07年01月线性代数02198自考试题及答案

合集下载

线性代数2198(07年4月)

线性代数2198(07年4月)

全国2007年4月高等教育自学考试线性代数试题课程代码:02198说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设矩阵A =(1,2),B =⎪⎪⎭⎫ ⎝⎛4321,C ⎪⎪⎭⎫ ⎝⎛=654321则下列矩阵运算中有意义的是()A .ACB B .ABCC .BACD .CBA2.设A 为3阶方阵,且|A |=2,则|2A -1|=( )A .-4B .-1C .1D .43.矩阵⎪⎪⎭⎫ ⎝⎛-0133的逆矩阵是( )A .⎪⎪⎭⎫ ⎝⎛-3310B .⎪⎪⎭⎫ ⎝⎛-3130C .⎪⎪⎭⎫ ⎝⎛-13110D .⎪⎪⎪⎭⎫⎝⎛-013114.设2阶矩阵A =⎪⎪⎭⎫ ⎝⎛d c b a ,则A *=( )A .⎪⎪⎭⎫ ⎝⎛--a c b dB .⎪⎪⎭⎫ ⎝⎛--a b c dC .⎪⎪⎭⎫ ⎝⎛--a c b dD .⎪⎪⎭⎫ ⎝⎛--a b c d5.设矩阵A =⎪⎪⎪⎭⎫⎝⎛--500043200101,则A 中( )A .所有2阶子式都不为零B .所有2阶子式都为零C .所有3阶子式都不为零D .存在一个3阶子式不为零6.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( )A .A +A TB .A -A TC .AA TD .A T A7.设A 为m ×n 矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是( )A .A 的列向量组线性相关B .A 的列向量组线性无关C .A 的行向量组线性相关D .A 的行向量组线性无关8.设3元非齐次线性方程组Ax=b 的两个解为α=(1,0,2)T ,β=(1,-1,3)T ,且系数矩阵A 的秩r(A )=2,则对于任意常数k,k 1,k 2,方程组的通解可表为( )A .k 1(1,0,2)T +k 2(1,-1,3)TB .(1,0,2)T +k (1,-1,3)TC .(1,0,2)T +k (0,1,-1)TD .(1,0,2)T +k (2,-1,5)T9.矩阵A =⎪⎪⎪⎭⎫ ⎝⎛111111111的非零特征值为( )A .4B .3C .2D .1 10.矩阵A =⎪⎪⎪⎭⎫ ⎝⎛--321合同于( )A .⎪⎪⎪⎭⎫ ⎝⎛321B .⎪⎪⎪⎭⎫ ⎝⎛-321C .⎪⎪⎪⎭⎫ ⎝⎛--321D .⎪⎪⎪⎭⎫ ⎝⎛---321二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

2007~2008线性代数试题1答案

2007~2008线性代数试题1答案

一、选择题: [教师答题时间:2 分钟](每小题 3 分,共 12分) ①C ②D ③D ④A二、填空题: [教师答题时间:4分钟](每空 3分,共 12 分) ① 3 ② 线性相关 ③ n-r ④线性无关三、计算题 [教师答题时间: 6 分钟](共16分)1、解: 2220000()000ab a b D a b b a ba==-(共8分)2、151110110010022(,)210010~010511(63250010017112251122A 511(271122A E -⎛⎫--⎪⎛⎫⎪ ⎪=- ⎪ ⎪ ⎪ ⎪--⎝⎭- ⎪⎝⎭⎛⎫-- ⎪ ⎪=- ⎪ ⎪- ⎪⎝⎭分)所以分)四、综合题 [教师答题时间: 14 分钟](共30分)1)解:12341234121131113111230252(,,,)(2~(2423100615624110025210020101~(4,,(3001000002(4αααααααααα--⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪= ⎪ ⎪-- ⎪ ⎪---⎝⎭⎝⎭⎛⎫ ⎪- ⎪ ⎪ ⎪⎝⎭=-分)分)分)所以最大无关组是分),并且分)2)解:11111111111(A )43511(2~01153(41310131R A 223k (410242(A )01153000002110a b a a b a a x c --⎛⎫⎛⎫ ⎪ ⎪=---- ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭=-⎛⎫⎪=-- ⎪⎪⎝⎭-⎛=,b 分)分)因为(),所以,行有比例关系,设为,则有-k=1-a,k=3-a,-5k-b-a,3k=1+a,求得k=1,a=2,b=-3分)故有,b 所以24253(50010c ⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭分)五题 、解答题 [教师答题时间:8 分钟](共12分)121323212311231)222011101(4110112)11(1)(2)(2112,1(221110112,2121~011,11120001111,T f x x x x x x x Ax A A E A E A E λλλλλλλλλληλλ=-+=-⎛⎫⎪= ⎪ ⎪-⎝⎭---=-=--+--=-==--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-+==- ⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭--==-=分)分)所以分)由取由()2312131231111111~00011200002101,1;1,1111122,1,P=,,,P 1(511P P P P P P AP ηη--⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎪===-= ⎪ ⎪⎪⎪ ⎪ ⎪⎪⎪-⎝⎭⎝⎭⎭⎭-⎫⎛⎫⎪ ⎪==⎪ ⎪⎪ ⎪-⎭⎝⎭取单位化:取有分) 六题 、解答题证明 [教师答题时间: 10 分钟](共18分)22111)40(21021110,40;240(44ttA ttt A tt⎛⎫⎪= ⎪⎪⎝⎭=>=->=-+><二次型矩阵分)因为分)故有分)()()()() 12121211212 122),,(3111,,,,010(30011111110100,,010,,001001,,(2Y X XY Y X Y X Y X XY Y X Y X Y X X Y Y X Y X-⎛⎫⎪-+=-⎪⎪⎝⎭⎛⎫⎪-≠-+-=⎪⎪⎝⎭-+反证法说明无关分)分)因为,故可逆,故故无关分)。

