则m=________16. (1分)(2017·道外模拟) 已知一个圆锥形零件的高线长为4,底面半径为3,则这个圆锥形的零件的侧面积为________.17. (1分)(2018·肇源模拟) 圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图的圆心角为________.18. (1分)(2018·眉山) 如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.三、解答题 (共10题;共102分)19. (5分)(2017·冷水滩模拟) 计算:|1﹣ |+(2017﹣50 )0+()﹣1 .20. (10分)(2016·淮安) 计算:(1)( +1)0+|﹣2|﹣3﹣1(2)解不等式组:.21. (5分)如图,矩形ABCD中,AB=4cm,BC=8cm,动点M从点D出发,按折线DCBAD方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点相遇?(2)若点E在线段BC上,BE=2cm,动点M、N同时出发且相遇时均停止运动,那么点M运动到第几秒钟时,与点A、E、N恰好能组成平行四边形?22. (5分)(2018·无锡) 某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)23. (12分)(2018·莱芜) 我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了________名学生;(2)扇形统计图中D所在扇形的圆心角为________;(3)将上面的条形统计图补充完整;(4)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.24. (15分)(2017·荔湾模拟) 如图,在△ABC中,∠C=90°,AD平分∠BAC,(1)求作⊙O,圆心O是AD的中垂线与AB的交点,OD为半径.(尺规作图,不写作法,保留痕迹)(2)求证:BC是⊙O切线.(3)若BD=5,DC=3,求AC的长.25. (15分) (2019八上·金水月考) 如图,直线y=kx+b与x轴、y轴分别交于点A,B,且OA,OB的长(OA >OB)是方程x2-10x+24=0的两个根,P(m,n)是第一象限内直线y=kx+b上的一个动点(点P不与点A,B重合).(1)求直线AB的解析式.(2) C是x轴上一点,且OC=2,求△ACP的面积S与m之间的函数关系式;(3)在x轴上是否有在点Q,使以A,B,Q为顶点的三角形是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.26. (10分)(2017·黄冈模拟) 学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.27. (10分)(2017·溧水模拟) 如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)如果AB=4,AE=2,求⊙O的半径.28. (15分) (2017八下·红桥期中) 如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠ACB的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论;(3)在(2)的条件下,试猜想当△ABC满足什么条件时使四边形AECF是正方形,请直接写出你的结论.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共102分)19-1、20-1、20-2、21-1、22-1、23-1、23-2、23-3、23-4、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。

2020年河南省郑州市中考数学一模试卷

2020年河南省郑州市中考数学一模试卷

