高一 平面向量讲义

合集下载

平面向量讲义

平面向量讲义

平面向量讲义考纲泛读高考展望①理解平面向量的概念,理解平面向量和向量相等的含义,理解向量的几何表示.②理解向量加、减法及向量数乘运算,并理解其几何意义,以及两个向量共线的含义.了解向量的线性运算性质及其几何意义.近几年的高考数学试题中,平面向量每年都考,题型多以填空题为主,有时也与三角函数、解析几何知识综合在一起以解答题形式进行考查,特别是向量的数量积的概念,几乎年年考查,估计今后几年仍然会保持这种命题趋势.③了解平面向量基本定理及其意义,掌握平面向量的正交分解及其坐标表示,会用坐标表示平面向量的加、减法运算与数乘运算,理解用坐标表示的平面向量共线的条件.④掌握平面向量的数量积的含义及其物理意义,了解平面向量的数量积与向量投影的关系.掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的平行或垂直关系.预计2012年的高考,一是考查平面向量的基本概念及运算,此类题一般难度不大,用以解决有关长度、夹角、垂直等问题;二是有可能出现以向量为工具,在三角函数、解析几何、数列等知识交汇点处命题的题目.⑤会用向量方法解决某些简单的平面几何问题,会用向量方法解决某些简单的力学问题和其他一些实际问题.⑥理解复数的概念,如复数相等、共轭复数、复数与复平面内的点或向量的一一对应关系.⑦理解复数的四则运算,了解复数的几何意义. 高考对复数知识的考查要求不高,多以填空题的形式考查复数的概念与复数的四则运算.因此,在考试中,应力求在与复数知识相关的小题中拿满分.一、平面向量的概念1、向量的概念2、向量的表示3、几种特殊向量:零向量、单位向量、共线向量(平行向量)例1、判断下列命题真假或给出问题的答案(1)平行向量的方向一定相同?(2)不相等的向量一定不平行.(3)与零向量相等的向量是什么向量?(4)与任何向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(6)两个非零向量相等的条件是什么?(7)共线向量一定在同一直线上吗?【变式练习1】下列命题中正确的有_______.①单位向量都相等;②长度相等且方向相反的两个向量不一定是共线向量;③若非零向量a ,b 满足|a|=|b|,且a 与b 同向,则a>b ;④对于任意向量a 、b ,必有|a +b|≤|a|+|b|.二、向量的运算(包括线性运算和坐标运算)1、加法运算:平行四边形法则、矢量三角形法则2、减法运算:三角形法则3、数乘运算例2、在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A.14a +12b B.23a +13b C.12a +14b D.13a +23b 例3、(2010·广东中山六校联考)在△ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD=13CA +λCB 则λ等于( ) A.23 B.13 C .-13 D .-23三、向量的数量积1、数量积的定义2、数量积的运算公式:3、数量积的作用:4、向量垂直与平行的充要条件【例4】设a 、b 、c 是任意的非零平面向量,且相互不共线,则下列命题①(a ·b)c -(c ·a)b =0;②|a|-|b|<|a -b|;③(b ·c)a -(c ·a)b 不与c 垂直;④(3a +2b)·(3a -2b)=9|a|2-4|b|2.其中是真命题的有________.【变式练习】下列命题中正确的个数是________.①若a ·b =0,则a =0或b =0;②(a ·b)·c =a ·(b ·c);③若a ·b =b ·c(b ≠0),则a =c ;④a ·b =b ·a ;⑤若a 与b 不共线,则a 与b 的夹角为锐角【变式练习】已知a 和b 的夹角为60°,|a|=10,|b|=8,求:(1)|a +b|;(2)a +b 与a 的夹角θ的余弦值.【例3】设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a ⊥(b -2c),求tan(α+β)的值;(2)求|b +c|的取值范围;(3)若tan αtan β=16,求证a ∥b. 例4(2010·湖南高考)在Rt △ABC 中,∠C =90°,AC =4,则AB ·AC 等于( )A .-16B .-8C .8D .16四、平面向量的基本定理1、基本定理2、基底 例5。

高一平面向量教案讲义(部分试题转自网络)

高一平面向量教案讲义(部分试题转自网络)

高一数学平面向量(部分试题转自网络)知识点导航1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+ .⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++ ;③00a a a +=+= .⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++.3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=--.设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x yy A B=--. 4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+;③()a b a b λλλ+=+ .⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ==.baCBAa b C C -=A -AB =B5、向量共线定理:向量()0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、()0b b ≠ 共线.6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.8、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅= .②当a 与b 同向时,a b a b ⋅= ;当a 与b反向时,a b a b ⋅=- ;22a a a a ⋅== 或a a a =⋅.③a b a b ⋅≤ .⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅ ;③()a b c a c b c +⋅=⋅+⋅ .⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则1212a b x x y y ⋅=+.若(),a x y = ,则222a x y =+ ,或22a x y =+.设()11,a x y = ,()22,b x y = ,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y = ,θ是a 与b 的夹角,则121222221122cos x x y y a ba b x y x y θ+⋅==++.典型问题问题1. 平面向量的实际背景及基本概念1.下列各量中不是向量的是 【 】 A .浮力 B .风速 C .位移 D .密度2.下列说法中错误..的是 【 】 A .零向量是没有方向的 B .零向量的长度为0 C .零向量与任一向量平行 D .零向量的方向是任意的3.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是 【 】A .一条线段B .一段圆弧C .圆上一群孤立点D .一个单位圆4.下列命题:①方向不同的两个向量不可能是共线向量;②长度相等、方向相同的向量是相等向量;③平行且模相等的两个向量是相等向量;④若a ≠b ,则|a |≠|b |. 其中正确命题的个数是 【 】A .1B .2C .3D .45.下列命题中,正确的是 【 】A . 若a b = ,则a b =B . 若a b = ,则//a bC . 若a b > ,则a b >D . 若1a = ,则1a =6.在△ABC 中,AB =AC ,D 、E 分别是AB 、AC 的中点,则 【 】A . AB 与AC 共线 B . DE 与CB 共线 C . AD 与AE 相等 D . AD与BD 相等7.已知非零向量a ∥b ,若非零向量c ∥a ,则c 与b 必定 .8.已知a 、b 是两非零向量,且a 与b 不共线,若非零向量c 与a 共线,则c 与b 必定 .9.已知|AB |=1,| AC |=2,若∠BAC =60°,则|BC |= .10.在四边形ABCD 中, AB =DC ,且|AB |=|AD |,则四边形ABCD 是 .问题2. 向量的加法运算及其几何意义1.设00,a b 分别是与,a b向的单位向量,则下列结论中正确的是 【 】A .00a b =B .01a b ⋅=C .00||||2a b +=D .00||2a b +=2.在平行四边形中ABCD ,,AB AD ==a b ,则用a 、b 表示AC 的是 【 】A .a +aB .b +bC .0D .a +b3.若a +b +c =0,则a 、b 、c 【 】A .一定可以构成一个三角形;B .一定不可能构成一个三角形;C .都是非零向量时能构成一个三角形;D .都是非零向量时也可能无法构成一个三角形 4.一船从某河的一岸驶向另一岸船速为1v ,水速为2v ,已知船可垂直到达对岸则 【 】A .21v v <B .21v v >C .21v v ≤D .21v v ≥5.若非零向量,a b 满足+=a b b ,则 【 】A.2>2+a a b B.22<+a a b C.2>+2b a b D. 22<+b a b 6.一艘船从A 点出发以23m/h k 的速度向垂直于对岸的方向行驶,船的实际航行的速度的大小为4km/h ,求水流的速度7.一艘船距对岸43km ,以23km/h 的速度向垂直于对岸的方向行驶,到达对岸时,船的实际航程为8km ,求河水的流速8.一艘船从A 点出发以1v 的速度向垂直于对岸的方向行驶,同时河水的流速为2v ,船的实际航行的速度的大小为4km/h ,方向与水流间的夹角是60︒,求1v 和2v9.一艘船以5km/h 的速度在行驶,同时河水的流速为2km/h ,则船的实际航行速度大小最大是km/h ,最小是km/h1.在△ABC中,BC=a,CA=b,则AB等于【】A.a+bB.-a+(-b)C.a-bD.b-a2.下列等式:①a+0=a②b+a=a+b③-(-a)=a④a+(-a)=0 ⑤a+(-b)=a-b 正确的个数是【】A.2B.3C.4D.53.下列等式中一定能成立的是【】A.AB+AC=BCB.AB-AC=BCC. AB+AC=CBD.AB-AC=CB4.化简OP-QP+PS+SP的结果等于【】A.QPB.OQC.SPD.SQ5.如图,在四边形ABCD中,根据图示填空:a+b= ,b+c= ,c-d= ,a+b+c-d= .6.一艘船从A点出发以23km/h的速度向垂直于对岸的方向行驶,而船实际行驶速度的大小为4 km/h,则河水的流速的大小为.7.若a、b共线且|a+b|<|a-b|成立,则a与b的关系为.8.在正六边形ABCDEF中,AE=m,AD=n,则BA= .9.已知a、b是非零向量,则|a-b|=|a|+|b|时,应满足条件.10.在五边形ABCDE中,设AB=a,AE=b,BC=c,ED=d,用a、b、c、d表示CD.1.下列命题中正确的是 【 】A .OA OB AB -= B .0AB BA +=C .00AB ⋅=D .AB BC CD AD ++=2.下列命题正确的是 【 】A .单位向量都相等B .若a 与b 是共线向量,b 与c 是共线向量,则a 与c 是共线向量C .||||b a b a -=+,则0a b ⋅=D .若0a 与0b 是单位向量,则001a b ⋅=3. 已知向量,01≠e R ∈λ,+=1e a λb e ,2=21e 若向量a 与b 共线,则下列关系一定成立的是 【 】A . 0=λ B . 02=e C .1e ∥2e D .1e ∥2e 或0=λ4.对于向量,,a b c和实数λ ,下列命题中真命题是 【 】A .若 0 =⋅b a ,则0a = 或0b =B .若0a λ= ,则0λ=或0a =C .若22a b = ,则a b = 或a b =- D .若 c a b a ⋅=⋅,则b c =5.下列命题中,正确的命题是 【 】A .a b a +≥ 且.a b b +≥B .a b a +≥ 或.a b b +≥C .若,a b c >> 则c b b a +>+D .若a 与 b 不平行,则a b a b +>+6.已知ABCD 是平行四边形,O 为平面上任意一点,设,,,OA a OB b OC c OD d ====,则有【 】A .0 =+++d c b aB .0 =-+-d c b aC .0 =--+d c b aD .0 =+--d c b a7.向量a与 b 都不是零向量,则下列说法中不正确的是 【 】A .向量a 与 b 同向,则向量a + b 与a的方向相同B .向量a 与 b 同向,则向量a + b 与b的方向相同 C .向量a 与 b 反向,且,b a>则向量a + b 与a 同向 D .向量a 与 b 反向,且,b a<则向量a + b 与a 同向8.若a 、b 为非零向量,且|a +b |=|a |+|b |,则有 【 】A .a ∥b 且a 、b 方向相同B .a =bC .a =-bD .以上都不对9.在四边形ABCD 中,AB -DC -CB等于 【 】A . ACB .BDC .AD D . AB巩固练习与课后作业一、选择题1.化简AC - BD + CD - AB得( )A .AB B .DAC .BCD .0 2.设00,a b 分别是与,a b向的单位向量,则下列结论中正确的是( )A .00a b =B .001a b ⋅=C .00||||2a b +=D .00||2a b +=3.已知下列命题中:(1)若k R ∈,且0kb = ,则0k =或0b =,(2)若0a b ⋅= ,则0a = 或0b =(3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a(4)若a 与b 平行,则||||a b a b =⋅其中真命题的个数是( )A .0B .1C .2D .3 4.下列命题中正确的是( )A .若a ⋅b =0,则a =0或b =0B .若a ⋅b =0,则a ∥bC .若a ∥b ,则a 在b 上的投影为|a|D .若a ⊥b ,则a ⋅b =(a ⋅b)25.已知平面向量(3,1)a = ,(,3)b x =- ,且a b ⊥,则x =( )A .3-B .1-C .1D .36.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别是( )A .0,24B .24,4C .16,0D .4,0二、填空题1.若OA =)8,2(,OB =)2,7(-,则31AB =_________ 2.平面向量,a b 中,若(4,3)a =-,b =1,且5a b ⋅= ,则向量b =____。