09年01月线性代数量02198自考试题及答案

09年01月线性代数量02198自考试题及答案

2009年1月高等教育自学考试全国统一命题考试线性代数试题课程代码:02198试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 表示单位矩阵,|A |表示方阵A 的行列式,A -1表示矩阵A 的逆矩阵,秩(A )表示矩阵A 的秩.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是最符合题目要求的。

请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A 为n 阶方阵,若A 3=O ,则必有( ) A. A =OB.A 2=OC. A T =OD.|A |=02.设A ,B 都是n 阶方阵,且|A |=3,|B |=-1,则|A T B -1|=( ) A.-3 B.-31C.31 D.33.设A 为5×4矩阵,若秩(A )=4,则秩(5A T )为( )A.2B.3C.4D.5 4.设向量α=(4,-1,2,-2),则下列向量中是单位向量的是( ) A.31α B.51α C.91αD.251α5.二次型f (x 1,x 2)=522213x x +的规范形是( )A.y 21-y 22B. -y 21-y 22C.-y 21+y 22 D. y 21+y 226.设A 为5阶方阵,若秩(A )=3,则齐次线性方程组Ax =0的基础解系中包含的解向量的个数是( )A.2B.3C.4D.5 7.向量空间W ={(0,x ,y ,z ) |x +y =0}的维数是( ) A.1 B.2C.3D.48.设矩阵A =⎪⎪⎭⎫⎝⎛3421,则矩阵A 的伴随矩阵A *=( ) A.⎪⎪⎭⎫⎝⎛1423 B. ⎪⎪⎭⎫⎝⎛--1423C. ⎪⎪⎭⎫⎝⎛1243 D. ⎪⎪⎭⎫⎝⎛--1243 9.设矩阵A =⎪⎪⎪⎪⎪⎭⎫⎝⎛300130011201111,则A 的线性无关的特征向量的个数是( )A.1B.2C.3D.410.设A ,B 分别为m ×n 和m ×k 矩阵,向量组(I )是由A 的列向量构成的向量组,向量组(II )是由(A ,B )的列向量构成的向量组,则必有( ) A.若(I )线性无关,则(II )线性无关 B.若(I )线性无关,则(II )线性相关 C.若(II )线性无关,则(I )线性无关 D.若(II )线性无关,则(I )线性相关二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。

02198自考线性代数试卷及答案

02198自考线性代数试卷及答案

《线性代数》试题一(课程代码:02198)一、单选题(本大题共10小题,每小题2分,共20分)1.若矩阵A满足Aˆ2-5A=E,则矩阵(A-5E)ˆ-1=【】A、A-5EB、A+5EC、AD、-A2.设矩阵A是2阶方阵,且det(A)=3,则det(5A)=【】A、3B、15C、25D、753.设矩阵A,B,X为同阶方阵,且A,B可逆,若A(X-E)B=B,则矩阵X=【】A、E+Aˆ-1B、E+AC、E+Bˆ-1D、E+B4.设矩阵A1,A2均为可逆方阵,则以下结论正确的是【】5.设αˇ1,αˇ2,…,αˇk是n维列向量,则αˇ1,αˇ2,…αˇk线性无关的充分必要条件是【】A、向量组αˇ1,αˇ2,…,αˇk中任意两个向量线性无关B、存在一组不全为0的数lˇ1,lˇ2,…,lˇk,使得lˇ1αˇ1+lˇ2αˇ2+…+lˇkαˇk≠0C、向量组αˇ1,αˇ2,…,αˇk中存在一个向量不能由其余向量线性表示D、向量组αˇ1,αˇ2,…,αˇk中任意一个向量都不能由其余向量线性表示6.设α=(aˇ1,aˇ2,aˇ3),β=(bˇ1,bˇ2,bˇ3),其中aˇ1,aˇ2,aˇ3不全为0,且bˇ1,bˇ2,bˇ3不全为0,则αˇTβ的秩为【】A、0B、1C、2D、37.设三阶方阵A的特征值分别为1/2,1/4,3,则Aˆ-1的特征值为【】A、2,4,1/3B、1/2,1/4,1/3C、1/2,1/4,3D、2,4,38.二次型f(X1,X2,X3)=(X1+X2+X3)2的矩阵是【】9.以下关于正定矩阵叙述正确的是【】A、正定矩阵的特征值一定大于零B、正定矩阵的行列式一定小于零C、正定矩阵的乘积一定是正定矩阵D、正定矩阵的差一定是正定矩阵10.设A为3阶矩阵,且|A|=3,则|(-A)ˆ-1|=【】A、-3B、-1/3C、1/3D、3二、填空题(本大题共10小题,每小题3分,共30分)1、在五阶行列式中,项的符号为____________。