2020年河南省郑州市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−√3的相反数是()A. √3B. −√3C. √33D. −√332.华为Mate305G系列是近期相当火爆的5G国产手机,它采用的麒麟9905G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A. 1.03×109B. 10.3×109C. 1.03×1010D. 1.03×10113.下列运算正确的是()A. 3x−2x=xB. 3x+2x=5x2C. 3x⋅2x=6xD. 3x÷2x=23 4.如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A. 左视图会发生改变B. 俯视图会发生改变C. 主视图会发生改变D. 三种视图都会发生改变5.如图,平行四边形ABCD中,AB=3,BC=5.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于12PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A. 52B. 53C. 1D. 26.郑州市某中学获评“2019年河南省中小学书香校园”,学校在创建过程中购买了一批图书.已知购买科普类图书花费12000元,购买文学类图书花费10500元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本,求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A. 12000x−5−10500x=100 B. 10500x−12000x−5=100C. 12000x −10500x−5=100 D. 10500x−5−12000x=1007.2019年9月8日第十一届全国少数民族传统体育运动会在郑州奥体中心隆重开幕,某单位得到了两张开幕式的门票,为了弘扬劳动精神,决定从本单位的劳动模范小李、小张、小杨、小王四人中选取两人去参加开幕式,那么同时选中小李和小张的概率为()A. 116B. 112C. 18D. 168.已知有理数a≠1,我们把11−a 称为a的差倒数,如:2的差倒数是11−2=−1,−1的差倒数是11−(−1)=12,如果a1=−2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,那么a2020的值是()A. −2B. 13C. 23D. 329.用三个不等式a>b,ab>0,1a >1b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A. 0B. 1C. 2D. 310.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为()A. 33°B. 36°C. 42°D. 49°二、填空题(本大题共5小题,共15.0分)11.计算:(√3−1)0+(12)−2=______.12.如图,五边形ABCDE是正五边形.若l1//l2,则∠1−∠2=______°.13.如果一元二次方程9x2−6x+m=0有两个不相等的实数根,那么m的值可以为______.(写出一个值即可)14.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q.平行四边形ABCD的面积为6,则图中阴影部分的面积为______.15.如图,在矩形ABMN中,AN=1,点C是MN的中点,分别连接AC,BC,且BC=2,点D为AC的中点,点E为边AB上一个动点,连接DE,点A关于直线DE的对称点为点F,分别连接DF,EF.当EF⊥AC时,AE的长为______.三、解答题(本大题共8小题,共75.0分)16.已知分式1−mm2−1÷(1+1m−1).(1)请对分式进行化简;(2)如图,若m为正整数,则该分式的值对应的点落在数轴上的第______段上.(填写序号即可)17.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组6.2≤x<6.66.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数2m10621b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为______;②一分钟仰卧起坐成绩的中位数为______;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.17.77.57.57.37.27.06.5一分钟仰卧起坐∗4247∗4752∗49其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.18.在△ABC中,∠BAC=90°,AD是BC边上的中线,点E为AD的中点,过点A作AF//BC交BE的延长线于点F,连接CF.(1)求证:AD=AF;(2)填空:①当∠ACB=______°时,四边形ADCF为正方形;②连接DF,当∠ACB=______°时,四边形ABDF为菱形.19.某校“趣味数学”社团开展了测量本校旗杆高度的实践活动.