平面向量讲义 - 学生版

合集下载

第四章平面向量学生版

第四章平面向量学生版

第四章第1节平面向量1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.|λa|=|λ||a|,当λ>0时,λa与a的3.共线向量定理:向量a(a≠0)与b共线的充要条件是当且仅当有唯一一个实数λ,使得b=λa.4.两个向量的夹角(1)定义:已知两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫做向量a与b的夹角.(2)范围:向量夹角θ的范围是[0,π],a与b同向时,夹角θ=0;a与b反向时,夹角θ=π.(3)向量垂直:如果向量a与b的夹角是π2,则a与b垂直,记作a⊥b.5.平面向量基本定理及坐标表示(1)平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.(2)平面向量的坐标表示:①在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使得a=x i+y j,这样,平面内的任一向量a都可由x,y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.②设OA=x i+y j,则向量OA的坐标(x,y)就是A点的坐标,即若OA=(x,y),则A点坐标为(x,y),反之亦成立.(O是坐标原点)6.平面向量的坐标运算(1)若a=(x1,y1),b=(x2,y2),则a±b=(x1±x2,y1±y2);(2)若A(x1,y1),B(x2,y2),则AB=(x2-x1,y2-y1);(3)若a=(x,y),则λa=(λx,λy);(4)若a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2=x2y1.1.两向量共线与平行是两个不同的概念吗?两向量共线是指两向量的方向一致吗? 2.两向量平行与两直线(或线段)平行有何不同?3.相等向量的坐标一定相同吗?相等向量起点和终点坐标可以不同吗?4.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件能表示成x 1x 2=y 1y 2吗?重要考点考点一 平面向量的有关概念【例1】 给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b . 其中真命题的序号是________.【训练1】 设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( ). A .0 B .1 C .2 D .3考点二 平面向量的线性运算【例2】 如图,在平行四边形OADB 中,设OA →=a , OB →=b ,BM →=13 BC →, CN →=13 CD →.试用a ,b 表示OM →, O N →及MN →.【训练2】 (1) (2013·四川卷)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λ AO →,则λ=________.(2)(2013·泉州模拟)已知P ,A ,B ,C 是平面内四点,且P A →+PB →+PC →=AC →,那么一定有 ( ).A.PB →=2CP →B.CP →=2PB →C.AP →=2PB →D.PB →=2AP →考点三 向量共线定理及其应用【例3】 (2013·郑州一中月考)设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.【训练3】 (2014·西安模拟)已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 同向,则实数λ的值为_____.考点四 平面向量基本定理的应用【例4】 如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →,AD →.【训练4】 在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若A B →=λAM →+μAN →,则λ+μ=( ). A.15 B.25 C.35 D.45考点五 平面向量的坐标运算【例5】 已知A (-2,4),B (3,-1),C (-3,-4),设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b . (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.【训练5】 (1)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b = ( ). A .(-2,-1) B .(-2,1) C .(-1,0) D .(-1,2)(2)在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →= ( ). A .(-2,-4) B .(-3,-5) C .(3,5) D .(2,4)考点六 平面向量共线的坐标表示【例6】 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)若(a +k c )∥(2b -a ),求实数k ;(2)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d 的坐标.【训练6】 (1)(2014·衡水中学一检)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( ). A.12 B.14 C .1 D .2(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 巩固训练一、选择题1. (2014·汕头二模)如图,在正六边形ABCDEF 中,BA →+CD →+EF →等于( ). A .0 B.BE → C.AD → D.CF →2.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.(2014·开封模拟)下列命题中,正确的是( ).A .若|a |=|b |,则a =b 或a =-bB .若a ·b =0,则a =0或b =0C .若k a =0,则k =0或a =0D .若a ,b 都是非零向量,则|a +b |>|a -b |4.(2014·兰州质检)若点M 是△ABC 所在平面内的一点,且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为( ). A.15 B.25 C.35 D.455.(2014·华东师大附中模拟)如图,设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( ). A .①② B .③④ C .①③ D .①④6.(2014·揭阳二模)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为( ). A .(7,4) B .(7,14) C .(5,4) D .(5,14)7.如图,在△OAB 中,P 为线段AB 上的一点,OP →=x OA →+y OB →,且BP →=2 P A →,则( ). A .x =23,y =13 B .x =13,y =23 C .x =14,y =34 D .x =34,y =148.(2013·惠州模拟)已知向量a =(-1,1),b =(3,m ),a ∥(a +b ),则m =( ). A .2 B .-2 C .-3 D .39.(2014·许昌模拟)在△ABC 中,点P 在BC 上,且BP →=2P C →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →等于( ).A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21) 二、填空题10.(2014·湖州月考)给出下列命题: ①向量AB →的长度与向量BA →的长度相等;②向量a 与b 平行,则a 与b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同; ④两个有公共终点的向量,一定是共线向量;⑤向量AB →与向量CD →是共线向量,则点A ,B ,C ,D 必在同一条直线上. 其中不正确命题的序号是________.11.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________.12.(2014·泰安模拟)设a ,b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值为________.13.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1 OA →+t 2 AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点都共线.。

最新平面向量全部讲义

最新平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模. (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. (5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量.例1.若向量a 与b 不相等,则a 与b 一定( )A .有不相等的模B .不共线C .不可能都是零向量D .不可能都是单位向量例2..给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB u u u r =DC u u ur 等价于四边形ABCD 为平行四边形;③若a =b ,b =c ,则a =c ;④a =b 等价于|a |=|b |且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( )A .②③B .①②C .③④D .④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则(1)交换律:a +b =b +a ; (2)结合律: (a +b )+c =a +(b +c )平行四边形法则减法求a 与b 的相反向量-b 的和的运算叫做a 与b 的差三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μ a )=(λμ)a ; (λ+μ)a =λa +μa ; λ(a +b )=λa +λb 例3:化简AC -BD +CD -AB 得( ) A.AB B.DA C.BC D .0例4:(1)如图,在正六边形ABCDEF 中,BA u u u r +CD u u u r +EF u u u r=( )A .0B .BE u u u rC .AD u u u rD .CF u u u r(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE u u u r =λ1AB u u u r +λ2AC u u u r(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a +2b )-2(b -2a )化简成最简式为______________.2.若|OA →+OB →|=|OA →-OB →|,则非零向量OA →,OB →的关系是( ) A .平行 B .重合 C .垂直 D .不确定3.若菱形ABCD 的边长为2,则|AB u u u r -CB u u ur +CD u u u r |=________4.D 是△ABC 的边AB 上的中点,则向量CD u u u r等于( )A .-BC u u u r +12BA u u u rB .-BC u u u r -12BA u u u r C .BC u u u r -12BA u u u rD .BC u u u r +12BA u u u r5.若A ,B ,C ,D 是平面内任意四点,给出下列式子:①AB u u u r +CD u u u r =BC u u u r +DA u u u r ;②AC u u u r +BD u u u r =BC u u u r +AD u u u r;③AC u u u r -BD u u u r =DC u u u r +AB u u u r.其中正确的有( )A .0个B .1个C .2个D .3个6.如图,在△ABC 中,D ,E 为边AB 的两个三等分点,CA →=3a ,CB →=2b ,求CD →,CE →. DD 12巩固练习 1。

八年级数学平面向量新课讲义完整版(全8讲)

八年级数学平面向量新课讲义完整版(全8讲)

八年级数学平面向量新课讲义完整版(全8
讲)
第一讲:向量的概念
- 向量的定义
- 向量的表示方法
- 向量的性质
第二讲:向量的运算
- 向量的加法
- 向量的减法
- 向量的数乘
第三讲:向量的模与方向角
- 向量的模的概念
- 向量的方向角的概念
- 向量的模与方向角的计算
第四讲:向量坐标表示与平行四边形法则
- 向量的坐标表示方法
- 矢量和坐标的关系
- 平行四边形法则的应用
第五讲:向量共线与定比分点
- 向量共线的概念
- 共线向量的判定方法
- 向量的定比分点
第六讲:向量的数量积
- 数量积的定义
- 数量积的性质
- 数量积的计算方法
第七讲:向量的坐标表示与夹角公式- 向量的坐标表示与数量积
- 夹角的概念与计算方法
- 向量间的夹角公式
第八讲:平面向量的应用
- 向量的投影
- 向量的位移
- 向量的垂直与平行
以上是八年级数学平面向量的新课讲义完整版,共8讲,内容
包括向量的概念、运算、模与方向角、坐标表示与平行四边形法则、共线与定比分点、数量积、坐标表示与夹角公式以及向量的应用。

通过学习这些内容,学生将能够掌握平面向量的基本概念和运算方法,并能够应用于实际问题的解决中。

(完整版)平面向量全部讲义

(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。

卫辉一中校本教平面向量的内部讲义

卫辉一中校本教平面向量的内部讲义

卫辉一中校本教材高一年级数学内部讲义2.1平面向量的实际背景及基本概念高一数学备课组编写:李双霞审核:李红枫学习目标:1.理解向量的有关概念及表示2.掌握向量的模,零向量,单位向量,平行向量,相等向量,共线向量的概念。

学习重点:1.向量,相等向量,共线向量的概念及向量的几何表示2.平行向量,相等向量和共线向量的区别和联系学习过程:一.学习引导1.在物理中什么叫矢量?什么叫标量?矢量标量各有哪些?2.在数学中----------。

-------的量叫做向量,--------。

---------的量称为数量。

3.向量的表示:(1)几何表示:用--------表示向量(2)名称表示:用--------或--------表示向量4.向量的模:向量的------或--------。

记作--------5.特殊向量(1)------------------叫做零向量,方向---------(2)------------------叫做单位向量,方向--------同学们,请用几何表示两个单位向量6.向量间的关系(1)平行向量:方向----------的--------向量,规定:-----------向量与任一向量平行,记作-----------(2)相等向量:长度--------方向-------的向量,记作---------(3)共线向量:任一组----------向量都可以移动到--------------上,也叫----------向量二.合作交流平行向量,相等向量和共线向量的区别和联系?三.随堂练习1. 画出下列向量(1)│→OA │=4 点A 在点O 正南方向(2) │→OB │=2 点B 在点o 南偏西30方向2.→AB ,→BA 的长度相等吗? 是相等向量吗?3.共线向量一定在同一直线上吗? 四.能力提升如图,设O 是正六边形ABCDEF 的中点,分别写出图中与 OA,OB,OC 相等的向量(见课本)课堂小结1、 描述向量的两个指标:模和方向.2、平面向量的概念和向量的几何表示;3、向量的模、零向量、单位向量、平行向量等概念自我测评1. 判定下列命题的正误:①零向量是惟一没有方向的向量。

高一平面向量讲义

高一平面向量讲义

平面向量讲义§2.1平面向量的实际背景及基本概念1.向量:既有,又有的量叫向量.2.向量的几何表示:以A为起点,B为终点的向量记作.3.向量的有关概念:(1)零向量:长度为的向量叫做零向量,记作.(2)单位向量:长度为的向量叫做单位向量.(3)相等向量:且的向量叫做相等向量.(4)平行向量(共线向量):方向的向量叫做平行向量,也叫共线向量.①记法:向量a平行于b,记作.②规定:零向量与平行.考点一向量的有关概念例1判断下列命题是否正确,并说明理由.①若a≠b,则a一定不与b共线;②若=,则A、B、C、D四点是平行四边形的四个顶点;③在平行四边形中,一定有=;④若向量a与任一向量b 平行,则a=0;⑤若a=b,b=c,则a=c;⑥若a∥b,b∥c,则a∥c.变式训练1判断下列命题是否正确,并说明理由.(1)若向量a与b同向,且>,则a>b;(2)若向量=,则a与b 的长度相等且方向相同或相反;(3)对于任意=,且a与b的方向相同,则a=b;(4)向量a与向量b平行,则向量a与b方向相同或相反.考点二向量的表示方法例2一辆汽车从A点出发向西行驶了100到达B点,然后又改变方向向西偏北50°走了200到达C点,最后又改变方向,向东行驶了100到达D点.(1)作出向量、、;(2)求|.考点三相等向量与共线向量例3如图所示,O是正六边形的中心,且=a,=b,=c.(1)与a的模相等的向量有多少个?(2)与a的长度相等,方向相反的向量有哪些?(3)与a共线的向量有哪些?(4)请一一列出与a,b,c相等的向量.§2.2平面向量的线性运算1.向量的加法法则(1)三角形法则如图所示,已知非零向量a,b,在平面内任取一点A,作=a,=b,则向量叫做a与b的和(或和向量),记作,即a+b=+=.上述求两个向量和的作图法则,叫做向量求和的三角形法则.对于零向量与任一向量a的和有a+0=+=.(2)平行四边形法则如图所示,已知两个不共线向量a,b,作=a,=b,则O、A、B 三点不共线,以,为邻边作,则对角线上的向量=a+b,这个法则叫做两个向量求和的平行四边形法则.2.向量加法的运算律(1)交换律:a+b=.(2)结合律:(a+b)+c=.3.相反向量(1)定义:如果两个向量长度,而方向,那么称这两个向量是相反向量.(2)性质:①对于相反向量有:a+(-a)=.②若a,b互为相反向量,则a=,a+b=.③零向量的相反向量仍是.4.向量的减法(1)定义:a-b=a+(-b),即减去一个向量相当于加上这个向量的.(2)作法:在平面内任取一点 O ,作=a ,=b ,则向量 a -b =.如图所示.(3)几何意义:如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点 为,被减向量的终点为的向量.例如:-=.5.向量数乘运算实数 λ 与向量 a 的积是一个,这种运算叫做向量的,记作,其长度与方向规定如下: (1)|λ=.(2)λa (a ≠0)的方向错误!;特别地,当 λ=0 或 a =0 时,0a =或 λ0=.6.向量数乘的运算律 (1)λ(a μ)=.(1)(λ+μ)a =. (3)λ(a +b )=.特别地,有(-λ)a ==; λ(a -b )=.7.共线向量定理向量 a (a ≠0)与 b 共线,当且仅当有唯一一个实数 λ,使.8.向量的线性运算向量的、 运算统称为向量的线性运算,对于任意向量 a 、b ,以及任意实数 λ、μ 、μ ,恒 有λ(μ a ±μ b )=.考点一 运用向量加法法则作和向量例 1如图所示,已知向量 a 、b ,求作向量 a +b .变式训练 1 如图所示,已知向量 a 、b 、c ,试作和向量 a +b +c .考点二 运用向量加减法法则化简向量 例 2 化简:(1)+;(2)++;(3)++++. (4)(-)-(-).(5)(-)-(-); (6)(++)-(--).1 212变式训练2如图,在平行四边形中,O是和的交点.(1)+=;(2)++=;(3)++=;(4)++=.变式训练3如图所示,O是平行四边形的对角线、的交点,设=a,=b,=c,求证:b+c-a=.考点三向量的共线例3设e,e是两个不共线的向量,若向量m=-e+(k∈R)与向量n=e-2e共线,则121221()A.k=0B.k=1C.k=2D.k=变式训练4已知△的三个顶点A,B,C及平面内一点P,且++=,则( )A.P在△内部B.P在△外部C.P在边上或其延长线上D.P在边上考点四:三点共线例4两个非零向量a、b不共线.(1)若=a+b,=2a+8b,=3(a-b),求证:A、B、D三点共线;(2)求实数k使+b与2a+共线.变式训练5已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,则一定共线的三点是( ) A.B、C、D B.A、B、C C.A、B、D D.A、C、D变式训练 6 已知平面内 O ,A ,B ,C 四点,其中 A ,B ,C 三点共线,且=+,则 x +y =.§2.3 平面向量的基本定理及坐标表示1.平面向量基本定理 (1)定理:如果 e ,e 是同一平面内的两个向量,那么对于这一平面内的向量 a ,实数 λ ,λ , 使 a =.(2)基底:把的向量 e ,e 叫做表示这一平面内向量的一组基底.2.两向量的夹角与垂直(1)夹角:已知两个和 b ,作=a ,=b ,则=θ (0°≤θ≤180°),叫做向量 a 与 b 的夹角. ①范围:向量 a 与 b 的夹角的范围是. ②当 θ=0°时,a 与. ③当 θ=180°时,a 与.(2)垂直:如果 a 与 b 的夹角是,则称 a 与 b 垂直,记作.3.平面向量的坐标表示(1)向量的正交分解:把一个向量分解为两个的向量,叫作把向量正交分解.(2)向量的坐标表示:在平面直角坐标系中,分别取与 x 轴、y 轴方向相同的两个,j 作为基 底,对于平面内的一个向量 a ,有且只有一对实数 x ,y 使得 a =,则叫作向量 a 的坐标,叫 作向量的坐标表示.(3)向量坐标的求法:在平面直角坐标系中,若 A (x ,y ),则=,若 A (x ,y ),B (x ,y ),则=. 4.平面向量的坐标运算(1)若 a =(x ,y ),b =(x ,y ),则 a +b =,即两个向量和的坐标等于这两个向量相应坐标 的和.(2)若 a =(x ,y ),b =(x ,y ),则 a -b =,即两个向量差的坐标等于这两个向量相应坐标 的差.(2)若 a =(x ,y ),λ∈R ,则 λa =,即实数与向量的积的坐标等于用这个实数乘原来向量的相 应坐标.5.两向量共线的坐标表示 设 a =(x ,y ),b =(x ,y ). (1)当 a ∥b 时,有. (2)当 a ∥b 且 x y ≠0 时,有.即两向量的相应坐标成比例.6.若=λ,则 P 与 P 、P 三点共线. 当 λ∈时,P 位于线段 P P 的内部,特别地 λ=1 时,P 为线段 P P 的中点; 当 λ∈时,P 位于线段 P P 的延长线上; 当 λ∈时,P 位于线段 P P 的反向延长线上.考点一 对基底概念的理解1 2 1 2 1 21 12 2 1 1 2 2 1 1 2 2 1 1 2 2 2 21 2 1 2 1 2 1 2 1 2例 1 如果 e ,e 是平面 α 内两个不共线的向量,那么下列说法中不正确的是( ) ①λe +μe (λ、μ∈R )可以表示平面 α 内的所有向量;②对于平面 α 内任一向量 a ,使 a =λe +μe 的实数对(λ,μ)有无穷多个; ③若向量 λ e +μ e 与 λ e +μ e 共线,则有且只有一个实数 λ,使得 λ e +μ e =λ(λ e +μ e );④若存在实数 λ,μ 使得 λe +μe =0,则 λ=μ=0. A .①②B .②③C .③④D .②变式训练 1 设 e 、e 是不共线的两个向量,给出下列四组向量:①e 与 e +e ;②e -2e 与 e -2e ; ③e -2e 与 4e -2e ;④e +e 与 e -e . 其中能作为平面内所有向量的一组基底的序号是.(写出所有满足条件的序号)考点二 用基底表示向量例 2 .如图,梯形中,∥,且=2,M 、N 分别是和的中点,若=a ,=b 试用 a ,b 表示、、变式训练 2 如图,已知△中△ ,D 为的中点,E ,F 为的三等分点,若=a ,=b ,用 a ,b 表 示,,.考点三 平面向量基本定理的应用例 3 如图所示, △在中,点 M 是的中点,点 N 在边上,且=2,与相交于点 P ,求证:∶ =4∶1.变式训练 3 如图所示,已知△中,点 C 是以 A 为中点的点 B 的对称点,=2,和交于点 E , 设=a ,=b .(1)用 a 和 b 表示向量、; (2)若=λ,求实数 λ 的值.1 212 1 2 1 1 1 2 2 1 2 2 1 1 1 22 12 21 2 1 2 1 1 2 1 2 2 1 1 2 2 1 1 2 1 2考点四平面向量的坐标运算例4已知平面上三点A(2,-4),B(0,6),C(-8,10),求(1)-;(2)+2;(3)-.变式训练4已知a=(-1,2),b=(2,1),求:(1)2a+3b;(2)a-3b;(3)a-b.考点五平面向量的坐标表示例5已知a=(-2,3),b=(3,1),c=(10,-4),试用a,b表示c.变式训练5设i、j分别是与x轴、y轴方向相同的两个单位向量,a=i-(2m-1)j,b=2i+(m∈R),已知a∥b,求向量a、b的坐标.考点六平面向量坐标的应用例6已知的顶点A(-1,-2),B(3,-1),C(5,6),求顶点D的坐标.变式训练6已知平行四边形的三个顶点的坐标分别为(3,7),(4,6),(1,-2),求第四个顶点的坐标.考点七平面向量共线的坐标运算例7已知a=(1,2),b=(-3,2),当k为何值时,+b与a-3b平行?平行时它们是同向还是反向?变式训练7已知A(2,1),B(0,4),C(1,3),D(5,-3).判断与是否共线?如果共线,它们的方向相同还是相反?考点八平面向量的坐标运算例8已知点A(3,-4)与点B(-1,2),点P在直线上,且|=2|,求点P的坐标.变式训练8已知点A(1,-2),若向量与a=(2,3)同向,|=2,求点B的坐标.考点九利用共线向量求直线的交点例9如图,已知点A(4,0),B(4,4),C(2,6),求与的交点P 的坐标.变式训练9平面上有A(-2,1),B(1,4),D(4,-3)三点,点C在直线上,且=,连接,点E在上,且=,求E点坐标.§2.4 平面向量的数量积1.平面向量数量积(1)定义:已知两个非零向量 a 与 b ,我们把数量叫做 a 与 b 的数量积(或内积),记作 a · b , 即 a · b = θ,其中 θ 是 a 与 b 的夹角.(2)规定:零向量与任一向量的数量积为.(3)投影:设两个非零向量 a 、b 的夹角为 θ,则向量 a 在 b 方向的投影是,向量 b 在 a 方向 上的投影是.2.数量积的几何意义a ·b 的几何意义是数量积 a · b 等于 a 的长度与 b 在 a 的方向上的投影的乘积.3.向量数量积的运算律 (1)a·b =(交换律); (2)(λa )· b ==(结合律); (3)(a +b )· c =(分配律).4.平面向量数量积的坐标表示 若 a =(x ,y ),b =(x ,y ),则 a·b =. 即两个向量的数量积等于.5.两个向量垂直的坐标表示 设两个非零向量 a =(x ,y ),b =(x ,y ), 则 a ⊥ b .6.平面向量的模(1)向量模公式:设 a =(x ,y ),则=. (2)两点间距离公式:若 A (x ,y ),B (x ,y ),则|=.7.向量的夹角公式 设两非零向量 a =(x ,y ),b =(x ,y ),a 与 b 的夹角为 θ,则 θ==.考点一 求两向量的数量积例 1 已知=4,=5,当(1)a ∥b ;(2)a ⊥b ;(3)a 与 b 的夹角为 30°时,分别求 a 与 b 的数 量积.变式训练 1 已知正三角形的边长为 1,求: (1)· ;(2)· ;(3)·.考点二 求向量的模长1 12 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2例2已知==5,向量a与b的夹角为,求+,-.变式训练2已知==1,|3a-2=3,求|3a+.考点三向量的夹角或垂直问题例3设n和m是两个单位向量,其夹角是60°,求向量a=2m+n与b=2n-3m 的夹角.变式训练3已知=5,=4,且a与b的夹角为60°,则当k为何值时,向量-b与a+2b垂直?考点四向量的坐标运算例4已知a与b同向,b=(1,2),a·b=10.(1)求a的坐标;(2)若c=(2,-1),求a(b·c)及(a·b)c.变式训练4若a=(2,3),b=(-1,-2),c=(2,1),则(a·b)·c=;a·(b·c)=.考点五向量的夹角问题例5已知a=(1,2),b=(1,λ),分别确定实数λ的取值范围,使得:(1)a与b的夹角为直角;(2)a与b的夹角为钝角;(3)a与b的夹角为锐角.变式训练5已知a=(1,-1),b=(λ,1),若a与b的夹角α为钝角,求λ的取值范围.考点六向量数量积坐标运算的应用例6已知在△中,A(2,-1)、B(3,2)、C(-3,-1),为边上的高,求|与点D的坐标.变式训练6以原点和A(5,2)为两个顶点作等腰直△角,∠B=90°,求点B和的坐标.§2.5平面向量应用举例1.向量方法在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:a∥b(b≠0)⇔⇔.(2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:a⊥b⇔⇔.(3)求夹角问题,往往利用向量的夹角公式θ==.(4)求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:=.2.力向量力向量与前面学过的自由向量有区别.(1)相同点:力和向量都既要考虑又要考虑.(2)不同点:向量与无关,力和有关,大小和方向相同的两个力,如果不同,那么它们是不相等的.3.向量方法在物理中的应用(1)力、速度、加速度、位移都是.(2)力、速度、加速度、位移的合成与分解就是向量的运算,运动的叠加亦用到向量的合成.(3)动量mν是.(4)功即是力F与所产生位移s的.考点一三角形问题例1点O是三角形所在平面内的一点,满足·=·=·,则点O是△的()A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点变式训练1在△中,已知A(4,1)、B(7,5)、C(-4,7),则边的中线的长是()A.2C.3变式训练2若O是△所在平面内一点,且满足-|=+-2|,△则的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形变式训练3设平面上有四个互异的点A、B、C、D,已知(+-2)·(-)=0,△则的形状一定是.考点二向量的计算例2已知平面上三点A、B、C满足|=3,|=4,|=5.则·+·+·=.变式训练4如图,在△中,点O是的中点,过点O的直线分别交直线、于不同的两点M、N,若=,=,则m+n的值为.考点三向量的应用例3两个大小相等的共点力F,F,当它们夹角为90°时,合力大小为20N,则当它们的12夹角为120°时,合力大小为()A.40N B.10N C.20N D.10N变式训练5在水流速度为4千米/小时的河流中,有一艘船沿与水流垂直的方向以8千米/小时的速度航行,则船实际航行的速度的大小为.。