(完整版)平面向量全部讲义

(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。

高一平面向量讲义

高一平面向量讲义

平面向量讲义§2.1平面向量的实际背景及基本概念1.向量:既有,又有的量叫向量.2.向量的几何表示:以A为起点,B为终点的向量记作.3.向量的有关概念:(1)零向量:长度为的向量叫做零向量,记作.(2)单位向量:长度为的向量叫做单位向量.(3)相等向量:且的向量叫做相等向量.(4)平行向量(共线向量):方向的向量叫做平行向量,也叫共线向量.①记法:向量a平行于b,记作.②规定:零向量与平行.考点一向量的有关概念例1判断下列命题是否正确,并说明理由.①若a≠b,则a一定不与b共线;②若=,则A、B、C、D四点是平行四边形的四个顶点;③在平行四边形中,一定有=;④若向量a与任一向量b 平行,则a=0;⑤若a=b,b=c,则a=c;⑥若a∥b,b∥c,则a∥c.变式训练1判断下列命题是否正确,并说明理由.(1)若向量a与b同向,且>,则a>b;(2)若向量=,则a与b 的长度相等且方向相同或相反;(3)对于任意=,且a与b的方向相同,则a=b;(4)向量a与向量b平行,则向量a与b方向相同或相反.考点二向量的表示方法例2一辆汽车从A点出发向西行驶了100到达B点,然后又改变方向向西偏北50°走了200到达C点,最后又改变方向,向东行驶了100到达D点.(1)作出向量、、;(2)求|.考点三相等向量与共线向量例3如图所示,O是正六边形的中心,且=a,=b,=c.(1)与a的模相等的向量有多少个?(2)与a的长度相等,方向相反的向量有哪些?(3)与a共线的向量有哪些?(4)请一一列出与a,b,c相等的向量.§2.2平面向量的线性运算1.向量的加法法则(1)三角形法则如图所示,已知非零向量a,b,在平面内任取一点A,作=a,=b,则向量叫做a与b的和(或和向量),记作,即a+b=+=.上述求两个向量和的作图法则,叫做向量求和的三角形法则.对于零向量与任一向量a的和有a+0=+=.(2)平行四边形法则如图所示,已知两个不共线向量a,b,作=a,=b,则O、A、B 三点不共线,以,为邻边作,则对角线上的向量=a+b,这个法则叫做两个向量求和的平行四边形法则.2.向量加法的运算律(1)交换律:a+b=.(2)结合律:(a+b)+c=.3.相反向量(1)定义:如果两个向量长度,而方向,那么称这两个向量是相反向量.(2)性质:①对于相反向量有:a+(-a)=.②若a,b互为相反向量,则a=,a+b=.③零向量的相反向量仍是.4.向量的减法(1)定义:a-b=a+(-b),即减去一个向量相当于加上这个向量的.(2)作法:在平面内任取一点 O ,作=a ,=b ,则向量 a -b =.如图所示.(3)几何意义:如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点 为,被减向量的终点为的向量.例如:-=.5.向量数乘运算实数 λ 与向量 a 的积是一个,这种运算叫做向量的,记作,其长度与方向规定如下: (1)|λ=.(2)λa (a ≠0)的方向错误!;特别地,当 λ=0 或 a =0 时,0a =或 λ0=.6.向量数乘的运算律 (1)λ(a μ)=.(1)(λ+μ)a =. (3)λ(a +b )=.特别地,有(-λ)a ==; λ(a -b )=.7.共线向量定理向量 a (a ≠0)与 b 共线,当且仅当有唯一一个实数 λ,使.8.向量的线性运算向量的、 运算统称为向量的线性运算,对于任意向量 a 、b ,以及任意实数 λ、μ 、μ ,恒 有λ(μ a ±μ b )=.考点一 运用向量加法法则作和向量例 1如图所示,已知向量 a 、b ,求作向量 a +b .变式训练 1 如图所示,已知向量 a 、b 、c ,试作和向量 a +b +c .考点二 运用向量加减法法则化简向量 例 2 化简:(1)+;(2)++;(3)++++. (4)(-)-(-).(5)(-)-(-); (6)(++)-(--).1 212变式训练2如图,在平行四边形中,O是和的交点.(1)+=;(2)++=;(3)++=;(4)++=.变式训练3如图所示,O是平行四边形的对角线、的交点,设=a,=b,=c,求证:b+c-a=.考点三向量的共线例3设e,e是两个不共线的向量,若向量m=-e+(k∈R)与向量n=e-2e共线,则121221()A.k=0B.k=1C.k=2D.k=变式训练4已知△的三个顶点A,B,C及平面内一点P,且++=,则( )A.P在△内部B.P在△外部C.P在边上或其延长线上D.P在边上考点四:三点共线例4两个非零向量a、b不共线.(1)若=a+b,=2a+8b,=3(a-b),求证:A、B、D三点共线;(2)求实数k使+b与2a+共线.变式训练5已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,则一定共线的三点是( ) A.B、C、D B.A、B、C C.A、B、D D.A、C、D变式训练 6 已知平面内 O ,A ,B ,C 四点,其中 A ,B ,C 三点共线,且=+,则 x +y =.§2.3 平面向量的基本定理及坐标表示1.平面向量基本定理 (1)定理:如果 e ,e 是同一平面内的两个向量,那么对于这一平面内的向量 a ,实数 λ ,λ , 使 a =.(2)基底:把的向量 e ,e 叫做表示这一平面内向量的一组基底.2.两向量的夹角与垂直(1)夹角:已知两个和 b ,作=a ,=b ,则=θ (0°≤θ≤180°),叫做向量 a 与 b 的夹角. ①范围:向量 a 与 b 的夹角的范围是. ②当 θ=0°时,a 与. ③当 θ=180°时,a 与.(2)垂直:如果 a 与 b 的夹角是,则称 a 与 b 垂直,记作.3.平面向量的坐标表示(1)向量的正交分解:把一个向量分解为两个的向量,叫作把向量正交分解.(2)向量的坐标表示:在平面直角坐标系中,分别取与 x 轴、y 轴方向相同的两个,j 作为基 底,对于平面内的一个向量 a ,有且只有一对实数 x ,y 使得 a =,则叫作向量 a 的坐标,叫 作向量的坐标表示.(3)向量坐标的求法:在平面直角坐标系中,若 A (x ,y ),则=,若 A (x ,y ),B (x ,y ),则=. 4.平面向量的坐标运算(1)若 a =(x ,y ),b =(x ,y ),则 a +b =,即两个向量和的坐标等于这两个向量相应坐标 的和.(2)若 a =(x ,y ),b =(x ,y ),则 a -b =,即两个向量差的坐标等于这两个向量相应坐标 的差.(2)若 a =(x ,y ),λ∈R ,则 λa =,即实数与向量的积的坐标等于用这个实数乘原来向量的相 应坐标.5.两向量共线的坐标表示 设 a =(x ,y ),b =(x ,y ). (1)当 a ∥b 时,有. (2)当 a ∥b 且 x y ≠0 时,有.即两向量的相应坐标成比例.6.若=λ,则 P 与 P 、P 三点共线. 当 λ∈时,P 位于线段 P P 的内部,特别地 λ=1 时,P 为线段 P P 的中点; 当 λ∈时,P 位于线段 P P 的延长线上; 当 λ∈时,P 位于线段 P P 的反向延长线上.考点一 对基底概念的理解1 2 1 2 1 21 12 2 1 1 2 2 1 1 2 2 1 1 2 2 2 21 2 1 2 1 2 1 2 1 2例 1 如果 e ,e 是平面 α 内两个不共线的向量,那么下列说法中不正确的是( ) ①λe +μe (λ、μ∈R )可以表示平面 α 内的所有向量;②对于平面 α 内任一向量 a ,使 a =λe +μe 的实数对(λ,μ)有无穷多个; ③若向量 λ e +μ e 与 λ e +μ e 共线,则有且只有一个实数 λ,使得 λ e +μ e =λ(λ e +μ e );④若存在实数 λ,μ 使得 λe +μe =0,则 λ=μ=0. A .①②B .②③C .③④D .②变式训练 1 设 e 、e 是不共线的两个向量,给出下列四组向量:①e 与 e +e ;②e -2e 与 e -2e ; ③e -2e 与 4e -2e ;④e +e 与 e -e . 其中能作为平面内所有向量的一组基底的序号是.(写出所有满足条件的序号)考点二 用基底表示向量例 2 .如图,梯形中,∥,且=2,M 、N 分别是和的中点,若=a ,=b 试用 a ,b 表示、、变式训练 2 如图,已知△中△ ,D 为的中点,E ,F 为的三等分点,若=a ,=b ,用 a ,b 表 示,,.考点三 平面向量基本定理的应用例 3 如图所示, △在中,点 M 是的中点,点 N 在边上,且=2,与相交于点 P ,求证:∶ =4∶1.变式训练 3 如图所示,已知△中,点 C 是以 A 为中点的点 B 的对称点,=2,和交于点 E , 设=a ,=b .(1)用 a 和 b 表示向量、; (2)若=λ,求实数 λ 的值.1 212 1 2 1 1 1 2 2 1 2 2 1 1 1 22 12 21 2 1 2 1 1 2 1 2 2 1 1 2 2 1 1 2 1 2考点四平面向量的坐标运算例4已知平面上三点A(2,-4),B(0,6),C(-8,10),求(1)-;(2)+2;(3)-.变式训练4已知a=(-1,2),b=(2,1),求:(1)2a+3b;(2)a-3b;(3)a-b.考点五平面向量的坐标表示例5已知a=(-2,3),b=(3,1),c=(10,-4),试用a,b表示c.变式训练5设i、j分别是与x轴、y轴方向相同的两个单位向量,a=i-(2m-1)j,b=2i+(m∈R),已知a∥b,求向量a、b的坐标.考点六平面向量坐标的应用例6已知的顶点A(-1,-2),B(3,-1),C(5,6),求顶点D的坐标.变式训练6已知平行四边形的三个顶点的坐标分别为(3,7),(4,6),(1,-2),求第四个顶点的坐标.考点七平面向量共线的坐标运算例7已知a=(1,2),b=(-3,2),当k为何值时,+b与a-3b平行?平行时它们是同向还是反向?变式训练7已知A(2,1),B(0,4),C(1,3),D(5,-3).判断与是否共线?如果共线,它们的方向相同还是相反?考点八平面向量的坐标运算例8已知点A(3,-4)与点B(-1,2),点P在直线上,且|=2|,求点P的坐标.变式训练8已知点A(1,-2),若向量与a=(2,3)同向,|=2,求点B的坐标.考点九利用共线向量求直线的交点例9如图,已知点A(4,0),B(4,4),C(2,6),求与的交点P 的坐标.变式训练9平面上有A(-2,1),B(1,4),D(4,-3)三点,点C在直线上,且=,连接,点E在上,且=,求E点坐标.§2.4 平面向量的数量积1.平面向量数量积(1)定义:已知两个非零向量 a 与 b ,我们把数量叫做 a 与 b 的数量积(或内积),记作 a · b , 即 a · b = θ,其中 θ 是 a 与 b 的夹角.(2)规定:零向量与任一向量的数量积为.(3)投影:设两个非零向量 a 、b 的夹角为 θ,则向量 a 在 b 方向的投影是,向量 b 在 a 方向 上的投影是.2.数量积的几何意义a ·b 的几何意义是数量积 a · b 等于 a 的长度与 b 在 a 的方向上的投影的乘积.3.向量数量积的运算律 (1)a·b =(交换律); (2)(λa )· b ==(结合律); (3)(a +b )· c =(分配律).4.平面向量数量积的坐标表示 若 a =(x ,y ),b =(x ,y ),则 a·b =. 即两个向量的数量积等于.5.两个向量垂直的坐标表示 设两个非零向量 a =(x ,y ),b =(x ,y ), 则 a ⊥ b .6.平面向量的模(1)向量模公式:设 a =(x ,y ),则=. (2)两点间距离公式:若 A (x ,y ),B (x ,y ),则|=.7.向量的夹角公式 设两非零向量 a =(x ,y ),b =(x ,y ),a 与 b 的夹角为 θ,则 θ==.考点一 求两向量的数量积例 1 已知=4,=5,当(1)a ∥b ;(2)a ⊥b ;(3)a 与 b 的夹角为 30°时,分别求 a 与 b 的数 量积.变式训练 1 已知正三角形的边长为 1,求: (1)· ;(2)· ;(3)·.考点二 求向量的模长1 12 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2例2已知==5,向量a与b的夹角为,求+,-.变式训练2已知==1,|3a-2=3,求|3a+.考点三向量的夹角或垂直问题例3设n和m是两个单位向量,其夹角是60°,求向量a=2m+n与b=2n-3m 的夹角.变式训练3已知=5,=4,且a与b的夹角为60°,则当k为何值时,向量-b与a+2b垂直?考点四向量的坐标运算例4已知a与b同向,b=(1,2),a·b=10.(1)求a的坐标;(2)若c=(2,-1),求a(b·c)及(a·b)c.变式训练4若a=(2,3),b=(-1,-2),c=(2,1),则(a·b)·c=;a·(b·c)=.考点五向量的夹角问题例5已知a=(1,2),b=(1,λ),分别确定实数λ的取值范围,使得:(1)a与b的夹角为直角;(2)a与b的夹角为钝角;(3)a与b的夹角为锐角.变式训练5已知a=(1,-1),b=(λ,1),若a与b的夹角α为钝角,求λ的取值范围.考点六向量数量积坐标运算的应用例6已知在△中,A(2,-1)、B(3,2)、C(-3,-1),为边上的高,求|与点D的坐标.变式训练6以原点和A(5,2)为两个顶点作等腰直△角,∠B=90°,求点B和的坐标.§2.5平面向量应用举例1.向量方法在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:a∥b(b≠0)⇔⇔.(2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:a⊥b⇔⇔.(3)求夹角问题,往往利用向量的夹角公式θ==.(4)求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:=.2.力向量力向量与前面学过的自由向量有区别.(1)相同点:力和向量都既要考虑又要考虑.(2)不同点:向量与无关,力和有关,大小和方向相同的两个力,如果不同,那么它们是不相等的.3.向量方法在物理中的应用(1)力、速度、加速度、位移都是.(2)力、速度、加速度、位移的合成与分解就是向量的运算,运动的叠加亦用到向量的合成.(3)动量mν是.(4)功即是力F与所产生位移s的.考点一三角形问题例1点O是三角形所在平面内的一点,满足·=·=·,则点O是△的()A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点变式训练1在△中,已知A(4,1)、B(7,5)、C(-4,7),则边的中线的长是()A.2C.3变式训练2若O是△所在平面内一点,且满足-|=+-2|,△则的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形变式训练3设平面上有四个互异的点A、B、C、D,已知(+-2)·(-)=0,△则的形状一定是.考点二向量的计算例2已知平面上三点A、B、C满足|=3,|=4,|=5.则·+·+·=.变式训练4如图,在△中,点O是的中点,过点O的直线分别交直线、于不同的两点M、N,若=,=,则m+n的值为.考点三向量的应用例3两个大小相等的共点力F,F,当它们夹角为90°时,合力大小为20N,则当它们的12夹角为120°时,合力大小为()A.40N B.10N C.20N D.10N变式训练5在水流速度为4千米/小时的河流中,有一艘船沿与水流垂直的方向以8千米/小时的速度航行,则船实际航行的速度的大小为.。

第一节 平面向量的概念讲义--高三数学一轮复习备考

第一节 平面向量的概念讲义--高三数学一轮复习备考

平面向量与复数第一节平面向量的概念一、课程标准1.向量概念(1)通过对力、速度、位移等的分析,了解平面向量的实际背景,理解平面向量的意义和两个向量相等的含义;(2)理解平面向量的几何表示和基本要素.2.向量运算(1)借助实例和平面向量的几何表示,掌握平面向量加、减运算及运算规则,理解其几何意义;(2)通过实例分析,掌握平面向量数乘运算及运算规则,理解其几何意义.理解两个平面向量共线的含义;(3)了解平面向量的线性运算性质及其几何意义;(4)通过物理中功等实例,理解平面向量数量积的概念及物理意义,会计算平面向量的数量积;(5)通过几何直观了解平面向量投影的概念及投影向量的意义.新高考命题方向:主要考查平面向量的线性运算(加法、减法、数乘向量)及其几何意义、共线向量基本定理,有时也会有创新的新定义问题;题型以选择题、填空题为主,属于中低档题目,偶尔会在解答题中作为工具出现.考查理性思维、数学探究、数学抽象学科素养.二、知识梳理知识点一向量的有关概念名称定义备注向量既有又有的量;向量的大小叫做向量的(或称)平面向量是自由向量零向量长度为的向量记作,其方向是任意的单位向量长度等于长度的向量非零向量a的单位向量为±a|a|平行向量方向或的非零向量(又叫做共线向量)0与任意向量或共线相等向量长度且方向的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量0的相反向量为01.对于平行向量易忽视两点:(1)零向量与任意向量平行;(2)表示两平行向量的有向线段所在的直线平行或重合,易忽视重合这一情况.2.单位向量的定义中只规定了长度,没有方向限制. 知识点二 向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算法则法则(1)交换律:a +b = (2)结合律:(a +b )+c =减法 求a 与b 的相反向量-b 的和的运算叫做a 与b 的差法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算|λa |= ;当λ>0时,λa 的方向与a 的方向 ;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =λ(μa )=(λμ)a ;(λ+μ)a = ;λ(a +b )=知识点三 共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得 . 知识点四 平面向量的数量积 1.向量的夹角 定义图示范围共线与垂直已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则 就是a 与b 的夹角设θ是a 与b 的夹角,则θ的取值范围是θ=0或θ=π⇔ ,⇔a ⊥b• 温馨提醒 •对于两个非零向量a 与b ,由于当θ=0°时,a ·b >0,所以a ·b >0是两个向量a ,b 夹角为锐角的必要不充分条件;a ·b =0也不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b .2.平面向量的数量积 (1)投影向量①如图,设a ,b 是两个非零向量,AB → =a ,CD →=b ,分别过A ,B 作CD 的垂线,垂足分别为A 1,B 1,得到,我们称上述变换为向量a 向向量b 投影,叫做向量a 在向量b 上的投影向量.如图,在平面内任取一点O 作OM → =a ,ON →=b ,过M 作ON 的垂线,垂足为M 1,则就是向量a 在向量b 上的投影向量,设与b 方向相同的单位向量为e ,〈a ,b 〉为θ,则=(|a |cos θ)e .两个向量数量积的几何意义:a ·b 等于a 在b 上的投影数量与b 的模的乘积. (2)向量数量积的运算律①a ·b = ;②(λa )·b =λ(a ·b )= ;③(a +b )·c = .• 温馨提醒 •1.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.2.a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . 3.在用|a |=a 2 求向量的模时,一定要先求出a 2再进行开方.三、基础自测1.若m ∥n ,n ∥k ,则向量m 与向量k ( )A .共线B .不共线C .共线且同向D .不一定共线 2.已知a·b =-122 ,|a |=4,a 和b 的夹角为135°,则|b |为( ) A .12 B .6 C .33 D .33.(易错题)已知两个非零向量a 与b 的夹角为θ,则“a ·b >0”是“θ为锐角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A .4 B .3 C .2 D .05.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA → =a ,OB → =b ,则DC → =________,BC →=________(用a ,b 表示).四、核心题型题型一 平面向量的有关概念及线性运算例1(1) (多选)已知a ,b 是两个单位向量,下列命题中正确的是( )A .|a |=|b |=1B .a ·b =1C .当a ,b 反向时,a +b =0D .当a ,b同向时,a =b(2)设a ,b 都是非零向量,下列四个条件中,一定能使a |a | +b|b |=0成立的是( )A .a =2bB .a ∥bC .a =-13b D .a ⊥b(3)在△ABC 中,D 为AB 的中点,点E 满足EB → =4EC → ,则ED →=( )A .56 AB → -43 AC → B .43 AB → -56 AC → C .56 AB → +43 AC →D .43AB → +56AC →题型二 平面向量共线定理的应用例2(1)已知两个非零向量a ,b 互相垂直,若向量m =4a +5b 与n =2a +λb 共线,则实数λ的值为( )A .5B .3C .52 D .2(2)设a ,b 是不共线的两个向量,已知BA → =a +2b ,BC → =4a -4b ,CD →=-a +2b ,则( )A .A ,B ,D 三点共线 B .B ,C ,D 三点共线 C .A ,B ,C 三点共线 D .A ,C ,D 三点共线(3)已知O 为△ABC 内一点,且AO → =12 (OB → +OC → ),AD → =tAC →,若B ,O ,D 三点共线,则t 的值为( )A .14B .13C .12D .23题型三 平面向量的数量积及应用例3(1)已知在矩形ABCD 中,AB =4,AD =2.若E ,F 分别为AB ,BC 的中点,则DE → ·DF →=( )A .8B .10C .12D .14(2)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM → =2MA → ,CN →=2NA → ,则BC → ·OM →的值为( )A .-15B .-9C .-6D .0(3) 已知|a |=6,e 为单位向量,当向量a ,e 的夹角θ分别等于45°,90°,135°时,求向量a 在向量e 上的投影向量.(4)(2021·全国甲卷)若向量a ,b 满足|a |=3,|a -b |=5,a·b =1,则|b |=________. (5)已知向量a ,b 满足(a +2b )·(5a -4b )=0,且|a |=|b |=1,则a 与b 的夹角θ为( )A .3π4B .π4C .π3D .2π3(6)(2020·全国Ⅱ卷)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________.五、变式训练1.如图所示,在直角梯形ABCD 中,DC → =14 AB → ,BE → =2EC → ,且AE → =rAB → +sAD →,则2r +3s =( )A .1B .2C .3D .42..设两个非零向量a 与b 不共线.(1)若AB → =a +b ,BC → =2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.3.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=( )A .7B .10C .13D .44.非零向量a ,b ,c 满足a ·b =a ·c ,a 与b 的夹角为π6 ,|b |=4,则c 在a 上的投影向量的长度为( )A .2B .23C .3D .4六、作业一轮复习资料《课时作业》437页 A 组:全部 B 组:2、3。