“综合与实践”小组制订了测量方案,并完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,该小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如表(不完整)课题测量旗杆的高度成员组长:xxx,组员:xxx,xxx,xxx测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数26.4°26.6°26.5°∠GDE的度数32.7°33.3°33°A,B之间的距离 5.9m 6.1m x−……任务一:两次测量A,B之间的距离的平均值x=______m任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)20.如图,在平面直角坐标系中,已知点B(0,4),等边三角形OAB的顶点A在反比例(x>0)的图象上.函数y=kx(1)求反比例函数的表达式;(2)把△OAB沿y轴向上平移a个单位长度,对应得到△O′A′B′.当这个函数的图象经过△O′A′B′一边的中点时,求a的值.21.《郑州市城市生活垃圾分类管理办法》于2019年12月起施行.某社区要投放A,B两种垃圾桶,负责人小李调查发现:购买数量购买数量少于100个购买数量不少于100个种类A原价销售以原价的7.5折销售B原价销售以原价的8折销售若购买A种垃圾桶80个,B种垃圾桶120个,则共需付款6880元;若购买A种垃圾桶100个,B种垃圾桶100个,则共需付款6150元.(1)求A,B两种垃圾桶的单价各为多少元?(2)若需要购买A,B两种垃圾桶共200个,且B种垃圾桶不多于A种垃圾桶数量的1,如何购买使花费最少,最少费用为多少元?请说明理由.322.(一)发现探究在△ABC中,AB=AC,点P在平面内,连接AP并将线段AP绕点A顺时针方向旋转与∠BAC相等的角度,得到线段AQ,连接BQ.【发现】如图1,如果点P是BC边上任意一点(不与端点B,C重合),则线段BQ 和线段PC的数量关系是______;【探究】如图2,如果点P为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);(二)拓展应用【应用】如图3,在△DEF中,DE=8,∠EDF=60°,∠DEF=75°,P是线段EF 上的任意一点,连接DP,将线段DP绕点D顺时针方向旋转60°,得到线段DQ,连接EQ.请直接写出线段EQ长度的最小值.x+n与x轴,y轴分别交于点B,点C,23.如图,在平面直角坐标系中,直线y=−12(a≠0)过B,C两点,且交x轴于另一点A(−2,0),连接抛物线y=ax2+bx+32AC.(1)求抛物线的表达式;(2)已知点P为第一象限内抛物线上一点,且点P的横坐标为m,请用含m的代数式表示点P到直线BC的距离;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC相似?若存在,直接写出点Q的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:−√3的相反数是√3.故选A.根据相反数的定义解答即可.本题考查了实数的性质,主要利用了相反数的定义,熟记概念是解题的关键.2.【答案】C【解析】解:103亿=10300000000=1.03×1010,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】A【解析】解:A、结果是x,故本选项符合题意;B、结果是5x,故本选项不符合题意;C、结果是6x2,故本选项不符合题意;D、结果是3,故本选项不符合题意;2故选:A.先根据合并同类项法则,单项式乘以单项式和单项式除以单项式进行计算,再判断即可.本题考查了合并同类项法则,单项式乘以单项式和单项式除以单项式,能正确求出每个式子的值是解此题的关键.4.【答案】C【解析】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:C.根据从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,掌握三视图的概念是关键.5.【答案】D【解析】解:∵由题意可知CE是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB//CD,∴∠DCE=∠E,∴∠BCE=∠AEC,∴BE=BC=5,∵AB=3,∴AE=BE−AB=2,故选:D.只要证明BE=BC即可解决问题.本题考查的是作图−基本作图和平行四边形的性质,熟知角平分线的作法是解答此题的关键.6.【答案】D【解析】解:设科普类图书平均每本的价格是x元,则可列方程为:10500x−5−12000x=100.故选:D.直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.