11暑假高二讲义三—平面向量

11暑假高二讲义三—平面向量

高二数学讲义(3)平面向量一、考试内容与要求1、掌握向量的加法和减法运算,并理解其几何意义,掌握向量的数乘运算及其几何意义,理解两个向量共线的含义.2、了解平面向量基本定理及其意义,掌握平面向量的正交分解及其坐标表示,理解用坐标表示向量的加法和减法运算及数乘运算.3、掌握平面向量的数量积的坐标表达式并会进行数量积的运算,能用数量积表示两向量的夹角,会用数量积判断两向量的垂直关系.4、会用向量法解决简单的平面几何问题.二、基础激活 1、已知向量a =(2c os θ,2sin θ),b =(0,-2),θ∈⎝⎛⎭⎫π2,π,则向量a 与b 的夹角为2、已知D 为三角形ABC 的边BC 的中点,点P 满足P A →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.3、设向量a 与b 的夹角为θ,21354a a b =+= (,),(,),则sin θ=4、平面向量a 与b 的夹角为060,a =(2,0), |b |=1,则|a +2b |等于5、平面上O 、A 、B 三点不共线,设,,OA a OB b OAB ==∆ 则的面积等于6、已知圆O 的半径为1,P A 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ⋅ 的最小值为三、典例精析1、已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ).(1)若A ,B ,C 三点共线,求实数m 的值; (2)若∠ABC 为锐角,求实数m 的取值范围.2、已知ABC ∆中,A (2,-1),B (3,2),C (-3,1),BC 边上的高为AD ,求AD .3、已知平面向量a =(3,-1),b =(21, 23). (1) 若存在实数k 和t ,便得x =a +(t 2-3)b , y ka tb =-+ ,且x y ⊥ ,试求函数的关系式()k f t =;(2) 根据(1)的结论,确定()k f t =的单调区间.[变式] 已知平面向量a =(3,-1),b =(21,23),若存在不为零的实数k 和角α,使向量c =a +(sinα-3)b , d =-k a +(sinα)b ,且c ⊥d ,试求实数k 的取值范围.4、已知ABC ∆的面积S 满足6,33=∙≤≤S 且(1)求函数B B B B B f 22cos 3cos sin 2sin )(++=的值域;(2)若|32|),sin ,(cos ),cos ,(sin q p C C q A A p -==求的取值范围.5、设向量4cos sin sin 4cos a b ααββ== (,),(,),cos 4sin c ββ=- (,) (1) 若a 与2b c - 垂直,求tan αβ+()的值 (2) 求||b c + 的最大值 (3) 若tan tan 16αβ=,求证a b6、在锐角ABC ∆中,角A 、B 、C ,对边分别为a b c ,,,且满足2cos cos a c B b C -=() (1) 求角B 的大小 (2) 设(sin ,1),(3,cos2)m A n A == ,试求m n ⋅ 的取值范围7、(1)如图,半圆的直径AB =2,O 为圆心,C 为半圆上不同于A ,B 的任意一点,若P 为半径O C 上的动点,则()PA PB PC +⋅ 的最小值是 (2)已知O 在ABC ∆内部,且240OA OB OC ++= ,则AOB ∆与BOC ∆的面积之比为(3)设向量,,a b c 满足||||1a b == ,12a b ⋅=- ,,60a c b c <-->=︒ ,则||c 的最大值等于 (4)若,,a b c 均为单位向量,且0a b ⋅= ,()()0a c b c -⋅-≤ ,则||a b c +- 的最大值为 .四、课堂练习1、已知向量a 、b 满足()()26a b a b +⋅-=- ,且||=a 1,||=b 2,则a 与b 的夹角为________. 2、下列命题正确的序号为 .(1)00a ⋅= ;(2)00a ⋅= ;(3)若0,a a b a c ≠⋅=⋅ ,则b c = ;(4)若a b a c ⋅=⋅ ,则b c ≠ 当且仅当0a = 时成立;(5)()()a b c a b c ⋅⋅=⋅⋅ 对任意,,a b c 向量都成立;(6)对任意向量a ,有22a a = .3、过△ABC 的重心任作一直线分别交AB ,AC 于点D 、E .若A D xA B = ,AE yAC = ,0xy ≠,则11x y+的值为 . 4、已知C 为线段AB 上一点,P 为直线AB 外一点,且,2=52==,I 为PC 上一点,且),0>++=λλ的值为 .5、点D 是三角形ABC 内一点,并且满足AB 2+CD 2=AC 2+BD 2,求证:AD ⊥BC .五、益智演练1、直角坐标系xOy 中,i j,分别是与x y ,轴正方向同向的单位向量.在直角三角形ABC 中,若j k i j i+=+=3,2,则k 的可能值个数是 .2、已知a 是以点A (3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a 的终点坐标是 .3、已知|a |=1,| b |=1,a 与b 的夹角为60°, 2,3x a b y b a =-=- ,则x 与y 的夹角是 .4、设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD = 2,CE EA = 2,AF FB =则AD BE CF ++ 与BC的关系为 .5、已知△ABC 中,过重心G 的直线交边AB 于P ,交边AC 于Q ,设△APQ 的面积为1S ,△ABC 的面积为2S ,AP pPB = ,AQ qQC = ,则(ⅰ)pq p q =+ (ⅱ)12S S 的取值范围是 . 6、已知两单位向量a 与b 的夹角为0120,若2,3c a b d b a =-=- ,则c 与d 的夹角余弦值为.。

(word完整版)平面向量讲义 - 学生版

(word完整版)平面向量讲义 - 学生版

学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别。

2。

会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量。

3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.知识点一向量的概念思考1 在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别?思考2 两个数量可以比较大小,那么两个向量能比较大小吗?梳理向量与数量(1)向量:既有________,又有________的量统称为向量.(2)数量:只有________,没有________的量称为数量.知识点二向量的表示方法思考1 向量既有大小又有方向,那么如何形象、直观地表示出来?思考2 0的模长是多少?0有方向吗?思考3 单位向量的模长是多少?梳理(1)向量的表示①具有________和长度的线段叫作有向线段,以A为起点,以B为终点的有向线段记作________,线段AB的长度也叫作有向线段错误!的长度,记作________.②向量可以用____________来表示.有向线段的长度表示____________,即长度(也称模).箭头所指的方向表示____________.③向量也可以用黑体小写字母如a,b,c,…来表示,书写用错误! , 错误! , 错误!,…来表示.(2)________的向量叫作零向量,记作______________;______________________________的向量,叫作a方向上的单位向量,记作a0.知识点三相等向量与共线向量思考1 已知A,B为平面上不同两点,那么向量错误!和向量错误!相等吗?它们共线吗?思考2 向量平行、共线与平面几何中的直线、线段平行、共线相同吗?思考3 若a∥b,b∥c,那么一定有a∥c吗?梳理(1)相等向量:____________且____________的向量叫作相等向量.(2)平行向量:如果表示两个向量的有向线段所在的直线______________,则称这两个向量平行或共线.①记法:a与b平行或共线,记作________.②规定:零向量与____________平行.类型一向量的概念例1 下列说法正确的是( )A.向量错误!与向量错误!的长度相等 B.两个有共同起点,且长度相等的向量,它们的终点相同C.零向量没有方向 D.任意两个单位向量都相等反思与感悟解决向量概念问题一定要紧扣定义,对单位向量与零向量要特别注意方向问题.跟踪训练1 下列说法正确的有________.①若|a|=|b|,则a=b或a=-b;②向量错误!与错误!是共线向量,则A、B、C、D四点必在同一条直线上;③向量错误!与错误!是平行向量.类型二共线向量与相等向量例2 如图所示,△ABC的三边均不相等,E、F、D分别是AC、AB、BC的中点.(1)写出与错误!共线的向量;(2)写出与错误!的模大小相等的向量;(3)写出与错误!相等的向量.反思与感悟(1)非零向量共线是指向量的方向相同或相反.(2)共线的向量不一定相等,但相等的向量一定共线.跟踪训练2如图所示,O是正六边形ABCDEF的中心.(1)与错误!的模相等的向量有多少个?(2)是否存在与错误!长度相等、方向相反的向量?若存在,有几个?(3)与错误!共线的向量有哪些?类型三向量的表示及应用例3 一辆汽车从A点出发向西行驶了100 km到达B点,然后又改变方向,向西偏北50°的方向走了200 km 到达C点,最后又改变方向,向东行驶了100 km到达D点.(1)作出向量AB,→、错误!、错误!;(2)求|错误!|.反思与感悟准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.跟踪训练3 在如图的方格纸上,已知向量a,每个小正方形的边长为1.(1)试以B为终点画一个向量b,使b=a;(2)在图中画一个以A为起点的向量c,使|c|=错误!,并说出向量c的终点的轨迹是什么?1.下列结论正确的个数是( )①温度含零上和零下温度,所以温度是向量;②向量的模是一个正实数;③向量a与b不共线,则a与b都是非零向量;④若|a|>|b|,则a>b.A.0 B.1C.2 D.32.下列说法错误的是()A.若a=0,则|a|=0 B.零向量是没有方向的 C.零向量与任一向量平行 D.零向量的方向是任意的3.如图所示,梯形ABCD为等腰梯形,则两腰上的向量错误!与错误!的关系是( )A.错误!=错误! B.|错误!|=|错误!| C。

(完整)平面向量讲义(学生)

(完整)平面向量讲义(学生)

平面向量一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移).如:已知A (1,2),B(4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____2.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量.a 的相反向量是-a 。

如:下列命题:(1)若a b =,则a b =。

(2)两个向量相等的充要条件是它们的起点相同,终点相同。

(3)若AB DC =,则ABCD 是平行四边形.(4)若ABCD 是平行四边形,则AB DC =.(5)若,a b b c ==,则a c =。

(6)若//,//a b b c ,则//a c 。

其中正确的是_______ 二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。

08第八章 平面向量【讲义】

08第八章  平面向量【讲义】

第八章 平面向量一、基础知识定义1 既有大小又有方向的量,称为向量。

画图时用有向线段来表示,线段的长度表示向量的模。

向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。

书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。

零向量和零不同,模为1的向量称为单位向量。

定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。

定理1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。

加法和减法都满足交换律和结合律。

定理2 非零向量a, b 共线的充要条件是存在实数0,使得a= f≠λ.b λ定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。

定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。

定义4 向量的数量积,若非零向量a, b 的夹角为,则a, b 的数量积记作a ·b=|a|·|b|cos θθ=|a|·|b|cos<a, b>,也称内积,其中|b|cos 叫做b 在a 上的投影(注:投影可能为负值)。

θ定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2), 1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2), 2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c ,3.a ·b=x 1x 2+y 1y 2, cos(a, b)=(a, b 0),222221212121yx y x y y x x +⋅++≠4. a//b x 1y 2=x 2y 1, a b x1x2+y 1y 2=0.⇔⊥⇔定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使,λ叫P 分21PP P P λ=21P P 所成的比,若O 为平面内任意一点,则。

平面向量-讲义(学生版)

平面向量-讲义(学生版)
平面向量
一、 平面向量的线性运算
1. 基础概念
(1)相等向量:同向且等长的有向线段表示同一向量,或相等向量. (2)平行向量:如果向量的基线互相平行或重合,则称这些向量共线或平行.
向量 平行于向量 ,记作 // . (3)零向量:长度等于零的向量,叫做零向量,记作: .
零向量的方向不确定,零向量与任意向量平行.
B.
C.
的两条对角线相交于点 ,且
D.
,则
( ).
A. B. C. D.
3. 两个定理
(1)平面向量基本定理:如果 和 是一平面内的两个不平行的向量,那么该平面内的任一向量 ,
存在唯一的一对实数 , ,使

(2)平面向量的三点共线定理:若 、 、 三点共线,则
,且

经典例题 7. 如图,在
中,点 为线段 上靠近点 的三等分点,点 在 ,则实数 的值为( ).
C. 若
,则
D. 若
,则 与 的夹角为
,则( ).
25. 如图,在矩形
中,

,点 为
,则
的值是( ).
的中点,点 在边
上,若
8
A.
B.
C.
D.
巩固练习
26. 已知向量


,若
,则实数

27. 已知向量 A.
, B.
,若
,则实数 的值为( ).
C.
D.
28. 设向量

,且
,则

29. 已知
为等腰直角三角形,
经典例题
1. 下列命题:
①平行向量一定相等;
②不相等的向量一定不平行;
③平行于同一个向量的两个向量是共线向量;