2012年1月自学考试02198线性代数试题和答案

2012年1月自学考试02198线性代数试题和答案

线性代数---2012年1月1.若矩阵A满足Aˆ2-5A=E,则矩阵(A-5E)ˆ-1=A、A-5EB、A+5EC、AD、-A正确答案:C解析:2.设矩阵A是2阶方阵,且det(A)=3,则det(5A)=A、3B、15C、25D、75正确答案:D解析:3.设矩阵A,B,X为同阶方阵,且A,B可逆,若A(X-E)B=B,则矩阵X=A、E+Aˆ-1B、E+AC、E+Bˆ-1D、E+B正确答案:A解析:4.A、图中AB、图中BC、图中CD、图中D正确答案:D解析:5.设αˇ1,αˇ2,…,αˇk是n维列向量,则αˇ1,αˇ2,…αˇk线性无关的充分必要条件是A、向量组αˇ1,αˇ2,…,αˇk中任意两个向量线性无关B、存在一组不全为0的数lˇ1,lˇ2,…,lˇk,使得lˇ1αˇ1+lˇ2αˇ2+…+lˇkαˇk≠0C、向量组αˇ1,αˇ2,…,αˇk中存在一个向量不能由其余向量线性表示D、向量组αˇ1,αˇ2,…,αˇk中任意一个向量都不能由其余向量线性表示正确答案:D解析:6.设α=(aˇ1,aˇ2,aˇ3),β=(bˇ1,bˇ2,bˇ3),其中aˇ1,aˇ2,aˇ3不全为0,且bˇ1,bˇ2,bˇ3不全为0,则αˇTβ的秩为B、1C、2D、3正确答案:B解析:7.A、图中AB、图中BC、图中CD、图中D正确答案:B解析:8.设三阶方阵A的特征值分别为1/2,1/4,3,则Aˆ-1的特征值为A、2,4,1/3B、1/2,1/4,1/3C、1/2,1/4,3D、2,4,3正确答案:A解析:9.A、图中AB、图中BC、图中CD、图中D正确答案:C解析:10.以下关于正定矩阵叙述正确的是A、正定矩阵的特征值一定大于零B、正定矩阵的行列式一定小于零C、正定矩阵的乘积一定是正定矩阵D、正定矩阵的差一定是正定矩阵正确答案:A解析:11.设det(A)=-1,det(B)=2,且A,B为同阶方阵,则det((AB)ˆ3)=_____。

自学考试线性代数2007-2012历年真题及答案

自学考试线性代数2007-2012历年真题及答案

全国2012年10月自学考试线性代数试题请考生按规定用笔将所有试题的答案涂、写在答题纸上。

说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,A表示方阵A 的行列式,r(A )表示矩阵A 的秩。