此题主要考查了由实际问题抽象出分式方程,正确得出等量关系是解题关键.7.【答案】D【解析】解:根据题意画图如下:共有12种等可能的结果数,其中同时选中小李和小张的有2种, 则同时选中小李和小张的概率为212=16; 故选:D .根据题意画出树状图得出所有等可能的结果数和同时选中小李和小张的情况数,然后根据概率公式即可得出答案.此题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.【答案】A【解析】解:∵a 1=−2, ∴a 2=11−(−2)=13,a 3=11−13=32,a 4=11−32=−2,…… ∴这个数列以−2,13,32依次循环, ∵2020÷3=673……1, ∴a 2020=a 1=−2. 故选:A .求出数列的前4个数,从而得出这个数列以−2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.【答案】A【解析】 【分析】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.由题意得出3个命题,由不等式的性质逐个判断真假即可. 【解答】解:①若a >b ,ab >0,则1a >1b ;假命题: 理由:∵a >b ,ab >0, ∴在不等式a >b 的两边同除以ab ,得aab >bab,即1a<1b;②若ab>0,1a >1b,则a>b,假命题;理由:∵ab>0,1a >1b,∴在不等式1a >1b的两边同乘ab,得aba >abb,即a<b;③若a>b,1a >1b,则ab>0,假命题;理由:∵a>b,1a >1b,∴a、b异号,即ab<0.∴组成真命题的个数为0个.故选:A.10.【答案】C【解析】【分析】本题考查二次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意和二次函数的性质,可以确定出对称轴与横轴交点的横坐标x的取值范围,从而可以解答本题.【解答】解:由图象可知,物线开口向上,从(18,0.136)和(72,0.150)两个点可以看出对称轴与横轴交点的横坐标x<18+722,得x< 45,从(18,0.136)和(54,0.125)两个点可以看出对称轴与横轴交点的横坐标x>18+542,得x> 36,∴36<x<45,即对称轴位于直线x=36与直线x=45之间,分析各选项可得只有42°符合,故选:C.11.【答案】5【解析】解:原式=1+4=5.故答案为:5.首先计算零次幂和负整数指数幂,然后再计算加法即可.此题主要考查了实数运算,零次幂和负整数指数幂,关键是掌握零指数幂:a0=1(a≠0),(a≠0,p为正整数).负整数指数幂:a−p=1a p12.【答案】72【解析】【分析】考查了多边形内角,平行线的性质,关键是熟练掌握正五边形的性质,以及添加辅助线.过B点作BF//l1,根据正五边形的性质可得∠ABC的度数,再根据平行线的性质以及等量关系可得∠1−∠2的度数.【解答】解:过B点作BF//l1,∵五边形ABCDE是正五边形,∴∠ABC=108°,∵BF//l1,l1//l2,∴BF//l2,∴∠3=180°−∠1,∠4=∠2,∴180°−∠1+∠2=∠ABC=108°,∴∠1−∠2=72°.故答案为:72.13.【答案】0(答案不唯一)【解析】解:根据题意得Δ=(−6)2−4×9m>0,解得m<1,所以m可取0.故答案为0(答案不唯一).先利用判别式的意义得到Δ=(−6)2−4×9m>0,再解不等式得到m的范围,然后在此范围内取一个值即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.14.【答案】54【解析】解:∵四边形ABCD和四边形ACED都是平行四边形,∴AD=BC=CE,AB//CD,AC//DE,∴平行四边形ACED的面积=平行四边形ABCD的面积=6,△BCP∽△BER,△ABP∽△CQP∽△DQR,∴△ABC的面积=△CDE的面积=3,CP:ER=BC:BE=1:2,∵点R为DE的中点,∴CP:DR=1:2,∴CP:AC=CP:DE=1:4,∵S△ABC=3,∴S△ABP=34S△ABC=94,∵CP:AP=1:3,∴S△PCQ=19S△ABP=14,∵CP:DR=1:2,∴S△DQR=4S△PCQ=1,∴S阴影=S△PCQ+S△DQR=54.故答案为:54.由四边形ABCD和四边形ACED都是平行四边形,易证得△BCP∽△BER,△ABP∽△CQP∽△DQR,又由点R为DE的中点,可求得各相似三角形的相似比,继而求得答案.此题考查了平行四边形的性质以及相似三角形的判定与性质.熟记相似三角形的面积比等于相似比的平方是解题的关键.15.