最新平面向量讲义 学生版

最新平面向量讲义  学生版

学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.知识点一 向量的概念思考1 在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别?思考2 两个数量可以比较大小,那么两个向量能比较大小吗?梳理 向量与数量(1)向量:既有________,又有________的量统称为向量. (2)数量:只有________,没有________的量称为数量. 知识点二 向量的表示方法思考1 向量既有大小又有方向,那么如何形象、直观地表示出来?思考2 0的模长是多少?0有方向吗?思考3 单位向量的模长是多少?梳理 (1)向量的表示①具有________和长度的线段叫作有向线段,以A 为起点,以B 为终点的有向线段记作________,线段AB 的长度也叫作有向线段AB →的长度,记作________.②向量可以用____________来表示.有向线段的长度表示____________,即长度(也称模).箭头所指的方向表示____________.③向量也可以用黑体小写字母如a ,b ,c ,…来表示,书写用a →, b →, c →,…来表示.(2)________的向量叫作零向量,记作______________;______________________________的向量,叫作a 方向上的单位向量,记作a 0.知识点三 相等向量与共线向量思考1 已知A ,B 为平面上不同两点,那么向量AB →和向量BA →相等吗?它们共线吗?思考2 向量平行、共线与平面几何中的直线、线段平行、共线相同吗?思考3 若a ∥b ,b ∥c ,那么一定有a ∥c 吗?梳理 (1)相等向量:____________且____________的向量叫作相等向量.(2)平行向量:如果表示两个向量的有向线段所在的直线______________,则称这两个向量平行或共线. ①记法:a 与b 平行或共线,记作________. ②规定:零向量与____________平行.类型一 向量的概念例1 下列说法正确的是( )A .向量AB →与向量BA →的长度相等 B .两个有共同起点,且长度相等的向量,它们的终点相同 C .零向量没有方向 D .任意两个单位向量都相等反思与感悟 解决向量概念问题一定要紧扣定义,对单位向量与零向量要特别注意方向问题. 跟踪训练1 下列说法正确的有________. ①若|a |=|b |,则a =b 或a =-b ;②向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在同一条直线上; ③向量AB →与BA →是平行向量. 类型二 共线向量与相等向量例2 如图所示,△ABC 的三边均不相等,E 、F 、D分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量; (2)写出与EF →的模大小相等的向量; (3)写出与EF →相等的向量.反思与感悟 (1)非零向量共线是指向量的方向相同或相反. (2)共线的向量不一定相等,但相等的向量一定共线. 跟踪训练2如图所示,O 是正六边形ABCDEF 的中心.(1)与OA →的模相等的向量有多少个?(2)是否存在与OA →长度相等、方向相反的向量?若存在,有几个? (3)与OA →共线的向量有哪些?类型三 向量的表示及应用例3 一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向,向西偏北50°的方向走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD →|.反思与感悟 准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点. 跟踪训练3 在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b =a ;(2)在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么?1.下列结论正确的个数是( )①温度含零上和零下温度,所以温度是向量; ②向量的模是一个正实数;③向量a 与b 不共线,则a 与b 都是非零向量; ④若|a |>|b |,则a >b . A .0 B .1 C .2D .32.下列说法错误的是( )A .若a =0,则|a |=0B .零向量是没有方向的C .零向量与任一向量平行D .零向量的方向是任意的 3.如图所示,梯形ABCD 为等腰梯形,则两腰上的向量AB →与DC →的关系是( )A.AB →=DC → B .|AB →|=|DC →| C.AB →>DC → D.AB →<DC →4.如图所示,在以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中.(1)写出与AF →、AE →相等的向量; (2)写出与AD →的模相等的向量.1.向量是既有大小又有方向的量,从其定义可以看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又将几何问题转化为代数问题,故向量能起到数形结合的桥梁作用. 2.共线向量与平行向量是一组等价的概念.两个共线向量不一定要在一条直线上.当然,同一直线上的向量也是平行向量.3.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆.2.1 向量的加法学习目标 1.理解并掌握向量加法的概念,了解向量加法的物理意义及其几何意义.2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运算.3.了解向量加法的交换律和结合律,并能依据几何意义作图解释向量加法运算律的合理性.知识点一向量加法的定义及其运算法则分析下列实例:Array (1)飞机从广州飞往上海,再从上海飞往北京(如图),这两次位移的结果与飞机从广州直接飞往北京的位移是相同的.(2)有两条拖轮牵引一艘轮船,它们的牵引力分别是F1=3 000 N,F2=2 000 N,牵引绳之间的夹角为θ=60°(如图),如果只用一条拖轮来牵引,也能产生跟原来相同的效果.思考1从物理学的角度来讲,上面实例中位移、牵引力说明了什么?体现了向量的什么运算?思考2上述实例中位移的和运算、力的和运算分别用了什么法则?梳理(1)向量加法的定义求________________的运算,叫作向量的加法.(2)向量加法的法则向量加法的三角形法则和平行四边形法则实际上就是向量加法的几何意义. 知识点二 向量加法的运算律 思考1 实数加法有哪些运算律?思考2 根据图中的平行四边形ABCD ,验证向量加法是否满足交换律.(注:AB →=a ,AD →=b )思考3 根据图中的四边形ABCD ,验证向量加法是否满足结合律.(注:AB →=a ,BC →=b ,CD →=c )梳理 向量加法的运算律类型一 向量加法的三角形法则和平行四边形法则例1 如图(1)(2),已知向量a ,b ,c ,求作向量a +b 和a +b +c .(1) (2)反思与感悟 向量加法的平行四边形法则和三角形法则的区别和联系区别:(1)三角形法则中强调“首尾相接”,平行四边形法则中强调的是“共起点”.(2)三角形法则适用于任意两个非零向量求和,而平行四边形法则仅适用于不共线的两个向量求和. 联系:(1)当两个向量不共线时,向量加法的三角形法则和平行四边形法则是统一的. (2)三角形法则作出的图形是平行四边形法则作出的图形的一半. 跟踪训练1 如图所示,O 为正六边形ABCDEF 的中心,化简下列向量. (1)OA →+OC →=________;(2)BC →+FE →=________; (3)OA →+FE →=________.类型二 向量加法运算律的应用 例2 化简:(1)BC →+AB →;(2)DB →+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.反思与感悟 (1)根据向量加法的交换律使各向量首尾连接,再运用向量的结合律调整向量顺序后相加.(2)向量求和的多边形法则:A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →.特別地,当A n 和A 1重合时,A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A 1=0.跟踪训练2 已知正方形ABCD 的边长等于1,则|AB →+AD →+BC →+DC →|=________. 类型三 向量加法的实际应用例3 在静水中船的速度为20 m /min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向. 引申探究1.若本例中条件不变,则经过1 h ,该船的实际航程是多少?2.若本例中其他条件不变,改为若船沿垂直水流的方向航行,求船实际行进的方向与岸方向的夹角的正切值.反思与感悟 向量既有大小又有方向的特性在实际生活中有很多应用,准确作出图像是解题关键.跟踪训练3 如图,用两根绳子把重10 N 的物体W 吊在水平杆子AB 上,∠ACW =150°,∠BCW =120°,求A 和B 处所受力的大小.(绳子的重量忽略不计)1.如图,在正六边形ABCDEF 中,BA →+CD →+EF →等于( ) A .0 B.BE → C.AD → D.CF →2.如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则下列等式中错误的是( )A.FD →+DA →+DE →=0B.AD →+BE →+CF →=0C.FD →+DE →+AD →=AB →D.AD →+EC →+FD →=BD → 3.(AB →+MB →)+(BO →+BC →)+OM →等于( ) A.BC → B.AB → C.AC → D.AM →4.如图所示,在四边形ABCD 中,AC →=AB →+AD →,则四边形为( ) A .矩形 B .正方形 C .平行四边形 D .菱形5.小船以10 3 km /h 的静水速度沿垂直于对岸的方向行驶,同时河水的流速为10 km/h ,则小船的实际航行速度的大小为________km/h.1.三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的,当两个向量首尾相连时常选用三角形法则,当两个向量共起点时,常选用平行四边形法则.2.向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行. 3.在使用向量加法的三角形法则时要特别注意“首尾相接”.和向量的特征是从第一个向量的起点指向第二个向量的终点.向量相加的结果是向量,如果结果是零向量,一定要写成0,而不应写成0.2.2 向量的减法学习目标 1.理解相反向量的含义,向量减法的意义及减法法则.2.掌握向量减法的几何意义.3.能熟练地进行向量的加、减运算.知识点一 相反向量思考 实数a 的相反数为-a ,向量a 与-a 的关系应叫作什么?梳理 与a ________________的向量,叫作a 的相反向量,记作________. (1)规定:零向量的相反向量仍是________. (2)-(-a )=a .(3)a +(-a )=________=________.(4)若a 与b 互为相反向量,则a =________,b =________,a +b =____. 知识点二 向量的减法思考1 根据向量的加法,如何求作a -b?思考2 向量减法的三角形法则是什么?梳理 (1)定义:向量a 加上____________,叫作a 与b 的差,即a -b =__________.求两个向量____的运算,叫作向量的减法.(2)几何意义:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量a -b =________,如图所示.(3)文字叙述:如果把向量a 与b 的起点放在O 点,那么由向量b 的终点B 指向被减向量a 的终点A ,得到的向量BA →就是a —b .知识点三 |a |-|b |,|a ±b |,|a |+|b |三者的关系思考 在三角形中有两边之和大于第三边,两边之差小于第三边,结合这一性质及向量加、减法的几何意义,|a |-|b |,|a ±b |,|a |+|b |三者关系是怎样的?梳理 当向量a ,b 不共线时,作OA →=a ,AB →=b ,则a +b =OB →,如图(1),根据三角形的三边关系,则有||a |-|b ||<|a +b |<|a |+|b |.当a 与b 共线且同向或a ,b 中至少有一个为零向量时,作法同上,如图(2),此时|a +b |=|a |+|b |.当a 与b 共线且反向或a ,b 中至少有一个为零向量时,不妨设|a |>|b |,作法同上,如图(3),此时|a +b |=||a |-|b ||. 故对于任意向量a ,b ,总有||a |-|b ||≤|a +b |≤|a |+|b |.① 因为|a -b |=|a +(-b )|,所以||a |-|-b ||≤|a -b |≤|a |+|-b |, 即||a |-|b ||≤|a -b |≤|a |+|b |.②将①②两式结合起来即为||a |-|b ||≤|a ±b |≤|a |+|b |.类型一 向量减法的几何作图例1 如图,已知向量a ,b ,c 不共线,求作向量a +b -c .引申探究若本例条件不变,则a -b -c 如何作?反思与感悟 在求作两个向量的差向量时,当两个向量有共同始点,直接连接两个向量的终点,并指向被减向量,就得到两个向量的差向量;若两个向量的始点不重合,先通过平移使它们的始点重合,再作出差向量. 跟踪训练1 如图所示,已知向量a ,b ,c ,d ,求作向量a -b ,c -d .类型二 向量减法法则的应用 例2 化简下列式子:(1)NQ →-PQ →-NM →-MP →; (2)(AB →-CD →)-(AC →-BD →).反思与感悟 向量减法的三角形法则的内容:两向量相减,表示两向量起点的字母必须相同,这样两向量的差向量以减向量的终点字母为起点,以被减向量的终点字母为终点. 跟踪训练2 化简:(1)(BA →-BC →)-(ED →-EC →); (2)(AC →+BO →+OA →)-(DC →-DO →-OB →).类型三 向量减法几何意义的应用例3 已知|AB →|=6,|AD →|=9,求|AB →-AD →|的取值范围.反思与感悟 (1)如图所示,在平行四边形ABCD 中,若AB →=a ,AD →=b ,则AC →=a +b ,DB →=a -b .(2)在公式||a |-|b ||≤|a +b |≤|a |+|b |中,当a 与b 方向相反且|a |≥|b |时,|a |-|b |=|a +b |;当a 与b 方向相同时,|a +b |=|a |+|b |.(3)在公式||a |-|b ||≤|a -b |≤|a |+|b |中,当a 与b 方向相同且|a |≥|b |时,|a |-|b |=|a -b |;当a 与b 方向相反时,|a -b |=|a |+|b |.跟踪训练3 在四边形ABCD 中,设AB →=a ,AD →=b ,且AC →=a +b ,若|a +b |=|a -b |,则四边形ABCD 的形状是( ) A .梯形 B .矩形 C .菱形 D .正方形1.如图所示,在▱ABCD 中,AB →=a ,AD →=b ,则用a ,b 表示向量AC →和BD →分别是( ) A .a +b 和a -b B .a +b 和b -a C .a -b 和b -a D .b -a 和b +a2.化简OP →-QP →+PS →+SP →的结果等于( ) A.QP →B.OQ →C.SP →D.SQ →3.若菱形ABCD 的边长为2,则|AB →-CB →+CD →|=________. 4.若向量a 与b 满足|a |=5,|b |=12,则|a +b |的最小值为________,|a -b |的最大值为________.5.如图,在五边形ABCDE 中,若四边形ACDE 是平行四边形,且AB →=a ,AC →=b ,AE →=c ,试用a ,b ,c 表示向量BD →,BC →,BE →,CD →及CE →.1.向量减法的实质是向量加法的逆运算.利用相反向量的定义,-AB →=BA →就可以把减法转化为加法.即减去一个向量等于加上这个向量的相反向量.如a -b =a +(-b ).2.在用三角形法则作向量减法时,要注意“差向量连接两向量的终点,箭头指向被减向量”.解题时要结合图形,准确判断,防止混淆.3.平行四边形ABCD 的两邻边AB 、AD 分别为AB →=a ,AD →=b ,则两条对角线表示的向量为AC →=a +b ,BD →=b -a ,DB →=a -b ,这一结论在以后应用非常广泛,应该加强理解并掌握.3.1 数乘向量学习目标 1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题.知识点一 向量数乘的定义思考1 实数与向量相乘的结果是实数还是向量?思考2 向量3a ,-3a 与a 从长度和方向上分析具有怎样的关系?思考3 λa 的几何意义是什么?梳理 数乘向量一般地,实数λ与向量a 的积是一个向量,记作________.它的长度为|λa |=|λ||a |.它的方向:当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0,方向任意. 知识点二 向量数乘的运算律思考 类比实数的运算律,向量数乘有怎样的运算律?梳理 向量数乘运算律 (1)λ(μa )=(λμ)a . (2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb . 知识点三 向量共线定理 思考 若b =2a ,b 与a 共线吗?梳理 (1)向量共线的判定定理a 是一个________向量,若存在一个实数λ,使得____________,则向量b 与非零向量a 共线. (2)向量共线的性质定理若向量b 与非零向量a 共线,则存在一个实数λ,使得b =________. 知识点四 向量的线性运算向量的加法、减法和实数与向量积的综合运算,通常称为向量的线性运算(或线性组合).类型一 向量数乘的基本运算例1 (1)化简:14[2(2a +4b )-4(5a -2b )].(2)已知向量为a ,b ,未知向量为x ,y ,向量a ,b ,x ,y 满足关系式3x -2y =a ,-4x +3y =b ,求向量x ,y .反思与感悟 (1)向量的数乘运算类似于代数多项式的运算,例如实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在实数与向量的乘积中同样适用,但是这里的“同类项”、“公因式”是指向量,实数看作是向量的系数.(2)向量也可以通过列方程和方程组求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算. 跟踪训练1 (1)(a +b )-3(a -b )-8a =________.(2)若2⎝⎛⎭⎫y -13a -13(c +b -3y )+b =0,其中a ,b ,c 为已知向量,则未知向量y =________. 类型二 向量共线的判定及应用 命题角度1 判定向量共线或三点共线 例2 已知非零向量e 1,e 2不共线.(1)若a =12e 1-13e 2,b =3e 1-2e 2,判断向量a ,b 是否共线.(2)若AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线.反思与感悟 (1)向量共线的判断(证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线. (2)利用向量共线定理证明三点共线,一般先任取两点构造向量,从而将问题转化为证明两向量共线,需注意的是,在证明三点共线时,不但要利用b =λa (a ≠0),还要说明向量a ,b 有公共点.跟踪训练2 已知非零向量e 1,e 2不共线,如果AB →=e 1+2e 2,BC →=-5e 1+6e 2,CD →=7e 1-2e 2,则共线的三个点是________.命题角度2 利用向量共线求参数值例3 已知非零向量e 1,e 2不共线,欲使k e 1+e 2和e 1+k e 2共线,试确定k 的值.反思与感悟 利用向量共线定理,即b 与a (a ≠0)共线⇔b =λa ,既可以证明点共线或线共线问题,也可以根据共线求参数的值.跟踪训练3 已知A ,B ,P 三点共线,O 为直线外任意一点,若OP →=xOA →+yOB →,则x +y =________. 类型三 用已知向量表示其他向量例4 在△ABC 中,若点D 满足BD →=2DC →,则AD →等于( ) A.13AC →+23AB → B.53AB →-23AC →C.23AC →-13AB → D.23AC →+13AB → 反思与感悟 用已知向量表示未知向量的求解思路(1)先结合图形的特征,把待求向量放在三角形或平行四边形中.(2)然后结合向量的三角形法则或平行四边形法则及向量共线定理用已知向量表示未知向量.(3)当直接表示比较困难时,可以利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.跟踪训练4 如图,在△ABC 中,D ,E 为边AB 的两个三等分点,CA →=3a ,CB →=2b ,求CD →,CE →.1.已知a =5e ,b =-3e ,c =4e ,则2a -3b +c 等于( ) A .5e B .-5e C .23e D .-23e 2.在△ABC 中,M 是BC 的中点,则AB →+AC →等于( ) A.12AM → B.AM → C .2AM →D.MA →3.设e 1,e 2是两个不共线的向量,若向量m =-e 1+k e 2 (k ∈R )与向量n =e 2-2e 1共线,则( ) A .k =0 B .k =1 C .k =2D .k =124.已知△ABC 的三个顶点A ,B ,C 及平面内一点P ,且P A →+PB →+PC →=AB →,则( ) A .P 在△ABC 内部 B .P 在△ABC 外部C .P 在AB 边上或其延长线上D .P 在AC 边上5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.1.实数与向量可以进行数乘运算,但不能进行加减运算,例如λ+a ,λ-a 是没有意义的.2.λa 的几何意义就是把向量a 沿着a 的方向或反方向扩大或缩小为原来的|λ|倍.向量a|a |表示与向量a 同向的单位向量.3.向量共线定理是证明三点共线的重要工具.即三点共线问题通常转化为向量共线问题. 4.已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ),A ,P ,B 三点共线⇔m +n =1.3.2 平面向量基本定理学习目标 1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.知识点 平面向量基本定理思考1 如果e 1,e 2是两个不共线的确定向量,那么与e 1,e 2在同一平面内的任一向量a 能否用e 1,e 2表示?依据是什么?思考2 如果e 1,e 2是共线向量,那么向量a 能否用e 1,e 2表示?为什么?思考3 若存在λ1,λ2∈R ,μ1,μ2∈R ,且a =λ1e 1+λ2e 2,a =μ1e 1+μ2e 2,那么λ1,μ1,λ2,μ2有何关系?梳理 (1)平面向量基本定理如果e 1,e 2是同一平面内的两个________向量,那么对于这一平面内的________向量a ,存在唯一一对实数λ1,λ2,使a =________________________________. (2)基底平面内________的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.类型一 对基底概念的理解例1 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是( )①λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2); ④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④D .②反思与感悟 考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来.跟踪训练1 若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( ) A .e 1-e 2,e 2-e 1 B .2e 1-e 2,e 1-12e 2 C .2e 2-3e 1,6e 1-4e 2 D .e 1+e 2,e 1-e 2类型二 平面向量基本定理的应用例2 如图所示,在▱ABCD 中,E ,F 分别是BC ,DC 边上的中点,若AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →.引申探究若本例中其他条件不变,设DE →=a ,BF →=b ,试以a ,b 为基底表示AB →,AD →.反思与感悟 将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.跟踪训练2 如图所示,在△AOB 中,OA →=a ,OB →=b ,M ,N 分别是边OA ,OB 上的点,且OM →=13a ,ON →=12b ,设AN →与BM →相交于点P ,用基底a ,b 表示OP →.1.下列关于基底的说法正确的是( )①平面内不共线的任意两个向量都可作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的. A .① B .② C .①③ D .②③2.如图,已知A B →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →等于( ) A .a +34bB.14a +34b C.14a +14b D.34a +14b 3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,y =________.4.如图所示,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则当以a ,b 为基底时,AC →可表示为________,当以a ,c 为基底时,AC →可表示为________.5.已知在梯形ABCD 中,AB ∥DC ,且AB =2CD ,E ,F 分别是DC ,AB 的中点,设AD →=a ,AB →=b ,试用a 、b 为基底表示DC →,BC →,EF →.1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件. (2)零向量与任意向量共线,故不能作为基底. 2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.4.1 平面向量的坐标表示4.2 平面向量线性运算的坐标表示学习目标 1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.知识点一 平面向量的正交分解思考 如果向量a 与b 的夹角是90°,则称向量a 与b 垂直,记作a ⊥b .互相垂直的两个向量能否作为平面内所有向量的一组基底?梳理 把一个向量分解为________________的向量,叫作把向量正交分解. 知识点二 平面向量的坐标表示思考1 如图,向量i ,j 是两个互相垂直的单位向量,向量a 与i 的夹角是30°,且|a |=4,以向量i ,j 为基底,如何表示向量a?思考2 在平面直角坐标系内,给定点A 的坐标为A (1,1),则A 点位置确定了吗?给定向量a 的坐标为a =(1,1),则向量a 的位置确定了吗?思考3 设向量BC →=(1,1),O 为坐标原点,若将向量BC →平移到OA →,则OA →的坐标是多少?A 点坐标是多少?梳理 (1)平面向量的坐标①在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个____________i 、j 作为基底.对于平面内的任意向量a ,由平面向量基本定理可知,有且只有一对实数x ,y ,使得a =x i +y j .我们把实数对(x ,y )叫作向量a 的坐标,记作a =(x ,y ).②在平面直角坐标平面中,i =(1,0),j =(0,1),0=(0,0). (2)点的坐标与向量坐标的区别和联系知识点三 平面向量的坐标运算思考 设i 、j 是分别与x 轴、y 轴同向的两个单位向量,若设a =(x 1,y 1),b =(x 2,y 2),则a =x 1i +y 1j ,b =x 2i +y 2j ,根据向量的线性运算性质,向量a +b ,a -b ,λa (λ∈R )如何分别用基底i 、j 表示?梳理 设a =(x 1,y 1),b =(x 2,y 2),A (x 1,y 1),B (x 2,y 2).类型一 平面向量的坐标表示例1 如图,在平面直角坐标系xOy 中,OA =4,AB =3, ∠AOx =45°,∠OAB =105°,OA →=a ,AB →=b . 四边形OABC 为平行四边形. (1)求向量a ,b 的坐标; (2)求向量BA →的坐标; (3)求点B 的坐标.反思与感悟 在表示点、向量的坐标时,可利用向量的相等、加减法运算等求坐标,也可以利用向量、点的坐标的定义求坐标.一般利用不等式思想求解,即把问题条件转化为关于参数的不等式(组),再解不等式(组)就可以求得参数的取值范围.跟踪训练1 已知边长为2的正三角形ABC ,顶点A 在坐标原点,AB 边在x 轴上,点C 在第一象限,D 为AC 的中点,分别求向量AB →,AC →,BC →,BD →的坐标.类型二 平面向量的坐标运算例2 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c . (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n 的值.反思与感悟 向量坐标运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行. (2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算. (3)向量的线性坐标运算可完全类比数的运算进行. 跟踪训练2 已知a =(-1,2),b =(2,1),求: (1)2a +3b ;(2)a -3b ;(3)12a -13b .类型三 平面向量坐标运算的应用例3 已知点A (2,3),B (5,4),C (7,10).若AP →=AB →+λAC →(λ∈R ),试求当λ为何值时: (1)点P 在第一、三象限的角平分线上; (2)点P 在第三象限内.反思与感悟 (1)待定系数法是最基本的数学方法之一,实质是先将未知量设出来,建立方程(组)求出未知数的值,是待定系数法的基本形式,也是方程思想的一种基本应用.(2)坐标形式下向量相等的条件:相等向量的对应坐标相等;对应坐标相等的向量是相等向量.由此可建立相等关系求某些参数的值.跟踪训练3 已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.1.设平面向量a =(3,5),b =(-2,1),则a -2b 等于( ) A .(7,3) B .(7,7) C .(1,7) D .(1,3)2.已知向量OA →=(3,-2),OB →=(-5,-1),则向量12AB →的坐标是( )A.⎝⎛⎭⎫-4,12B.⎝⎛⎭⎫4,-12 C .(-8,1) D .(8,1) 3.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( ) A.⎝⎛⎭⎫2,72 B.⎝⎛⎭⎫2,-12 C .(3,2) D .(1,3) 4.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →等于( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4)5.如图,在6×6的方格纸中,若起点和终点均在格点的向量a ,b ,c 满足c =x a +y b (x ,y ∈R ),则x +y =________.1.向量的正交分解是把一个向量分解为两个互相垂直的向量,是向量坐标表示的理论依据.向量的坐标表示,沟通了向量“数”与“形”的特征,使向量运算完全代数化.2.要区分向量终点的坐标与向量的坐标.由于向量的起点可以任意选取,如果一个向量的起点是坐标原点,这个向量终点的坐标就是这个向量的坐标;若向量的起点不是原点,则向量的终点坐标不是向量的坐标,此时AB →=(x B -x A ,y B -y A ).3.向量和、差的坐标就是它们对应向量坐标的和、差,数乘向量的坐标等于这个实数与原来向量坐标的积.4.3 向量平行的坐标表示学习目标 1.理解用坐标表示的平面向量共线的条件.2.能根据平面向量的坐标,判断向量是否共线.3.掌握三点共线的判断方法.。

高一数学讲义 第七章 平面向量

高一数学讲义 第七章  平面向量

高一数学讲义 第七章 平面向量7.1 向量的基本概念及表示现实生活中,有些量在有了测定单位之后只需用一个实数就可以表示,例如温度,时间,面积,这些只需用一个实数就可以表示的量叫作标量.还有些量不能只用一个实数表示,例如位移,力,速度等既有大小又有方向的量,这些既有大小又有方向的量叫作向量.向量既有大小又有方向,因此向量不能比较大小.数学中常用平面内带有箭头的线段来表示平面向量.以线段的长来表示向量的大小:以箭头所指的方向(即从始点到终点的方向)来表示向量的方向.一般地,以点P 为始点,点Q 为终点的向量记作PQ .为书写简便,在不强调向量的起点与终点时,向量也可以用一个小写的字母并在上面画一个小箭头来表示,如a .PQ 的大小叫作PQ 的模,记作PQ ,类似地,a 的模记作a . 1.零向量:长度为0的向量叫做零向量,记作0;0的方向是任意的. 2.单位向量:长度为1的向量叫做单位向量.3.平行向量:方向相同或相反的向量叫做平行向量(也叫共线向量). 4.相等向量:长度相等且方向相同的向量叫做相等向量.5.负向量:与a 的模相等,方向相反的向量叫作a 的负向量,记作a -.我们规定:0的相反向量仍是零向量.易知对任意向量a 有()a a --=.向量共线与表示它们的有向线段共线不同:向量共线时表示向量的有向线段可以是平行的,不一定在一条直线上;而有向线段共线则线段必须在同一条直线上.规定。