选择题部分一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题 纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.设行列式1122=1a b a b ,11221a c a c -=--,则行列式111222=a b c a b c -- A .-1 B .0C .1D .22.设矩阵123456709⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则*A 中位于第2行第3列的元素是A .-14B .-6C .6D .143.设A 是n 阶矩阵,O 是n 阶零矩阵,且2-=A E O ,则必有 A .1-=A A B .=-A E C .=A ED .1=A4.已知4×3矩阵A 的列向量组线性无关,则r (A T )= A .1 B .2 C .3 D .45.设向量组T T12(2,0,0),(0,0,-1)αα==,则下列向量中可以由12,αα线性表示的是A .(-1,-1,-1)TB .(0,-1,-1)TC .(-1,-1,0)TD .(-1,0,-1)T6.齐次线性方程组134234020x x x x x x ++=⎧⎨-+=⎩的基础解系所含解向量的个数为A.1B.2C.3D.47.设12,αα是非齐次线性方程组Ax =b 的两个解向量,则下列向量中为方程组解的是A .12αα-B .12αα+C .1212αα+D .121122αα+8.若矩阵A 与对角矩阵111-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭D 相似,则A 2= A.EB.AC.-ED.2E9.设3阶矩阵A 的一个特征值为-3,则-A 2必有一个特征值为 A.-9 B.-3 C.3 D.910.二次型222123123121323(,,)222f x x x x x x x x x x x x =+++++的规范形为A .2212z z -B .2212z z + C .21zD .222123z z z ++二、填空题(本大题共10小题,每小题2分,共20分)11.行列式123111321的值为______. 12.设矩阵011001000⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则A 2=______.13.若线性方程组12323323122(1)x x x x x x λλ++=⎧⎪-+=-⎨⎪+=-⎩无解,则数λ=______.14.设矩阵43012110⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,=A P ,则PAP 2=______.15.向量组T T 12,-2,2,(4,8,8)k αα==-()线性相关,则数k =______. 16.已知A 为3阶矩阵,12,ξξ为齐次线性方程组Ax =0的基础解系,则=A ______. 17.若A 为3阶矩阵,且19=A ,则-1(3)A =______. 18.设B 是3阶矩阵,O 是3阶零矩阵,r (B )=1,则分块矩阵⎛⎫⎪⎝⎭E O B B 的秩为______.19.已知矩阵211121322⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,向量11k ⎛⎫ ⎪= ⎪ ⎪⎝⎭α是A 的属于特征值1的特征向量,则数k =______.20.二次型1212(,)6f x x x x =的正惯性指数为______. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式a ba b D a a b b aba b+=++的值.22.设矩阵100112210,022222046A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求满足方程AX =B T 的矩阵X .23.设向量组123411212142,,,30614431αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,求该向量组的秩和一个极大线性无关组.24.求解非齐次线性方程组123412341234124436x x x x x x x x x x x x +--=⎧⎪+++=⎨⎪+--=⎩.(要求用它的一个特解和导出组的基础解系表示).25.求矩阵200020002⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的全部特征值和特征向量.26.确定a ,b 的值,使二次型22212312313(,,)222f x x x ax x x bx x =+-+的矩阵A 的特征值之和为1,特征值之积为-12. 四、证明题(本题6分)27.设矩阵A 可逆,证明:A *可逆,且*11*--=()()A A .全国2012年7月高等教育自学考试一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 为三阶矩阵,且13A -=,则 3A -( )A.-9B.-1C.1D.92.设[]123,,A a a a =,其中 (1,2,3)i a i = 是三维列向量,若1A =,则[]11234,23,a a a a - ( )A.-24B.-12C.12D.243.设A 、B 均为方阵,则下列结论中正确的是( ) A.若AB =0,则A=0或B=0 B. 若AB =0,则A =0或B =0 C .若AB=0,则A=0或B=0 D. 若AB ≠0,则A ≠0或B ≠04. 设A 、B 为n 阶可逆阵,则下列等式成立的是( ) A. 111()AB A B ---=B. 111()A B A B ---+=+ C .11()AB AB-= D. 111()A B A B ---+=+5. 设A 为m ×n 矩阵,且m <n ,则齐次方程AX=0必 ( ) A.无解B.只有唯一解 C .有无穷解 D.不能确定6. 设12311102103A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦则()r A = A.1 B.2 C.3 D.47. 若A 为正交矩阵,则下列矩阵中不是正交阵的是( ) A. 1A -B.2A C .A ²D. T A8.设三阶矩阵A有特征值0、1、2,其对应特征向量分别为123ξξξ、、,令[]312,,2P ξξξ= 则1P AP -=( ) A. 200010000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ B. 200000001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C .000010004⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ D. 200000002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦9.设A 、B 为同阶方阵,且()()r A r B =,则( ) A.A 与B 等阶 B. A 与B 合同 C .A B =D. A 与B 相似10.设二次型22212312123(,,)22f x x x x x x x x =+-+则f 是( ) A.负定 B.正定 C .半正定 D.不定二、填空题(本大题共10小题,每小题2分,共20分) 11.设A 、B 为三阶方阵,A =4,B =5, 则2AB = 12.设121310A ⎡⎤=⎢⎥⎣⎦ , 120101B ⎡⎤=⎢⎥⎣⎦ ,则TA B 13.设120010002A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦则1A - =14.若22112414A t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦且()2r A =,则t= 15.设1231120,2,2110a a a -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦则由 123,,a a a 生成的线性空间123(,,)L a a a的维数是16. 设A 为三阶方阵,其特征值分别为1、2、3,则1A E --=17.设111,21t a β-⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,且a 与β正交,则t = 18.方程1231x x x +-=的通解是19.二次型212341223344(,,,)5f x x x x x x x x x x x =+++所对应的对称矩阵是20.若00100A x =⎢⎥⎢⎥⎥⎥⎦是正交矩阵,则x =三、计算题 (本大题共6小题,每小题9分,共54分)21.计算行列式1112112112112111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 22.设010111101A ⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦= 112053-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦B = ,且X 满足X=AX+B,求X23.求线性方程组的123412345221.53223x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩12x x 的通解,24.求向量组 (2,4,2),(1,1,0),(2,3,1),(3,5,2)====1234a a a a 的一个极大线性无关组,并把其余向量用该极大线性无关组表示。