【答案】√33或√3【解析】解:∵四边形ABMN是矩形,∴AN=BM=1,∠M=∠N=90°,∵点C是MN的中点,∴CM=CN,∴△BMC≌△ANC(SAS),∴BC=AC=2,∴AC=2AN,∴∠ACN=30°,∵AB//MN,∴∠CAB=∠CBA=30°,①如图1中,当DF⊥AB时,∠ADF=60°,∵DA=DF,∴△ADF是等边三角形,∴∠AFD=60°,∵∠DFE=∠DAE=30°,∴EF平分∠AFD,∴EF⊥AD,此时AE=√3.3②如图2中,当△AEF是等边三角形时,EF⊥AC,此时AE=EF=√3.或√3.综上所述,满足条件的EF的值为√33首先证明∠CAB=∠CBA=30°.分两种情形画出图形分别求解即可.本题考查矩形的性质,解直角三角形,翻折变换等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.【答案】解:(1)原式=1−mm2−1÷m−1+1m−1=1−m(m+1)(m−1)⋅m−1m=1−1 m+1=m+1−1 m+1=mm+1;(2)②【解析】【分析】本题考查了数轴和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.(1)先算减法,再把除法变成乘法,孙乘法,最后算减法即可;(2)根据化简的结果和数轴得出即可.【解答】解:(1)见答案;(2)∵原式=1−1m+1,m为正整数且m≠1,∴m≥2,∴该分式的值应落在数轴的②处,故答案为:②.17.【答案】解:(1)①9;②45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3,∴实心球成绩在7.0≤x<7.4这一组优秀的有4人,∴全年级女生实心球成绩达到优秀的人数是:150×4+6+2+130=65,答:全年级女生实心球成绩达到优秀的有65人;②同意,理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.【解析】【分析】本题考查频数分布表、条形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.(1)①根据题意和表格中的数据可以求得m的值;②根据条形统计图中数据和中位数的定义可以得到这组数据的中位数;(2)①根据题意和表格中的数据可以求得全年级女生实心球成绩达到优秀的人数;②根据题意和表格中的数据可以解答本题.【解答】解:(1)①m=30−2−10−6−2−1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩按从小到大排列,第15个数和第16个数都为45,所以其中位数为45,故答案为:45;(2)①②见答案.18.【答案】(1)证明:∵∠BAC=90°,AD是BC边上的中线,∵AD=CD=BD,∵点E为AD的中点,∴AE=DE,∵AF//BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB(AAS),∴AF=BD,∴AD=AF;(2)①45;②30.【解析】【分析】本题考查了正方形的判定,菱形的性质和判定,直角三角形的性质,正确的识别图形是解题的关键.(1)根据直角三角形的性质得到AD=CD=BD,根据全等三角形的判定和性质即可得到结论;(2)①根据菱形的判定定理得到四边形ADCF是菱形,求得∠DCF=90°,于是得到结论;②根据菱形的性质得到CD=CF,推出△DCF是等边三角形,得到DF=BD,于是得到结论.【解答】(1)见答案;(2)解:①当∠ACB=45°时,四边形ADCF为正方形.理由如下:∵AD=AF,∴AF=CD,∵AF//CD,∴四边形ADCF是菱形,∴∠ACD=∠ACF=45°,∴∠DCF=90°,∴四边形ADCF是正方形,故答案为:45;②当∠ACB=30°时,四边形ABDF为菱形.理由如下:如图,∵四边形ADCF是菱形,四边形ABDF是平行四边形,∴CD=CF,∵∠ACB=∠ACF=30°,∴∠DCF=60°,∴△DCF是等边三角形,∴DF=CD,∴DF =BD ,又AF//BD ,AF =BD , ∴四边形ABDF 为菱形. 故答案为:30.19.【答案】解:任务一:6;任务二:设EG =xm ,在Rt △DEG 中,∠DEG =90°,∠GDE =33°, ∵tan33°=EGDE , ∴DE =x tan33∘,在Rt △CEG 中,∠CEG =90°,∠GCE =26.5°, ∵tan26.5°=EGCE,CE =xtan26.5∘, ∵CD =CE −DE , ∴xtan26.5∘−xtan33∘=6, ∴x =13,∴GH =EG +EH =13+1.5=14.5, 答:旗杆GH 的高度为14.5米;任务三:旗杆底部不可能到达(答案不唯一). 