与任一向量平行.图7-1图7-1三个向量a 、b 、c 所在的直线平行,易知这三个向量平行,记作a b c ∥∥,我们也可以称这三个向量共线.例l .如图7-2所示,128A A A 、是O 上的八个等分点,则在以128A A A 、及圆O 九个点中任意两点为起点与终点的向量中,模等于半径的向量有多少??A 8A 7A 6A 5A 4A 3A 2A 1图7-2解:(1)模等于半径的向量只有两类,一类是()128i OA i =、共8个;另一类是()128iAO i =、也有8个.两类合计16个. (2)以128A A A 、为顶点的O 的内接正方形有两个,一个是正方形1257A A A A ;另一个是正方形2468A A A A .在题中所述的向量中,只有这两个正方形的边(看成有向线段,每一边对应两个向量)的√2倍的向量共有42216⨯⨯=个. 注意:(1)在模等于半径的向量个数的计算中,要计算i OA 与()128i AO i =、两类.一般地我们易想到()128i OA i =、这8个,而易遗漏()128iAO i =、这8个.(2的两个向量,例如边13A A 对应向量13A A 与31A A ,因此与(1)一样,在解题过程中主要要防止漏算.认为满足条件的向量个数为8是错误的.例2.在平面中下列各种情形中,将各向量的终点的集会分别构成什么图形? (1)把所有单位向量的起点平移到同一点O .(2)把平行于直线l 的所有单位向量的起点平移到直线l 上的p 点. (3)把平行于直线l 的所有向量的起点平移到直线l 的点p . 解:(1)以点O 为圆心,l 为半径的圆.(2)直线l 上与点p 的距离为1个长度单位的两个点. (3)直线l .例3.判断下列命题的真假:①直角坐标系中坐标轴的非负轴都是向量; ②两个向量平行是两个向量相等的必要条件;③向量AP 与CD 是共线向量,则A 、B 、C 、D 必在同一直线上; ④向量a 与向量b 平行,则a 与b 的方向相同或相反; ⑤四边形ABCD 是平行四边形的宽要条件是AB DC =.解:①直角坐标系中坐标轴的非负半轴,虽有方向之别,但无大小之分,故命题是错误的.②由于两个向量相等,必知这两个向量的方向与长度均一致,故这两个向量一定平行,所以,此命题正确; ③不正确.AB 与CD 共线,可以有AB 与CD 平行;④不正确.如果其中有一个是零向量,则其方向就不确定;⑤正确.此命题相当于平面几何中的命题:四边形ABCD是平行四边形的充要条件是有一组对边平行且相等.1.下列各量中是向量的有__________.(A)动能(B)重量(C)质量(D)长度(F)作用力与反作用力(F)温度2.判断下列命题是否正确,若不正确,请简述理由.①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④共线的向量,若起点不同,则终点一定不同.3.回答下列问题,并说明理由.(1)平行向量的方向一定相同吗?(2)共线向量一定相等吗?(3)相等向量一定共线吗?不相等的向量一定不共线吗?4.命题“a b∥,b c∥()∥,则a bA.总成立B.当0a ≠时成立C.当0b ≠时成立D.当0c ≠时成立5.已知正六边形ABCDEF(见图7-3),在下列表达式中:①BC CD EC+;③FE ED++;②2BC DC+;④2ED FA-;与AC相等的有__________.CF图737.2向量的加减法两个向量可以求和.一般地,对于两个互不平行的向量a、b,以A为共同起点平移向量,有AB a=,=叫作a和b这两个向量的和,即AD b=,则以AB、AD为邻边的平行四边形ABCD的对角线AC c+=.求两个向量和的运算叫做向量的加法.上述求两个向量的和的方法称为向量加法的平行四a b c边形法则,见图7-4.平行四边形法则B图74又AD BC = AB BC AC ∴+=由此发现,当第二个向量的始点与第一个向量的终点重合时.这两个向量的和向量即为第一个向量的始点指向第二个向量终点的向量.此法则称为向量加法的三角形法则,地图7-5.三角形法则图75特殊地.求两个平行向量的和,也可以用三角形法则进行(如图7-6):(b )(a )a BA图76显然,对于任何a ,有0a a +=;()0a a +-=. 对于零向量与任一向量a ,有00a a a +=+=.向量的加法具有与实数加法类似的运算性质,向量加法满足交换律与结合律: 交换律:a b b a +=+结合律:()()a b c a b c ++=++与实数的减法相类似,我们把向量的减法定义为向量加法的逆运算.若向量a 与b 的和为向量c ,则向量b 叫做向量c 与a 的差,记作b c a =-.求向量差的运算叫做向量的减法.由向量加法的三角形法则以及向量减法的定义.我们可得向量减法的三角形法则,其作法:在平面内取一点O,作OA a=-,即a b-声可以表示为从向量b的终点指向向=,则BA a b=,OB b量a的终点的向量.注意差向量的“箭头”指向被减向量,见图7-7.CB图77此外,我们可以先做向量b的负向量OB b′,可根据向量加法的平行四边形法则得()=-OC a b=+-.易知向量OC BA=,因此,()+-=-.a b a b例1.如图7-8所示,已知向量a,b,c,试求作和向量a b c++.图78分析:求作三个向量的和的问题,首先求作其中任意两个向量的和,因为这两个向量的和仍为一个向量,然后再求这个新向量与另一个向量的和.即可先作a b+,再作()++.a b c解:如图7-9所示,首先在平面内任取一点O,作向量OA a=+,=,再作向量AB b=,则得向量OB a b然后作向量BC c=++即为所求.=,则向量OC a b cO图79例2.化简下列各式(1)AB CA BC ++; (2)OE OF OD DO -+--.解:(1)原式()0AB BC CA AB BC CA AC CA AC AC =++=++=+=-= (2)原式()()0OE OF OD DO EO OF EF =+-+=+-=例3.用向量方法证明:对角线互相平分的四边形是平行四边形.分析:要证明四边形是平行四边形只要证明某一组对边平行且相等.由相等向量的意义可知,只需证明其一组对边对应的向量是相等向量.已知:如图7-10,ABCD 是四边形,对角线AC 与BD 交于0,且AO OC =,DO OB =.ODCBA图710求证:四边形ABCD 足平行四边形. 证明:由已知得AO OC =,BO OD =,AD AO OD OC BO BO OC BC =+=+=+=,且A D B C ,,,不在同一直线上,故四边形ABCD 是平行四边形.例4.已知平面上有不共线的四点O A B C ,,,.若320OA OB OC -+=,试求AB BC的值.解:因为23OA OC OB +=,所以()2OB OA OC OB -=-.于是有2AB BC =-.因此2AB BC=.基础练习1.若对n 个向量12n a a a ,,,存在n 个不全为零的实数12n k k k ,,,,使得11220n n k a k a k a +++=成立,则称向量12n a a a ,,,为“线性相关”,依此规定,能说明()110a =,,()211a =-,,()322a =,“线性相关”的实数123k k k ,,依次可以取____________________(写出一组数值即可,不必考虑所有情况).2.已知矩形ABCD 中,宽为2,长为AB a =,BC b =,AC c =,试作出向量a b c ++,并求出其模的大小.3.设a ,b 为两个相互垂直的单位向量.已知OP a =,OR ra kb =+.若PQR △为等边三角形,则k ,r 的取值为( )A.k r == B.k r =C.k r ==D.k r = 4.若A B C D 、、、是平面内任意四点,则下列四式中正确的是( )①AC BD BC AD +=+ ②AC BD DC AB -=+ ③AB AC DB DC --=④AB BC AD DC +-=A .1B .2C .3D .45.设a 表示“向东走10km ”,b 表示“5km ”,c 表示“向北走10km ”,d 表示“向南走5km ”.说明下列向量的意义.(1)a b +;(2)b d +;(3)d a d ++.6.在图7-11的正六边形ABCDEF 中,AB a =,AF b =,求AC ,AD ,AE .FC图7117.3 实数与向量的乘法如图7-12,已知非零向量a ,可以作出a a a ++和()()()a a a -+-+-.P Q M N aaa-a图712aOC OA AB BC a a a =++=++,简记3OC a =;同理有()()()3PN PQ QM MN a a a a =++=-+-+-=-.观察得:3a 与a 方向相反相反且33a a -=.一般地,实数λ与向量a 的积是一个向量,记作:a λ.a λ的模与方向规定如下:(1)a a λλ=;(2)a λ的方向定义为:0λ>时a λ与a i 方向相同;0λ<时a λ与a i 方向相反;0λ=或0a =时规定:0a λ=.以上规定的实数与向量求积的运算叫作实数与向量的乘法(简称向量的数乘).向量数乘的几何意义就是:把向量a 沿向量a 的方向或反方向放大或缩小,a λ与a 是互相平行的向量.对于任意的非零向量a ,与它同方向的单位向量叫做向量a 的单位向量,记作0a .易知01a a a =.向量共线定理:如果有一个实数λ,使()0b a a λ=≠,那么b 与a 是共线向量;反之,如果b 与()0a b ≠是共线向量,那么有且只有一个实数λ,使得b a λ=.通过作图,可以验证向量数乘满足以下运算定律:当m 、n ∈R 时,有 1.第一分配律()m n a ma na +=+. 2.第二分配律()m a b ma mb +=+. 3.结合律()()m na mn a =. 例1.计算:(1)()()63292a b a b -+-+;(2)原式12711332236227a a b b a a b ⎛⎫⎛⎫=-+--++ ⎪ ⎪⎝⎭⎝⎭;(3)()()()64222a b c a b c a c -+--+--+. 解:(1)原式18121893a b a b b =---+=-. (2)原式12711332236227a a b b a a b ⎛⎫⎛⎫=-+--++ ⎪ ⎪⎝⎭⎝⎭17732367a b a b ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ 77106262b a a b =+--=. (3)原式66648442a bc a b c a c =-+-+-+-()()()64468642a a a b b c c c =-++-++-- 62a b =+.例2.已知O 为原点,A ,B ,C 为平面内三点,求证A ,B ,C 三点在一条直线上的充要条件是OC OA OB αβ=+,且αβ∈R ,,1αβ+=.分析:证明三点共线可从三点构成的其中两个向量存在数乘关系.证明必要条件也是从向量共线时向量的数乘关系入手.证明:必要性.设A B C ,,三点共线,则AC 与AB 共线.于是存在实数λ,使AC AB λ=. 而AC OC OA =-,AB OB OA =-,()OC OA OB OA λ∴-=-.()1OC OB OA λλ∴=+-. 令λβ=,1λα-=,有()11αβλλ+=-+=, OC OA OB αβ∴=+,且1αβ+=.充分性.若OC OA OB αβ=+,且1αβ+=,则()1OC OA OB ββ=-+,()OC OA OB OA β=+-,()OC OA OB OC β-=-,AC AB β∴=,β∈R . AC ∴与AB 共线,而A 为AC 与AB 的公共端点,A B C ∴,,三点在一条直线上.在证明必要性时,A B C ,,三点共线还可用AB kBC =,AC kBC =表示.本题的结论还可有更一般的形式:A B C 、、三点在一条直线上的充要条件是存在实数h ,k ,l ,使0hOA kOB lOC ++=,且1h k l ++=,l k h ,,中至少有一个不为0.例3.如图7-13,设O 为ABC △内一点,PQ BC ∥,且PQt BC=,,OB b =,OC c =,试求OP ,OQ . 解:由平面几何知,APQ ABC ⨯△∽△,且对应边之比为t ,图713故AP AQ PQt AB AC BC===, 又A P B 、、与A Q C 、、分别共线,即知 AP t AB =,AQ t AC =.()()OP OA AP OA t AB OA t OB OA a t b a ∴=+=+=+-=+-,即()1OP t a tb =-+,()()OQ OA AQ OA t AC OA t OC OA a t c a =+=+=+-=+-, 即()1OQ t a c =-+.例4.设两非零向量1e 和2e 不共线,(1)如果12AB e e =+,1228BC e e =+,()123CD e e =-,求证A B D ,,三点共线. (2)试确定实数k ,使12ke ke +共线. (1)证明12AB e e =+,()121212283355BD BC CD e e e e e e AB =+=++-=+=,AB BD ∴,共线,又有公共点B A B D ∴,,三点共线.(2)解12ke e +与12e ke +共线,∴存在λ使()1212ke e e ke λ+=+, 则()()121k e k e λλ-=-,由于1e 与2e 不共线, 只能有010k k λλ-=⎧⎨-=⎩则1k =±.例5.在ABC △中,F 是BC 中点,直线l 分别交AB AF AC ,,于点D ,G ,E (见图7-14).如果AD AB λ=,AE AC μ=,λ,μ∈R .证明:G 为ABC △重心的充分必要条件是113λμ+=.l GF E DCB A图714解:若G 为ABC △重心,则()221332AG AF AB AC ==⋅+=13AD AE λμ⎛⎫+ ⎪ ⎪⎝⎭. 又因点D G E ,,共线,所以,()113AD AE AG t AD t AE λμ⎛⎫=+-=+ ⎪ ⎪⎝⎭, 因AD ,AE 不共线,所以,13t λ=且113t μ=-,两式相加即得113λμ+=. 反之,若113λμ+=,则()2xAG xAF AB AC ==+()12x AD AE t AD t AE λμ⎛⎫=+=+- ⎪ ⎪⎝⎭, 所以,2x t λ=且12x t μ=-,相加即得23x =,即G 为ABC △重心. 基础练习1.已知向量a 、b 是两非零向量,在下列四个条件中,能使a 、b 共线的条件是( ) ①234a b e -=且23a b e +=-;②存在相异实数λ、u ,使0a ub λ+=; ③0xa yb +=(其中实数x y 、满足0x y +=); ④已知梯形ABCD 中,其中AB a =、CD b =. A .①② B .①③C .②④D .③④2.判断下列命题的真假:(1)若AB 与CD 是共线向量,则A B C D ,,,四点共线. (2)若AB BC CA ++=0,则A B C ,,三点共线. (3)λ∈R ,则a a λ>.(4)平面内任意三个向量中的每一个向量都可以用另外两个向量的线性组合表示. 3.已知在ABC △中,D 是BC 上的一点,且BDDCλ=,试求证:1AB AC AD λλ+=+. 4.已知3AD AB =,3DE BC =.试判断AC 与AE 是否共线.5.已知在四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,求证:四边形ABCD 是梯形.6.已知()2cos A αα,()2cos B ββ,()10C -,是平面上三个不同的点,且满足关系式CA BC λ=,求实数λ的取值范围.7.已知梯形ABCD 中,2AB DC =,M N ,分别是DC AB 、的中点,若1AB e =,2AD e =,用1e ,2e 表示DC BC MN 、、.8.四边形ABCD 是一个梯形,AB CD ∥且2AB CD =,M N 、分别是DC 和AB 的中点,已知AB a =,AD b =,试用a ,b 表示BC 和MN .9.已知a b 、是不共线的非零向量,11c a b λμ=+,22d a b λμ=+,其中1122λμλμ、、、为常数,若c d ma nb +=+,求m n 、的值.10.设a 、b 是不共线的两个非零向量,OM ma =,ON nb =,OP a b αβ=+,其中m n αβ、、、均为实数,0m ≠,0n ≠,若M P N 、、三点共线,求证:1mnαβ+=.11.在ABC △中,BE 是CD 交点为P .设AB a =,AC b =,AP c =,AD a λ=,(01λ<<),()01AE b μμ=<<,试用向量a ,b 表示c .12.在平面直角坐标系中,O 为坐标原点,设向量()12OA =,,()21OB =-,若OP xOA yOB =+且12x y ≤≤≤,则求出点P 所有可能的位置所构成的区域面积.7.4 向量的数量积数量积定义:一般地.如果两个非零向量a 与b 的夹角为α.我们把数量cos a b α⋅叫做a 与b 的数量积(或内积),记作:a b ⋅,即:cos a b a b α⋅=⋅,其中记法“a b ⋅”中间的“⋅”不可以省略,也不可以用“×”代替.特别地,a b ⋅可记作2a .规定:0与任何向量的数量积为0.非零向量夹角的范围:0≤口≤Ⅱ.投影的定义:如果两个非零向量a 与b 的夹角为α,则数量cos b θ称为向量b 在a 方向上的投影.注意:投影是一个数量.数量积的几何意义:如图7-15,我们把cos b α<叫做向量b 在a 方向上的投影,即有向线段1OB 的数量.图715当π02α<≤时,1OB 的数量等于向量1OB 的模1OB ; 当ππ2α<≤时,1OB 的数量等于向量1OB 的模-1OB ; 当π2α=时,1OB 的数量等于零. 当然,cos a α即为a 在b 方向上的投影.综上,数量积的几何意义:a b ⋅等于其中一个向量a 的模a 与另一个向量b 在a 的方向上的投影cos b α的乘积.向量的数量积的运算律: ①a b b a ⋅=⋅②()()()a b b a b λλλ⋅⋅=⋅(λ为实数)③()a b c a c b c +⋅=⋅+⋅ 鉴于篇幅这里仅证明性质②:证明:(1)若0λ>,()cos a b a b λλθ⋅=,()cos a b a b λλθ⋅=,()cos a b a b λλθ⋅=,(2)若0λ<,()()()cos πcos cos a b a b a b a b λλθλθλθ⋅=-=--=,()cos a b a b a b λλλθ⋅=⋅=,()()()cos πcos a b a b a b λλθλθ⋅=-=--=cos a b λθ. (3)若0λ=,则()()()0a b a b a b λλλ⋅=⋅=⋅=. 综合(1)、(2)、(3),即有()()()a b a b a b λλλ⋅=⋅=⋅.例1.已知4a =,5b =,当(1)a b ∥,(2)a b ⊥,(3)a 与b 的夹角为30︒时,分别求a 与b 的数量积.解:(1)a b ∥,若a 与b 同向,则0θ=︒,cos04520a b a b ∴⋅=⋅︒=⨯=; 若a 与b 反向,则180θ=︒,()cos18045120a b a b ∴⋅=⋅︒⨯⨯⨯-=-. (2)当a b ⊥时,90θ=︒,cos900a b a b ∴⋅=⋅︒=.(3)当a 与b 的夹角为30︒时,cos3045a b a b ⋅=⋅︒=⨯= 例2.空间四点A B C D 、、、满足3AB =,7BC =,11CD =,9DA =,则AC BD ⋅的取值有多少个?解:注意到2222311113079+==+,由于0AB BC CD DA +++=, 则()()2222222DA DA AB BC CDAB BC CD AB BC BC CD CD AB ==++=+++⋅+⋅+⋅()()2222AB BC CD AB BC BC CD =-+++⋅+,即222220AC BD AD BC AB CD ⋅=+--=,AC BD ∴⋅只有一个值0.例3.已知a b 、都是非零向量,且3a b +与75a b -垂直,4a b -与72a b -垂直,求a b 、的夹角. 解:由()()223750716150a b a b a a b b +⋅-=⇒+⋅-= ①()()22472073080a b a b a a b b -⋅-=⇒-⋅+=②两式相减:22a b b ⋅=代入①或②得:22a b =. 不妨设a b 、的夹角为θ,则221cos 22a b ba bbθ⋅===,又因为0πθ≤≤,60θ∴=︒.例4.在凸四边形ABCD 中,P 和Q 分别为对角线BD 和AC 的中点,求证:2222224AB BC CD DA AC BD PQ +++=++.证明:联结BQ ,QD ,因为BP PQ BQ +=,DP PQ DQ +=, 所以()()2222BQ DQ BP PQ DP PQ +=+++ 222222BP DP PQ BP PQ DP PQ =+++⋅+⋅()22222BP DP PQ BP DP PQ =++++⋅ 2222BP DP PQ =++①又因为BQ QC BC +=,BQ QA BA +=,0QA QC +=, 同理222222BA BC QA QC BQ +=++② 222222CD DA QA QC QD +=++③由①、②、③可得()()2222222224222BA BC CD QA BQ QD AC BP PQ ++=++=++= 2224AC BD PQ ++.得证.例5.平面四边形ABCD 中,AB a =,BC b =,CD c =,DA d =,且a b b c c d d a ⋅=⋅=⋅=⋅,判断四边形ABCD 的形状.证明:由四边形ABCD 可知,0a b c d +++=(首尾相接)()a b c d ∴+=-+,即()()22a bc d +=+展开得222222aa b b c c d d +⋅+=+⋅+a b c d ⋅=⋅,222a b c d ∴+=+①同理可得2222a dbc +=+② ①-②得2222b a ac =⇒=,b d ∴=,ac =,即AB CD =,BC DA =, 故四边形ABCD 是平行四边形.由此a c =-,bd =-.又a b b c ⋅=⋅,即()0b a c -=()20b a ∴⋅=即a b AB BC ⊥⇒⊥, 故四边形ABCD 是矩形.例6.已知非零向量a 和b 夹角为60︒,且()()375a b a b +⊥-,求证:()()472a b a b -⊥-.证明:因为a 和b 夹角为60︒,所以1cos602a b a b a b ⋅=⋅⋅︒=⋅;又因为()()375a b a b +⊥-,所以,即()()3750a b a b +⋅-=.22222217161571615781502a ab b a a b b a a b b +⋅-=+⨯⋅-=+⋅-=. ()()7150a b a b ∴+⋅-=,0a b ∴-=,即a b =.因为()()22222214727308730871582a b a b a a b b a a b b a a b b -⋅-=-⋅+=-⨯+=-+,把a b =代入上式消去b 得()()2247271580a b a b a a a a -⋅-=-+=.