线性代数02198自考2006年-2017年真题试题(卷)与答案(新)

线性代数02198自考2006年-2017年真题试题(卷)与答案(新)

2006年10月高等教育自学考试课程代码:21981.设A 是4阶矩阵,则|-A|=( ) A .-4|A| B .-|A| C .|A|D .4|A|2.设A 为n 阶可逆矩阵,下列运算中正确的是( ) A .(2A )T =2A TB .(3A )-1=3A -1C .[(A T )T ]-1=[(A -1)-1]TD .(A T )-1=A3.设2阶方阵A 可逆,且A -1=⎪⎭⎫ ⎝⎛--2173,则A=( )A .⎪⎭⎫ ⎝⎛--3172B .⎪⎭⎫ ⎝⎛3172C .⎪⎭⎫ ⎝⎛--3172 D .⎪⎭⎫ ⎝⎛2173 4.设向量组α1,α2,α3线性无关,则下列向量组线性无关的是( ) A .α1,α2,α1+α2 B .α1,α2,α1-α2 C .α1-α2,α2-α3,α3-α1D .α1+α2,α2+α3,α3+α15.向量组α1=(1,0,0),α2=(0,0,1),下列向量中可以由α1,α2线性表出的是( ) A .(2,0,0) B .(-3,2,4) C .(1,1,0)D .(0,-1,0)6.设A ,B 均为3阶矩阵,若A 可逆,秩(B )=2,那么秩(AB )=( ) A .0 B .1 C .2D .37.设A 为n 阶矩阵,若A 与n 阶单位矩阵等价,那么方程组Ax=b ( ) A .无解 B .有唯一解C .有无穷多解D .解的情况不能确定8.在R 3中,与向量α1=(1,1,1),α2=(1,2,1)都正交的单位向量是( ) A .(-1,0,1) B .21(-1,0,1) C .(1,0,-1)D .21(1,0,1)9.下列矩阵中,为正定矩阵的是( ) A .⎪⎪⎭⎫ ⎝⎛003021311B .⎪⎪⎭⎫⎝⎛111121111C .⎪⎪⎭⎫ ⎝⎛--100021011D .⎪⎪⎭⎫ ⎝⎛-10002101110.二次型f(x 1,x 2,x 3)=323121232221x x 8x x 2x x 4x 3x 4x ++-++的秩等于( )A .0B .1C .2D .3二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

(完整版)全国自考历年线性代数试题及答案

(完整版)全国自考历年线性代数试题及答案

(完整版)全国⾃考历年线性代数试题及答案浙02198# 线性代数试卷第1页(共54页)全国2010年1⽉⾼等教育⾃学考试《线性代数(经管类)》试题及答案课程代码:04184试题部分说明:本卷中,A T 表⽰矩阵A 的转置,αT 表⽰向量α的转置,E 表⽰单位矩阵,|A |表⽰⽅阵A 的⾏列式,A -1表⽰⽅阵A 的逆矩阵,r (A )表⽰矩阵A 的秩.⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共30分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将代码填写在题后的括号内。

错选、多选或未选均⽆分。

1.设⾏列式==1111034222,1111304z y x zy x则⾏列式()A.32B.1C.2D.38 2.设A ,B ,C 为同阶可逆⽅阵,则(ABC )-1=() A. A -1B -1C -1 B. C -1B -1A -1 C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=() A.-32 B.-4 C.4D.324.设α1,α2,α3,α4 是三维实向量,则() A. α1,α2,α3,α4⼀定线性⽆关 B. α1⼀定可由α2,α3,α4线性表出 C.α1,α2,α3,α4⼀定线性相关D. α1,α2,α3⼀定线性⽆关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为() A.1 B.2 C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性⽅程组Ax =0的基础解系中所含向量的个数是()A.1B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是() A.m ≥nB.Ax =b (其中b 是m 维实向量)必有唯⼀解浙02198# 线性代数试卷第2页(共54页)C.r (A )=mD.Ax =0存在基础解系8.设矩阵A =??---496375254,则以下向量中是A 的特征向量的是() A.(1,1,1)T B.(1,1,3)T C.(1,1,0)TD.(1,0,-3)T9.设矩阵A =--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ()A.4B.5C.6D.710.三元⼆次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为()A.??963642321 B.??963640341 C.??960642621 D.??9123042321⼆、填空题(本⼤题共10⼩题,每⼩题2分,共20分)请在每⼩题的空格中填上正确答案。

全国自考历年线性代数试题及答案

全国自考历年线性代数试题及答案

全国20XX 年1月高等教育自学考试 《线性代数(经管类)》试题及答案课程代码:04184试题部分说明:本卷中,A T 表示矩阵A 的转置,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩.一、单项选择题(本大题共10小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将代码填写在题后的括号内。