第二章 平面向量讲义(学生版)

第二章 平面向量讲义(学生版)

【典型讲练】
题型一 向量的概念
例 1 判断下列命题是否正确,若不正确,请简述理由.
→ →
(1)向量AB与CD是共线向量,则 A,B,C,D 四点必在一直线上;
(2)单位向量都相等;
(3)任一向量与它的相反向量不相等;
→ →
(4)四边形 ABCD 是平行四边形当且仅当AB=DC;
(5)一个向量方向不确定当且仅当模为 0;
(1)对于任意两个向量,都可利用平行四边形法则求出它们的和向量.(
→ → → →
(2)对于任意的点 A,B,C,D,都有AB+BC+CD+DA=0.(
)
)
(3)如果 a,b 是共线的非零向量,那么 a+b 的方向必与 a,b 之一的方向相同.(
→ → →
(4)若AB+BC+CA=0,则 A,B,C 为一个三角形三个顶点.(
概念.
【要点整合】
1 向量的定义及表示
(1)定义:既有
,又有
的量.
(2)表示:
① 有向线段:带有
的线段,它包含三个要素:
、方向、长度;
② 向量的表示:
(3) 向量与数量
向量:既有
,又有
的量叫做向量.
数量:只有
,没有
的量称为数量.
思考 1 在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别?
要漏掉以表示已知向量的有向线段的终点为起点,起点为终点的向量.
2
巴蜀中学高 2022 届高一(下)数学讲义
练习 2 如图所示,O 是正六边形 ABCDEF 的中心.

(1)与OA的模相等的向量有多少个?

(2)是否存在与OA长度相等、方向相反的向量?若存在,有几个?

平面向量讲义

平面向量讲义

平面向量第一节 平面向量的概念及线性运算一、基础知识1.向量的有关概念(1)向量的定义及表示:既有大小又有方向的量叫做向量.以A 为起点、B 为终点的向量记作AB ―→,也可用黑体的单个小写字母a ,b ,c ,…来表示向量.(2)向量的长度(模):向量AB ―→的大小即向量AB ―→的长度(模),记为|AB ―→|. 2.几种特殊向量单位向量有无数个,它们大小相等,但方向不一定相同;与向量a 平行的单位向量有两个,即向量a |a |和-a|a |.3.向量的线性运算❷多个向量相加,利用三角形法则,应首尾顺次连接,a+b+c表示从始点指向终点的向量,只关心始点、终点.4.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . 只有a ≠0才保证实数λ的存在性和唯一性.二、常用结论(1)若P 为线段AB 的中点,O 为平面内任一点,则OP ―→=12(OA ―→+OB ―→).(2)OA ―→=λOB ―→+μOC ―→(λ,μ为实数),若点A ,B ,C 三点共线,则λ+μ=1. 考点一 平面向量的有关概念[典例] 给出下列命题: ①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件; ③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.[解析] ①正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c . ②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→,又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. [解题技法] 向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任意向量共线. [题组训练] 1.给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa =0(λ为实数),则λ必为零; ③λ,μ为实数,若λa =μb ,则a 与b 共线.其中错误的命题的个数为( ) A .0 B .1C .2 D .3解析:①错误,两向量共线要看其方向而不是起点或终点.②错误,当a =0时,不论λ为何值,λa =0.③错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量.故错误的命题有3个,故选D.2.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0,假命题的个数是( )A .0B .1C .2D .3解析:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.考点二 平面向量的线性运算[典例] (1)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ―→=( ) A.34AB ―→-14AC ―→ B.14AB ―→-34AC ―→C.34AB ―→+14AC ―→ D.14AB ―→+34AC ―→ (2)如图,在直角梯形ABCD 中,DC ―→=14AB ―→,BE ―→=2EC ―→, 且AE ―→=r AB ―→+s AD ―→,则2r+3s =( )A .1B .2C .3D .4[解析] (1)作出示意图如图所示.EB ―→=ED ―→+DB ―→=12AD ―→+12CB ―→=12×12(AB ―→+AC ―→)+12(AB ―→-AC ―→)=34AB ―→-14AC ―→.故选A. (2)根据图形,由题意可得AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23(BA ―→+AD ―→+DC ―→)=13AB ―→+23(AD ―→+DC ―→)=13AB ―→+23⎝⎛⎭⎫AD ―→+14AB ―→=12AB ―→+23AD ―→. 因为AE ―→=r AB ―→+s AD ―→,所以r =12,s =23,则2r +3s =1+2=3.[解题技法] 向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解. (3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.(4)与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值.[题组训练]1.设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( )A .AD ―→=-13AB ―→+43AC ―→ B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→ D .AD ―→=43AB ―→-13AC ―→解析: 由题意得AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→=AC ―→+13AC ―→-13AB ―→=-13AB ―→+43AC ―→.2.在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC ―→=λAM ―→+μAN ―→,则实数λ+μ=________. 解析:如图,∵AM ―→=AB ―→+BM ―→=AB ―→+12BC ―→=DC ―→+12BC ―→,①AN ―→=AD ―→+DN ―→=BC ―→+12DC ―→,②由①②得BC ―→=43AN ―→-23AM ―→,DC ―→=43AM ―→-23AN ―→,∴AC ―→=AB ―→+BC ―→=DC ―→+BC ―→=43AM ―→-23AN ―→+43AN ―→-23AM ―→=23AM ―→+23AN ―→,∵AC ―→=λAM ―→+μAN ―→,∴λ=23,μ=23,λ+μ=43.考点三 共线向量定理的应用[典例] 设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 同向.[解] (1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→,∴AB ―→,BD ―→共线. 又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的非零向量,∴⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1, 又∵λ>0,∴k =1.1.向量共线问题的注意事项(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.[题组训练]1.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( ) A .矩形 B .平行四边形C .梯形 D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→.又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.2.已知向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,若向量a 与向量b 共线,则( ) A .λ=0 B .e 2=0C .e 1∥e 2 D .e 1∥e 2或λ=0解析:选D 因为向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,又因为向量a 和b 共线,存在实数k ,使得a =k b ,所以e 1+λe 2=2k e 1,所以λe 2=(2k -1)e 1,所以e 1∥e 2或λ=0.3.已知O 为△ABC 内一点,且AO ―→=12(OB ―→+OC ―→),AD ―→=t AC ―→,若B ,O ,D 三点共线,则t =( )A.14B.13C.12D.23解析:选B 设E 是BC 边的中点,则12(OB ―→+OC ―→)=OE ―→,由题意得AO ―→=OE ―→,所以AO ―→=12AE ―→=14(AB ―→+AC ―→)=14AB ―→+14t AD ―→,又因为B ,O ,D 三点共线,所以14+14t =1,解得t =13,故选B.4.已知O ,A ,B 三点不共线,P 为该平面内一点,且OP ―→=OA ―→+AB―→|AB ―→|,则( )A .点P 在线段AB 上B .点P 在线段AB 的延长线上C .点P 在线段AB 的反向延长线上D .点P 在射线AB 上解析:由OP ―→=OA ―→+AB ―→|AB ―→|,得OP ―→-OA ―→=AB ―→|AB ―→|,∴AP ―→=1|AB ―→|·AB ―→,∴点P 在射线AB 上,故选D.第二节 平面向量基本定理及坐标表示一、基础知识1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1e 2叫做表示这一平面内所有向量的一组基底. (1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模:设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.若a =b ,则x 1=x 2且y 1=y 2. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例.考点一 平面向量基本定理及其应用[典例] 如图,以向量OA ―→=a ,OB ―→=b 为邻边作平行四边形OADB ,BM ―→=13BC ―→,CN―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→. [解] ∵BA ―→=OA ―→-OB ―→=a -b ,BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b .∵OD ―→=a +b ,∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→=23OD ―→=23a +23b ,∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b .综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b .[解题技法]1.平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.[题组训练]1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB ―→=a ,AC ―→=b ,则P Q―→=( )A.13a +13b B .-13a +13b C.13a -13b D .-13a -13b 解析:由题意知P Q ―→=PB ―→+B Q ―→=23AB ―→+13BC ―→=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b .2.已知在△ABC 中,点O 满足OA ―→+OB ―→+OC ―→=0,点P 是OC 上异于端点的任意一点,且OP ―→=m OA ―→+n OB ―→,则m +n 的取值范围是________.解析:依题意,设OP ―→=λOC ―→ (0<λ<1),由OA ―→+OB ―→+OC ―→=0,知OC ―→=-(OA ―→+OB ―→), 所以OP ―→=-λOA ―→-λOB ―→,由平面向量基本定理可知,m +n =-2λ,所以m +n ∈(-2,0).考点二 平面向量的坐标运算[典例] 已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b , (1)求3a +b -3c ;(2)求M ,N 的坐标及向量MN ―→的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c ,∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18). [变透练清]1.(变结论)本例条件不变,若a =m b +n c ,则m =________,n =________.解析:∵m b +n c =(-6m +n ,-3m +8n ),a =(5,-5),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.2.已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.解析:设P (x ,y ),由题意可得A ,B 两点的坐标分别为(2,3),(4,-1),由AP ―→=3PB ―→,可得⎩⎪⎨⎪⎧x -2=12-3x ,y -3=-3y -3,解得⎩⎪⎨⎪⎧x =72,y =0,故|OP ―→|=72.[解题技法]1.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解. 2.向量坐标运算的注意事项(1)向量坐标与点的坐标形式相似,实质不同. (2)向量坐标形式的线性运算类似多项式的运算.(3)向量平行与垂直的坐标表达形式易混淆,需清楚结论推导过程与结果,加以区分. 考点三 平面向量共线的坐标表示[典例] 已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1),∴k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2),∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3),BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→,∴8m -3(2m +1)=0,∴m =32.[解题技法]1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb . 2.两个向量共线的充要条件的作用判断两个向量是否共线(或平行),可解决三点共线的问题;另外,利用两个向量共线的充要条件可以列出方程(组),求参数的值.[题组训练]1.已知向量a =(1,2),b =(-3,2),若(k a +b )∥(a -3b ),则实数k 的取值为( ) A .-13 B.13C .-3D .3解析:选A k a +b =k (1,2)+(-3,2)=(k -3,2k +2).a -3b =(1,2)-3(-3,2)=(10,-4), 则由(k a +b )∥(a -3b )得(k -3)×(-4)-10×(2k +2)=0,所以k =-13.2.已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3―→与向量a =(1,-1)共线,若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则λ=( )A .-3B .3C .1D .-1解析:设OP 3―→=(x ,y ),则由OP 3―→∥a 知x +y =0,于是OP 3―→=(x ,-x ).若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.3.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→. 设点D 的坐标为(x ,y ),则DC ―→=(4-x,2-y ),AB ―→=(1,-1), ∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π].当θ=0时,两向量a ,b 共线且同向;当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a ||b | cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b |cos θ叫做向量b 在向量a 的方向上的投影,|a |cos θ叫做向量a 在向量b 的方向上的投影.(2)a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律(1)交换律:a ·b =b ·a .(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ). (3)分配律:(a +b )·c =a ·c +b ·c .向量数量积的运算不满足乘法结合律,即(a ·b )·c 不一定等于a ·(b ·c ),这是由于(a ·b )·c 表示一个与c 共线的向量,a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.5.平面向量数量积的性质设a ,b 为两个非零向量,e 是与b 同向的单位向量,θ是a 与e 的夹角,则 (1)e ·a =a ·e =|a |cos θ.(2)a ⊥b ⇔a ·b =0.(3)当a 与b 同向时,a ·b =|a||b|;当a 与b 反向时,a ·b =-|a||b|. 特别地,a ·a =|a|2或|a|=a ·a .(4)cos θ=a ·b|a ||b |.(5)|a ·b |≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则(1)|a |=x 21+y 21; (3)a ⊥b ⇔x 1x 2+y 1y 2=0;(2)a ·b =x 1x 2+y 1y 2;_ (4)cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.二、常用结论汇总1.平面向量数量积运算的常用公式(1)(a +b )·(a -b )=a 2-b 2;(2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论(1)两个向量a 与b 的夹角为锐角,则有a ·b >0,反之不成立(因为夹角为0时不成立); (2)两个向量a 与b 的夹角为钝角,则有a ·b <0,反之不成立(因为夹角为π时不成立).考点一 平面向量的数量积的运算[典例] (1)若向量m =(2k -1,k )与向量n =(4,1)共线,则m ·n =( ) A .0 B .4C .-92D .-172(2)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12,∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (2)法一:如图,连接MN .∵BM ―→=2MA ―→,CN ―→=2NA ―→,∴AM AB =AN AC =13.∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→).∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2)=3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0.故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解. [题组训练]1.已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1C.6D .2 2 解析:选B 设AB ―→=a ,AD ―→=b ,则a ·b =0,∵|a |=2,|b |=1,∴AC ―→·CB ―→=(a +b )·(-b )=-a ·b -b 2=-1.2.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( ) A.55 B .-55C .-255 D .-355解析:由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2, ∴a ·b =-3,∴向量b 在a 方向上的投影为a ·b |a |=-355.3.在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→(λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0,∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14.考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)已知非零向量a ,b 满足a ·b =0,|a |=3,且a 与a +b 的夹角为π4,则|b |=( )A .6B .32C .2 2D .3(2)已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1 B.12C.34 D.32[解析] (1)∵a ·b =0,|a |=3,∴a ·(a +b )=a 2+a ·b =|a ||a +b |cos π4,∴|a +b |=32,将|a +b |=32两边平方可得,a 2+2a ·b +b 2=18,解得|b |=3,(2)∵向量c 与a +b 共线,∴可设c =t (a +b )(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c )2=(t +1)2a 2+2t (t +1)·a ·b +t 2b 2,∵向量a ,b 为单位向量,且a ·b =-12,∴(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c |≥32,∴|a +c |的最小值为32,考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________. [解析] (1)因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |= 3.又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b |cos 〈a ,b 〉=-3,又|a |=12+(3)2=2,所以a ·b =|a ||b |cos 〈a ,b 〉=-6,又a ·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b |=32+(-33)2=6,所以cos 〈a ,b 〉=a ·b|a ||b |=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3.考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a |=223|b |,(a -b )⊥(3a +2b ), 所以(a -b )·(3a +2b )=3|a |2-2|b |2-a ·b =83|b |2-2|b |2-223|b |2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→·BC ―→=0,即AP ―→·BC ―→=(λAB ―→+AC ―→)·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ) A .-4 B .-3C .-2 D .-1解析: ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B. 2.已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=( ) A.12B .1C. 2 D .2 解析: ∵非零向量a ,b 的夹角为60°,且|b |=1,∴a ·b =|a |×1×12=|a |2,∵|2a -b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1,∴4|a |2-2|a |=0,∴|a |=12,故选A.3.已知向量a ,b 满足|a |=1,|b |=2,a +b =(1,3),记向量a ,b 的夹角为θ,则t a n θ=________. 解析:∵|a |=1,|b |=2,a +b =(1,3),∴(a +b )2=|a |2+|b |2+2a ·b =5+2a ·b =1+3,∴a ·b =-12,∴cosθ=a ·b|a |·|b |=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴t a n θ=sin θc os θ=-15. 第四节 平面向量的综合应用 考点一 平面向量与平面几何[典例] 在平行四边形ABCD 中,|AB ―→|=12,|AD ―→|=8.若点M ,N 满足BM ―→=3MC ―→,DN ―→=2NC ―→,则AM ―→·NM ―→=( )A .20B .15C .36D .6[解析] 法一:由BM ―→=3MC ―→,DN ―→=2NC ―→知,点M 是BC 的一个四等分点,且BM =34BC ,点N 是DC 的一个三等分点,且DN =23DC ,所以AM ―→=AB ―→+BM ―→=AB ―→+34AD ―→,AN ―→=AD ―→+DN ―→=AD ―→+23AB ―→,所以NM ―→=AM ―→-AN ―→=AB ―→+34AD ―→-⎝⎛⎭⎫AD ―→+23AB ―→=13AB ―→- 14AD ―→,所以AM ―→·NM ―→=⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫13AB ―→-14AD ―→=13⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫AB ―→-34AD ―→= 13⎝⎛⎭⎫AB ―→2-916AD ―→2=13⎝⎛⎭⎫144-916×64=36,故选C.法二:不妨设∠DAB 为直角,以AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系.则M (12,6),N (8,8),所以AM ―→=(12,6),NM ―→=(4,-2),所以AM ―→·NM ―→=12×4+6×(-2)=36,故选C.[题组训练]1.若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形C .正三角形 D .等腰直角三角形解析:选A 由(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,得CB ―→·(AB ―→+AC ―→)=0,∵AB ―→-AC ―→=CB ―→, ∴(AB ―→-AC ―→)·(AB ―→+AC ―→)=0,即|AB ―→|=|AC ―→|,∴△ABC 是等腰三角形.2.已知P 为△ABC 所在平面内一点,AB ―→+PB ―→+PC ―→=0,|AB ―→|=|PB ―→|=|PC ―→|=2,则△ABC 的面积等于( )A. 3 B .23C .3 3 D .4 3解析:由|PB ―→|=|PC ―→|得,△PBC 是等腰三角形,取BC 的中点D ,连接PD (图略),则PD ⊥BC ,又AB ―→+PB ―→+PC ―→=0,所以AB ―→=-(PB ―→+PC ―→)=-2PD ―→,所以PD =12AB =1,且PD ∥AB ,故AB ⊥BC ,即△ABC 是直角三角形,由|PB ―→|=2,|PD ―→|=1可得|BD ―→|=3,则|BC ―→|=23,所以△ABC 的面积为12×2×23=2 3.3.如图,在扇形OAB 中,OA =2,∠AOB =90°,M 是OA 的中点,点P 在弧AB 上,则PM ―→·PB ―→的最小值为________.解析:如图,以O 为坐标原点,OA ―→为x 轴的正半轴,OB ―→为y 轴的正半轴建立平面直角坐标系,则M (1,0),B (0,2),设P (2cos θ,2sin θ),θ∈⎣⎡⎦⎤0,π2,所以PM ―→·PB ―→=(1-2cos θ,-2sin θ)·(-2cos θ,2-2sin θ)=4-2cos θ- 4sin θ=4-2(cos θ+2sin θ)=4-25sin(θ+φ)⎝⎛⎭⎫其中sin φ=55,c os φ=255,所以PM ―→·PB ―→的最小值为4-2 5.答案:4-2 5考点二 平面向量与解析几何[典例] 已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. [解] (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .则t a n x =-33.又x ∈[0,π],所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎫x +π6. 因为x ∈[0,π],所以x +π6∈⎣⎡⎦⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎫x +π6≤32. 于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.[题组训练]1.已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.解析:∵AB ―→=OB ―→-OA ―→=(4-k ,-7),BC ―→=OC ―→-OB ―→=(6,k -5),且AB ―→∥BC ―→,∴(4-k )(k -5)+6×7=0,解得k =-2或k =11.由k <0,可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.2.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ―→·FP ―→的最大值为________.解析:由题意,得F (-1,0),设P (x 0,y 0),则有x 204+y 203=1,解得y 20=3⎝⎛⎭⎫1-x 204,因为FP ―→=(x 0+1,y 0),OP ―→=(x 0,y 0),所以OP ―→·FP ―→=x 0(x 0+1)+y 20=x 20+x 0+3⎝⎛⎭⎫1-x 204=x 204+x 0+3,对应的抛物线的对称轴方程为x 0=-2,因为-2≤x 0≤2,故当x 0=2时,OP ―→·FP ―→取得最大值224+2+3=6.考点三 平面向量与三角函数[典例] 已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A ―→+PB ―→+PC ―→|的最大值为( )A .6B .7C .8D .9[解析] 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,知线段AC 为圆的直径,设圆心为O ,故P A ―→+PC ―→=2PO ―→=(-4,0),设B (a ,b ),则a 2+b 2=1且a ∈[-1,1],PB ―→=(a -2,b ),所以P A ―→+PB ―→+PC ―→=(a -6,b ).故|P A ―→+PB ―→+PC ―→|=-12a +37,所以当a =-1时,|P A ―→+PB ―→+PC ―→|取得最大值49=7.[解题技法]平面向量与三角函数的综合问题的解题思路(1)若给出的向量坐标中含有三角函数,求角的大小,解题思路是运用向量共线或垂直的坐标表示,或等式成立的条件等,得到三角函数的关系式,然后求解.(2)若给出的向量坐标中含有三角函数,求向量的模或者向量的其他表达形式,解题思路是利用向量的运算,结合三角函数在定义域内的有界性或基本不等式进行求解.[题组训练]1.已知a =(cos α,sin α),b =(cos(-α),sin(-α)),那么a ·b =0是α=k π+π4(k ∈Z)的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵a ·b =cos α·cos(-α)+sin α·sin(-α)=cos 2α-sin 2α=cos 2α,若a ·b =0,则cos 2α=0,∴2α=2k π±π2(k ∈Z),解得α=k π±π4(k ∈Z).∴a ·b =0是α=k π+π4(k ∈Z)的必要不充分条件.故选B.2.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n = (cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3解析:选C 由m ⊥n ,得m ·n =0,即3cos A -sin A =0,由题意得cos A ≠0,∴t a n A =3,又A ∈(0,π),∴A =π3.又a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c (R 为△ABC 外接圆半径),且a cos B +b cos A =c sin C ,所以c =c sin C ,所以sin C =1,又C ∈(0,π),所以C =π2,所以B =π-π3-π2=π6.。