所以()()472a b a b -⊥-.基础练习1.已知a b c 、、是三个非零向量,则下列命题中真命题的个数为( ) ①a b a b a b ⋅=⋅⇔∥; ②a b 、反向a b a b ⇔⋅=-⋅; ③a b a b a b ⊥⇔+=-; ④a b a c b c =⇔⋅=⋅. A .1B .2C .3D .42.已知向量i j ,为相互垂直的单位向量,28a b i j +=-,816a b i j -=-+,求a b ⋅.3.如图7-16所示,已知平行四边形ABCD ,AB a =,AD b =,4a=,2b =,求:OA OB ⋅.C图7164.设6a =,10b =,46a b -=,求a 和b 的夹角θ的余弦值. 5.已知a b ⊥,2a =,3b =,当()()32a b a b λ-⊥+时,求实数λ的值.6.已知不共线向量a ,b ,3a =,2b =,且向量a b +与2a b -垂直.求:a 与b 的夹角θ的余弦值. 7.已知3a =,4b =,且a 与b 不共线,k 为何值时,向量a kb +与a kb -互相垂直? 8.在ABC △中,已知4AB AC ⋅=,12AB BC ⋅=-,求AB .9.在ABC △中,AB a =,BC b =,且0a b ⋅>,则ABC △的形状是__________. 10.已知向量()24a =,,()11b =,.若向量()b a b λ⊥+,则实数λ的值是__________.11.如图7-17,在四边形ABCD 中,4AB BD DC ++=,0AB BD BD DC ⋅=⋅=,4AB BD BD DC ⋅+⋅=,求()AB DC AC +⋅的值.图717DCBA能力提高12.如图7-18,在Rt ABC △中,已知BC a =,若长为2a 的线段PQ 以点A 为中点.问PQ 与BC 的夹角θ为何值时,BP CQ ⋅的值最大?并求出这个最大值.PQ图71813.已知ABC △中满足()2ABAB AC BA BC CA CB =⋅+⋅+⋅,a b c 、、分别是ABC △的三边.试判断ABC △的形状并求sin sin A B +的取值范围.14.设边长为1的正ABC △的边BC 上有n 等分点,沿点B 到点C 的方向,依次为121n P P P -,,,,若1121n n S AB AP AP AP AP AC -=⋅+⋅++⋅,求证:21126n n S n-=.15.在ABC △中,AB a =,BC c =,CA b =,又()()()123c b b a a c ⋅⋅⋅=∶∶∶∶,则ABC △三边长之比a b c =∶∶__________.16.在向量a b c ,,之间,该等式()()())132a b c a b b c c a ⎧++=⎪⎨⋅⋅⋅=-⎪⎩∶∶∶成立,当1a =时,求b 和c 的值.17.若a b c ,,中每两个向量的夹角均为60︒,且4a =,6b =,2c =,求a b c ++的值. 7.5 向量的坐标表示及其运算向量的坐标表示在平面直角坐标系中,每一个点都可用一对实数()x y ,来表示,那么,每一个向量可否也用一对实数来表示?前面的平面向量分解告诉我们,只要选定一组基底,就有唯一确定的有序实数对与之一一对应. 我们分别选取与x 轴、y 轴方向相同的单位向量i ,j 作为基底,由平面向量的基本定理.对于任一向量a ,存在唯一确定的实数对()x y ,使得()a xi y j x y =+∈R ,,我们称实数对()x y ,叫向量a 的坐标,记作()a x y =,.其中x 叫向量a 在x 轴上的坐标,y 叫向量a 在y 轴上的坐标,见图7-19.图719注意:(1)与a 相等的向量的坐标也是()x y ,.(2)所有相等的向量坐标相同;坐标相同的向量是相等的向量. 平面向量的坐标运算(1)设()11a x y =,,()22b x y =,,则()1212a b x x y y +=++,. (2)设()11a x y =,,()22b x y =,,则()1212a b x x y y -=--,. (3)设()11A x y ,,()22B x y ,,则()2121AB OB OA x x y y =-=--,. (4)设()11a x y =,,λ∈R ,则()a x y λλλ=,.(5)设()11a x y =,,()22b x y =,,则()1212a b x x y y ⋅=+. 向量平行的坐标表示设()11a x y =,,()22b x y =,,且0b ≠,则()1212a b x x y y =+∥. 向量的平行与垂直的充要条件设()11a x y =,,()22b x y =,,且0b ≠,0a ≠则 12210a b b a x y x y λ⇔=⇔-=∥. 121200a b a b x x y y ⊥⇔⋅=⇔+=.重要的公式(1)长度公式:2221a a a x y ===+()()11a x y =,(2)夹角公式:()())1122cos a x y b x y θ===,,,.(3)平面两点间的距离公式: (()())1122A B d AB AB AB x A x y B xy ==⋅=,,,,.(4)不等式:cos a b a b a b θ⋅=≥.例1.已知()12a a a =,,()12b b b =,,且12210a b a b -≠,求证:(1)对平面内任一向量()12c c c ,,都可以表示为()xa yb x y +∈R ,的形式; (2)若0xa yb +=,则0x y ==.证明:(1)设c xa yb =+,即()()()()1212121122c c x a a y b b a x b y a x b y =+=++,,,,, 111222.a xb yc a x b y c +=⎧∴⎨+=⎩,12210a b a b -≠,∴上述关于x y ,的方程组有唯一解.1221122112211221.c b c b x a b a b a c a c y a b a b -⎧=⎪-⎪⎨-⎪=⎪-⎩,1221122112211221c b c b a c a c c a b a b a b a b a b --∴=+--. (2)由(1)的结论,0c =,即120c c ==,则 122112210c b c b x a b a b -==-,122112210a c a c y a b a b -==-,0x y ∴==. 小结:证明(1)的过程就是求实数x ,y 的过程,而12210a b a b -≠是上面二元一次方程组有唯一解的不可缺少的条件.另外,本题实际上是用向量的坐标形式表述平面向量基本定理.其中1x λ=,2y λ=,这里给出了一个具体的求12λλ,的计算方法.例2.向量()10OA =,,()11OB =,,O 为坐标原点,动点()P x y ,满足0102OP OA OP OB ⎧⋅⎪⎨⋅⎪⎩≤≤≤≤,求点()Q x y y +,构成图形的面积.解:由题意得点()P x y ,满足0102x x y ⎧⎨+⎩≤≤≤≤,令x y uy v +=⎧⎨=⎩,则点()Q u v ,满足0102u v u -⎧⎨⎩≤≤≤≤,在uOv 平面内画出点()Q u v ,构成图形如图7-20所示,∴其面积等于122⨯=.图720例3.在直角坐标系中,已知两点()11A x y ,,()22B x y ,;1x ,2x 是一元二次方程222240x ax a -+-=两个不等实根,且A B 、两点都在直线y x a =-+上. (1)求OA OB ⋅;(2)a 为何值时OA 与OB 夹角为π3. 解:(1)12x x 、是方程222240x ax a -+-=两个不等实根,()224840a a ∴∆=-->解之a -<()212142x x a =-,12x x a +=又A B 、两点都在直线y x a =-+上,()()()()2212121212142y y x a x a x x a x x a a ∴=-+-+=-++=- 121224OA OB x x y y a ∴⋅=+=-(2)由题意设1x =,2x =112y x a x ∴=-+==,同理21y x =(()22212121224OA OB xx x x x x x ∴==+=+-=当OA 与OB夹角为π3时,π1cos 4232OA OBOA OB ⋅==⨯= 242a ∴-=解之(a =- a ∴=即为所求. 例4.已知()10a =,,()21b =,. ①求3a b +;②当k 为何实数时,ka b -与3a b +平行,平行时它们是同向还是反向?解:①()()()31032173a b +=+=,,,,2373a b ∴+=+ ②()()()102121ka b k k -=-=--,,,. 设()3ka b a b λ-=+,即()()2173k λ--=,,, 12731313k k λλλ⎧=-⎪-=⎧⎪∴⇒⎨⎨-=⎩⎪=-⎪⎩.故13k =-时,它们反向平行.例5.对于向量的集合(){}221A v x y x y ==+,≤中的任意两个向量12v v 、与两个非负实数αβ、;求证:向量12v v αβ+的大小不超过αβ+.证明:设()111v x y =,,()222v x y =,,根据已知条件有:22111x y +≤,22221x y +≤, 又因为(12v v αβα+==其中12121x x y y +所以12v v αβααβαβ+=+=+≤. 基础练习1.已知()21a =,,()34b =-,,求a b +,a b -,34a b +的坐标. 2.设O 点在ABC △内部,且有230OA OB OC ++=,求ABC △的面积与AOC △的面积的比. 3.已知平行四边形ABCD 的三个顶点A B C ,,的坐标分别为(-2,1),(-1,3),(3,4),求顶点D 的坐标.4.已知向量i ,j 为相互垂直的单位向量,设()12a m i j =+-,()1b i m j =+-,()()a b a b +⊥-,求m 的值.5.已知等腰梯形ABCD ,其中AB CD ∥,且2DC AB =,三个顶点()12A ,,()21B ,,()42C ,,求D 点的坐标.6.如图7-21所示,已知()20OA =,,(1OB =,将BA 绕着B 点逆时针方向旋转60︒,且模伸长到BA 模的2倍,得到向量BC .求四边形AOBC 的面积S .图7217.如图7-22所示,已知四边形ABCD 是梯形,AD BC ∥,2BC AD =,其中()12A ,,()31B ,,()24D ,,求C 点坐标及AC 的坐标.图7228.已知向量()2334a x x x =+--,与AB 相等,其中()12A ,,()32B ,,求x . 9.平面内有三个已知点()12A -,,()70B ,,()56C -,,求 (1)AB ,AC ;(2)AB AC +,AB AC -;(3)122AB AC +,3AB AC -. 10.已知向量()12a =,,()1b x =,,2u a b =+,2v a b =-,且u v ∥,求x . 11.已知()23a =,,()14b =-,,()56c =,,求()a b c ⋅,和()a b c ⋅⋅.12.已知两个非零向量a 和b 满足()28a b +=-,,()64a b -=--,,求a 与b 的夹角的余弦值. 能力提高13.已知平面上三个向量a ,b ,c 均为单位向量,且两两的夹角均为120︒,若()1ka b c k ++>∈R ,求k 的取值范围.14.已知OA ,OB 不共线,点C 分AB 所成的比为2,OC OA OB λμ=+,求λμ-. 7.6 线段的定比分点公式与向量的应用线段的定比分点公式设点P 是直线12P P 上异于1P 、2P 的任意一点,若存在一个实数()1λλ≠-,使12PP PP λ=,则λ叫做点P 分有向线段12P P 所成的比,P 点叫做有向线段12P P 的以定比为λ的定比分点.当P 点在线段12P P 上时0λ⇔≥;当P 点在线段12P P 的延长线上时1λ⇔<-; 当P 点在线段21P P 的延长线上时10λ⇔-<<;设()111P x y ,,()222P x y ,,()P x y ,是线段12P P 的分点,λ是实数且12P P PP λ=,则121211x x x OP y y y λλλλ+⎧=⎪⎪+⇔=⎨+⎪=⎪+⎩()12121111OP OP OP tOP t OP t λλλ+⎛⎫⇔=+-= ⎪++⎝⎭.()1λ≠-由线段的定比分点公式得:中点坐标公式设()111P x y ,,()222P x y ,,()P x y ,为12P P 的中点,(当1λ=时) 得121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩三角形的重心坐标公式ABC △三个顶点的坐标分别为()11A x y ,、()22B x y ,、()33C x y ,,则ABC △的重心的坐标是12312233x x x y y y G ++++⎛⎫ ⎪⎝⎭,. 利用向量可以解决许多与长度、距离及夹角有关的问题.向量兼具几何特性和代数特性,成为沟通代数、三角与几何的重要工具,同时在数学、物理以及实际生活中都有着广泛的应用. 三角形五“心”向量形式的充要条件设O 为ABC △所在平面上一点,角A ,B ,C 所对边长分别为a ,b ,c 则(1)O 为ABC △的外心222OA OB OC ⇔==. (2)O 为ABC △的重心0OA OB OC ⇔++=.(3)O 为ABC △的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC △的内心0aOA bOB cOC ⇔++=. (5)O 为ABC △的A ∠的旁心()aOA b OB cOC ⇔=+.例1.如图7-23所示,已知矩形ABCD 中,()21A ,,()54B ,,()36C ,,E 点是CD 边的中点,联结BE 与矩形的对角线AC 交于F 点,求F 点坐标.图723解:四边形ABCD 是矩形,E 是CD 边的中点,ABF CEF ∴△∽△,且2AB CE =2AF CF ∴=即点F 分AC 所成的比2λ=.设()F x y ,.由(21)A ,,(36)C ,,根据定比分点坐标公式得2238123x +⨯==+,12613123y +⨯==+ F ∴点坐标是81333⎛⎫⎪⎝⎭,. 例2.证明:()cos cos cos sin sin αβαβαβ-=+.证明:在单位圆O 上任取两点A ,B ,以Ox 为始边,以OA ,OB 为终边的角分别为β,α,见图7-24.β,sin β)B (cos α图724则A 点坐标为()cos sin ββ,,B 点坐标为()cos sin αα,;则向量()cos sin OA ββ=,,()cos sin OB αα=,,它们的夹角为αβ-,1OA OB ==,cos cos sin sin OA OB αβαβ⋅=+, 由向量夹角公式得:()cos cos cos sin sin OA OB OA OBαβαβαβ⋅-==+,从而得证.注意:用同样的方法可证明()cos cos cos sin sin αβαβαβ+=-.例3.证明柯西不等式()()()2222211221212x y x y x x y y +⋅++≥.证明:令()11a x y =,,()22b x y =,(1)当0a =或0b =时,12120a b x x y y ⋅=+=,结论显然成立; (2)当当0a ≠且0b ≠时,令θ为a ,b 的夹角,则[]0πθ∈,1212cos a b x x y y a b θ⋅=+=.又cos 1θ≤,a b a b ∴⋅≤(当且仅当ab ∥时等号成立). 1212x x y y ∴+()()()2222211221212x y x y x x y y ∴+⋅++≥(当且仅当1212x x y y =时等号成立). 例4.给定ABC △,求证:G 是ABC △重心的充要条件是0GA GB GC ++=.证明:必要性 设各边中点分别为D E ,,F ,延长AD 至P ,使DP GD =,则2AG GD =GP =. 又因为BC 与GP 互相平分,所以BPCG 为平行四边形,所以BG PC ∥,所以GB CP =. 所以0GA GB GC GC CP PG ++=++=.充分性 若0GA GB GC ++=,延长AG 交BC 于D ,使GP AG =,联结CP ,则GA PG =. 因为0GC PG PC ++=,则GB PC =,所以GB CP ∥,所以AG 平分BC .同理BG 平分CA .所以G 为重心. 例5 ABC △外心为O ,垂心为H ,重心为G .求证:O G H ,,为共线,且12OG GH =∶∶. 证明:首先()()2112333OG OA AG OA AM OA AB AC OA AO OB OC =+=+=++=+++= ()13OA OB OC ++. 其次设BO 交外接圆于另一点E ,则联结CE 后得CE BC ⊥. 又AH BC ⊥,所以AH CE ∥.又EA AB ⊥,CH AB ⊥,所以AHCE 为平行四边形.所以AH EC =. 所以OH OA AH OA EC OA EO OC OA OB OC =+=+=++=++, 即3OH OG =,所以OG 与OH 共线,所以O G H ,,共线. 即12OG GH =∶∶. 注意:O G H ,,所在的直线称为欧拉线.例6.已知ABC △,AD 为中线,求证()2222122BC AD AB AC ⎛⎫=+- ⎪⎝⎭(中线长公式). 证明:以B 为坐标原点,以BC 所在的直线为x 轴建立如图7-25所示的直角坐标系,图725设()A a b ,,()0C c ,,02c D ⎛⎫⎪⎝⎭,,则()22222024c c AD a b ac a b ⎛⎫=-+-=-++ ⎪⎝⎭,()()22222222221122244BC c c AB AC a b c a b a b ac ⎛⎫⎡⎤⎪+-=++-+-=+-+⎢⎥ ⎪⎣⎦⎝⎭, 从而()2222122BC AD AB AC ⎛⎫ ⎪=+- ⎪⎝⎭,()2222122BC AD AB AC ⎛⎫=+- ⎪⎝⎭. 例7.是否存在4个两两不共线的平面向量,其中任两个向量之和均与其余两个向量之和垂直?解:如图7-26所示,在正ABC △中,O 为其内心,P 为圆周上一点,满足PA ,PB ,PC ,PO 两两不共线,有POCBA图726()()PA PB PC PO +⋅+=()()PO OA PO OB PO OC PO +++⋅++()()22PO OA OB PO OC =++⋅+ ()()22PO OC PO OC =-⋅+ 2240PO OC =-=有()PA PB +与()PC PO +垂直. 同理可证其他情况.从而PA ,PB ,PC ,PO 满足题意、故存在这样四个平面向量.例8.已知向量1OP ,2OP ,3OP 满足条件1230OP OP OP ++=,1231OP OP OP ===,求证:123PP P △是正三角形.解:令O 为坐标原点,可设()111cos sin P θθ,,()222cos sin P θθ,,()333cos sin P θθ, 由123OP OP OP +=-,即()()()112233cos sin cos sin cos sin θθθθθθ+=--,,, 123123cos cos cos sin sin sin θθθθθθ+=-⎧⎪⎨+=-⎪⎩①② 两式平方和()1212cos 11θθ+-+=,()121cos 2θθ-=-,由此可知12θθ-的最小正角为120︒,即1OP 与2OP 的夹角为120︒, 同理可得1OP 与3OP 的夹角为120︒,2OP 与3OP 的夹角为120︒, 这说明123P P P ,,三点均匀分布在一个单位圆上, 所以123PP P △为等腰三角形. 基础练习1.在ABC △中,若321AB BC BC CA AB CA⋅⋅⋅==,则tan A =__________. 2.已知P 为ABC △内一点,且满足3450PA PB PC ++=,那么PAB PBC PCA S S S =△△△∶∶__________. 3.如图7-27,设P 为ABC △内一点,且2155AP AB AC =+,求ABP △的面积与ABC △的面积之比. PCA图7274.已知ABC △的三顶点坐标分别为()11A ,,()53B ,,()45C ,,直线l AB ∥,交AC 于D ,且直线l 平分ABC △的面积,求D 点坐标. 5.已知()23A ,,()15B -,,且13AC AB =,3AD AB =,求点C D 、的坐标. 6.点O 是平面上一定点,A B C ,,是此平面上不共线的三个点,动点P 满足AC AB OP OA AB AC λ⎛⎫ ⎪=++ ⎪⎝⎭,[)0λ∈+∞,.则点P 的轨迹一定通过ABC △的__________心.能力提高7.设x y ∈R ,,i j 、为直角坐标系内x y 、轴正方向上的单位向量,若()2a xi y j =++,()62b xi y j =+-且2216a b +=.(1)求点()M x y ,的轨迹C 的方程;(2)过定点()03,作直线l 与曲线C 交于A B 、两点,设OP OA OB =+,是否存在直线l 使四边形OAPB 为正方形?若存在,求出l 的方程,或不存在说明理由.8.(1)已知4a =,3b =,()()23261a b a b -⋅+=,求a 与b 的夹角θ;(2)设()25OA =,,()31OB =,,()63OC =,,在OC 上是否存在点M ,使MA MB ⊥,若存在,求出点M 的坐标,若不存在,请说明理由. 9.设a b 、是两个不共线的非零向量()t ∈R (1)记OA a =,OB tb =,()13OC a b =+,那么当实数t 为何值时,A B C 、、三点共线? (2)若1a b ==且a 与b 夹角为120︒,那么实数x 为何值时a xb -的值最小?10.设平面内的向量()17OA =,,()51OB =,,()21OM =,,点P 是直线OM 上的一个动点,求当PA PB ⋅取最小值时,OP 的坐标及APB ∠的余弦值.11.已知向量()11m =,,向量n 与向量m 夹角为3π4,且1m n ⋅=-. (1)求向量n ;(2)若向量n 与向量()10q =,的夹角为π2,向量22sin 4cos 2A p A ⎛⎫= ⎪⎝⎭,,求2n p +的值.12.已知定点()01A ,,()01B -,,()10C ,.动点P 满足:2AP BP k PC ⋅=. (1)求动点P 的轨迹方程;(2)当0k =时,求2AP BP +的最大值和最小值.13.在平行四边形ABCD 中,()11A ,,()60AB =,,点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若()35AD =,,求点C 的坐标; (2)当AB AD =时,求点P 的轨迹.14.已知向量()22a =,,向量b 与向量a 的夹角为3π4,且2a b ⋅=-, (1)求向量b ;(2)若()10t =,且b t ⊥,2cos 2cos 2C c A ⎛⎫= ⎪⎝⎭,,其中A C 、是ABC △的内角,若三角形的三内角A B C 、、依次成等差数列,试求b c +的取值范围.。