【解析】 【分析】本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.任务一:根据两次测量结果直接求平均值就可以得到答案; 任务二:设EG =xm ,解直角三角形即可得到结论;任务三:根据题意得到,未被采纳的原因为没有太阳光,或旗杆底部不可能到达等,答案不唯一,写出其中一条即可. 【解答】解:任务一:x −=12(5.9+6.1)=6, 故答案为:6; 任务二:见答案; 任务三:见答案.20.【答案】解:(1)∵点B(0,4),等边三角形OAB 的顶点A 在反比例函数y =kx (x >0)的图象上,∴点A 的坐标为(2√3,2), ∴2=2√3,得k =4√3,即反比例函数的表达式是y =4√3x; (2)当反比例函数y =4√3x过边A′B′的中点时, ∵边A′B′的中点是(√3,3+a), ∴3+a =√3√3,得a =1;当反比例函数y =4√3x过边O′A′的中点时,∵边O′A′的中点是(√3,1+a), ∴1+a =√3√3,得a =3;由上可得,a 的值是1或3.【解析】本题考查反比例函数的图象、待定系数法求反比例函数解析式、等边三角形的性质,解答本题的关键是明确题意,利用反比例函数的性质和数形结合的思想解答. (1)根据题意,可以求得点A 的坐标,从而可以求得该反比例函数的解析式; (2)根据题意,可分两种情况,求出a 的值,本题得以解决.21.【答案】解:(1)设A 种垃圾桶的单价为x 元,B 种垃圾桶的单价为y 元,根据题意得{80x +0.8×120y =68800.75×100x +0.8×100y =6150, 解得{x =50y =30,答:A 种垃圾桶的单价为50元,B 种垃圾桶的单价为30元;(2)设购买A 种垃圾桶为a 个,则购买B 种垃圾桶为(200−a)个,根据题意得 200−a ≤13a , 解得a ≥150;设购买A ,B 两种垃圾桶的总费用为W 元,则 W =0.75×50a +30(200−a)=7.5a +6000, ∵k =7.5>0,∴W随x的增大而增大,∴当a=150时,花费最少,最少费用为:7.5×150+6000=7125(元).答:购买A种垃圾桶150个,B种垃圾桶50个花费最少,最少费用为7125元.【解析】(1)设A种垃圾桶的单价为x元,B种垃圾桶的单价为y元,根据“购买A种垃圾桶80个,B种垃圾桶120个,则共需付款6880元;若购买A种垃圾桶100个,B种垃圾桶100个,则共需付款6150元”列出方程组并解答;(2)设购买A种垃圾桶为a个,则购买B种垃圾桶为(200−a)个,根据“B种垃圾桶不多于A种垃圾桶数量的1”列出不等式并求得a的取值范围,再根据一次函数的性质解3答即可.本题考查了一次函数的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.22.【答案】【发现】BQ=PC;【探究】结论:BQ=PC仍然成立,理由:由旋转知,AQ=AP,∵∠PAQ=∠BAC,∴∠PAQ−∠BAP=∠BAC−∠BAP,∴∠BAQ=∠CAP,∵AB=AC,∴△BAQ≌△CAP(SAS),∴BQ=CP.【应用】如图3,在DF上取一点H,使DH=DE=8,连接PH,过点H作HM⊥EF于M,由旋转知,DQ=DP,∠PDQ=60°,∵∠EDF=60°,∴∠PDQ=∠EDF,∴△DEQ≌△DHP(SAS),∴EQ=HP,要使EQ最小,则有HP最小,而点H是定点,点P是EF上的动点,∴当HM⊥EF(点P和点M重合)时,HP最小,即:点P与点M重合,EQ最小,最小值为HM,过点E作EG⊥DF于G,在Rt△DEG中,DE=8,∠EDF=60°,∴∠DEG=30°,∴DG=12DE=4,∴EG=√3DG=4√3,在Rt△EGF中,∠FEG=∠DEF−∠DEG=75°−30°=45°,∴∠F=90°−∠FEG=45°=∠FEG,∴FG=EG=4√3,∴DF=DG+FG=4+4√3,∴FH=DF−DH=4+4√3−8=4√3−4,在Rt△HMF中,∠F=45°,∴HM=√22FH=√22(4√3−4)=2√6−2√2,即:EQ的最小值为2√6−2√2.【解析】【分析】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,解直角三角形,找出点P和点M重合时,EQ最小,最小值为HM是解本题的关键.【发现】先判断出∠BAQ=∠CAP,进而用SAS判断出△BAQ≌△CAP,即可得出结论;【探究】结论BQ=PC仍然成立,理由同【发现】的方法;【应用】先构造出△DEQ≌△DHP,得出EQ=HP,进而判断出要使EQ最小,当HM⊥EF(点P和点M重合)时,EQ最小,最后用解直角三角形即可得出结论.