高一数学讲义 第七章 平面向量

高一数学讲义 第七章  平面向量

高一数学讲义 第七章 平面向量7.1 向量的基本概念及表示现实生活中,有些量在有了测定单位之后只需用一个实数就可以表示,例如温度,时间,面积,这些只需用一个实数就可以表示的量叫作标量.还有些量不能只用一个实数表示,例如位移,力,速度等既有大小又有方向的量,这些既有大小又有方向的量叫作向量.向量既有大小又有方向,因此向量不能比较大小.数学中常用平面内带有箭头的线段来表示平面向量.以线段的长来表示向量的大小:以箭头所指的方向(即从始点到终点的方向)来表示向量的方向.一般地,以点P 为始点,点Q 为终点的向量记作PQ .为书写简便,在不强调向量的起点与终点时,向量也可以用一个小写的字母并在上面画一个小箭头来表示,如a .PQ 的大小叫作PQ 的模,记作PQ ,类似地,a 的模记作a . 1.零向量:长度为0的向量叫做零向量,记作0;0的方向是任意的. 2.单位向量:长度为1的向量叫做单位向量.3.平行向量:方向相同或相反的向量叫做平行向量(也叫共线向量). 4.相等向量:长度相等且方向相同的向量叫做相等向量.5.负向量:与a 的模相等,方向相反的向量叫作a 的负向量,记作a -.我们规定:0的相反向量仍是零向量.易知对任意向量a 有()a a --=.向量共线与表示它们的有向线段共线不同:向量共线时表示向量的有向线段可以是平行的,不一定在一条直线上;而有向线段共线则线段必须在同一条直线上.规定。