高中数学讲义(人教A版必修二):第07讲 平面向量基本定理(学生版)

高中数学讲义(人教A版必修二):第07讲  平面向量基本定理(学生版)

第07课平面向量基本定理课程标准课标解读1.理解平面向量基本定理及其意义,了解向量基底的含义.2..掌握平面向量基本定理,会用基底表示平面向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.1.在课本知识学习的基础上,加上初中阶段对数轴的理解,以及物理知识中里的分解的知识,进一步理解平面向量基本定理及其意义,了解向量基底的含义.2.掌握平面向量基本定理,不仅仅局限在直角坐标系,更应该学会用基底表示平面向量.3.在掌握基础知识的基础上,学会学习致用,会应用平面向量基本定理解决有关平面向量的综合问题.知识精讲知识点平面向量基本定理1.平面向量基本定理:如果e 1,e 2是同一平面内的两个向量,那么对于这一平面内的向量a ,实数λ1,λ2,使a =λ1e 1+λ2e 2.2.基底:若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内向量的一个基底.【即学即练】(多选)下列结论正确的是()A .已知向量(,2),(3,1)a b,且a 与b 的夹角为锐角,则23B .ABC 中,π3,3b c C,则ABC 有两解C .向量(1,2),(5,7)a b能作为所在平面内的一组基底D .已知平面内任意四点O ,A ,B ,P 满足1233OP OA OB,则A ,B ,P 三点共线反思感悟平面向量基本定理的作用以及注意点(1)根据平面向量基本定理可知,同一平面内的任何一个基底都可以表示该平面内的任意向量.用基底表示向量,实质上是利用三角形法则或平行四边形法则,进行向量的线性运算.(2)基底的选取要灵活,必要时可以建立方程或方程组,通过方程或方程组求出要表示的向量.能力拓展考法01平面向量基本定理的理解【典例1】已知G 是ABC 的重心,点D 满足BD DC,若GD xAB y AC ,则x y 为()A .13B .12C .23D .1【变式训练】我国东汉末数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,已知3,,AE EF AB a AD b ,则AE()A .1292525a bB .16122525a bC .4355a bD .3455a b考法02用基底表示向量【典例2】如图,在ABC 中,4BD DC ,则AD()A .1455AB ACB .4155AB ACC .1566AB ACD .5166AB AC 【变式训练】《易经》是阐述天地世间关于万象变化的古老经典,其中八卦深邃的哲理解释了自然、社会现象.如图1所示的是八卦模型图,其平面图形(图2)中的正八边形ABCDEFGH ,其中O 为正八边形的中心,则下列说法不正确的是()A .OA ED DO B .AB EF C .OB OD D .AH 和CE能构成一组基底考法03平面向量基本定理的应用【典例3】在平行四边形ABCD 中,3,4AB AD ,60BAD ,点E 是BC 的中点,2CF FD ,则AE BF()A .6B .2C .2D .6【变式训练】锐角三角形ABC 中,D 为边BC 上一动点(不含端点),点O 满足3AO OD,且满足AO AB AC ,则11的最小值为()A .43B .34C .3D .163分层提分题组A 基础过关练1.在ABC 中,点D 在边AB 上,3AD DB .记,CA a CD b ,则CB()A .4133a bB .1433a bC .4133a bD .1343a b2.在四边形ABCD 中,//AB CD ,若(,R)AC AB AD ,且3 ,则||||CD AB()A .13B .3C .12D .23.如图,已知,,,2OA a OB b OC c AB BC ,则c()A .3122b aB .2b aC .2a bD .3122a b4.若向量a 与b是平面上的两个不平行向量,下列向量不能作为一组基的是()A .a 与a bB .a b 与2a bC .25a b 与410a bD .2a b 与2a b5.如果21,e e表示平面内所有向量的一个基底,那么下列四组向量,不能作为一个基底的是()A .212,e e eB .12212,2e e e eC .21212,42e e e e D .1212,e e e e 6.(多选)已知12,e e是平面内的一组基底,则下列说法中正确的是()A .若实数m ,n 使120me ne,则0m n B .平面内任意一个向量a 都可以表示成12a me ne,其中m ,n 为实数C.对于m ,n R ,12me ne不一定在该平面内D .对平面内的某一个向量a ,存在两对以上实数m ,n ,使12a me ne7.(多选)在下列向量组中,可以把向量(3,2)a表示出来的是()A .1(0,0)e ,2(1,2)eB .1(1,2)e ,2(5,2)eC .1(3,5)e ,2(6,10)eD .1(2,3)e ,2(2,3)e8.(多选)已知向量a ,b 是两个不共线的向量,且向量3ma b 与 2a m b共线,则实数m 的可能取值为()A .1BC .4D .39.(多选)下列各组向量中,不能作为基底的是()A .12(1,0),(0,1)e eB .12(1,2),(2,1)e eC .1234(3,4),,55e eD .12(2,6),(1,3)e e10.在平行四边形ABCD 中,2AE AD ,AF AB,若E ,C ,F 三点共线,则实数 ________.11.如果12,e e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =________.我们把12,e e叫做表示这一平面内所有向量的一个基底.12.已知下列四个命题:①若//a b ,//b c,则// a c ;②设a 是已知的平面向量,则给定向量b 和c,总存在实数 和 ,使a b c ;③第一象限角小于第二象限角;④函数11()(sin cos )|cos sin |22f x x x x x 的最小正周期为2π.正确的有________.题组B 能力提升练1.已知1e ,2e是不共线向量,则下列各组向量中,是共线向量的有()①15a e ,17b e ;②121123a e e ,1232b e e;③12a e e ,1233b e e.A .①②B .①③C .②③D .①②③2.若12e e ,是平面内的一个基底,则下列四组向量能作为平面向量的基底的是()A .12e e ,21e eB .12e e ,12e eC .212e e ,212e e D .122e e ,124e 2e3.若1e ,2e是平面内的一组基底,则下面的四组向量中不能作为一组基底的是().A .12e e 和12e eB .1232e e 和2146e e C .123e e 和213e e D .2e 和12e e4.如果12 e e ,是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是()A .1e 与12 e eB .12 2e e 与12 2e eC .12 e e 与12e e D .12 2e e 与122e e 5.在给出的下列命题中,错误的是()A .设,,,O ABC 是同一平面上的四个点,若(1)()OA m OB m OC m R,则点,,A B C 必共线B .若向量,a b 是平面 上的两个向量,则平面 上的任一向量c 都可以表示为(,) c a b R,且表示方法是唯一的C .已知平面向量,,OA OB OC 满足,||||AB AC OA OB OA OC AO AB AC,则ABC 为等腰三角形D .已知平面向量,,OA OB OC 满足||||(0)OA OB OC r r |=|,且0OA OB OC,则ABC 是等边三角形6.(多选)设a是已知的平面向量,向量,,a b c 在同一平面内且两两不共线,下列说法正确的是()A .给定向量b ,总存在向量c ,使a b c ;B .给定向量b 和c,总存在实数 和 ,使a b c ;C .给定单位向量b 和正数 ,总存在单位向量c和实数 ,使a b c ;D .若2a ,存在单位向量,b c 和正实数, ,使a b c,则2 .7.(多选)下列说法中正确的为()A .已知 1,2a r , 1,1b r 且a 与b 的夹角为锐角,则实数 的取值范围是5,3B .向量 12,3e,213,24e不能作为平面内所有向量的一组基底C .非零向量a ,b ,满足a b 且a 与b 同向,则a bD .非零向量a ,b ,满足a b a b ,则a 与a b 的夹角为30°8.(多选)下列命题正确的是()A .AB MB BC OM CO ABB .已知向量(6,2)a 与(3,)b k的夹角是钝角,则k 的取值范围是0k C .若向量 12,3e,213,24e 能作为平面内所有向量的一组基底D .若//a b ,则a 在b 上的投影向量为a9.(多选)古代典籍《周易》中的“八卦”思想对我国建筑中有一定影响.下图是受“八卦”的启示,设计的正八边形的八角窗,若O 是正八边形ABCDEFGH 的中心,且1AB u u u r ,则()A .AH 与CF 能构成一组基底B .0OD OFC .OA OCD .AC CD 10.设12,e e 是两个不共线的非零向量,且12122,3a e e b e e .(1)证明:,a b 可以作为一个基底;(2)以,a b 为基底,求向量123c e e 的分解式.题组C 培优拔尖练1.在ABC 中,2360AB AC BAC ,,,N 为线段BC 的中点,M 为线段AC 上靠近点A 的三等分点,两条直线AN 与BM 相交于点P ,则AP BC =()A .54B .74C .94D .1142.如图,ABC 中,3BD DC ,AE mAB ,AF nAC ,0m ,0n ,则13m n ()A .3B .4C .43D .343.在平行四边形ABCD 中,E 、F 分别在边AD 、CD 上,3AE ED ,,DF FC AF 与BE 相交于点G ,记,AB a AD b ,则 AG ()A .341111a b B .631111a b C .451111a b D .361111a b 4.如图,在ABC 中,点D 是边AB 上一点且2BD AD ,E 是边BC 的中点,直线AE 和直线CD 交于点F ,若BF 是ABC 的平分线,则BC BA ()A .4B .3C .2D .125.在平行四边形ABCD 中,E 是边CD 的中点,AE 与BD 交于点F .若AB a =,AD b ,则AF ()A .1344a b B .2133a b +r r C .3144a b D .1233a b 6.在三角形ABC 中,已知D ,E 分别为CA ,CB 上的点,且15AD AC ,13BE BC ,AE 与BD 交于O 点,若CO mCA nCB ,则mn 的值为___________.7.如图,在ABC 中,已知182,,,,49AD DC BE BC AF AE AB a AC b .(1)用向量,a b 分别表示AF 与BD ;(2)证明:,,B F D 三点共线.8.如图,在梯形ABCD 中,AB CD ,且2AB CD ,设,AD a BC b .(1)试用a 和b 表示AC ;(2)若点P 满足34AP a b ,且,,B D P 三点共线,求实数 的值.。

(完整版)高中数学平面向量讲义

(完整版)高中数学平面向量讲义

平面向量 (学生专用 )专题六平面向量一. 基本知识【1】向量的基本看法与基本运算(1)向量的基本看法:①向量:既有大小又有方向的量向量不能够比较大小,但向量的模能够比较大小.②零向量:长度为0 的向量,记为0 ,其方向是任意的,0 与任意向量平行③单位向量:模为 1 个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量uuur r uuur r r uuur uuur uuur(2)向量的加法:设AB a, BC b ,则a+ b = AB BC = AC① 0 a a 0 a ;②向量加法满足交换律与结合律;uuur uuur uuur uuur uuur uuurAB BC CD L PQ QR AR ,但这时必定“首尾相连”.(3)向量的减法:①相反向量:与 a 长度相等、方向相反的向量,叫做 a 的相反向量②向量减法:向量 a 加上b的相反向量叫做 a 与b的差,③作图法: a b 能够表示为从 b 的终点指向a的终点的向量( a 、b有共同起点)(4)实数与向量的积:实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定以下:(Ⅰ)a a ;(Ⅱ)当0 时,λ a 的方向与 a 的方向相同;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是任意的(5)两个向量共线定理:向量b与非零向量 a 共线有且只有一个实数,使得b= a (6)平面向量的基本定理:若是e1, e2是一个平面内的两个不共线向量,那么对这一平面内的任向来量 a ,有且只有一对实数 1 ,2使:a1e12e2,其中不共线的向量e1 , e2叫做表示这一平面内所有向量的一组基底【2】平面向量的坐标表示第1页(1) 平面向量的坐标表示 :平面内的任向来量rr r rr 。

a 可表示成 axi yj ,记作 a =(x,y) (2)平面向量的坐标运算:rrr rx 1 x 2 , y 1 y 2①若 ax 1 , y 1 , bx 2 , y 2 ,则 a buuur②若 A x 1 , y 1 , B x 2 , y 2 ,则 AB x 2 x 1 , y 2 y 1r =(x,y) ,则 r x, y)③若 a a =(r r r r x 1 y 2 x 2 y 1 0④若 ax 1 , y 1 , b x 2 , y 2 ,则 a // b r r r r y 1 y 2⑤若 a x 1 , y 1 , b x 2 , y 2 ,则 a b x 1 x 2r r y 1 y 2⑥若 a b ,则 x 1 x 2【3】平面向量的数量积(1)两个向量的数量积:已知两个非零向量r rr r r rr ra 与b ,它们的夹角为 ,则 a · b =︱ a ︱·︱ b ︱ cos 叫做 a 与 b 的数量积(或内积)r r规定 0 arr rrr= a b(2)向量的投影: ︱ b ︱ cosr ∈ R ,称为向量 b 在 a 方向上的投影 投影的绝对值称| a |为射影(3)数量积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积(4)向量的模与平方的关系:r r r 2 r 2 a a a | a |(5)乘法公式成立:r r rrr 2 r 2 r 2 r 2 r r 2 r 2r r r 2r 2 r r r 2a b a ba b ab ; a ba 2ab ba2a b b(6)平面向量数量积的运算律:①交换律成立:rrr r a bb a②对实数的结合律成立: r r r r r r Ra ba b a b③分配律成立:r r r r r r r r r r a b c a cb c c a b第 2页特别注意:( 1)结合律不成立:r r r r r r ab c a b c ;r rrrr r ( 2)消去律不成立 a ba c 不能够获取b c(rr=0r r r r3) a b 不能够获取 a =0 或 b=0(7)两个向量的数量积的坐标运算:rrrry 1 y 2已知两个向量 a ( x 1, y 1), b ( x 2 , y 2 ) ,则 a · b= x 1 x 2r r uuur r uuur r ( 8 ) 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB= (0 0180 0 ) 叫做 向量r 与 r 的夹角abr r r rx 1 x 2 y 1 y 2a ? bcos= cosa ,br r = 2222a ? bx 1y 1x 2y 2当且仅当两个非零向量rrr rra 与b 同方向时, θ =0 ,当且仅当 a 与 b 反方向时θ=180 ,同时 0 与其他任何非零向量之间不谈夹角这一问题r r 0则称 r r r r (9)垂直 :若是 a 与 b 的夹角为 90 a 与 b 垂直,记作 a ⊥ b( 10)两个非零向量垂直的充要条件: a ⊥ ba ·b = Ox xy y20 平面向量1 21数量积的性质二. 例题解析【模块一】向量的基本运算【例 1】给出以下六个命题:①两个向量相等,则它们的起点相同,终点相同;rr r r ②若 a b ,则 ab ③在平行四边形 ABCD 中必然有uuur uuurAB DC ;ur r r ur ur ur r r r r r r④若 m n, n p ,则 m p ; ⑤若 a // b , b // c , 则 a // cr r r r r r r⑥任向来量与它的相反以下不相等. ⑦已知向量 a 0 ,且 a b 0 ,则 b 0r r r r r r r r r r r r⑧ a b 的充要条件是 a b 且 a // b ;⑨若 a 与 b 方向相同,且 a b ,则 ab ;⑩由于零向量的方向不确定,故零向量不与任意向量平行; 其中正确的命题的序号是第 3页r rr r ruur【例 2】已知向量 a, b 夹角为 45 ,且 a 1, 2a b10 ;求 b 的值 .uur uur r rr r【变式 1】若 a 2 , b 3 , a b3 求 a b 的值 .【变式 2】设向量 a , b 满足 | a|=|b |=1 及 | 3a-2 b|=3 ,求 | 3a+b| 的值r r r rrr r r【例 3】已知向量 a 、 b 的夹角为 60o , |a| 3, | b |2 ,若 (3a 5b) (ma b) ,求 m 的值.rrr r r r【例 4】若向量 a1,2 , b1, 1 求 2a b 与 a b 的夹角 .【 变 式】 设 x, y R, 向 量 a x,1 ,b 1, y , c2, 4 , 且 a c,b // c, 则 a b_______()A . 5B . 10C . 2 5D . 10【例 5】已知两个非零向量r rr r rra,b 满足 a ba b ,则以下结论必然正确的选项是( )r r r rr r DA a // bB a b Ca br r r r a b a b【变式 1】设 a , b 是两个非零向量 . ()A .若 | a +b |=| a |-| b |, 则 a ⊥ bB .若 a ⊥b , 则| a +b |=| a |-| b |C .若 | a +b |=| a |-| b |, 则存在实数 λ, 使得 a =λbD .若存在实数 λ, 使得 a =λb , 则| a +b |=| a |-| b |第 4页r r r r r r【变式 2】若平面向量a, b满足 : 2a b 3 ;则 agb 的最小值是_____【例 6】设0,rcosr13 2, a,sin ,b,22r r r r (1)证明 a b a b ;(2)r r r r的值 .当 2a b a2b时求角r rr ra b)【例 7】设a、b都是非零向量 , 以下四个条件中 , 使r r成立的充足条件是(| a ||b |r r r r r r r rr r A.a b B.a // b C.a 2b D.a // b且| a | | b |【模块二】向量与平面几何【例 1】在△ ABC中, A 90o AB 1, ACuuur uuur 2 ,设P、Q满足 AP AB ,uuur1uuurRuuur uuur2 ,则AQ AC ,BQ CP=()A 1B2C4D2 333第5页AB2uuur uuur uuur uuur 【变式 1】已知△ ABC为等边三角形,设 P、Q满足AP AB AQ 1AC,,uuur uuur 3,则R BQ CP=()2A 1B12C 1 10D 3 2 2222uuur uuur【例 2】在△ ABC中 ,AB=2,AC=3,ABgBC = 1则 BC ___ .()A.3B.7C.2 2D.23uuur uuur uuur【变式 1】若向量BA2,3 , CA4,7 ,则 BC()A.2, 4B.2,4C.6,10D.6, 10【例 3 】若等边ABC 的边长为2 3 ,平面内一点M 满足CM 1CB2CA ,则63MA? MB________.第6页平面向量 (学生专用 )uuur r uuur r r r r r2 ,则【例 4】ABC 中, AB 边上的高为 CD ,若CB a,CA b, a b0,| a |1,|b | uuurAD()A.1r1rB.2r2rC.3r3rD.4r4r a b a b a b5a b 3333555uuur3【例5】在平面直角坐标系中,O (0,0), P(6,8) ,将向量 OP按逆时针旋转后 , 得向量4 uuurOQ ,则点 Q 的坐标是()A.( 7 2,2) B. (72,2)C.( 4 6, 2)D.( 46, 2)uuur uuur【例 6】在ABC中, M是 BC的中点, AM=3, BC=10,则AB AC =______________.【例 7】在平行四边形中, ∠A= 3, 边、的长分别为2、1.若、分别是边、ABCD AB AD M N BC CD上的点,且满足| BM|| CN | ,则AM AN 的取值范围是_________ .| BC || CD |,【例 8】如图 ,在矩形 ABCD 中, AB 2 ,BC2,点E为 BC 的中点,点F在边 CD uuur uuur uuur uuur上, 若AB g AF 2 ,则 AE g BF 的值是____.第7页平面向量 (学生专用 )9 】已知正方形ABCD 的边长为1, 点 E 是 AB 边上的动点uuur uuur【例, 则DE CB的值为uuur uuur________; DE DC 的最大值为________.【例 10】已知直角梯形ABCD 中,AD// BC ,ADC 900, AD2, BC 1 , P 是腰uuur uuurDC 上的动点,则PA3PB 的最小值为___________uuur uuur uuur【例 11】如图,在VABC中,AD AB , BC 3 BD ,AD 1 ,uuur uuur3.则 AC gAD【例 12】 (15)uuur uuur1uuur1uuur3uuur 在四边形 ABCD中,AB = DC =( 1,1),uuur BA uuur BC uuur BD ,BA BC BD则四边形ABCD的面积是第8页平面向量 (学生专用 ) uuur uuur【例 13】在VABC中,若AB2,3 , AC 6, 4 ,则 VABC 面积为【例 14】( 2012 年河北二模)在VABC中,AB 边上的中线CD=6 ,点 P 为 CD 上(与 C,D )uuur uuur uuur不重合的一个动点,则PA PB .PC的最小值是A 2B 0C -9D -18第9页。

第1讲 平面向量-讲义版

第1讲 平面向量-讲义版

课程主题:平面向量【知识点】 一.基本概念概念 定 义表示方法向量(矢量) 既有大小又有方向的量叫做向量向量的大小叫做向量的长度(或模)AB 或a零向量长度为0的向量叫做零向量,其方向是任意的。