错选、多选或未选均无分。

1.设行列式==1111034222,1111304z y x zy x 则行列式( ) A.32B.1C.2D.38 2.设A ,B ,C 为同阶可逆方阵,则(ABC )-1=( ) A. A -1B -1C -1 B. C -1B -1A -1 C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=( ) A.-32 B.-4 C.4D.324.设α1,α2,α3,α4 是三维实向量,则( ) A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出 C. α1,α2,α3,α4一定线性相关D. α1,α2,α3一定线性无关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( ) A.1 B.2 C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性方程组Ax =0的基础解系中所含向量的个数是( )A.1B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是( ) A.m ≥n B.Ax =b (其中b 是m 维实向量)必有唯一解 C.r (A )=mD.Ax =0存在基础解系8.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---496375254,则以下向量中是A 的特征向量的是( )A.(1,1,1)TB.(1,1,3)TC.(1,1,0)TD.(1,0,-3)T9.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ( )A.4B.5C.6D.710.三元二次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为( )A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963642321 B.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963640341 C.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡960642621 D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9123042321二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线性代数考试练习题带答案大全(二)

线性代数考试练习题带答案大全(二)

线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。

(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。

二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。

9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。

(完整版)历年全国自考线性代数试题及答案

(完整版)历年全国自考线性代数试题及答案

浙02198# 线性代数试卷 第1页(共25页)全国2010年7月高等教育自学考试试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行列式;E 表示单位矩阵。

1.设3阶方阵A=[α1,α2,α3],其中αi (i=1,2,3)为A 的列向量, 若|B |=|[α1+2α2,α2,α3]|=6,则|A |=( )A.-12 B.-6 C.6 D.122.计算行列式=----32320200051020203( )A.-180 B.-120C.120 D.1803.设A =⎥⎦⎤⎢⎣⎡4321,则|2A *|=( )A.-8 B.-4C.4 D.8 4.设α1,α2,α3,α4都是3维向量,则必有 A. α1,α2,α3,α4线性无关 B. α1,α2,α3,α4线性相关 C. α1可由α2,α3,α4线性表示D. α1不可由α2,α3,α4线性表示5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则R (A )=( )A .2 B 3C .4 D .56.设A 、B 为同阶矩阵,且R (A )=R (B ),则( )A .A 与B 相似B .|A |=|B |C .A 与B 等价D .A 与B 合同7.设A 为3阶方阵,其特征值分别为2,l ,0则|A +2E |=( )A .0 B .2C .3D .248.若A 、B 相似,则下列说法错误..的是( )A .A 与B 等价 B .A 与 B 合同C .|A |=|B | D .A 与B 有相同特征 9.若向量α=(1,-2,1)与β= (2,3,t )正交,则t =( )A .-2 B .0C .2D .410.设3阶实对称矩阵A 的特征值分别为2,l ,0,则( )A .A 正定 B .A 半正定C .A 负定D .A 半负定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

全国2010年1月高等教育自学考试线性代数试题

全国2010年1月高等教育自学考试线性代数试题

全国2010年1月高等教育自学考试线性代数试题课程代码:02198说明:本卷中,A T表示矩阵A的转置,αT表示向量α的转置,E表示单位矩阵,|A|表示方阵A的行列式,A-1表示方阵A的逆矩阵,R(A)表示矩阵A的秩.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设行列式()A. B.1C.2D.2.设A,B,C为同阶可逆方阵,则(ABC)-1=()A. A-1B-1C-1B. C-1B-1A-1C. C-1A-1B-1D. A-1C-1B-13.设α1,α2,α3,α4是4维列向量,矩阵A=(α1,α2,α3,α4),如果|A|=2,则|-2A|=()A.-32B.-4C.4D.324.设方阵A满足A5=E,则必有()A.A=EB.A=-EC.|A|=1D.|A|=-15.设α1,α2,α3,α4 是三维实向量,则()A. α1,α2,α3,α4一定线性无关B. α1一定可由α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关D. α1,α2,α3一定线性无关6.设A是4×6矩阵,R(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是()A.1B.2C.3D.47.设A= ,则以下向量中是A的特征向量的是()A.(1,1,1)TB.(1,1,3)TC.(1,1,0)TD.(1,0,-3)T8.设矩阵A= 的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ()A.4B.5C.6D.79.三元二次型f (x1,x2,x3)= 的矩阵为()A. B.C. D.10.设矩阵A= 是正定矩阵,则a满足()A.a<2B.a=2C.a=6D.a>6二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