与任一向量平行.图7-1图7-1三个向量a 、b 、c 所在的直线平行,易知这三个向量平行,记作a b c ∥∥,我们也可以称这三个向量共线.例l .如图7-2所示,128A A A 、是O 上的八个等分点,则在以128A A A 、及圆O 九个点中任意两点为起点与终点的向量中,模等于半径的向量有多少??A 8A 7A 6A 5A 4A 3A 2A 1图7-2解:(1)模等于半径的向量只有两类,一类是()128i OA i =、共8个;另一类是()128iAO i =、也有8个.两类合计16个. (2)以128A A A 、为顶点的O 的内接正方形有两个,一个是正方形1257A A A A ;另一个是正方形2468A A A A .在题中所述的向量中,只有这两个正方形的边(看成有向线段,每一边对应两个向量)的√2倍的向量共有42216⨯⨯=个. 注意:(1)在模等于半径的向量个数的计算中,要计算i OA 与()128i AO i =、两类.一般地我们易想到()128i OA i =、这8个,而易遗漏()128iAO i =、这8个.(2的两个向量,例如边13A A 对应向量13A A 与31A A ,因此与(1)一样,在解题过程中主要要防止漏算.认为满足条件的向量个数为8是错误的.例2.在平面中下列各种情形中,将各向量的终点的集会分别构成什么图形? (1)把所有单位向量的起点平移到同一点O .(2)把平行于直线l 的所有单位向量的起点平移到直线l 上的p 点. (3)把平行于直线l 的所有向量的起点平移到直线l 的点p . 解:(1)以点O 为圆心,l 为半径的圆.(2)直线l 上与点p 的距离为1个长度单位的两个点. (3)直线l .例3.判断下列命题的真假:①直角坐标系中坐标轴的非负轴都是向量; ②两个向量平行是两个向量相等的必要条件;③向量AP 与CD 是共线向量,则A 、B 、C 、D 必在同一直线上; ④向量a 与向量b 平行,则a 与b 的方向相同或相反; ⑤四边形ABCD 是平行四边形的宽要条件是AB DC =.解:①直角坐标系中坐标轴的非负半轴,虽有方向之别,但无大小之分,故命题是错误的.②由于两个向量相等,必知这两个向量的方向与长度均一致,故这两个向量一定平行,所以,此命题正确; ③不正确.AB 与CD 共线,可以有AB 与CD 平行;④不正确.如果其中有一个是零向量,则其方向就不确定;⑤正确.此命题相当于平面几何中的命题:四边形ABCD是平行四边形的充要条件是有一组对边平行且相等.1.下列各量中是向量的有__________.(A)动能(B)重量(C)质量(D)长度(F)作用力与反作用力(F)温度2.判断下列命题是否正确,若不正确,请简述理由.①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④共线的向量,若起点不同,则终点一定不同.3.回答下列问题,并说明理由.(1)平行向量的方向一定相同吗?(2)共线向量一定相等吗?(3)相等向量一定共线吗?不相等的向量一定不共线吗?4.命题“a b∥,b c∥()∥,则a bA.总成立B.当0a ≠时成立C.当0b ≠时成立D.当0c ≠时成立5.已知正六边形ABCDEF(见图7-3),在下列表达式中:①BC CD EC+;③FE ED++;②2BC DC+;④2ED FA-;与AC相等的有__________.CF图737.2向量的加减法两个向量可以求和.一般地,对于两个互不平行的向量a、b,以A为共同起点平移向量,有AB a=,=叫作a和b这两个向量的和,即AD b=,则以AB、AD为邻边的平行四边形ABCD的对角线AC c+=.求两个向量和的运算叫做向量的加法.上述求两个向量的和的方法称为向量加法的平行四a b c边形法则,见图7-4.平行四边形法则B图74又AD BC = AB BC AC ∴+=由此发现,当第二个向量的始点与第一个向量的终点重合时.这两个向量的和向量即为第一个向量的始点指向第二个向量终点的向量.此法则称为向量加法的三角形法则,地图7-5.三角形法则图75特殊地.求两个平行向量的和,也可以用三角形法则进行(如图7-6):(b )(a )a BA图76显然,对于任何a ,有0a a +=;()0a a +-=. 对于零向量与任一向量a ,有00a a a +=+=.向量的加法具有与实数加法类似的运算性质,向量加法满足交换律与结合律: 交换律:a b b a +=+结合律:()()a b c a b c ++=++与实数的减法相类似,我们把向量的减法定义为向量加法的逆运算.若向量a 与b 的和为向量c ,则向量b 叫做向量c 与a 的差,记作b c a =-.求向量差的运算叫做向量的减法.由向量加法的三角形法则以及向量减法的定义.我们可得向量减法的三角形法则,其作法:在平面内取一点O,作OA a=-,即a b-声可以表示为从向量b的终点指向向=,则BA a b=,OB b量a的终点的向量.注意差向量的“箭头”指向被减向量,见图7-7.CB图77此外,我们可以先做向量b的负向量OB b′,可根据向量加法的平行四边形法则得()=-OC a b=+-.易知向量OC BA=,因此,()+-=-.a b a b例1.如图7-8所示,已知向量a,b,c,试求作和向量a b c++.图78分析:求作三个向量的和的问题,首先求作其中任意两个向量的和,因为这两个向量的和仍为一个向量,然后再求这个新向量与另一个向量的和.即可先作a b+,再作()++.a b c解:如图7-9所示,首先在平面内任取一点O,作向量OA a=+,=,再作向量AB b=,则得向量OB a b然后作向量BC c=++即为所求.=,则向量OC a b cO图79例2.化简下列各式(1)AB CA BC ++; (2)OE OF OD DO -+--.解:(1)原式()0AB BC CA AB BC CA AC CA AC AC =++=++=+=-= (2)原式()()0OE OF OD DO EO OF EF =+-+=+-=例3.用向量方法证明:对角线互相平分的四边形是平行四边形.分析:要证明四边形是平行四边形只要证明某一组对边平行且相等.由相等向量的意义可知,只需证明其一组对边对应的向量是相等向量.已知:如图7-10,ABCD 是四边形,对角线AC 与BD 交于0,且AO OC =,DO OB =.ODCBA图710求证:四边形ABCD 足平行四边形. 证明:由已知得AO OC =,BO OD =,AD AO OD OC BO BO OC BC =+=+=+=,且A D B C ,,,不在同一直线上,故四边形ABCD 是平行四边形.例4.已知平面上有不共线的四点O A B C ,,,.若320OA OB OC -+=,试求AB BC的值.解:因为23OA OC OB +=,所以()2OB OA OC OB -=-.于是有2AB BC =-.因此2AB BC=.基础练习1.若对n 个向量12n a a a ,,,存在n 个不全为零的实数12n k k k ,,,,使得11220n n k a k a k a +++=成立,则称向量12n a a a ,,,为“线性相关”,依此规定,能说明()110a =,,()211a =-,,()322a =,“线性相关”的实数123k k k ,,依次可以取____________________(写出一组数值即可,不必考虑所有情况).2.已知矩形ABCD 中,宽为2,长为AB a =,BC b =,AC c =,试作出向量a b c ++,并求出其模的大小.3.设a ,b 为两个相互垂直的单位向量.已知OP a =,OR ra kb =+.若PQR △为等边三角形,则k ,r 的取值为( )A.k r == B.k r =C.k r ==D.k r = 4.若A B C D 、、、是平面内任意四点,则下列四式中正确的是( )①AC BD BC AD +=+ ②AC BD DC AB -=+ ③AB AC DB DC --=④AB BC AD DC +-=A .1B .2C .3D .45.设a 表示“向东走10km ”,b 表示“5km ”,c 表示“向北走10km ”,d 表示“向南走5km ”.说明下列向量的意义.(1)a b +;(2)b d +;(3)d a d ++.6.在图7-11的正六边形ABCDEF 中,AB a =,AF b =,求AC ,AD ,AE .FC图7117.3 实数与向量的乘法如图7-12,已知非零向量a ,可以作出a a a ++和()()()a a a -+-+-.P Q M N aaa-a图712aOC OA AB BC a a a =++=++,简记3OC a =;同理有()()()3PN PQ QM MN a a a a =++=-+-+-=-.观察得:3a 与a 方向相反相反且33a a -=.一般地,实数λ与向量a 的积是一个向量,记作:a λ.a λ的模与方向规定如下:(1)a a λλ=;(2)a λ的方向定义为:0λ>时a λ与a i 方向相同;0λ<时a λ与a i 方向相反;0λ=或0a =时规定:0a λ=.以上规定的实数与向量求积的运算叫作实数与向量的乘法(简称向量的数乘).向量数乘的几何意义就是:把向量a 沿向量a 的方向或反方向放大或缩小,a λ与a 是互相平行的向量.对于任意的非零向量a ,与它同方向的单位向量叫做向量a 的单位向量,记作0a .易知01a a a =.向量共线定理:如果有一个实数λ,使()0b a a λ=≠,那么b 与a 是共线向量;反之,如果b 与()0a b ≠是共线向量,那么有且只有一个实数λ,使得b a λ=.通过作图,可以验证向量数乘满足以下运算定律:当m 、n ∈R 时,有 1.第一分配律()m n a ma na +=+. 2.第二分配律()m a b ma mb +=+. 3.结合律()()m na mn a =. 例1.计算:(1)()()63292a b a b -+-+;(2)原式12711332236227a a b b a a b ⎛⎫⎛⎫=-+--++ ⎪ ⎪⎝⎭⎝⎭;(3)()()()64222a b c a b c a c -+--+--+. 解:(1)原式18121893a b a b b =---+=-. (2)原式12711332236227a a b b a a b ⎛⎫⎛⎫=-+--++ ⎪ ⎪⎝⎭⎝⎭17732367a b a b ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ 77106262b a a b =+--=. (3)原式66648442a bc a b c a c =-+-+-+-()()()64468642a a a b b c c c =-++-++-- 62a b =+.例2.已知O 为原点,A ,B ,C 为平面内三点,求证A ,B ,C 三点在一条直线上的充要条件是OC OA OB αβ=+,且αβ∈R ,,1αβ+=.分析:证明三点共线可从三点构成的其中两个向量存在数乘关系.证明必要条件也是从向量共线时向量的数乘关系入手.证明:必要性.设A B C ,,三点共线,则AC 与AB 共线.于是存在实数λ,使AC AB λ=. 而AC OC OA =-,AB OB OA =-,()OC OA OB OA λ∴-=-.()1OC OB OA λλ∴=+-. 令λβ=,1λα-=,有()11αβλλ+=-+=, OC OA OB αβ∴=+,且1αβ+=.充分性.若OC OA OB αβ=+,且1αβ+=,则()1OC OA OB ββ=-+,()OC OA OB OA β=+-,()OC OA OB OC β-=-,AC AB β∴=,β∈R . AC ∴与AB 共线,而A 为AC 与AB 的公共端点,A B C ∴,,三点在一条直线上.在证明必要性时,A B C ,,三点共线还可用AB kBC =,AC kBC =表示.本题的结论还可有更一般的形式:A B C 、、三点在一条直线上的充要条件是存在实数h ,k ,l ,使0hOA kOB lOC ++=,且1h k l ++=,l k h ,,中至少有一个不为0.例3.如图7-13,设O 为ABC △内一点,PQ BC ∥,且PQt BC=,,OB b =,OC c =,试求OP ,OQ . 解:由平面几何知,APQ ABC ⨯△∽△,且对应边之比为t ,图713故AP AQ PQt AB AC BC===, 又A P B 、、与A Q C 、、分别共线,即知 AP t AB =,AQ t AC =.()()OP OA AP OA t AB OA t OB OA a t b a ∴=+=+=+-=+-,即()1OP t a tb =-+,()()OQ OA AQ OA t AC OA t OC OA a t c a =+=+=+-=+-, 即()1OQ t a c =-+.例4.设两非零向量1e 和2e 不共线,(1)如果12AB e e =+,1228BC e e =+,()123CD e e =-,求证A B D ,,三点共线. (2)试确定实数k ,使12ke ke +共线. (1)证明12AB e e =+,()121212283355BD BC CD e e e e e e AB =+=++-=+=,AB BD ∴,共线,又有公共点B A B D ∴,,三点共线.(2)解12ke e +与12e ke +共线,∴存在λ使()1212ke e e ke λ+=+, 则()()121k e k e λλ-=-,由于1e 与2e 不共线, 只能有010k k λλ-=⎧⎨-=⎩则1k =±.例5.在ABC △中,F 是BC 中点,直线l 分别交AB AF AC ,,于点D ,G ,E (见图7-14).如果AD AB λ=,AE AC μ=,λ,μ∈R .证明:G 为ABC △重心的充分必要条件是113λμ+=.l GF E DCB A图714解:若G 为ABC △重心,则()221332AG AF AB AC ==⋅+=13AD AE λμ⎛⎫+ ⎪ ⎪⎝⎭. 又因点D G E ,,共线,所以,()113AD AE AG t AD t AE λμ⎛⎫=+-=+ ⎪ ⎪⎝⎭, 因AD ,AE 不共线,所以,13t λ=且113t μ=-,两式相加即得113λμ+=. 反之,若113λμ+=,则()2xAG xAF AB AC ==+()12x AD AE t AD t AE λμ⎛⎫=+=+- ⎪ ⎪⎝⎭, 所以,2x t λ=且12x t μ=-,相加即得23x =,即G 为ABC △重心. 基础练习1.已知向量a 、b 是两非零向量,在下列四个条件中,能使a 、b 共线的条件是( ) ①234a b e -=且23a b e +=-;②存在相异实数λ、u ,使0a ub λ+=; ③0xa yb +=(其中实数x y 、满足0x y +=); ④已知梯形ABCD 中,其中AB a =、CD b =. A .①② B .①③C .②④D .③④2.判断下列命题的真假:(1)若AB 与CD 是共线向量,则A B C D ,,,四点共线. (2)若AB BC CA ++=0,则A B C ,,三点共线. (3)λ∈R ,则a a λ>.(4)平面内任意三个向量中的每一个向量都可以用另外两个向量的线性组合表示. 3.已知在ABC △中,D 是BC 上的一点,且BDDCλ=,试求证:1AB AC AD λλ+=+. 4.已知3AD AB =,3DE BC =.试判断AC 与AE 是否共线.5.已知在四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,求证:四边形ABCD 是梯形.6.已知()2cos A αα,()2cos B ββ,()10C -,是平面上三个不同的点,且满足关系式CA BC λ=,求实数λ的取值范围.7.已知梯形ABCD 中,2AB DC =,M N ,分别是DC AB 、的中点,若1AB e =,2AD e =,用1e ,2e 表示DC BC MN 、、.8.四边形ABCD 是一个梯形,AB CD ∥且2AB CD =,M N 、分别是DC 和AB 的中点,已知AB a =,AD b =,试用a ,b 表示BC 和MN .9.已知a b 、是不共线的非零向量,11c a b λμ=+,22d a b λμ=+,其中1122λμλμ、、、为常数,若c d ma nb +=+,求m n 、的值.10.设a 、b 是不共线的两个非零向量,OM ma =,ON nb =,OP a b αβ=+,其中m n αβ、、、均为实数,0m ≠,0n ≠,若M P N 、、三点共线,求证:1mnαβ+=.11.在ABC △中,BE 是CD 交点为P .设AB a =,AC b =,AP c =,AD a λ=,(01λ<<),()01AE b μμ=<<,试用向量a ,b 表示c .12.在平面直角坐标系中,O 为坐标原点,设向量()12OA =,,()21OB =-,若OP xOA yOB =+且12x y ≤≤≤,则求出点P 所有可能的位置所构成的区域面积.7.4 向量的数量积数量积定义:一般地.如果两个非零向量a 与b 的夹角为α.我们把数量cos a b α⋅叫做a 与b 的数量积(或内积),记作:a b ⋅,即:cos a b a b α⋅=⋅,其中记法“a b ⋅”中间的“⋅”不可以省略,也不可以用“×”代替.特别地,a b ⋅可记作2a .规定:0与任何向量的数量积为0.非零向量夹角的范围:0≤口≤Ⅱ.投影的定义:如果两个非零向量a 与b 的夹角为α,则数量cos b θ称为向量b 在a 方向上的投影.注意:投影是一个数量.数量积的几何意义:如图7-15,我们把cos b α<叫做向量b 在a 方向上的投影,即有向线段1OB 的数量.图715当π02α<≤时,1OB 的数量等于向量1OB 的模1OB ; 当ππ2α<≤时,1OB 的数量等于向量1OB 的模-1OB ; 当π2α=时,1OB 的数量等于零. 当然,cos a α即为a 在b 方向上的投影.综上,数量积的几何意义:a b ⋅等于其中一个向量a 的模a 与另一个向量b 在a 的方向上的投影cos b α的乘积.向量的数量积的运算律: ①a b b a ⋅=⋅②()()()a b b a b λλλ⋅⋅=⋅(λ为实数)③()a b c a c b c +⋅=⋅+⋅ 鉴于篇幅这里仅证明性质②:证明:(1)若0λ>,()cos a b a b λλθ⋅=,()cos a b a b λλθ⋅=,()cos a b a b λλθ⋅=,(2)若0λ<,()()()cos πcos cos a b a b a b a b λλθλθλθ⋅=-=--=,()cos a b a b a b λλλθ⋅=⋅=,()()()cos πcos a b a b a b λλθλθ⋅=-=--=cos a b λθ. (3)若0λ=,则()()()0a b a b a b λλλ⋅=⋅=⋅=. 综合(1)、(2)、(3),即有()()()a b a b a b λλλ⋅=⋅=⋅.例1.已知4a =,5b =,当(1)a b ∥,(2)a b ⊥,(3)a 与b 的夹角为30︒时,分别求a 与b 的数量积.解:(1)a b ∥,若a 与b 同向,则0θ=︒,cos04520a b a b ∴⋅=⋅︒=⨯=; 若a 与b 反向,则180θ=︒,()cos18045120a b a b ∴⋅=⋅︒⨯⨯⨯-=-. (2)当a b ⊥时,90θ=︒,cos900a b a b ∴⋅=⋅︒=.(3)当a 与b 的夹角为30︒时,cos3045a b a b ⋅=⋅︒=⨯= 例2.空间四点A B C D 、、、满足3AB =,7BC =,11CD =,9DA =,则AC BD ⋅的取值有多少个?解:注意到2222311113079+==+,由于0AB BC CD DA +++=, 则()()2222222DA DA AB BC CDAB BC CD AB BC BC CD CD AB ==++=+++⋅+⋅+⋅()()2222AB BC CD AB BC BC CD =-+++⋅+,即222220AC BD AD BC AB CD ⋅=+--=,AC BD ∴⋅只有一个值0.例3.已知a b 、都是非零向量,且3a b +与75a b -垂直,4a b -与72a b -垂直,求a b 、的夹角. 解:由()()223750716150a b a b a a b b +⋅-=⇒+⋅-= ①()()22472073080a b a b a a b b -⋅-=⇒-⋅+=②两式相减:22a b b ⋅=代入①或②得:22a b =. 不妨设a b 、的夹角为θ,则221cos 22a b ba bbθ⋅===,又因为0πθ≤≤,60θ∴=︒.例4.在凸四边形ABCD 中,P 和Q 分别为对角线BD 和AC 的中点,求证:2222224AB BC CD DA AC BD PQ +++=++.证明:联结BQ ,QD ,因为BP PQ BQ +=,DP PQ DQ +=, 所以()()2222BQ DQ BP PQ DP PQ +=+++ 222222BP DP PQ BP PQ DP PQ =+++⋅+⋅()22222BP DP PQ BP DP PQ =++++⋅ 2222BP DP PQ =++①又因为BQ QC BC +=,BQ QA BA +=,0QA QC +=, 同理222222BA BC QA QC BQ +=++② 222222CD DA QA QC QD +=++③由①、②、③可得()()2222222224222BA BC CD QA BQ QD AC BP PQ ++=++=++= 2224AC BD PQ ++.得证.例5.平面四边形ABCD 中,AB a =,BC b =,CD c =,DA d =,且a b b c c d d a ⋅=⋅=⋅=⋅,判断四边形ABCD 的形状.证明:由四边形ABCD 可知,0a b c d +++=(首尾相接)()a b c d ∴+=-+,即()()22a bc d +=+展开得222222aa b b c c d d +⋅+=+⋅+a b c d ⋅=⋅,222a b c d ∴+=+①同理可得2222a dbc +=+② ①-②得2222b a ac =⇒=,b d ∴=,ac =,即AB CD =,BC DA =, 故四边形ABCD 是平行四边形.由此a c =-,bd =-.又a b b c ⋅=⋅,即()0b a c -=()20b a ∴⋅=即a b AB BC ⊥⇒⊥, 故四边形ABCD 是矩形.例6.已知非零向量a 和b 夹角为60︒,且()()375a b a b +⊥-,求证:()()472a b a b -⊥-.证明:因为a 和b 夹角为60︒,所以1cos602a b a b a b ⋅=⋅⋅︒=⋅;又因为()()375a b a b +⊥-,所以,即()()3750a b a b +⋅-=.22222217161571615781502a ab b a a b b a a b b +⋅-=+⨯⋅-=+⋅-=. ()()7150a b a b ∴+⋅-=,0a b ∴-=,即a b =.因为()()22222214727308730871582a b a b a a b b a a b b a a b b -⋅-=-⋅+=-⨯+=-+,把a b =代入上式消去b 得()()2247271580a b a b a a a a -⋅-=-+=.所以()()472a b a b -⊥-.基础练习1.已知a b c 、、是三个非零向量,则下列命题中真命题的个数为( ) ①a b a b a b ⋅=⋅⇔∥; ②a b 、反向a b a b ⇔⋅=-⋅; ③a b a b a b ⊥⇔+=-; ④a b a c b c =⇔⋅=⋅. A .1B .2C .3D .42.已知向量i j ,为相互垂直的单位向量,28a b i j +=-,816a b i j -=-+,求a b ⋅.3.如图7-16所示,已知平行四边形ABCD ,AB a =,AD b =,4a=,2b =,求:OA OB ⋅.C图7164.设6a =,10b =,46a b -=,求a 和b 的夹角θ的余弦值. 5.已知a b ⊥,2a =,3b =,当()()32a b a b λ-⊥+时,求实数λ的值.6.已知不共线向量a ,b ,3a =,2b =,且向量a b +与2a b -垂直.求:a 与b 的夹角θ的余弦值. 7.已知3a =,4b =,且a 与b 不共线,k 为何值时,向量a kb +与a kb -互相垂直? 8.在ABC △中,已知4AB AC ⋅=,12AB BC ⋅=-,求AB .9.在ABC △中,AB a =,BC b =,且0a b ⋅>,则ABC △的形状是__________. 10.已知向量()24a =,,()11b =,.若向量()b a b λ⊥+,则实数λ的值是__________.11.如图7-17,在四边形ABCD 中,4AB BD DC ++=,0AB BD BD DC ⋅=⋅=,4AB BD BD DC ⋅+⋅=,求()AB DC AC +⋅的值.图717DCBA能力提高12.如图7-18,在Rt ABC △中,已知BC a =,若长为2a 的线段PQ 以点A 为中点.问PQ 与BC 的夹角θ为何值时,BP CQ ⋅的值最大?并求出这个最大值.PQ图71813.已知ABC △中满足()2ABAB AC BA BC CA CB =⋅+⋅+⋅,a b c 、、分别是ABC △的三边.试判断ABC △的形状并求sin sin A B +的取值范围.14.设边长为1的正ABC △的边BC 上有n 等分点,沿点B 到点C 的方向,依次为121n P P P -,,,,若1121n n S AB AP AP AP AP AC -=⋅+⋅++⋅,求证:21126n n S n-=.15.在ABC △中,AB a =,BC c =,CA b =,又()()()123c b b a a c ⋅⋅⋅=∶∶∶∶,则ABC △三边长之比a b c =∶∶__________.16.在向量a b c ,,之间,该等式()()())132a b c a b b c c a ⎧++=⎪⎨⋅⋅⋅=-⎪⎩∶∶∶成立,当1a =时,求b 和c 的值.17.若a b c ,,中每两个向量的夹角均为60︒,且4a =,6b =,2c =,求a b c ++的值. 7.5 向量的坐标表示及其运算向量的坐标表示在平面直角坐标系中,每一个点都可用一对实数()x y ,来表示,那么,每一个向量可否也用一对实数来表示?前面的平面向量分解告诉我们,只要选定一组基底,就有唯一确定的有序实数对与之一一对应. 我们分别选取与x 轴、y 轴方向相同的单位向量i ,j 作为基底,由平面向量的基本定理.对于任一向量a ,存在唯一确定的实数对()x y ,使得()a xi y j x y =+∈R ,,我们称实数对()x y ,叫向量a 的坐标,记作()a x y =,.其中x 叫向量a 在x 轴上的坐标,y 叫向量a 在y 轴上的坐标,见图7-19.图719注意:(1)与a 相等的向量的坐标也是()x y ,.(2)所有相等的向量坐标相同;坐标相同的向量是相等的向量. 平面向量的坐标运算(1)设()11a x y =,,()22b x y =,,则()1212a b x x y y +=++,. (2)设()11a x y =,,()22b x y =,,则()1212a b x x y y -=--,. (3)设()11A x y ,,()22B x y ,,则()2121AB OB OA x x y y =-=--,. (4)设()11a x y =,,λ∈R ,则()a x y λλλ=,.(5)设()11a x y =,,()22b x y =,,则()1212a b x x y y ⋅=+. 向量平行的坐标表示设()11a x y =,,()22b x y =,,且0b ≠,则()1212a b x x y y =+∥. 向量的平行与垂直的充要条件设()11a x y =,,()22b x y =,,且0b ≠,0a ≠则 12210a b b a x y x y λ⇔=⇔-=∥. 121200a b a b x x y y ⊥⇔⋅=⇔+=.重要的公式(1)长度公式:2221a a a x y ===+()()11a x y =,(2)夹角公式:()())1122cos a x y b x y θ===,,,.(3)平面两点间的距离公式: (()())1122A B d AB AB AB x A x y B xy ==⋅=,,,,.(4)不等式:cos a b a b a b θ⋅=≥.例1.已知()12a a a =,,()12b b b =,,且12210a b a b -≠,求证:(1)对平面内任一向量()12c c c ,,都可以表示为()xa yb x y +∈R ,的形式; (2)若0xa yb +=,则0x y ==.证明:(1)设c xa yb =+,即()()()()1212121122c c x a a y b b a x b y a x b y =+=++,,,,, 111222.a xb yc a x b y c +=⎧∴⎨+=⎩,12210a b a b -≠,∴上述关于x y ,的方程组有唯一解.1221122112211221.c b c b x a b a b a c a c y a b a b -⎧=⎪-⎪⎨-⎪=⎪-⎩,1221122112211221c b c b a c a c c a b a b a b a b a b --∴=+--. (2)由(1)的结论,0c =,即120c c ==,则 122112210c b c b x a b a b -==-,122112210a c a c y a b a b -==-,0x y ∴==. 小结:证明(1)的过程就是求实数x ,y 的过程,而12210a b a b -≠是上面二元一次方程组有唯一解的不可缺少的条件.另外,本题实际上是用向量的坐标形式表述平面向量基本定理.其中1x λ=,2y λ=,这里给出了一个具体的求12λλ,的计算方法.例2.向量()10OA =,,()11OB =,,O 为坐标原点,动点()P x y ,满足0102OP OA OP OB ⎧⋅⎪⎨⋅⎪⎩≤≤≤≤,求点()Q x y y +,构成图形的面积.解:由题意得点()P x y ,满足0102x x y ⎧⎨+⎩≤≤≤≤,令x y uy v +=⎧⎨=⎩,则点()Q u v ,满足0102u v u -⎧⎨⎩≤≤≤≤,在uOv 平面内画出点()Q u v ,构成图形如图7-20所示,∴其面积等于122⨯=.图720例3.在直角坐标系中,已知两点()11A x y ,,()22B x y ,;1x ,2x 是一元二次方程222240x ax a -+-=两个不等实根,且A B 、两点都在直线y x a =-+上. (1)求OA OB ⋅;(2)a 为何值时OA 与OB 夹角为π3. 解:(1)12x x 、是方程222240x ax a -+-=两个不等实根,()224840a a ∴∆=-->解之a -<()212142x x a =-,12x x a +=又A B 、两点都在直线y x a =-+上,()()()()2212121212142y y x a x a x x a x x a a ∴=-+-+=-++=- 121224OA OB x x y y a ∴⋅=+=-(2)由题意设1x =,2x =112y x a x ∴=-+==,同理21y x =(()22212121224OA OB xx x x x x x ∴==+=+-=当OA 与OB夹角为π3时,π1cos 4232OA OBOA OB ⋅==⨯= 242a ∴-=解之(a =- a ∴=即为所求. 例4.已知()10a =,,()21b =,. ①求3a b +;②当k 为何实数时,ka b -与3a b +平行,平行时它们是同向还是反向?解:①()()()31032173a b +=+=,,,,2373a b ∴+=+ ②()()()102121ka b k k -=-=--,,,. 设()3ka b a b λ-=+,即()()2173k λ--=,,, 12731313k k λλλ⎧=-⎪-=⎧⎪∴⇒⎨⎨-=⎩⎪=-⎪⎩.故13k =-时,它们反向平行.例5.对于向量的集合(){}221A v x y x y ==+,≤中的任意两个向量12v v 、与两个非负实数αβ、;求证:向量12v v αβ+的大小不超过αβ+.证明:设()111v x y =,,()222v x y =,,根据已知条件有:22111x y +≤,22221x y +≤, 又因为(12v v αβα+==其中12121x x y y +所以12v v αβααβαβ+=+=+≤. 基础练习1.已知()21a =,,()34b =-,,求a b +,a b -,34a b +的坐标. 2.设O 点在ABC △内部,且有230OA OB OC ++=,求ABC △的面积与AOC △的面积的比. 3.已知平行四边形ABCD 的三个顶点A B C ,,的坐标分别为(-2,1),(-1,3),(3,4),求顶点D 的坐标.4.已知向量i ,j 为相互垂直的单位向量,设()12a m i j =+-,()1b i m j =+-,()()a b a b +⊥-,求m 的值.5.已知等腰梯形ABCD ,其中AB CD ∥,且2DC AB =,三个顶点()12A ,,()21B ,,()42C ,,求D 点的坐标.6.如图7-21所示,已知()20OA =,,(1OB =,将BA 绕着B 点逆时针方向旋转60︒,且模伸长到BA 模的2倍,得到向量BC .求四边形AOBC 的面积S .图7217.如图7-22所示,已知四边形ABCD 是梯形,AD BC ∥,2BC AD =,其中()12A ,,()31B ,,()24D ,,求C 点坐标及AC 的坐标.图7228.已知向量()2334a x x x =+--,与AB 相等,其中()12A ,,()32B ,,求x . 9.平面内有三个已知点()12A -,,()70B ,,()56C -,,求 (1)AB ,AC ;(2)AB AC +,AB AC -;(3)122AB AC +,3AB AC -. 10.已知向量()12a =,,()1b x =,,2u a b =+,2v a b =-,且u v ∥,求x . 11.已知()23a =,,()14b =-,,()56c =,,求()a b c ⋅,和()a b c ⋅⋅.12.已知两个非零向量a 和b 满足()28a b +=-,,()64a b -=--,,求a 与b 的夹角的余弦值. 能力提高13.已知平面上三个向量a ,b ,c 均为单位向量,且两两的夹角均为120︒,若()1ka b c k ++>∈R ,求k 的取值范围.14.已知OA ,OB 不共线,点C 分AB 所成的比为2,OC OA OB λμ=+,求λμ-. 7.6 线段的定比分点公式与向量的应用线段的定比分点公式设点P 是直线12P P 上异于1P 、2P 的任意一点,若存在一个实数()1λλ≠-,使12PP PP λ=,则λ叫做点P 分有向线段12P P 所成的比,P 点叫做有向线段12P P 的以定比为λ的定比分点.当P 点在线段12P P 上时0λ⇔≥;当P 点在线段12P P 的延长线上时1λ⇔<-; 当P 点在线段21P P 的延长线上时10λ⇔-<<;设()111P x y ,,()222P x y ,,()P x y ,是线段12P P 的分点,λ是实数且12P P PP λ=,则121211x x x OP y y y λλλλ+⎧=⎪⎪+⇔=⎨+⎪=⎪+⎩()12121111OP OP OP tOP t OP t λλλ+⎛⎫⇔=+-= ⎪++⎝⎭.()1λ≠-由线段的定比分点公式得:中点坐标公式设()111P x y ,,()222P x y ,,()P x y ,为12P P 的中点,(当1λ=时) 得121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩三角形的重心坐标公式ABC △三个顶点的坐标分别为()11A x y ,、()22B x y ,、()33C x y ,,则ABC △的重心的坐标是12312233x x x y y y G ++++⎛⎫ ⎪⎝⎭,. 利用向量可以解决许多与长度、距离及夹角有关的问题.向量兼具几何特性和代数特性,成为沟通代数、三角与几何的重要工具,同时在数学、物理以及实际生活中都有着广泛的应用. 三角形五“心”向量形式的充要条件设O 为ABC △所在平面上一点,角A ,B ,C 所对边长分别为a ,b ,c 则(1)O 为ABC △的外心222OA OB OC ⇔==. (2)O 为ABC △的重心0OA OB OC ⇔++=.(3)O 为ABC △的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC △的内心0aOA bOB cOC ⇔++=. (5)O 为ABC △的A ∠的旁心()aOA b OB cOC ⇔=+.例1.如图7-23所示,已知矩形ABCD 中,()21A ,,()54B ,,()36C ,,E 点是CD 边的中点,联结BE 与矩形的对角线AC 交于F 点,求F 点坐标.图723解:四边形ABCD 是矩形,E 是CD 边的中点,ABF CEF ∴△∽△,且2AB CE =2AF CF ∴=即点F 分AC 所成的比2λ=.设()F x y ,.由(21)A ,,(36)C ,,根据定比分点坐标公式得2238123x +⨯==+,12613123y +⨯==+ F ∴点坐标是81333⎛⎫⎪⎝⎭,. 例2.证明:()cos cos cos sin sin αβαβαβ-=+.证明:在单位圆O 上任取两点A ,B ,以Ox 为始边,以OA ,OB 为终边的角分别为β,α,见图7-24.β,sin β)B (cos α图724则A 点坐标为()cos sin ββ,,B 点坐标为()cos sin αα,;则向量()cos sin OA ββ=,,()cos sin OB αα=,,它们的夹角为αβ-,1OA OB ==,cos cos sin sin OA OB αβαβ⋅=+, 由向量夹角公式得:()cos cos cos sin sin OA OB OA OBαβαβαβ⋅-==+,从而得证.注意:用同样的方法可证明()cos cos cos sin sin αβαβαβ+=-.例3.证明柯西不等式()()()2222211221212x y x y x x y y +⋅++≥.证明:令()11a x y =,,()22b x y =,(1)当0a =或0b =时,12120a b x x y y ⋅=+=,结论显然成立; (2)当当0a ≠且0b ≠时,令θ为a ,b 的夹角,则[]0πθ∈,1212cos a b x x y y a b θ⋅=+=.又cos 1θ≤,a b a b ∴⋅≤(当且仅当ab ∥时等号成立). 1212x x y y ∴+()()()2222211221212x y x y x x y y ∴+⋅++≥(当且仅当1212x x y y =时等号成立). 例4.给定ABC △,求证:G 是ABC △重心的充要条件是0GA GB GC ++=.证明:必要性 设各边中点分别为D E ,,F ,延长AD 至P ,使DP GD =,则2AG GD =GP =. 又因为BC 与GP 互相平分,所以BPCG 为平行四边形,所以BG PC ∥,所以GB CP =. 所以0GA GB GC GC CP PG ++=++=.充分性 若0GA GB GC ++=,延长AG 交BC 于D ,使GP AG =,联结CP ,则GA PG =. 因为0GC PG PC ++=,则GB PC =,所以GB CP ∥,所以AG 平分BC .同理BG 平分CA .所以G 为重心. 例5 ABC △外心为O ,垂心为H ,重心为G .求证:O G H ,,为共线,且12OG GH =∶∶. 证明:首先()()2112333OG OA AG OA AM OA AB AC OA AO OB OC =+=+=++=+++= ()13OA OB OC ++. 其次设BO 交外接圆于另一点E ,则联结CE 后得CE BC ⊥. 又AH BC ⊥,所以AH CE ∥.又EA AB ⊥,CH AB ⊥,所以AHCE 为平行四边形.所以AH EC =. 所以OH OA AH OA EC OA EO OC OA OB OC =+=+=++=++, 即3OH OG =,所以OG 与OH 共线,所以O G H ,,共线. 即12OG GH =∶∶. 注意:O G H ,,所在的直线称为欧拉线.例6.已知ABC △,AD 为中线,求证()2222122BC AD AB AC ⎛⎫=+- ⎪⎝⎭(中线长公式). 证明:以B 为坐标原点,以BC 所在的直线为x 轴建立如图7-25所示的直角坐标系,图725设()A a b ,,()0C c ,,02c D ⎛⎫⎪⎝⎭,,则()22222024c c AD a b ac a b ⎛⎫=-+-=-++ ⎪⎝⎭,()()22222222221122244BC c c AB AC a b c a b a b ac ⎛⎫⎡⎤⎪+-=++-+-=+-+⎢⎥ ⎪⎣⎦⎝⎭, 从而()2222122BC AD AB AC ⎛⎫ ⎪=+- ⎪⎝⎭,()2222122BC AD AB AC ⎛⎫=+- ⎪⎝⎭. 例7.是否存在4个两两不共线的平面向量,其中任两个向量之和均与其余两个向量之和垂直?解:如图7-26所示,在正ABC △中,O 为其内心,P 为圆周上一点,满足PA ,PB ,PC ,PO 两两不共线,有POCBA图726()()PA PB PC PO +⋅+=()()PO OA PO OB PO OC PO +++⋅++()()22PO OA OB PO OC =++⋅+ ()()22PO OC PO OC =-⋅+ 2240PO OC =-=有()PA PB +与()PC PO +垂直. 同理可证其他情况.从而PA ,PB ,PC ,PO 满足题意、故存在这样四个平面向量.例8.已知向量1OP ,2OP ,3OP 满足条件1230OP OP OP ++=,1231OP OP OP ===,求证:123PP P △是正三角形.解:令O 为坐标原点,可设()111cos sin P θθ,,()222cos sin P θθ,,()333cos sin P θθ, 由123OP OP OP +=-,即()()()112233cos sin cos sin cos sin θθθθθθ+=--,,, 123123cos cos cos sin sin sin θθθθθθ+=-⎧⎪⎨+=-⎪⎩①② 两式平方和()1212cos 11θθ+-+=,()121cos 2θθ-=-,由此可知12θθ-的最小正角为120︒,即1OP 与2OP 的夹角为120︒, 同理可得1OP 与3OP 的夹角为120︒,2OP 与3OP 的夹角为120︒, 这说明123P P P ,,三点均匀分布在一个单位圆上, 所以123PP P △为等腰三角形. 基础练习1.在ABC △中,若321AB BC BC CA AB CA⋅⋅⋅==,则tan A =__________. 2.已知P 为ABC △内一点,且满足3450PA PB PC ++=,那么PAB PBC PCA S S S =△△△∶∶__________. 3.如图7-27,设P 为ABC △内一点,且2155AP AB AC =+,求ABP △的面积与ABC △的面积之比. PCA图7274.已知ABC △的三顶点坐标分别为()11A ,,()53B ,,()45C ,,直线l AB ∥,交AC 于D ,且直线l 平分ABC △的面积,求D 点坐标. 5.已知()23A ,,()15B -,,且13AC AB =,3AD AB =,求点C D 、的坐标. 6.点O 是平面上一定点,A B C ,,是此平面上不共线的三个点,动点P 满足AC AB OP OA AB AC λ⎛⎫ ⎪=++ ⎪⎝⎭,[)0λ∈+∞,.则点P 的轨迹一定通过ABC △的__________心.能力提高7.设x y ∈R ,,i j 、为直角坐标系内x y 、轴正方向上的单位向量,若()2a xi y j =++,()62b xi y j =+-且2216a b +=.(1)求点()M x y ,的轨迹C 的方程;(2)过定点()03,作直线l 与曲线C 交于A B 、两点,设OP OA OB =+,是否存在直线l 使四边形OAPB 为正方形?若存在,求出l 的方程,或不存在说明理由.8.(1)已知4a =,3b =,()()23261a b a b -⋅+=,求a 与b 的夹角θ;(2)设()25OA =,,()31OB =,,()63OC =,,在OC 上是否存在点M ,使MA MB ⊥,若存在,求出点M 的坐标,若不存在,请说明理由. 9.设a b 、是两个不共线的非零向量()t ∈R (1)记OA a =,OB tb =,()13OC a b =+,那么当实数t 为何值时,A B C 、、三点共线? (2)若1a b ==且a 与b 夹角为120︒,那么实数x 为何值时a xb -的值最小?10.设平面内的向量()17OA =,,()51OB =,,()21OM =,,点P 是直线OM 上的一个动点,求当PA PB ⋅取最小值时,OP 的坐标及APB ∠的余弦值.11.已知向量()11m =,,向量n 与向量m 夹角为3π4,且1m n ⋅=-. (1)求向量n ;(2)若向量n 与向量()10q =,的夹角为π2,向量22sin 4cos 2A p A ⎛⎫= ⎪⎝⎭,,求2n p +的值.12.已知定点()01A ,,()01B -,,()10C ,.动点P 满足:2AP BP k PC ⋅=. (1)求动点P 的轨迹方程;(2)当0k =时,求2AP BP +的最大值和最小值.13.在平行四边形ABCD 中,()11A ,,()60AB =,,点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若()35AD =,,求点C 的坐标; (2)当AB AD =时,求点P 的轨迹.14.已知向量()22a =,,向量b 与向量a 的夹角为3π4,且2a b ⋅=-, (1)求向量b ;(2)若()10t =,且b t ⊥,2cos 2cos 2C c A ⎛⎫= ⎪⎝⎭,,其中A C 、是ABC △的内角,若三角形的三内角A B C 、、依次成等差数列,试求b c +的取值范围.。