规定:零向量与任一向量平行(与任何向量是共线向量)、但与任意向量都不垂直零向量、单位向量的定义都只是限制了大小.单位向量 长度等于1个单位长度的向量,叫做单位向量e平行向量方向相同或相反的非零向量叫做平行向量,也叫做共线向量,任一组平行向量都可以平移到同一条直线上a 与b 共线记作b a //相等向量长度相等且方向相同的向量注:共线向量不一定是相等向量,而相等向量一定是共线向量a 与b 是相等向量记作b a =相反向量 长度相等且方向相反的向量a 的相反向量记作a -二.平面向量的线性运算 1、向量的加法:求两个向量的和⎩⎨⎧平行四边形法则三角形法则2、向量的减法:一个向量减去另一个向量,相当于加上这个向量的相反数,即)(→→→→-+=-b a b a .→→→=+AC BC AB →→→=+OC OB OA →→→-=OA OB AB→a→b→→+ba ABCA BBAOO→a→a→b→b→→+ba →→-ba 课程类型: 1对1课程 ☐ Mini 课程 ☐ MVP 课程注:向量加减法满足交换律和结合律律:交换律:→→→→+=+a b b a 结合律:)()(→→→→→→++=++c b a c b a . 3、平面向量的数乘(1)数乘的定义:实数λ与向量→a 的乘积,结果仍是一个向量→→=a b λ. ①大小:长度|λ→a |=|λ||→a |;②方向:λ→a 与→a 的方向关系:→→→→⇒⎪⎪⎩⎪⎪⎨⎧==<>a b b //0000,,方向相反,方向相同λλλ. (2)运算定律:→→=a u a u )()(λλ; →→→+=+a u a a u λλ)(; →→→→+=+b a b a λλλ)(. (3)数乘的应用:判断两个向量是否共线.向量共线的充要条件 :向量与非零向量→a 共线的充要条件是有且只有一个实数λ,使得→→=a b λ (4)三点共线:若→→=AC AB λ,则A 、B 、C 三点共线,(1)OP xOA yOB x y =++=u u u r u u u r u u u r,则B A P 、、三点共线三.平面向量基本定理与坐标表示1、平面向量基本定理:在平面内任取一点O ,作→→=1e OA ,→→=2e OB 为两个不共线的向量,则平面内任意 向量→a ,有且只有一对实数),(21λλ,使得→a →→+=2211e e λλ. (1)称不共线的向量→→21,e e 为表示这一平面内所有向量的一组基底. (2)基底不唯一,关键是不共线.(3)给定基底→→21,e e ,可将任一向量→a 在→→21,e e 的情况下分解. (4)基底给定时,分解形式唯一. 2、平面向量的坐标表示:(1)把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 取平行于x 正半轴的单位向量→i ,平行于y 正半轴的单位向量→j为一组基底,则对于平面内的任一个向量→a ,由平面向量基本定理可知,有且只有唯一实数对),(y x ,使→a →→+=j y i x ,把),(y x 称作向量→a 的(直角坐标),记为→a ),(y x =.(2)在平面直角坐标系内,一个平面向量与一对实数是一一对应的. (3)向量的坐标表示:①向量→a ),(y x =表示从点)0,0(指向点),(y x 的向量.②空间中两点坐标),(11b a A ),(,22b a B ),(,1212b b a a AB --=→则. (4)平面向量坐标的加减、数乘运算:),(11y x a =→,),(22y x b =→,①两个向量和与差的坐标分别等于这两个向量相应坐标的和与差,即),(2121y y x x b a ±±=±→→. ②实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标,即),(11y x a λλλ=→. (5)平面向量共线的坐标表示:设),(11y x a =→),(22y x b =→)()(λλλ===-⇔=∈∃⇔≠→←→→→→212112210,0//y y x x y x y x b a R b b a 使得【课堂演练】题型一 平面向量基本概念及线性运算 考点1 辨析平面向量的概念例1 下列有关平面向量的说法中,正确的个数是( ) (1)共线向量就是在同一条直线上的向量.(2)若两个向量不相等,则它们的终点不可能是同一点. (3)与已知向量共线的单位向量是唯一的.(4)若=,则A 、B 、C 、D 四点构成平行四边形. A .0 B .1 C .2 D .3练1 下列有关平面向量的说法中,正确的个数是( ) (1)若与共线, 与共线,则与共线. (2)若m m =,则=. (3)若a n a m =,则n m =.(4)若a 与b 不共线,则a 与b 都不是零向量. A .0 B .1 C .2 D .3考点2 平面向量的线性运算 1、加减法例2 =++++)()( .CBDAO练2 如图,正六边形ABCDEF 中,下列四个命题中正确的个数为( )(1)CB DC AD AB ++= (2)BA BF AF -= (3)2=+(4)22+= A .1 B .2C .3D .4例3 已知AD AB AC 与为的和向量,且==,,则=AB ,=AD .练3 如图所示,平行四边形ABCD 的对角线AC 与BD 相交于点O ,点M 是线段OD 的中点,设==,,则= .(结果用,表示) 2、数乘例4 =--+)32(3)(2 .练4 -++)34(2)2(3b .练5 =-+--+)3)(32()2)((n m n m .练6 如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,λ=+,则=λ .练7 已知223-=,则C B A ,,三点的关系为 .ABDECF考点3 向量共线定理及其应用例5 已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A 、C ),则=AP ( )A .),()(10,AD AB ∈+λλ B .),()(220,BC AB ∈+λλC .),()(10,AD -AB ∈λλD .),()(220,BC -AB ∈λλ练8 已知平面内有一点P 及一个ABC ∆,若,PB PA AB PC =++则( ) A .点P 在ABC △外部 B ..点P 在线段AB 上C .点P 在线段BC 上D .点P 在线段AC 上例6 设21,e e 是两个不共线的向量,2121212,3,2e e CD e e CB e k e AB -=+=+=,若A 、B 、D 三点共线,求k 的值..练9 如图,在平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且BD BN 31=,求证:C N M ,,三点共线.练10 已知两不共线的向量b a ,,若对非零实数n m ,有b n a m +与b a 2-共线,则=nm( ) A .2- B .2C .21-D .21题型二 平面向量基本定理及坐标表示 考点1 平面向量基本定理的应用 1、基底向量例7 已知21,e e 是平面内的一组基底,下列哪组向量不能构成一组基底( ) A .21e e +和21e e - B .2123e e -和1264e e - C .213e e +和123e e -D .2e 和12e e -练11 已知)4,3(=a ,能与a 构成基底的是( ) A .)54,53( B .)53,54(C .)54,53(--D .)34,1(--练12 在下列向量中,可以把向量)2,3(=a 表示出来的是( ) A .)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e C .)10,6(),5,3(21==e e D .)3,2(),3,2(21-=-=e e2、用已知向量表示未知向量例8 已知在ABC △中,D 是BC 的中点,请用向量AB ,AC 表示AD .例9 如图,向量OC OB OA ,,终点在同一条直线上,且CB -3=AC ,设r OC q OB p OA ===,,,则下列等式中成立的是( )A .q p r 2321+-= B .q p r 2+-= C .q p r 2123-=D .p q r 2+-=练13 在平行四边形ABCD 中,=,=,3=,M 为BC 中点,则= .考点2 坐标运算例10 已知向量),2,1(),1,3(-=-=则23--的坐标是( ) A .)1,7( B .)1,7(--C .)1,7(-D .)1,7(-例11 已知)5,4(=AB ,)3,2(A ,则点B 的坐标是 .练14 若物体受三个力)2,1(1=F ,)3,2(2-=F ,)4,1(3--=F ,则合力的坐标为 .练15 已知)2,1(A ,)2,3(B ,向量)23,2(--+=y x x a 与相等,求y x ,的值.考点3 平面向量共线的坐标表示例12 已知2(2,1),(3,2),3A B AM AB --=u u u u r u u u r,则点M 的坐标是( )A .)21,21(-- B .)1,34(-- C .)0,31(D .)51,0(-例13 已知),1,(),3,1(-=-=x b a 且∥,则x 等于( ) A .3 B .3-C .31 D .31-练16 已知向量),1(),6,2(λ-==,若∥,则=λ .【课后巩固1】1.设与是两个不共线向量,且向量λ+与)2(a b --共线,则λ=( ) A .0 B .1-C .2-D .12-2.已知下列命题中真命题的个数是( ) (1)若R k ∈,且=k ,则0=k 或=, (2)若0=⋅,=则或=,(3)若不平行的两个非零向量b a ,b a =,则0)((=-⋅+b , (4)若与平行,则b a =⋅. A .0B .1C .2D .33.=--+)3(4)(2b a b a .4.设D 为ABC ∆所在平面内一点3BC CD =u u u r u u u r,则( )A .3431+-= B .3431-= C .AC AB AD 3134+= D .AC AB AD 3134-=5.设E D ,分别是ABC △的边BC AB ,上的点,21=,32=, 若12DE AB AC λλ=+u u u r u u u r u u u r(21λλ,为实数),则21λλ+的值为 .6.设向量,不平行,向量+λ与2+平行,则实数=λ .7.已知向量),2,1(),1,3(-=-=则23+-的坐标是( ) A .)7,11(- B .)11,7(-C .)7,11(D .)7,11(-8.已知向量)1,1(),4,2(-==,则=-b a 2( ) A .)7,5( B .)9,5(C .)7,3(D .)9,3(【课后巩固2】1.化简-+-= .2.-++)32(4)2(2b .3.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线交CD 于点F ,若===,,则( )A .2141+ B .3132+ C .4121+ D .3231+4.设,是向量,则b a =”是b a b a -=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5.已知点)2,3(),1,0(B A ,向量)3,4(--=,则向量=( ) A .)4,7(--B .)4,7(C .)4,1(-D .)4,1(6.已知平面向量,),,2(),2,1(m -==且b a ∥,则32+=( ) A .)10,5(-- B .)8,4(-- C .)6,3(-- D .)4,2(--7.若物体受三个力)3,1(1=F ,)3,1(),3,2(32--==F F ,则合力的坐标为 .8.已知)4,1(),3,2(-B A ,向量)1,3(-+-=y x x 与AB 相等,求y x ,的值.【课后巩固3】1.=++--+)2)(3())(2(b a n m b a n m .2.已知)1,3(=,)3,2(A ,则点B 的坐标是 .3.已知向量)2,3(),4,(-==m ,且∥,则=m .4.对任意向量b a ,,下列关系式中不恒成立的是( ) A b a b a ≤ B b a b a ≤-C .2)(b a =+D .22))((b -=-+5.如图ABC ∆中,2=,EC AE =2,BE CD P =I ,若(,)AP xAB y AC x y R =+∈u u u r u u u r u u u r,则x y += .6.已知B A 52),2,3(),3,2(=--,则点M 的坐标是( )A .)0,1(-B .)1,0(C .)0,1(D .)0,0(PDE-11- 学生姓名: 科目: 数学任课教师: 年级: 高三上课时间: 2017.11.11 16:00—18:00 7.已知),1,(),2,3(-=-=x 且∥,则x 等于( )A .3B .3-C .23D .23-8.已知向量)3,(3m =,)3,1(=,则“1=m ”是“b a ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件、。

高中数学 向量 板块四 平面向量的应用完整讲义(学生版)

高中数学 向量 板块四 平面向量的应用完整讲义(学生版)

学而思高中完整讲义:向量.板块四.平面向量的应用.学生版题型一:向量综合【例1】 设a ,b ,c 是任意的非零平面向量,且相互不共线,则:①()()0a b c c a b ⋅-⋅=②a b a b -<-③()()b c a c a b ⋅-⋅不与c 垂直 ④22(32)(32)94a b a b a b +⋅-=-中, 真命题是( )A .①② B.②③ C.③④ D.②④【例2】 设向量a b ,满足:||3a =,||4b =,0a b ⋅=.以a b a b -,,的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .6【例3】 ⑴ 已知(13)A ,,()37B ,,(60)C ,,(81)D ,-,求证:AB ⊥CD .⑵ 已知(32)a ,=--,(44)b ,=.求23a b +,cos a ,b <>.⑶ 已知(12)a x y ,x y =++-,(22)b x y ,x y =-+-,若23a b =,求x 、y 的值.【例4】 关于平面向量a b c ,,.有下列三个命题:①若a b a c ⋅⋅=,则b c =.②若(1)a k =,,(26)b =-,,a b ∥,则3k =-. ③非零向量a 和b 满足a b a b ==-,则a 与a b +的夹角为60︒. 其中假命题的序号为 .(写出所有真命题的序号)【例5】 如图,以原点和(52)A ,为顶点作等腰直角OAB ∆,使90B ∠=︒,求点B 和向量AB 的坐标.【例6】 设(1)A a ,,(2)B b ,,(45)C ,为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为( )A .453a b -=B .543a b -=C .4514a b +=D .5414a b +=典例分析【例7】 已知(,)P x y ,(1,0)A -,向量PA 与(1,1)m =共线.(1)求y 关于x 的函数;(2)是否在直线2y x =和直线3y x =上分别存在一点,B C ,使得满足BPC ∠为锐角时x 取值集合为{|x x <x >?若存在,求出这样的,B C 的坐标;若不存在,说明理由.【例8】 已知向量,a b 满足||||1a b ==,且||3||a kb ka b -=+,其中0k >.(1)试用k 表示a b ⋅,并求出a b ⋅的最大值及此时a 与b 的夹角θ的值; (2)当a b ⋅取得最大值时,求实数λ,使||a b λ+的值最小,并对这一结果作出几何解释.【例9】 已知点O (0,0),A (1,2),B (4,5)及OP =OA +t AB OP OA AB求:(1) t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限?(2) 四边形OABP 能否成为平行四边形?若能,求出相应的t 值;若不能,请说明理由.【例10】 已知A 、B 、C 是直线l 上的不同的三点,O 是外一点,向量,,OA OB OC 满足23(1)[ln(23)]02OA x OB x y OC -+•-+-•=,记()y f x =.求函数()y f x =的解析式;【例11】 已知{}|(10)(01)R P a a m m ==+∈,,,,{}|(11)(11)R Q b b n n ==+-∈,,,是两个向量集合,则P Q =( )A .{}(11),B .{}(11)-,C .{}(10),D .{}(01),题型二:与三角函数综合【例12】 已知向量(2cos ,2sin )a θθ=,(,),(0,1)2b πθπ∈=-,则向量a 与b 的夹角为( ) A .32πθ- B .2πθ+ C .2πθ-D .θ【例13】 已知a b c ,,为ABC ∆的三个内角A B C ,,的对边,向量(31)m =-,,(cos sin )n A A =,.若m n ⊥,且cos cos sin a B b A c C+=,则角B = .【例14】 已知向量(cos sin )a αα=,,(cos sin )b ββ=,,且a b ≠±,那么a b +与a b -的夹角的大小是_______.【例15】 已知向量33cos ,sin 22x x a ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,且,2πx π⎡⎤∈⎢⎥⎣⎦.⑴求a b ⋅及a b +;⑵求函数()f x a b a b =⋅++的最大值,并求使函数取得最大值时x 的值.【例16】 若cos sin αα(),a =,cos sin ββ(),b =,且k k =-a +b b ,其中0k >. (1)用k 表示a b ;(2)求当1k =时,a 与b 所成角(0)πθθ≤≤的大小.【例17】 已知向量cos sin θθ(),m=和2sin cos θθ(-),n =,()π2πθ∈,,且825=m +n ,求cos 2π8θ⎛⎫+ ⎪⎝⎭的值.【例18】 设(1cos sin )αα+,a =,1cos sin ββ(-),b =,0(1),c =,(0)πα∈,,(0)πβ∈,,a 与c 的夹角为1θ,b 与c 的夹角为2θ(1)用α表示1θ;(2)若12π6θθ-=,求sin 4αβ+的值.【例19】 已知O 为坐标原点,2(2cos 1)OA x =,,(13sin 2)OB x a =+,(R x ∈,R a ∈,a 为常数),若y OA OB =,(1)求y 关于x 的函数解析式()f x ;(2)若0πx 2⎡⎤∈⎢⎥⎣⎦,时,()f x 的最大值为2,求a 的值,并指出函数()(R)f x x ∈的单调区间.【例20】 在锐角ABC △中,已知2cos 2cos 32cos()A B A B +=++,求角C 的度数.【例21】 设02πα⎛⎫∈ ⎪⎝⎭,,向量()13cos sin 22a b αα⎛⎫==- ⎪ ⎪⎝⎭,,,. ⑴证明:向量a b +与a b -垂直;⑵当22a b a b +=-时,求角α.【例22】 已知点()2,0A ,()0,2B ,()cos ,sin C αα,且0πα<<.⑴若7OA OC +=OB 与OC 的夹角;⑵若AC BC ⊥,求tan α的值.【例23】 已知A 、B 、C 的坐标分别为(4,0)A ,(0,4)B ,(3cos ,3sin )C αα.⑴若(),0πα∈-且AC BC =,求角α的值;⑵若0AC BC ⋅=,求22sin sin 21tan ααα++的值.【例24】 已知向量(cos sin )(22)a x ,x ,b ,==,若85a b ⋅=,且42ππx <<.⑴试求出cos 4πx ⎛⎫- ⎪⎝⎭和tan 4πx ⎛⎫- ⎪⎝⎭的值;⑵求sin 2(1tan )1tan x x x +-的值.【例25】 设向量()()3sin cos cos cos a x x b x x ==,,,,记()f x a b =⋅.⑴求函数()f x 的最小正周期;⑵画出函数()f x 在区间111212ππ⎡⎤-⎢⎥⎣⎦,的简图,并指出该函数的图象可由()sin R y x x =∈的图象经过怎样的平移和伸缩变换得到?⑶若63ππx ⎡⎤∈-⎢⎥⎣⎦,,函数()()g x f x m =+的最小值为2,试求出函数()g x 的最大值并指出x 取何值时,函数()g x 取得最大值.【例26】 已知向量33cos sin 22x x a ,⎛⎫= ⎪⎝⎭,cos sin 22x x b ,⎛⎫=- ⎪⎝⎭,且02πx ,⎡⎤∈⎢⎥⎣⎦,⑴求a b ⋅及a b +;⑵若()2f x a b a b λ=⋅-+的最小值是32-,求λ的值.【例27】 设平面上P 、Q 两点的坐标分别是cos ,sin 22x x ⎛⎫ ⎪⎝⎭,33cos ,sin 22x x ⎛⎫- ⎪⎝⎭,其中0,2πx ⎡⎤∈⎢⎥⎣⎦.⑴求PQ 的表达式;⑵记()2()4R f x PQ PQ λλ=-∈,求函数()f x 的最小值.【例28】,,a b c 为△ABC 的内角A 、B 、C 的对边,(cos ,sin )22C C m =,(cos ,sin )22C Cn =-,且m 与n 的夹角为3π,求C ;【例29】 在∆ABC 中,a ,b ,c 分别为角A 、B 、C 的对边;若向量(2,0)m = 与(sin ,1cos )n B B =-的夹角为3π,求角B 的大小【例30】 已知A 、B 、C 三点的坐标分别为(3,0)A 、(0,3)B 、3(cos ,sin ),(,).22C ππααα∈(1)若||||AC BC =,求角α的值;(2)若1AC BC ⋅=-,求22sin sin 21tan ααα++的值。