错填、不填均无分。

【自考复习】02198 线性代数

【自考复习】02198 线性代数

02198 线性代数 复习资料一、线性代数的基础内容:1、行列式——行列式的定义及计算性质(7条),克莱姆法则;2、矩阵——运算(包括相等、加法、数乘;转置,乘法,逆);矩阵的行列式、伴随矩阵;初等变换(包括行、列变换及与矩阵乘法的关系,求逆等);行等价标准形(行阶梯形、行简化阶梯形)及标准形;矩阵的秩;分块矩阵3、向量——线性组合、表示、相关性;秩及极大无关组 特别的,除理解概念外,尽可能深刻的理解初等变换在解决矩阵相关问题中的作用;初等变换与矩阵乘积运算的关系;矩阵的秩与向量组的秩之间的关系;如何借助矩阵的初等行变换去求向量组的秩及其极大无关组二、线性代数的应用性内容 1、线性方程组求解:i)齐次的0Ax =,讨论有不全为零解的条件,解的性质和基础解系(不唯一)—格式化的求基础解系的步骤;ii)非齐次的Ax b =,讨论有解的条件(唯一解、无穷多解),解的性质和结构—格式化的解题步骤2、向量空间:基、坐标、过渡矩阵、坐标变换公式;特殊的基,自然基和标准正交基及施密特正交化方法;正交矩阵3、特征值特征向量:i)特征值、特征向量——格式化的求解步骤,关键是在理解这组概念及其性质;ii)矩阵对角化:矩阵可对角化的条件;特征向量的性质;相似矩阵iii)实对称矩阵正交对角化:实对称矩阵特征值特征向量的性质(特征值都为实数,属于不同特征值的特征向量正交)——格式化的对角化步骤4、二次型:i)二次型与对称矩阵的关系ii) 利用正交变换的方法化二次型为标准型相当于实对称矩阵的正交对角化;配方法化二次型为标准形;合同矩阵(与等价、相似的关系)iii)二次型的规范形与惯性定理:正惯性指数与负惯性指数唯一确定 iv)正定二次型与正定矩阵:如何判别?——四个等价的条件(正定;正惯性指数为n ;存在P 使TPP A =;所有特征值大于零)第一章 行列式关键字:行列式的概念和基本性质 行列式按行(列)展开定理 克莱默法则一、1.行列式定义及相关概念:(这是行列式的递推法定义)由2n 个数(,1,2,,)ij a i j n =组成的n阶行列式111212122212n nn n nna a a a a aD a a a =是一个算式,特别当1n=时,定义1111||D a a ==;当2,n ≥时1111121211111nn n j jj D a A a A a A a A ==+++=∑,其中111(1)j j j A M +=-,1j M 是D 中去掉第1行第j 列全部元素后按照原顺序拍成的1n -阶行列式,称为元素1j a 的余子式,1j A 为元素1j a 的代数余子式。

全国自学考试线性代数历年考试真题及答案

全国自学考试线性代数历年考试真题及答案

全国自学考试线性代数历年考试真题及答案2003年4月全国自学考试线性代数答案第一部分选择题(共20分)一、单项选择题(本大题共10小题。

每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.对任意n阶方阵A、B总有( )A.AB=BA B.|AB|=|BA|2.在下列矩阵中,可逆的是 ( )3.设A是3阶方阵( )A.-2D.24.设A是m×n矩阵,则齐次线方程线Ax=0仅有零解的充分必要条件是 ( ) A.A的行向量组线性无关 B.A的行向量组线性相关C.A的列向量组线性无关 D.A的列向量组线性相关5.设有m维向量组,则 ( )A.当m<n时,(I)一定线性相关 B.当m>n时,(I)一定线性相关C.当m<n时,(I)一定线性无关 D.当m>n时,(I)一定线性无关6.已知是非齐次线性方程组Ax=b的两个不同的解,是其导出组Ax=0的一个基础解系,为任意常数,则方程组Ax=b的通解可表成 ( )7.设n阶可逆矩阵A有一个特征值为2,对应的特征向量为x,则下列等式中不正确的是( )A.Ax=2x8.设矩阵的秩为2,则λ= ( )A.2 8.1C.0 D.-l9.二次型的矩阵是( )10.二次型是 ( )A.正定的 B.半正定的C.负定的 D.不定的第二部分非选择题(共80分)二、填空题(本大题共10小题。