(完整版)高中数学平面向量讲义

(完整版)高中数学平面向量讲义

平面向量 (学生专用 )专题六平面向量一. 基本知识【1】向量的基本看法与基本运算(1)向量的基本看法:①向量:既有大小又有方向的量向量不能够比较大小,但向量的模能够比较大小.②零向量:长度为0 的向量,记为0 ,其方向是任意的,0 与任意向量平行③单位向量:模为 1 个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量uuur r uuur r r uuur uuur uuur(2)向量的加法:设AB a, BC b ,则a+ b = AB BC = AC① 0 a a 0 a ;②向量加法满足交换律与结合律;uuur uuur uuur uuur uuur uuurAB BC CD L PQ QR AR ,但这时必定“首尾相连”.(3)向量的减法:①相反向量:与 a 长度相等、方向相反的向量,叫做 a 的相反向量②向量减法:向量 a 加上b的相反向量叫做 a 与b的差,③作图法: a b 能够表示为从 b 的终点指向a的终点的向量( a 、b有共同起点)(4)实数与向量的积:实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定以下:(Ⅰ)a a ;(Ⅱ)当0 时,λ a 的方向与 a 的方向相同;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是任意的(5)两个向量共线定理:向量b与非零向量 a 共线有且只有一个实数,使得b= a (6)平面向量的基本定理:若是e1, e2是一个平面内的两个不共线向量,那么对这一平面内的任向来量 a ,有且只有一对实数 1 ,2使:a1e12e2,其中不共线的向量e1 , e2叫做表示这一平面内所有向量的一组基底【2】平面向量的坐标表示第1页(1) 平面向量的坐标表示 :平面内的任向来量rr r rr 。