(完整版)平面向量全部讲义

(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念. 知识点一 向量的概念思考1 在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别? 思考2 两个数量可以比较大小,那么两个向量能比较大小吗? 梳理 向量与数量(1)向量:既有________,又有________的量统称为向量. (2)数量:只有________,没有________的量称为数量. 知识点二 向量的表示方法思考1 向量既有大小又有方向,那么如何形象、直观地表示出来? 思考2 0的模长是多少?0有方向吗? 思考3 单位向量的模长是多少? 梳理 (1)向量的表示①具有________和长度的线段叫作有向线段,以A 为起点,以B 为终点的有向线段记作________,线段AB 的长度也叫作有向线段AB →的长度,记作________.②向量可以用____________来表示.有向线段的长度表示____________,即长度(也称模).箭头所指的方向表示____________.③向量也可以用黑体小写字母如a ,b ,c ,…来表示,书写用a →, b →, c →,…来表示.(2)________的向量叫作零向量,记作______________;______________________________的向量,叫作a 方向上的单位向量,记作a 0.知识点三 相等向量与共线向量思考1 已知A ,B 为平面上不同两点,那么向量AB →和向量BA →相等吗?它们共线吗? 思考2 向量平行、共线与平面几何中的直线、线段平行、共线相同吗? 思考3 若a ∥b ,b ∥c ,那么一定有a ∥c 吗?梳理 (1)相等向量:____________且____________的向量叫作相等向量.(2)平行向量:如果表示两个向量的有向线段所在的直线______________,则称这两个向量平行或共线. ①记法:a 与b 平行或共线,记作________. ②规定:零向量与____________平行. 类型一 向量的概念例1 下列说法正确的是( )A .向量AB →与向量BA →的长度相等 B .两个有共同起点,且长度相等的向量,它们的终点相同C .零向量没有方向D .任意两个单位向量都相等反思与感悟 解决向量概念问题一定要紧扣定义,对单位向量与零向量要特别注意方向问题. 跟踪训练1 下列说法正确的有________. ①若|a |=|b |,则a =b 或a =-b ;②向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在同一条直线上; ③向量AB →与BA →是平行向量. 类型二 共线向量与相等向量例2 如图所示,△ABC 的三边均不相等,E 、F 、D分别是AC 、AB 、BC 的中点. (1)写出与EF →共线的向量; (2)写出与EF →的模大小相等的向量; (3)写出与EF →相等的向量.反思与感悟 (1)非零向量共线是指向量的方向相同或相反. (2)共线的向量不一定相等,但相等的向量一定共线. 跟踪训练2如图所示,O 是正六边形ABCDEF 的中心.(1)与OA →的模相等的向量有多少个?(2)是否存在与OA →长度相等、方向相反的向量?若存在,有几个? (3)与OA →共线的向量有哪些? 类型三 向量的表示及应用例3 一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向,向西偏北50°的方向走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD →|.反思与感悟 准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点. 跟踪训练3 在如图的方格纸上,已知向量a ,每个小正方形的边长为1. (1)试以B 为终点画一个向量b ,使b =a ;(2)在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么? 1.下列结论正确的个数是( )①温度含零上和零下温度,所以温度是向量; ②向量的模是一个正实数; ③向量a 与b 不共线,则a 与b 都是非零向量; ④若|a |>|b |,则a >b . A .0 B .1 C .2D .32.下列说法错误的是( )A .若a =0,则|a |=0B .零向量是没有方向的C .零向量与任一向量平行D .零向量的方向是任意的 3.如图所示,梯形ABCD 为等腰梯形,则两腰上的向量AB →与DC →的关系是( ) A.AB →=DC → B .|AB →|=|DC →| C.AB →>DC → D.AB →<DC →4.如图所示,在以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中. (1)写出与AF →、AE →相等的向量; (2)写出与AD →的模相等的向量.1.向量是既有大小又有方向的量,从其定义可以看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又将几何问题转化为代数问题,故向量能起到数形结合的桥梁作用. 2.共线向量与平行向量是一组等价的概念.两个共线向量不一定要在一条直线上.当然,同一直线上的向量也是平行向量.3.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆. 2.1 向量的加法学习目标 1.理解并掌握向量加法的概念,了解向量加法的物理意义及其几何意义.2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运算.3.了解向量加法的交换律和结合律,并能依据几何意义作图解释向量加法运算律的合理性. 知识点一 向量加法的定义及其运算法则 分析下列实例:(1)飞机从广州飞往上海,再从上海飞往北京(如图),这两次位移的结果与飞机从广州直接飞往北京的位移是相同的. (2)有两条拖轮牵引一艘轮船,它们的牵引力分别是F 1=3 000 N , F 2=2 000 N ,牵引绳之间的夹角为θ=60°(如图),如果只用一条 拖轮来牵引,也能产生跟原来相同的效果.思考1 从物理学的角度来讲,上面实例中位移、牵引力说明了什么?体现了向量的什么运算? 思考2 上述实例中位移的和运算、力的和运算分别用了什么法则? 梳理 (1)向量加法的定义求________________的运算,叫作向量的加法. (2)向量加法的法则向量加法的三角形法则和平行四边形法则实际上就是向量加法的几何意义. 知识点二向量加法的运算律 思考1 实数加法有哪些运算律?思考2 根据图中的平行四边形ABCD ,验证向量加法是否满足交换律.(注:AB →=a ,AD →=b ) 思考3 根据图中的四边形ABCD ,验证向量加法是否满足结合律.(注:AB →=a ,BC →=b ,CD →=c ) 梳理 向量加法的运算律类型一 例1 如图(1)(2),已知向量a ,b ,c ,求作向量a +b 和a +b +c . (1) (2)反思与感悟 向量加法的平行四边形法则和三角形法则的区别和联系区别:(1)三角形法则中强调“首尾相接”,平行四边形法则中强调的是“共起点”.(2)三角形法则适用于任意两个非零向量求和,而平行四边形法则仅适用于不共线的两个向量求和. 联系:(1)当两个向量不共线时,向量加法的三角形法则和平行四边形法则是统一的. (2)三角形法则作出的图形是平行四边形法则作出的图形的一半. 跟踪训练1 如图所示,O 为正六边形ABCDEF 的中心,化简下列向量. (1)OA →+OC →=________;(2)BC →+FE →=________; (3)OA →+FE →=________.类型二 向量加法运算律的应用 例2 化简:(1)BC →+AB →;(2)DB →+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.反思与感悟 (1)根据向量加法的交换律使各向量首尾连接,再运用向量的结合律调整向量顺序后相加.(2)向量求和的多边形法则:A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →.特别地,当A n 和A 1重合时,A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A 1=0.跟踪训练2 已知正方形ABCD 的边长等于1,则|AB →+AD →+BC →+DC →|=________. 类型三 向量加法的实际应用例3 在静水中船的速度为20 m /min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向. 引申探究1.若本例中条件不变,则经过1 h ,该船的实际航程是多少?2.若本例中其他条件不变,改为若船沿垂直水流的方向航行,求船实际行进的方向与岸方向的夹角的正切值. 反思与感悟 向量既有大小又有方向的特性在实际生活中有很多应用,准确作出图像是解题关键.跟踪训练3 如图,用两根绳子把重10 N 的物体W 吊在水平杆子AB 上,∠ACW =150°,∠BCW =120°,求A 和B 处所受力的大小.(绳子的重量忽略不计)1.如图,在正六边形ABCDEF 中,BA →+CD →+EF →等于( ) A .0 B.BE → C.AD → D.CF →2.如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则下列等式中错误的是( )A.FD →+DA →+DE →=0B.AD →+BE →+CF →=0C.FD →+DE →+AD →=AB →D.AD →+EC →+FD →=BD → 3.(AB →+MB →)+(BO →+BC →)+OM →等于( ) A.BC → B.AB → C.AC → D.AM →4.如图所示,在四边形ABCD 中,AC →=AB →+AD →,则四边形为( ) A .矩形 B .正方形 C .平行四边形 D .菱形5.小船以10 3 km /h 的静水速度沿垂直于对岸的方向行驶,同时河水的流速为10 km/h ,则小船的实际航行速度的大小为________km/h.1.三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的,当两个向量首尾相连时常选用三角形法则,当两个向量共起点时,常选用平行四边形法则.2.向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行. 3.在使用向量加法的三角形法则时要特别注意“首尾相接”.和向量的特征是从第一个向量的起点指向第二个向量的终点.向量相加的结果是向量,如果结果是零向量,一定要写成0,而不应写成0.2.2 向量的减法学习目标 1.理解相反向量的含义,向量减法的意义及减法法则.2.掌握向量减法的几何意义.3.能熟练地进行向量的加、减运算.知识点一 相反向量思考 实数a 的相反数为-a ,向量a 与-a 的关系应叫作什么?梳理 与a ________________的向量,叫作a 的相反向量,记作________. (1)规定:零向量的相反向量仍是________. (2)-(-a )=a .(3)a +(-a )=________=________.(4)若a 与b 互为相反向量,则a =________,b =________,a +b =____. 知识点二 向量的减法思考1 根据向量的加法,如何求作a -b? 思考2 向量减法的三角形法则是什么?梳理 (1)定义:向量a 加上____________,叫作a 与b 的差,即a -b =__________.求两个向量____的运算,叫作向量的减法.(2)几何意义:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量a -b =________,如图所示.(3)文字叙述:如果把向量a 与b 的起点放在O 点,那么由向量b 的终点B 指向被减向量a 的终点A ,得到的向量BA →就是a —b .知识点三 |a |-|b |,|a ±b |,|a |+|b |三者的关系思考 在三角形中有两边之和大于第三边,两边之差小于第三边,结合这一性质及向量加、减法的几何意义,|a |-|b |,|a ±b |,|a |+|b |三者关系是怎样的?梳理 当向量a ,b 不共线时,作OA →=a ,AB →=b ,则a +b =OB →,如图(1),根据三角形的三边关系,则有||a |-|b ||<|a +b |<|a |+|b |.当a 与b 共线且同向或a ,b 中至少有一个为零向量时,作法同上,如图(2),此时|a +b |=|a |+|b |.当a 与b 共线且反向或a ,b 中至少有一个为零向量时,不妨设|a |>|b |,作法同上,如图(3),此时|a +b |=||a |-|b ||. 故对于任意向量a ,b ,总有||a |-|b ||≤|a +b |≤|a |+|b |.① 因为|a -b |=|a +(-b )|,所以||a |-|-b ||≤|a -b |≤|a |+|-b |, 即||a |-|b ||≤|a -b |≤|a |+|b |.②将①②两式结合起来即为||a |-|b ||≤|a ±b |≤|a |+|b |. 类型一 向量减法的几何作图例1 如图,已知向量a ,b ,c 不共线,求作向量a +b -c . 引申探究若本例条件不变,则a -b -c 如何作?反思与感悟 在求作两个向量的差向量时,当两个向量有共同始点,直接连接两个向量的终点,并指向被减向量,就得到两个向量的差向量;若两个向量的始点不重合,先通过平移使它们的始点重合,再作出差向量. 跟踪训练1 如图所示,已知向量a ,b ,c ,d ,求作向量a -b ,c -d . 类型二 向量减法法则的应用 例2 化简下列式子:(1)NQ →-PQ →-NM →-MP →; (2)(AB →-CD →)-(AC →-BD →).反思与感悟 向量减法的三角形法则的内容:两向量相减,表示两向量起点的字母必须相同,这样两向量的差向量以减向量的终点字母为起点,以被减向量的终点字母为终点. 跟踪训练2 化简:(1)(BA →-BC →)-(ED →-EC →); (2)(AC →+BO →+OA →)-(DC →-DO →-OB →). 类型三 向量减法几何意义的应用例3 已知|AB →|=6,|AD →|=9,求|AB →-AD →|的取值范围.反思与感悟 (1)如图所示,在平行四边形ABCD 中,若AB →=a ,AD →=b ,则AC →=a +b ,DB →=a -b .(2)在公式||a |-|b ||≤|a +b |≤|a |+|b |中,当a 与b 方向相反且|a |≥|b |时,|a |-|b |=|a +b |;当a 与b 方向相同时,|a +b |=|a |+|b |.(3)在公式||a |-|b ||≤|a -b |≤|a |+|b |中,当a 与b 方向相同且|a |≥|b |时,|a |-|b |=|a -b |;当a 与b 方向相反时,|a -b |=|a |+|b |.跟踪训练3 在四边形ABCD 中,设AB →=a ,AD →=b ,且AC →=a +b ,若|a +b |=|a -b |,则四边形ABCD 的形状是( ) A .梯形 B .矩形 C .菱形 D .正方形1.如图所示,在?ABCD 中,AB →=a ,AD →=b ,则用a ,b 表示向量AC →和BD →分别是( ) A .a +b 和a -b B .a +b 和b -a C .a -b 和b -a D .b -a 和b +a2.化简OP →-QP →+PS →+SP →的结果等于( ) A.QP →B.OQ →C.SP →D.SQ →3.若菱形ABCD 的边长为2,则|AB →-CB →+CD →|=________. 4.若向量a 与b 满足|a |=5,|b |=12,则|a +b |的最小值为________,|a -b |的最大值为________.5.如图,在五边形ABCDE 中,若四边形ACDE 是平行四边形,且AB →=a ,AC →=b ,AE →=c ,试用a ,b ,c 表示向量BD →,BC →,BE →,CD →及CE →.1.向量减法的实质是向量加法的逆运算.利用相反向量的定义,-AB →=BA →就可以把减法转化为加法.即减去一个向量等于加上这个向量的相反向量.如a -b =a +(-b ).2.在用三角形法则作向量减法时,要注意“差向量连接两向量的终点,箭头指向被减向量”.解题时要结合图形,准确判断,防止混淆.3.平行四边形ABCD 的两邻边AB 、AD 分别为AB →=a ,AD →=b ,则两条对角线表示的向量为AC →=a +b ,BD →=b -a ,DB →=a -b ,这一结论在以后应用非常广泛,应该加强理解并掌握.3.1 数乘向量学习目标 1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题.知识点一 向量数乘的定义思考1 实数与向量相乘的结果是实数还是向量?思考2 向量3a ,-3a 与a 从长度和方向上分析具有怎样的关系? 思考3 λa 的几何意义是什么? 梳理 数乘向量一般地,实数λ与向量a 的积是一个向量,记作________.它的长度为|λa |=|λ||a |.它的方向:当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0,方向任意. 知识点二 向量数乘的运算律思考 类比实数的运算律,向量数乘有怎样的运算律? 梳理 向量数乘运算律 (1)λ(μa )=(λμ)a . (2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb . 知识点三 向量共线定理 思考 若b =2a ,b 与a 共线吗? 梳理 (1)向量共线的判定定理a 是一个________向量,若存在一个实数λ,使得____________,则向量b 与非零向量a 共线.(2)向量共线的性质定理若向量b 与非零向量a 共线,则存在一个实数λ,使得b =________. 知识点四 向量的线性运算向量的加法、减法和实数与向量积的综合运算,通常称为向量的线性运算(或线性组合). 类型一 向量数乘的基本运算例1 (1)化简:14[2(2a +4b )-4(5a -2b )].(2)已知向量为a ,b ,未知向量为x ,y ,向量a ,b ,x ,y 满足关系式3x -2y =a ,-4x +3y =b ,求向量x ,y . 反思与感悟 (1)向量的数乘运算类似于代数多项式的运算,例如实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在实数与向量的乘积中同样适用,但是这里的“同类项”、“公因式”是指向量,实数看作是向量的系数.(2)向量也可以通过列方程和方程组求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算. 跟踪训练1 (1)(a +b )-3(a -b )-8a =________.(2)若2⎝⎛⎭⎫y -13a -13(c +b -3y )+b =0,其中a ,b ,c 为已知向量,则未知向量y =________. 类型二 向量共线的判定及应用 命题角度1 判定向量共线或三点共线 例2 已知非零向量e 1,e 2不共线.(1)若a =12e 1-13e 2,b =3e 1-2e 2,判断向量a ,b 是否共线.(2)若AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线.反思与感悟 (1)向量共线的判断(证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线. (2)利用向量共线定理证明三点共线,一般先任取两点构造向量,从而将问题转化为证明两向量共线,需注意的是,在证明三点共线时,不但要利用b =λa (a ≠0),还要说明向量a ,b 有公共点.跟踪训练2 已知非零向量e 1,e 2不共线,如果AB →=e 1+2e 2,BC →=-5e 1+6e 2,CD →=7e 1-2e 2,则共线的三个点是________.命题角度2 利用向量共线求参数值例3 已知非零向量e 1,e 2不共线,欲使k e 1+e 2和e 1+k e 2共线,试确定k 的值.反思与感悟 利用向量共线定理,即b 与a (a ≠0)共线?b =λa ,既可以证明点共线或线共线问题,也可以根据共线求参数的值.跟踪训练3 已知A ,B ,P 三点共线,O 为直线外任意一点,若OP →=xOA →+yOB →,则x +y =________. 类型三 用已知向量表示其他向量例4 在△ABC 中,若点D 满足BD →=2DC →,则AD →等于( )A.13AC →+23AB →B.53AB →-23AC →C.23AC →-13AB → D.23AC →+13AB → 反思与感悟 用已知向量表示未知向量的求解思路(1)先结合图形的特征,把待求向量放在三角形或平行四边形中.(2)然后结合向量的三角形法则或平行四边形法则及向量共线定理用已知向量表示未知向量.(3)当直接表示比较困难时,可以利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.跟踪训练4 如图,在△ABC 中,D ,E 为边AB 的两个三等分点,CA →=3a ,CB →=2b ,求CD →,CE →. 1.已知a =5e ,b =-3e ,c =4e ,则2a -3b +c 等于( ) A .5e B .-5e C .23e D .-23e 2.在△ABC 中,M 是BC 的中点,则AB →+AC →等于( ) A.12AM → B.AM → C .2AM →D.MA →3.设e 1,e 2是两个不共线的向量,若向量m =-e 1+k e 2 (k ∈R )与向量n =e 2-2e 1共线,则( ) A .k =0 B .k =1 C .k =2D .k =124.已知△ABC 的三个顶点A ,B ,C 及平面内一点P ,且P A →+PB →+PC →=AB →,则( ) A .P 在△ABC 内部 B .P 在△ABC 外部C .P 在AB 边上或其延长线上D .P 在AC 边上5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.1.实数与向量可以进行数乘运算,但不能进行加减运算,例如λ+a ,λ-a 是没有意义的.2.λa 的几何意义就是把向量a 沿着a 的方向或反方向扩大或缩小为原来的|λ|倍.向量a|a |表示与向量a 同向的单位向量.3.向量共线定理是证明三点共线的重要工具.即三点共线问题通常转化为向量共线问题. 4.已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ),A ,P ,B 三点共线?m +n =1.3.2 平面向量基本定理学习目标 1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题. 知识点 平面向量基本定理思考1 如果e 1,e 2是两个不共线的确定向量,那么与e 1,e 2在同一平面内的任一向量a 能否用e 1,e 2表示?依据是什么?思考2 如果e 1,e 2是共线向量,那么向量a 能否用e 1,e 2表示?为什么?思考3 若存在λ1,λ2∈R ,μ1,μ2∈R ,且a =λ1e 1+λ2e 2,a =μ1e 1+μ2e 2,那么λ1,μ1,λ2,μ2有何关系? 梳理 (1)平面向量基本定理如果e 1,e 2是同一平面内的两个________向量,那么对于这一平面内的________向量a ,存在唯一一对实数λ1,λ2,使a =________________________________. (2)基底平面内________的向量e 1,e 2叫作表示这一平面内所有向量的一组基底. 类型一 对基底概念的理解例1 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是( ) ①λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2); ④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④D .②反思与感悟 考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来.跟踪训练1 若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( ) A .e 1-e 2,e 2-e 1 B .2e 1-e 2,e 1-12e 2 C .2e 2-3e 1,6e 1-4e 2 D .e 1+e 2,e 1-e 2类型二 平面向量基本定理的应用例2 如图所示,在?ABCD 中,E ,F 分别是BC ,DC 边上的中点,若AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →. 引申探究若本例中其他条件不变,设DE →=a ,BF →=b ,试以a ,b 为基底表示AB →,AD →.反思与感悟 将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.跟踪训练2 如图所示,在△AOB 中,OA →=a ,OB →=b ,M ,N 分别是边OA ,OB 上的点,且OM →=13a ,ON →=12b ,设AN →与BM →相交于点P ,用基底a ,b 表示OP →. 1.下列关于基底的说法正确的是( )①平面内不共线的任意两个向量都可作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的. A .① B .② C .①③ D .②③2.如图,已知A B →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →等于( ) A .a +34bB.14a +34b C.14a +14b D.34a +14b 3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,y =________.4.如图所示,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则当以a ,b 为基底时,AC →可表示为________,当以a ,c 为基底时,AC →可表示为________.的中点,设AD →=a ,5.已知在梯形ABCD 中,AB ∥DC ,且AB =2CD ,E ,F 分别是DC ,AB AB →=b ,试用a 、b 为基底表示DC →,BC →,EF →. 1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件. (2)零向量与任意向量共线,故不能作为基底. 2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.4.1 平面向量的坐标表示4.2 平面向量线性运算的坐标表示学习目标 1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来. 知识点一 平面向量的正交分解思考 如果向量a 与b 的夹角是90°,则称向量a 与b 垂直,记作a ⊥b .互相垂直的两个向量能否作为平面内所有向量的一组基底?梳理 把一个向量分解为________________的向量,叫作把向量正交分解. 知识点二 平面向量的坐标表示思考1 如图,向量i ,j 是两个互相垂直的单位向量,向量a 与i 的夹角是30°,且|a |=4,以向量i ,j 为基底,如何表示向量a?思考2 在平面直角坐标系内,给定点A 的坐标为A (1,1),则A 点位置确定了吗?给定向量a 的坐标为a =(1,1),则向量a 的位置确定了吗?思考3 设向量BC →=(1,1),O 为坐标原点,若将向量BC →平移到OA →,则OA →的坐标是多少?A 点坐标是多少? 梳理 (1)平面向量的坐标①在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个____________i 、j 作为基底.对于平面内的任意向量a ,由平面向量基本定理可知,有且只有一对实数x ,y ,使得a =x i +y j .我们把实数对(x ,y )叫作向量a 的坐标,记作a =(x ,y ).②在平面直角坐标平面中,i =(1,0),j =(0,1),0=(0,0). (2)点的坐标与向量坐标的区别和联系知识点三 思考 设i 、j 是分别与x 轴、y 轴同向的两个单位向量,若设a =(x1,y 1),b =(x 2,y 2),则a =x 1i +y 1j ,b =x 2i +y 2j ,根据向量的线性运算性质,向量a +b ,a -b ,λa (λ∈R )如何分别用基底i 、j 表示? 梳理 设a =(x 1,y 1),b =(x 2,y 2),A (x 1,y 1),B (x 2,y 2).类型一 例1 如图,在平面直角坐标系xOy 中,OA =4,AB =3,∠AOx =45°,∠OAB =105°,OA →=a ,AB →=b . 四边形OABC 为平行四边形. (1)求向量a ,b 的坐标; (2)求向量BA →的坐标; (3)求点B 的坐标.反思与感悟 在表示点、向量的坐标时,可利用向量的相等、加减法运算等求坐标,也可以利用向量、点的坐标的定义求坐标.一般利用不等式思想求解,即把问题条件转化为关于参数的不等式(组),再解不等式(组)就可以求得参数的取值范围.跟踪训练1 已知边长为2的正三角形ABC ,顶点A 在坐标原点,AB 边在x 轴上,点C 在第一象限,D 为AC 的中点,分别求向量AB →,AC →,BC →,BD →的坐标. 类型二 平面向量的坐标运算例2 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c . (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n 的值. 反思与感悟 向量坐标运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行. (2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算. (3)向量的线性坐标运算可完全类比数的运算进行. 跟踪训练2 已知a =(-1,2),b =(2,1),求: (1)2a +3b ;(2)a -3b ;(3)12a -13b .类型三 平面向量坐标运算的应用例3 已知点A (2,3),B (5,4),C (7,10).若AP →=AB →+λAC →(λ∈R ),试求当λ为何值时: (1)点P 在第一、三象限的角平分线上;(2)点P 在第三象限内.反思与感悟 (1)待定系数法是最基本的数学方法之一,实质是先将未知量设出来,建立方程(组)求出未知数的值,是待定系数法的基本形式,也是方程思想的一种基本应用.(2)坐标形式下向量相等的条件:相等向量的对应坐标相等;对应坐标相等的向量是相等向量.由此可建立相等关系求某些参数的值.跟踪训练3 已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. 1.设平面向量a =(3,5),b =(-2,1),则a -2b 等于( ) A .(7,3) B .(7,7) C .(1,7) D .(1,3)2.已知向量OA →=(3,-2),OB →=(-5,-1),则向量12AB →的坐标是( )A.⎝⎛⎭⎫-4,12B.⎝⎛⎭⎫4,-12 C .(-8,1) D .(8,1) 3.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( ) A.⎝⎛⎭⎫2,72 B.⎝⎛⎭⎫2,-12 C .(3,2) D .(1,3) 4.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →等于( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4)5.如图,在6×6的方格纸中,若起点和终点均在格点的向量a ,b ,c 满足c =x a +y b (x ,y ∈R ),则x +y =________. 1.向量的正交分解是把一个向量分解为两个互相垂直的向量,是向量坐标表示的理论依据.向量的坐标表示,沟通了向量“数”与“形”的特征,使向量运算完全代数化.2.要区分向量终点的坐标与向量的坐标.由于向量的起点可以任意选取,如果一个向量的起点是坐标原点,这个向量终点的坐标就是这个向量的坐标;若向量的起点不是原点,则向量的终点坐标不是向量的坐标,此时AB →=(x B -x A ,y B -y A ).3.向量和、差的坐标就是它们对应向量坐标的和、差,数乘向量的坐标等于这个实数与原来向量坐标的积.4.3 向量平行的坐标表示学习目标 1.理解用坐标表示的平面向量共线的条件.2.能根据平面向量的坐标,判断向量是否共线.3.掌握三点共线的判断方法. 知识点 向量平行 已知下列几组向量:(1)a =(0,3),b =(0,6); (2)a =(2,3),b =(4,6); (3)a =(-1,4),b =(3,-12); (4)a =(12,1),b =(-12,-1).思考1 上面几组向量中,a ,b 有什么关系?。

相关文档
最新文档