【解答】解:【发现】由旋转知,AQ=AP,∵∠PAQ=∠BAC,∴∠PAQ−∠BAP=∠BAC−∠BAP,∵AB =AC ,∴△BAQ≌△CAP(SAS), ∴BQ =CP ,故答案为:BQ =PC ; 【探究】见答案; 【应用】见答案.23.【答案】解:(1)在抛物线y =ax 2+bx +32中,令x =0,得y =32,即点C(0,32),因为点C 在直线y =−12x +n 上,将点C 坐标代入直线方程得n =32,则直线方程为y =−12x +32, 令y =0,得x =3,则点B(3,0),则抛物线的表达式为:y =a(x −3)(x +2)=a(x 2−x −6), 代入点C 坐标得−6a =32,解得:a =−14, 故抛物线的表达式为:y =−14x 2+14x +32;(2)过点P 作y 轴的平行线交BC 于点G ,作PH ⊥BC 于点H ,则∠HPG =∠CBA =α,因为OC =32,则OB =3,由勾股定理得CB =√OC 2+OB 2=3√52,则cosα=OB CB =√5,设点P(m,−14m 2+14m +32),则点G(m,−12m +32), 则PH =PGcosα=√514m 2+14m +32+12m −32)=−√510m 2+3√510m ;(3)①当点Q 在x 轴上方时,则点Q ,A ,B 为顶点的三角形与△ABC 全等,此时点Q 与点C 关于函数对称轴对称, 则点Q(1,32);②当点Q 在x 轴下方时,(Ⅰ)当∠BAQ =∠CAB 时,△QAB∽△BAC , 则ABAC =AQAB ,由勾股定理得:AC =52,AQ =AB 2AC=2552=10,过点Q 作QH ⊥x 轴于点H ,由△HAQ∽△OAC 得:AQ AC =QH OC=AH OA,∵OC =32,AQ =10,∴QH =6,AH =8,则OH =8−2=6, ∴Q(6,−6);根据点的对称性,当点Q 在第三象限时,符合条件的点Q(−5,−6); 经检验(6,−6)或(−5,−6)均在抛物线上,符合题意, 故点Q 的坐标为:(6,−6)或(−5,−6); (Ⅱ)当∠BAQ =∠CBA 时,△QAB∽△ABC , 则ABBC =AQAB , 由勾股定理得:BC =3√52,AQ =AB 2BC=3√52=10√53,过点Q 作QH ⊥x 轴于点H ,由△HAQ∽△OBC 得:AQBC =QH OC=AHOB ,∵OC =32,AQ =10√53,∴QH =103,AH =203,则OH =203−2=143,∴Q(143,−103),根据点的对称性,当点Q 在第三象限时,符合条件的点Q(−113,−103),而当x =143时,y =−14×(143)2+14×143+32=−259≠−103,即点Q 不在抛物线上,不符合题意, 同理可得点Q(−113,−103)不符合题意,都舍去;综上,点Q 的坐标为:(1,32)或(6,−6)或(−5,−6).【解析】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、三角形相似等,其中(3)要注意分类求解,避免遗漏.(1)由抛物线方程求出点C(0,32),则可得直线y =−12x +32,得点B(3,0),则可设抛物线的表达式为:y =a(x −3)(x +2)=a(x 2−x −6),即可求解; (2)则PH =PGcosα=√514m 2+14m +32+12m −32)=−√510m 2+3√510m ; (3)分当点Q 在x 轴上方、点Q 在x 轴下方两种情况,分别求解即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省郑州市2020版中考数学试卷(I)卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)在﹣3,﹣1,0,2这四个数中,最小的数是()
A . ﹣3
B . ﹣1
C . 0
D . 2
2. (2分)(2020·江州模拟) 下列计算正确的是()
A . a3•a4=a12
B . a4÷a-3=a7(a≠0)
C .
D .
3. (2分) (2019七下·西宁期中) 如图,∠1与∠2是同位角的是()
A . ①②③④
B . ①②③
C . ①③
D . ①
4. (2分)若分式的值为零,则x的值为()
A . -2
B . 2
C . 0
D . -2或2
5. (2分)(2019·淄川模拟) 观察如图所示的三种视图,与之对应的物体是()
A .
B .
C .
D .
6. (2分) (2019九下·瑞安月考) 向如图所示的正三角形区域内扔沙包,(区域中每个小正三角形陈颜色外完全相同)沙包随机落在某个正三角形内.扔沙包一次,落在图中阴影区域的概率是()
A .