a 可表示成 axi yj ,记作 a =(x,y) (2)平面向量的坐标运算:rrr rx 1 x 2 , y 1 y 2①若 ax 1 , y 1 , bx 2 , y 2 ,则 a buuur②若 A x 1 , y 1 , B x 2 , y 2 ,则 AB x 2 x 1 , y 2 y 1r =(x,y) ,则 r x, y)③若 a a =(r r r r x 1 y 2 x 2 y 1 0④若 ax 1 , y 1 , b x 2 , y 2 ,则 a // b r r r r y 1 y 2⑤若 a x 1 , y 1 , b x 2 , y 2 ,则 a b x 1 x 2r r y 1 y 2⑥若 a b ,则 x 1 x 2【3】平面向量的数量积(1)两个向量的数量积:已知两个非零向量r rr r r rr ra 与b ,它们的夹角为 ,则 a · b =︱ a ︱·︱ b ︱ cos 叫做 a 与 b 的数量积(或内积)r r规定 0 arr rrr= a b(2)向量的投影: ︱ b ︱ cosr ∈ R ,称为向量 b 在 a 方向上的投影 投影的绝对值称| a |为射影(3)数量积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积(4)向量的模与平方的关系:r r r 2 r 2 a a a | a |(5)乘法公式成立:r r rrr 2 r 2 r 2 r 2 r r 2 r 2r r r 2r 2 r r r 2a b a ba b ab ; a ba 2ab ba2a b b(6)平面向量数量积的运算律:①交换律成立:rrr r a bb a②对实数的结合律成立: r r r r r r Ra ba b a b③分配律成立:r r r r r r r r r r a b c a cb c c a b第 2页特别注意:( 1)结合律不成立:r r r r r r ab c a b c ;r rrrr r ( 2)消去律不成立 a ba c 不能够获取b c(rr=0r r r r3) a b 不能够获取 a =0 或 b=0(7)两个向量的数量积的坐标运算:rrrry 1 y 2已知两个向量 a ( x 1, y 1), b ( x 2 , y 2 ) ,则 a · b= x 1 x 2r r uuur r uuur r ( 8 ) 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB= (0 0180 0 ) 叫做 向量r 与 r 的夹角abr r r rx 1 x 2 y 1 y 2a ? bcos= cosa ,br r = 2222a ? bx 1y 1x 2y 2当且仅当两个非零向量rrr rra 与b 同方向时, θ =0 ,当且仅当 a 与 b 反方向时θ=180 ,同时 0 与其他任何非零向量之间不谈夹角这一问题r r 0则称 r r r r (9)垂直 :若是 a 与 b 的夹角为 90 a 与 b 垂直,记作 a ⊥ b( 10)两个非零向量垂直的充要条件: a ⊥ ba ·b = Ox xy y20 平面向量1 21数量积的性质二. 例题解析【模块一】向量的基本运算【例 1】给出以下六个命题:①两个向量相等,则它们的起点相同,终点相同;rr r r ②若 a b ,则 ab ③在平行四边形 ABCD 中必然有uuur uuurAB DC ;ur r r ur ur ur r r r r r r④若 m n, n p ,则 m p ; ⑤若 a // b , b // c , 则 a // cr r r r r r r⑥任向来量与它的相反以下不相等. ⑦已知向量 a 0 ,且 a b 0 ,则 b 0r r r r r r r r r r r r⑧ a b 的充要条件是 a b 且 a // b ;⑨若 a 与 b 方向相同,且 a b ,则 ab ;⑩由于零向量的方向不确定,故零向量不与任意向量平行; 其中正确的命题的序号是第 3页r rr r ruur【例 2】已知向量 a, b 夹角为 45 ,且 a 1, 2a b10 ;求 b 的值 .uur uur r rr r【变式 1】若 a 2 , b 3 , a b3 求 a b 的值 .【变式 2】设向量 a , b 满足 | a|=|b |=1 及 | 3a-2 b|=3 ,求 | 3a+b| 的值r r r rrr r r【例 3】已知向量 a 、 b 的夹角为 60o , |a| 3, | b |2 ,若 (3a 5b) (ma b) ,求 m 的值.rrr r r r【例 4】若向量 a1,2 , b1, 1 求 2a b 与 a b 的夹角 .【 变 式】 设 x, y R, 向 量 a x,1 ,b 1, y , c2, 4 , 且 a c,b // c, 则 a b_______()A . 5B . 10C . 2 5D . 10【例 5】已知两个非零向量r rr r rra,b 满足 a ba b ,则以下结论必然正确的选项是( )r r r rr r DA a // bB a b Ca br r r r a b a b【变式 1】设 a , b 是两个非零向量 . ()A .若 | a +b |=| a |-| b |, 则 a ⊥ bB .若 a ⊥b , 则| a +b |=| a |-| b |C .若 | a +b |=| a |-| b |, 则存在实数 λ, 使得 a =λbD .若存在实数 λ, 使得 a =λb , 则| a +b |=| a |-| b |第 4页r r r r r r【变式 2】若平面向量a, b满足 : 2a b 3 ;则 agb 的最小值是_____【例 6】设0,rcosr13 2, a,sin ,b,22r r r r (1)证明 a b a b ;(2)r r r r的值 .当 2a b a2b时求角r rr ra b)【例 7】设a、b都是非零向量 , 以下四个条件中 , 使r r成立的充足条件是(| a ||b |r r r r r r r rr r A.a b B.a // b C.a 2b D.a // b且| a | | b |【模块二】向量与平面几何【例 1】在△ ABC中, A 90o AB 1, ACuuur uuur 2 ,设P、Q满足 AP AB ,uuur1uuurRuuur uuur2 ,则AQ AC ,BQ CP=()A 1B2C4D2 333第5页AB2uuur uuur uuur uuur 【变式 1】已知△ ABC为等边三角形,设 P、Q满足AP AB AQ 1AC,,uuur uuur 3,则R BQ CP=()2A 1B12C 1 10D 3 2 2222uuur uuur【例 2】在△ ABC中 ,AB=2,AC=3,ABgBC = 1则 BC ___ .()A.3B.7C.2 2D.23uuur uuur uuur【变式 1】若向量BA2,3 , CA4,7 ,则 BC()A.2, 4B.2,4C.6,10D.6, 10【例 3 】若等边ABC 的边长为2 3 ,平面内一点M 满足CM 1CB2CA ,则63MA? MB________.第6页平面向量 (学生专用 )uuur r uuur r r r r r2 ,则【例 4】ABC 中, AB 边上的高为 CD ,若CB a,CA b, a b0,| a |1,|b | uuurAD()A.1r1rB.2r2rC.3r3rD.4r4r a b a b a b5a b 3333555uuur3【例5】在平面直角坐标系中,O (0,0), P(6,8) ,将向量 OP按逆时针旋转后 , 得向量4 uuurOQ ,则点 Q 的坐标是()A.( 7 2,2) B. (72,2)C.( 4 6, 2)D.( 46, 2)uuur uuur【例 6】在ABC中, M是 BC的中点, AM=3, BC=10,则AB AC =______________.【例 7】在平行四边形中, ∠A= 3, 边、的长分别为2、1.若、分别是边、ABCD AB AD M N BC CD上的点,且满足| BM|| CN | ,则AM AN 的取值范围是_________ .| BC || CD |,【例 8】如图 ,在矩形 ABCD 中, AB 2 ,BC2,点E为 BC 的中点,点F在边 CD uuur uuur uuur uuur上, 若AB g AF 2 ,则 AE g BF 的值是____.第7页平面向量 (学生专用 )9 】已知正方形ABCD 的边长为1, 点 E 是 AB 边上的动点uuur uuur【例, 则DE CB的值为uuur uuur________; DE DC 的最大值为________.【例 10】已知直角梯形ABCD 中,AD// BC ,ADC 900, AD2, BC 1 , P 是腰uuur uuurDC 上的动点,则PA3PB 的最小值为___________uuur uuur uuur【例 11】如图,在VABC中,AD AB , BC 3 BD ,AD 1 ,uuur uuur3.则 AC gAD【例 12】 (15)uuur uuur1uuur1uuur3uuur 在四边形 ABCD中,AB = DC =( 1,1),uuur BA uuur BC uuur BD ,BA BC BD则四边形ABCD的面积是第8页平面向量 (学生专用 ) uuur uuur【例 13】在VABC中,若AB2,3 , AC 6, 4 ,则 VABC 面积为【例 14】( 2012 年河北二模)在VABC中,AB 边上的中线CD=6 ,点 P 为 CD 上(与 C,D )uuur uuur uuur不重合的一个动点,则PA PB .PC的最小值是A 2B 0C -9D -18第9页。

高一数学-高一数学第五章平面向量同步辅导讲义 精品

高一数学-高一数学第五章平面向量同步辅导讲义 精品

高一数学第五章平面向量同步辅导讲义第1讲向量及向量的加法与减法学习指导:1、向量(1)定义:既有大小又有方向的量叫向量。

例:力、速度、加速度、冲量等(2)向量的表示方法:①几何表示法:点和射线有向线段——具有一定方向的线段有向线段的三要素:起点、方向、长度符号表示:以A为起点、B为终点的有向线段记作(注意起讫).②字母表示法:可表示为(印刷时用黑体字)例用1cm表示5n mail(海里)(3)模的概念:向量的大小——长度称为向量的模。

记作:| |,模是可以比较大小的注意:①数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。

②从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。

2、向量的加法与减法(1)向量的加法的定义:已知向量,在平面内任取一点A,作,则向量叫做向量的和。

记作:即零向量与任意向量,有(2)两个向量的和向量的作法:①三角形法则:两个向量“首尾”相接注意:1°三角形法则对于两个向量共线时也适用;2°两个向量的和向量仍是一个向量例.已知向量,求作向量作法:在平面内任取一点O,作,则②平行四边形法则:由同一点A为起点的两个已知向量为邻边作平行四边形BCD,则以A为起点的向量就是向量的和。

这种作两个向量和的方法叫做平行四边形法则注意:平行四边形法则对于两个向量共线时不适用(3)向量和与数量和的区别:①当向量不共线时,的方向与不同向,且②当向量同向时,的方向与同向,且当向量反向时,若,则的方向与同向,且;若,则的方向与反向,且;4.向量的运算律:①交换律:证明:当向量不共线时,如上图,作平行四边形ABCD,使,则 ,因为,所以当向量共线时,若与同向,由向量加法的定义知:与同向,且与同向,且,所以若与反向,不妨设,同样由向量加法的定义知:与同向,且与同向,且,所以综上,②结合律:由于向量的加法满足交换律和结合律,对于多个向量的加法运算就可以按照任意的次序与任意的组合来进行了例如:例.如图,一艘船从A点出发以的速度向垂直于对岸的方向行驶,同时喝水的流速为,求船实际航行的速度的大小与方向。

高一数学平面向量复习课件

高一数学平面向量复习课件
详细描述
向量数量积的几何意义在于它表示了两个向量的长度和它们之间的夹角之间的关系。具体来说,当两个非零向量 的夹角为锐角时,它们的数量积为正;当夹角为直角时,数量积为零;当夹角为钝角时,数量积为负。
向量数量积的运算律
总结词
掌握向量数量积的运算律,包括 交换律、结合律和分配律。
详细描述
向量数量积满足交换律,即 a·b=b·a;结合律,即 (a+b)·c=a·c+b·c;分配律,即 (λa)·b=λ(a·b),其中λ是标量。
向量积的性质
向量积的性质
1. 向量积的方向与两个向量的夹角和大小有 关,其方向垂直于两个给定向量所确定的平 面;2. 向量积的模长为|a×b|=|a||b|sinθ; 3. 向量积满足结合律但不满足交换律;4. 向量积可以用来表示向量的旋转关系。
性质的应用
在解析几何中,向量积可以用来解决与旋转 、速度和加速度有关的问题;在物理中,向 量积可以用来描述力矩、角速度等物理量。 通过理解这些性质和应用,学生可以更好地
向量积的运算律
向量积的运算律
交换律a×b=-b×a,分配律 (a+b)×c=a×c+b×c。这些运算律与标量积 的运算律类似,但要注意向量积不满足结合 律。
运算律的理解
交换律表明向量积的方向与夹角有关,而分 配律表明向量积与向量的线性组合是可分配 的。这些运算律对于理解向量积的性质和计 算非常重要。
混合积的性质
非负性
向量a、b、c的混合积为非负数,当且仅当a、b、c三个 向量共面时取值为0。
线性性质
混合积满足线性性质,即对于任意标量m和n,有 $(mvec{a} + nvec{b}) cdot vec{c} = mvec{a} cdot vec{c} + nvec{b} cdot vec{c}$。

(完整版)平面向量全部讲义

(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。

6高一数学讲义平面向量(一)

6高一数学讲义平面向量(一)