每小题2分,共20分)请在每小题的空格中填上正确答案。

错选、不填均无分。

1 1.行列式的值为___.12.设向量a=(2,1,2),则与它同方向的单位向量为__.13.设α=(2,1,-2),β=(1,2,3),则2α=3β=____.14.向量组a=(1,2,3,4,5)的秩为____.15.设m×n矩阵A的,m个行向量线性无关,则矩阵的秩为____.16.若线性方程组无解,则=______.17.设2阶方阵均为2维列向量,且|A|=|B|=1,则|A+B|=_______.18.设矩阵,则A的全部特征值为___.19.设P为n阶正交矩阵,α、β为n维列向量,已知内知(α,β)=-l,则(Pa,Pβ)________20.设二次型的正惯性指数为P,负惯性指数为q,则p-q=______.三、计算题(本大题共8小题,每小题6分,共48分)21.设向量22.设,矩阵X满足方程求矩阵X.23.当t取何值时,向量组线性相关?24.求下列矩阵的秩:25.设矩阵矩阵A由矩阵方程确定,试求的通解(要求用它的一个特解和导出组的基础解系表示).27.设3阶方阵A的三个特征值为的特征向量依次为求方阵A.28.设为正定二次型,试确定实数a的最大取值范围.四、证明题(本大题共2小题,每小题6分,共12分)30.设向量β可由向量组线性表示.试证明:线性表示法唯一的充分必要条件是线性无关.参考答案一、单项选择题二、填空题11.O13.(1,-4,-l3)14.115.ml6.017.418.1,1,-l19.-l20.O三、计算题知当且仅当t=3时该向量组线性相关.所求通解x=都是非零列向量,故题设条件说明A有特征值对应的特征向量分别为因为A为3阶方阵.故1,0.-l就是A的全部特征值,因A的特征值互不相同,于是由推论4.1知A可对角化,令矩阵由上式得28.解,的矩阵为,A的顺序主子式为四、证明题所以30.证由条件,存在常数若表示法唯一,设有一组数2005年10月自考线性代数试题答案全国2004年10月高等教育自学考试线性代数试题课程代码:02198试卷说明:A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年7月高等教育自学考试全国统一命题考试线性代数试卷
课程代码2198
试卷说明:A T表示矩阵A的转置矩阵,E表示单位矩阵,|A|表示方阵A的行列式,在A可逆时,A-1表示A的逆矩阵,||α||表示向量α的长度。

1.设abe≠0,则三阶行列式的值是()
A.a
B.-b
C.0
D.abc
2.若子阶方阵。

等价于矩阵,则A的秩是()
A.0
B.1
C.2
D.3
3.设A为n阶方阵,且A3=E,则以下结论一定正确的是()
A.A—E
B.A不可逆
C.A可逆,且A-1=A
D.A可逆,且A-1=A2。

4.设A为3阶矩阵,若|A|=k,则|—kA|是()
A.-k.B.-3k C.-k D.k3
5.设α1,α2,α3。

线性相关,则以下结论正确的是()
A.α1,α2一定线性相关
B.α1,α3一定线性相关
C.α1,α2一定线性无关
D.存在不全为零的数k l,k2,k3使k1αl+k2α2+k3α3=0
6.设u1,u2是非齐次线性方程组Ax=b的两个解,则以下结沦正确的是()A.u l+u2是Ax=b的解
B.u l—u2是Ax=b的解
C.ku1是Ax=b的解(这里k≠1)
D.u1一u2是Ax=b的解
7.设3阶矩阵A的特征值为l,3,5,则A的行列式|A|等于()A.3
B.4
C.9
D.15
8.设矩阵A= ,则A是()
A.正交矩阵
B.正定矩阵
C.对称矩阵
D.反对称矩阵
9.二次型的矩阵是()
A.
B.
C.
D.
10.设是矩阵A的属于特征值λ的特征向量,则以下结论正确的是()A.是λ对应的特征向量
B.2 是λ对应的特征向量
C.一定线性相关
D.一定线性无关
二、填空题(本大题共10小题.每小题2分.共20分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

11.矩阵A=秩为_____________。

12.排列12453的逆序数为_____________。

13.设A,B为3阶方阵,且|A|=9,|B|=3,则|-2AB-1|=_____________。

14.矩阵A满足A3=0,则(E-A)-1=_____________。

15.已知向量α1 =[3,5,8,8],α2=[-l,5,2,0],则_____________。

16.设A为m×n矩阵,且A的n个列向量线性无关,则矩阵A T的秩为_____________。

17.设A是秩为2的4×5矩阵,则齐次线性方程组Ax=0的解集合中线性无关的解向量个数为_____________。

18.设P为n阶正交矩阵,r是一个n维列向量,且||x||=3,则||Px||=_____________。

19.设A为3阶实对称矩阵,α=[1,1,3],β=[4,5,a]T分别是属于A的相异特征值λ1与λ2的特征向量_____________。

20.设二次型的正惯性指数为p,负惯性指数为q,则p—q= _____________。

三、计算题 (本大题共6小题。

每小题8分.共48分)
21.计算行列式
22.设,B为3阶矩阵,且它们满足,求B。

23.求向量组的一个最大线性无关组,并将其它向量用此最大线性无关组线性表示。

24.求下列齐次线性方程组的一个基础解系,并以此写出其结构式通解。

25.设3阶矩阵A的特征值为1,2,3,相应的特征向量为,求A。

26.已知二次型f(x1,x2,x3) -2 x1 x2+6 x1 x3-6 x2 x3的秩是2。

(1)求参数a。

(2)将f(x1,x2,x3)化为规范形.
四、证明题(本大题共2小题,每小题6分,共12分)
27.设向量组α1,α2,α3线性无关,证明2α1+3α2,α2+4α3,5α3+α1线性无关。

28.设A为n阶正定矩阵,B是与A合同的n阶矩阵,证明B也是正定矩阵。

相关文档
最新文档