B .
C .
D .
7. (2分)在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则点P的坐标是()
A . (5,-3)或(-5,-3)
B . (-3,5)或(-3,-5)
C . (-3,5)
D . (-3,-3)
8. (2分)(2020·滨湖模拟) 如图,在△ABC中,AC=6,∠BAC=60°,AM为△ABC的角平分线,若,则AM长为()
A . 6
B .
C .
D .
9. (2分)如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是()
A .
B .
C .
D .
10. (2分) (2019八下·松北期末) 梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一
次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:
①一次购买种子数量不超过l0千克时,销售价格为5元/千克;
②一次购买30千克种子时,付款金额为100元;
③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:
④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.
其中正确的个数是
A . 1个
B . 2个
C . 3个
D . 4个
二、填空题 (共6题;共7分)
11. (1分)(2019·宁波模拟) 若x2-9=(x-3)(x+a),则a=________.
12. (1分)如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:________
13. (1分)在市委宣传部举办的以“弘扬社会主义核心价值观”为主题的演讲比赛中,其中9位参赛选手的成绩如下:9.3;9.5;8.9;9.3;9.5;9.5;9.7;9.4;9.5,这组数据的众数是________.
14. (1分) (2019七上·哈尔滨月考) 如果x-y=-1,|y|=1,则x y=________
15. (1分) (2019九上·江北期末) 如图,在中,棱长为1的立方体的表面展开图有两条边分别在,上,有两个顶点在斜边上,则的面积为 ________.
16. (2分) (2019九上·萧山开学考) 如图,是边长为1的正方形的对角线上一点,且
.为上任意一点,于点,于点,则的值是________.
三、解答题 (共8题;共75分)
17. (5分)(2020·内江) 计算:
18. (5分) (2016·江都模拟) 计算下列各题
(1)计算:(﹣π)0﹣6tan30°+()﹣2+|1+ |.
(2)解不等式组,并写出它的所有整数解.
19. (15分)(2014·常州) 为迎接“六一”儿童节的到来,某校学生参加献爱心捐款活动,随机抽取该校部分学生的捐款数进行统计分析,相应数据的统计图如下:
(1)该样本的容量是________,样本中捐款15元的学生有________人;
(2)若该校一共有500名学生,据此样本估计该校学生的捐款总数.
20. (5分) (2017九上·汉阳期中) 如图,在△ABC中,AB=5,AC=13,边BC上的中线AD=6.
(1)以点D为对称中心,作出△ABD的中心对称图形;
(2)求点A到BC的距离.
21. (10分) (2020八下·西山期末) 小东和小明要测量校园里的一块四边形场地 (如图所示)的周
长,其中边上有水池及建筑遮挡,没有办法直接测量其长度.小东经测量得知米,米, .小明说根据小东所得的数据可以求出的长度.你同意小明的说法吗?若同意,请求出的长度;若不同意,请说明理由.
22. (15分)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).
(1)求抛物线的解析式及A、B两点的坐标;
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;
(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.
23. (10分)(2020·郑州模拟) 如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,以CD为直径作⊙O分别交AC,BC于点E,F,过点E作⊙O的切线,分别交直线BC,AB于点H,G.
(1)求证:HG=GB;
(2)若⊙O的直径为4,连接OG,交⊙O于点M.填空:
①连接OE,ME,DM.当EG=________时,四边形OEMD为菱形;
②连接OE.当EG=________时,四边形OEAG为平行四边形.
24. (10分)(2017·天门模拟) 在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交于点A,B,与y
轴交于点C,直线y=x+4经过A,C两点.
(1)求抛物线的解析式;
(2)在AC上方的抛物线上有一动点P.
①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;
②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共7分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共8题;共75分)
17-1、
18-1、
18-2、19-1、19-2、20-1、
20-2、
21-1、
23-1、23-2、
24-1、。

相关文档
最新文档