向量的基本概念:(一)向量的概念:我们把既有大小又有方向的量叫向量 (二)探究学习1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ;④向量的大小――长度称为向量的模,记作||.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:高一数学讲义(65期) 第六讲 平面向量(一)A(起点)B(终点)a长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的......起点无关..... 7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线....段的起...点无关)..... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. 例1、判断:(1)平行向量的方向一定相同;( ) (2)共线向量一定相等;( )(3)相等向量一定是共线向量,不相等的向量一定不是共线向量;( ) (4)与BA 是两平行向量;( )(5)若AB DC =,则A 、B 、C 、D 四点构成平行四边形( ) (6)四边形ABCD 是平行四边形,则必有AB DC =;( ) (7)若a b =,则a b =;( ) (8)若,a b b c ∥∥,则a c ∥( )变式:下列命题正确的是( )A.a与b共线,b与c共线,则a与c 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行例2、如图,设O 是正六边形ABCDEF 的中心,分别写出图中与向量、、相等的向量.OABaaa bb b注意:共起点,()a b -的方向指向被减向量向量的运算1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、加法三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作=a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +b=+=, 规定 a + 0-= 0 + a3、加法平行四边形法则:a +b=+=探究:(1)两相向量的和仍是一个向量;(2)当向量与不共线时,+的方向不同向,且|+|<||+||; (3)当与同向时,则+、、同向,且|+|=||+||,当与反向时,若||>||,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若||<||,则+的方向与相同,且|+b|=||-||.4、减法的三角形法则:(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a (2) 规定:零向量的相反向量仍是零向量.-(-a ) = a. 任一向量与它的相反向量的和是零向量.a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0(3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法.如图:a AB =,b AC =,则AC AB b a -=-=CB 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量讲义§2、1 平面向量得实际背景及基本概念1.向量:既有________,又有________得量叫向量.2.向量得几何表示:以A 为起点,B 为终点得向量记作________.3.向量得有关概念:(1)零向量:长度为__________得向量叫做零向量,记作______. (2)单位向量:长度为______得向量叫做单位向量.(3)相等向量:__________且__________得向量叫做相等向量.(4)平行向量(共线向量):方向__________得________向量叫做平行向量,也叫共线向量. ①记法:向量a 平行于b ,记作________. ②规定:零向量与__________平行. 考点一 向量得有关概念例1 判断下列命题就是否正确,并说明理由.①若a ≠b ,则a 一定不与b 共线;②若AB →=DC →,则A 、B 、C 、D 四点就是平行四边形得四个顶点;③在平行四边形ABCD 中,一定有AB →=DC →;④若向量a 与任一向量b 平行,则a =0;⑤若a =b ,b =c ,则a =c ;⑥若a ∥b ,b ∥c ,则a ∥c 、变式训练1 判断下列命题就是否正确,并说明理由. (1)若向量a 与b 同向,且|a |>|b |,则a>b ;(2)若向量|a |=|b |,则a 与b 得长度相等且方向相同或相反; (3)对于任意|a |=|b |,且a 与b 得方向相同,则a =b ; (4)向量a 与向量b 平行,则向量a 与b 方向相同或相反. 考点二 向量得表示方法例2 一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向西偏北50°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点.(1)作出向量AB →、BC →、CD →; (2)求|AD →|、 考点三 相等向量与共线向量例3 如图所示,O 就是正六边形ABCDEF 得中心,且OA →=a ,OB →=b ,OC →=c 、(1)与a 得模相等得向量有多少个?(2)与a 得长度相等,方向相反得向量有哪些? (3)与a 共线得向量有哪些?(4)请一一列出与a ,b ,c 相等得向量. §2、2 平面向量得线性运算1.向量得加法法则 (1)三角形法则如图所示,已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量________叫做a与b 得与(或与向量),记作__________,即a +b =AB →+BC →=________、上述求两个向量与得作图法则,叫做向量求与得三角形法则.对于零向量与任一向量a 得与有a +0=________+______=______、 (2)平行四边形法则如图所示,已知两个不共线向量a ,b ,作OA →=a ,OB →=b ,则O 、A 、B 三点不共线,以______,______为邻边作__________,则对角线上得向量________=a +b ,这个法则叫做两个向量求与得平行四边形法则.2.向量加法得运算律(1)交换律:a +b =______________、(2)结合律:(a +b )+c =______________________、 3、 相反向量(1)定义:如果两个向量长度________,而方向________,那么称这两个向量就是相反向量.(2)性质:①对于相反向量有:a +(-a )=______、②若a ,b 互为相反向量,则a =________,a +b =______、 ③零向量得相反向量仍就是__________.4、 向量得减法(1)定义:a -b =a +(-b ),即减去一个向量相当于加上这个向量得___________________________________________________________________.(2)作法:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量a -b =__________、如图所示. (3)几何意义:如果把两个向量得始点放在一起,则这两个向量得差就是以减向量得终点为________,被减向量得终点为________得向量.例如:OA →-OB →=________、 5.向量数乘运算实数λ与向量a 得积就是一个__________,这种运算叫做向量得__________,记作________,其长度与方向规定如下: (1)|λa |=__________、(2)λa (a ≠0)得方向⎩⎪⎨⎪⎧当 时与a 方向相同当 时与a 方向相反;特别地,当λ=0或a =0时,0a =________或λ0=________、6.向量数乘得运算律 (1)λ(μa )=________、(2)(λ+μ)a =____________、 (3)λ(a +b )=____________、特别地,有(-λ)a =____________=________; λ(a -b )=____________、 7.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使______________. 8.向量得线性运算向量得____、____、________运算统称为向量得线性运算,对于任意向量a 、b ,以及任意实数λ、μ1、μ2,恒有λ(μ1a ±μ2b )=__________________、 考点一 运用向量加法法则作与向量例1 如图所示,已知向量a 、b ,求作向量a +b 、变式训练1 如图所示,已知向量a 、b 、c ,试作与向量a +b +c 、考点二 运用向量加减法法则化简向量 例2 化简: (1)BC →+AB →; (2)DB →+CD →+BC →; (3)AB →+DF →+CD →+BC →+FA →、(4)(AB →-CD →)-(AC →-BD →). (5)(BA →-BC →)-(ED →-EC →);(6)(AC →+BO →+OA →)-(DC →-DO →-OB →).变式训练2 如图,在平行四边形ABCD 中,O 就是AC 与BD 得交点.(1)AB →+AD →=________; (2)AC →+CD →+DO →=________; (3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________、变式训练3 如图所示,O 就是平行四边形ABCD 得对角线AC 、BD 得交点,设AB →=a , DA →=b ,OC →=c ,求证:b +c -a =OA →、考点三 向量得共线例3设e 1,e 2就是两个不共线得向量,若向量m =-e 1+k e 2 (k ∈R )与向量n =e 2-2e 1共线,则( )A.k =0B.k =1C.k =2D.k =12变式训练4 已知△ABC 得三个顶点A ,B ,C 及平面内一点P ,且PA →+PB →+PC →=AB →,则( ) A.P 在△ABC 内部 B.P 在△ABC 外部C.P 在AB 边上或其延长线上D.P 在AC 边上 考点四:三点共线例4两个非零向量a 、b 不共线.(1)若A B →=a +b ,B C →=2a +8b ,C D →=3(a -b ),求证:A 、B 、D 三点共线; (2)求实数k 使k a +b 与2a +k b 共线.变式训练5 已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线得三点就是( )A.B 、C 、DB.A 、B 、CC.A 、B 、DD.A 、C 、D变式训练6 已知平面内O ,A ,B ,C 四点,其中A ,B ,C 三点共线,且OC →=xOA →+yOB →, 则x +y =________、§2、3 平面向量得基本定理及坐标表示1.平面向量基本定理(1)定理:如果e 1,e 2就是同一平面内得两个______向量,那么对于这一平面内得______向量a ,__________实数λ1,λ2,使a =____________________________、(2)基底:把________得向量e 1,e 2叫做表示这一平面内________向量得一组基底.2、两向量得夹角与垂直(1)夹角:已知两个__________a 与b ,作OA →=a ,OB →=b ,则________=θ (0°≤θ≤180°),叫做向量a 与b 得夹角.①范围:向量a 与b 得夹角得范围就是______________. ②当θ=0°时,a 与b ________、 ③当θ=180°时,a 与b ________、(2)垂直:如果a 与b 得夹角就是________,则称a 与b 垂直,记作______________. 3.平面向量得坐标表示(1)向量得正交分解:把一个向量分解为两个__________得向量,叫作把向量正交分解. (2)向量得坐标表示:在平面直角坐标系中,分别取与x 轴、y 轴方向相同得两个____________i ,j 作为基底,对于平面内得一个向量a ,有且只有一对实数x ,y 使得a =____________,则________________叫作向量a 得坐标,________________叫作向量得坐标表示.(3)向量坐标得求法:在平面直角坐标系中,若A (x ,y ),则OA →=________,若A (x 1,y 1),B (x 2,y 2),则AB →=________________________、 4.平面向量得坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),则a +b =________________,即两个向量与得坐标等于这两个向量相应坐标得与.(2)若a =(x 1,y 1),b =(x 2,y 2),则a -b =________________________,即两个向量差得坐标等于这两个向量相应坐标得差.(3)若a =(x ,y ),λ∈R ,则λa =________,即实数与向量得积得坐标等于用这个实数乘原来向量得相应坐标.5.两向量共线得坐标表示 设a =(x 1,y 1),b =(x 2,y 2).(1)当a ∥b 时,有______________________.(2)当a ∥b 且x 2y 2≠0时,有____________________.即两向量得相应坐标成比例.6.若P 1P →=λPP 2→,则P 与P 1、P 2三点共线.当λ∈________时,P 位于线段P 1P 2得内部,特别地λ=1时,P 为线段P 1P 2得中点; 当λ∈________时,P 位于线段P 1P 2得延长线上; 当λ∈________时,P 位于线段P 1P 2得反向延长线上. 考点一 对基底概念得理解例1 如果e 1,e 2就是平面α内两个不共线得向量,那么下列说法中不正确得就是( )①λe 1+μe 2(λ、μ∈R )可以表示平面α内得所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2得实数对(λ,μ)有无穷多个;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0、A.①②B.②③C.③④D.②变式训练1 设e 1、e 2就是不共线得两个向量,给出下列四组向量:①e 1与e 1+e 2; ②e 1-2e 2与e 2-2e 1; ③e 1-2e 2与4e 2-2e 1; ④e 1+e 2与e 1-e 2、其中能作为平面内所有向量得一组基底得序号就是________.(写出所有满足条件得序号)考点二 用基底表示向量例2 如图,梯形ABCD 中,AB ∥CD ,且AB =2CD ,M 、N 分别就是DC 与AB 得中点,若AB →=a ,AD →=b 试用a ,b 表示DC →、BC →、MN →、变式训练2 如图,已知△ABC 中,D 为BC 得中点,E ,F 为BC 得三等分点,若AB →=a ,AC →=b ,用a ,b 表示AD →,AE →,AF →、考点三 平面向量基本定理得应用例3 如图所示,在△ABC 中,点M 就是BC 得中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求证:AP ∶PM =4∶1、变式训练3 如图所示,已知△AOB 中,点C 就是以A 为中点得点B 得对称点,OD →=2DB →,DC 与OA 交于点E ,设OA →=a ,OB →=b 、(1)用a 与b 表示向量OC →、DC →;(2)若OE →=λOA →,求实数λ得值.考点四 平面向量得坐标运算例4 已知平面上三点A (2,-4),B (0,6),C (-8,10),求(1)AB →-AC →;(2)AB →+2BC →;(3)BC →-12AC →、变式训练4 已知a =(-1,2),b =(2,1),求:(1)2a +3b ;(2)a -3b ;(3)12a -13b 、考点五 平面向量得坐标表示例5 已知a =(-2,3),b =(3,1),c =(10,-4),试用a ,b 表示c 、变式训练5 设i 、j 分别就是与x 轴、y 轴方向相同得两个单位向量,a =i -(2m -1)j ,b =2i +m j (m ∈R ),已知a ∥b ,求向量a 、b 得坐标. 考点六 平面向量坐标得应用例6 已知▱ABCD 得顶点A (-1,-2),B (3,-1),C (5,6),求顶点D 得坐标.变式训练 6 已知平行四边形得三个顶点得坐标分别为(3,7),(4,6),(1,-2),求第四个顶点得坐标.考点七 平面向量共线得坐标运算例7 已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?平行时它们就是同向还就是反向?变式训练7 已知A (2,1),B (0,4),C (1,3),D (5,-3).判断AB →与CD →就是否共线?如果共线,它们得方向相同还就是相反? 考点八 平面向量得坐标运算例8 已知点A (3,-4)与点B (-1,2),点P 在直线AB 上,且|AP →|=2|PB →|,求点P 得坐标.变式训练8 已知点A (1,-2),若向量AB →与a =(2,3)同向,|AB →|=213,求点B 得坐标. 考点九 利用共线向量求直线得交点例9 如图,已知点A (4,0),B (4,4),C (2,6),求AC 与OB 得交点P 得坐标.变式训练9 平面上有A (-2,1),B (1,4),D (4,-3)三点,点C 在直线AB 上,且AC →=12BC →,连接DC ,点E 在CD 上,且CE →=14ED →,求E 点坐标.§2、4 平面向量得数量积1.平面向量数量积(1)定义:已知两个非零向量a 与b ,我们把数量______________叫做a 与b 得数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,其中θ就是a 与b 得夹角. (2)规定:零向量与任一向量得数量积为____.(3)投影:设两个非零向量a 、b 得夹角为θ,则向量a 在b 方向得投影就是____________,向量b 在a 方向上得投影就是______________. 2.数量积得几何意义 a ·b 得几何意义就是数量积a ·b 等于a 得长度|a |与b 在a 得方向上得投影________________得乘积.3.向量数量积得运算律(1)a ·b =________(交换律);(2)(λa )·b =________=________(结合律);(3)(a +b )·c =______________________(分配律). 4.平面向量数量积得坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a ·b =____________、 即两个向量得数量积等于________________. 5.两个向量垂直得坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2), 则a ⊥b ⇔________________、 6.平面向量得模(1)向量模公式:设a =(x 1,y 1),则|a |=________________、(2)两点间距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB →|=________________________、 7.向量得夹角公式设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 得夹角为θ,则cos θ=________=__________、考点一 求两向量得数量积例1 已知|a |=4,|b |=5,当(1)a ∥b ;(2)a ⊥b ;(3)a 与b 得夹角为30°时,分别求a 与b得数量积.变式训练1 已知正三角形ABC 得边长为1,求: (1)AB →·AC →;(2)AB →·BC →;(3)BC →·AC →、 考点二 求向量得模长例2 已知|a |=|b |=5,向量a 与b 得夹角为π3,求|a +b |,|a -b |、变式训练2 已知|a |=|b |=1,|3a -2b |=3,求|3a +b |、 考点三 向量得夹角或垂直问题例3 设n 与m 就是两个单位向量,其夹角就是60°,求向量a =2m +n 与b =2n -3m 得夹角. 变式训练3 已知|a |=5,|b |=4,且a 与b 得夹角为60°,则当k 为何值时,向量k a -b 与a +2b 垂直?考点四 向量得坐标运算例4 已知a 与b 同向,b =(1,2),a ·b =10、(1)求a 得坐标;(2)若c =(2,-1),求a (b ·c )及(a ·b )c 、变式训练4 若a =(2,3),b =(-1,-2),c =(2,1),则(a ·b )·c =________;a ·(b ·c )=________、考点五 向量得夹角问题例5 已知a =(1,2),b =(1,λ),分别确定实数λ得取值范围,使得:(1)a 与b 得夹角为直角; (2)a 与b 得夹角为钝角; (3)a 与b 得夹角为锐角.变式训练5 已知a =(1,-1),b =(λ,1),若a 与b 得夹角α为钝角,求λ得取值范围. 考点六 向量数量积坐标运算得应用例6 已知在△ABC 中,A (2,-1)、B (3,2)、C (-3,-1),AD 为BC 边上得高,求|AD →|与点D 得坐标.变式训练6 以原点与A (5,2)为两个顶点作等腰直角△OAB ,∠B =90°,求点B 与AB →得坐标.§2、5 平面向量应用举例1.向量方法在几何中得应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)得等价条件:a ∥b (b ≠0)⇔________⇔____________、(2)证明垂直问题,如证明四边形就是矩形、正方形等,常用向量垂直得等价条件:a ⊥b ⇔__________⇔__________、(3)求夹角问题,往往利用向量得夹角公式cos θ=_______________=_______________、(4)求线段得长度或证明线段相等,可以利用向量得线性运算、向量模得公式:|a |=______、 2.力向量力向量与前面学过得自由向量有区别.(1)相同点:力与向量都既要考虑________又要考虑________.(2)不同点:向量与________无关,力与________有关,大小与方向相同得两个力,如果________不同,那么它们就是不相等得. 3.向量方法在物理中得应用(1)力、速度、加速度、位移都就是________.(2)力、速度、加速度、位移得合成与分解就就是向量得________运算,运动得叠加亦用到向量得合成.(3)动量m ν就是______________.(4)功即就是力F 与所产生位移s 得________.考点一 三角形问题例1 点O 就是三角形ABC 所在平面内得一点,满足OA →·OB →=OB →·OC →=OC →·OA →,则点O 就是△ABC 得( )A.三个内角得角平分线得交点B.三条边得垂直平分线得交点C.三条中线得交点D.三条高得交点 变式训练1 在△ABC 中,已知A (4,1)、B (7,5)、C (-4,7),则BC 边得中线AD 得长就是( )A.2 5 B 、52 5 C.3 5 D 、725变式训练2 若O 就是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 得形状就是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形变式训练3 设平面上有四个互异得点A 、B 、C 、D ,已知(DB →+DC →-2DA →)·(AB →-AC →)=0,则△ABC 得形状一定就是__________. 考点二 向量得计算例2 已知平面上三点A 、B 、C 满足|AB →|=3,|BC →|=4,|CA →|=5、则AB →·BC →+BC →·CA →+CA →·AB →=______、变式训练4 如图,在△ABC 中,点O 就是BC 得中点,过点O 得直线分别交直线AB 、AC 于不同得两点M 、N ,若AB →=mAM →,AC →=nAN →,则m +n 得值为__________________.考点三 向量得应用例3 两个大小相等得共点力F 1,F 2,当它们夹角为90°时,合力大小为20 N,则当它们得夹角为120°时,合力大小为( )A.40 NB.10 2 NC.202ND.10 3 N变式训练5 在水流速度为4千米/小时得河流中,有一艘船沿与水流垂直得方向以8千米/小时得速度航行,则船实际航行得速度得大小为________.。

相关文档
最新文档