概率复习PPT课件

合集下载

专题43概率-2023年高考数学一轮复习课件(全国通用)

专题43概率-2023年高考数学一轮复习课件(全国通用)

BCACB
, BCABC
, BCBAC
,∴甲赢的概率为 P M
1 2
4
7
1 2
5
9 32

由对称性可知,乙赢的概率和甲赢的概率相等,
∴丙赢的概率为 P N 1 2 9 7 .
32 16
(2019 全国 II 理 18)11 分制乒乓球比赛,每赢一球得 1 分,当某局打成 10:10 平后,每球交换发球权,先多得 2 分的一方获胜,该局比赛结束.甲、 乙两位同学进行单打比赛,假设甲发球时甲得分的概率为 0.5,乙发球时 甲得分的概率为 0.4,各球的结果相互独立.在某局双方 10:10 平后, 甲先发球,两人又打了 X 个球该局比赛结束. (1)求 P(X=2); (2)求事件“X=4 且甲获胜”的概率.
2023年高考第一轮复习
专题43:概率
1.概率 (1)在相同条件下,大量重复进行同一试验时,随机事件 A 发生的频率会在某个 常数附近摆动,即随机事件 A 发生的频率具有稳定性.我们把这个常数叫做随机事件 A 的概率,记作 P(A). (2)频率反映了一个随机事件出现的频繁程度,但频率是随机的,而概率是一个确 定的值,因此,人们用概率来反映随机事件发生的可能性的大小,有时也用频率作为 随机事件概率的估计值.
n 64 16
57.(2018 全国Ⅱ理)我国数学家陈景润在哥德巴赫猜想的研究中取得了世
界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的
和”,如 30 7 23 .在不超过 30 的素数中,随机选取两个不同的数,其和
等于 30 的概率是
A. 1 12
B. 1 14
C. 1 15
爻组成,爻分为阳爻“——”和阴爻“— —”,如图就

高三数学二轮复习建议——专题二:概率统计 PPT课件 图文

高三数学二轮复习建议——专题二:概率统计 PPT课件 图文
概率与统计
目目 录录
CCOONNTTEENNTTSS
1 历年高考分析 22 重点、热点分析 3 复习目标、方案专题 4 命题预测、优题展示
一 高考试题分析
1.1 2012——2017年高考考查内容分析
2 道 小 题
1 道 大 题
年份 题号
理科 考查 内容
题号
文科 考查 内容
2017 年
2016 年 2015 年 2014 年 2013 年 2012 年
T1 9
相关系数、统计、均值、方差、3 σ原则、概率的意义
T14 二项式定理
2016 年
T4 几何概型
T3 古典概型
从文科高考试题看,解答题一般以工农业生产和生活中的实 频数分布、频率与概率、事件的
频数分布、频率与概率、事件的
T19 独立性、互斥事件、分布列、概 T19 独立性、互斥事件、分布列、概
√√

古典概型
几何概型 率 随机模拟
√√√ √ √
随机变量间的函数关系


二 重点、热点分析
重点、热点、规律方法(一)二项式定理

1.(1)(2017▪全国卷Ⅰ理科▪T6)
(1
1 x2
)(1
x)6
展开式中
x2
的系数为
A.15
B.20
C.30
D.35
(2)(2016▪全国卷Ⅰ理科▪T14) (2x x )5 的展开式中,x3 的系数是
T1 8
分步乘法计数原理、组合
正态分布、对立事件
T3
函数、频率与概率、分布列、期 望、方差、概率的意义
T 18
数字特征及其意义 几何概型
相关系数、统计、均值、方差、3 σ原则、概率的意义

第九章概率初步复习课件鲁教版(五四制)七年级数学下册

第九章概率初步复习课件鲁教版(五四制)七年级数学下册

件D.如果一件事不是必然事件,那么它就是不可能事件或随机事件
知识点二 频率的稳定性
要点:
m
频率的定义:在n次重复试验中,不确定事件 A 发生了 m 次,则比值 称为
事件 A 发生的频率.
n
频率的稳定性:在试验次数很大时,事件发生的频率会在一个常数附近摆动, 这个性质称为频率的稳定性。
知识点二

பைடு நூலகம்
给出以下结论,错误的有( )
知识点一
变式1. 下列事件是必然事件的是( )A.正数大于负数 B.抛一枚硬币,正面朝上C.明天会下雨
D.经过城市中某一有交通信号灯的路口,恰好遇到红灯
变式2
下列说法正确的是( )A.如果一件事发生的机会只有千
万分之一,那么它就是不可能事件B.如果一件事发生的机会达99.999%,
那么它就是必然事件C.如果一件事不是不可能事件,那么它就是必然事
知识点一
例 下列问题哪些是必然事件?哪些是不可能事件? 哪些是随机事件? (1)太阳从西边下山;
(2)某人的体温是100℃; (3)a2+b2=-1(其中a,b都是有理数); (4)水往低处流;(5)13个人中,至少有两个人出生的月 份相同.
知识点一
判断事件的类型最简单的方法就是: 判断这句话的正确性.如果这句话是正确的,那么它就是必然 事件;如果这句话是错误的,那么它就是不可能事件;其他情况 均为随机事件.
知识点二
变式1. 一名运动员连续射靶10次,其中2次命中10环,2次命 中9环,6次命中8环,针对某次射击,下列说法正确的是( ) A.射中10环的可能性最大 B.命中9环的可能性最大 C.命中8环的可能性最大 D.以上可能性均等
变式2. 在大量重复试验中,关于随机事件发生的频率与概率,下 列说法正确的是( ) A.频率就是概率

概率论与数理统计期末复习课件

概率论与数理统计期末复习课件

置信水平
用于确定样本统计量的不 确定性范围。
置信区间
根据置信水平和抽样分布, 估计未知参数的可能值范 围。
点估计与最优性
点估计
用单一的数值估计未知参数的值。
无偏估计
样本统计量的期望值等于真实参数 值。
最小方差估计
选择一个点估计,使得预测误差的 方差最小。
假设检验与p值
假设检验
根据样本数据对未知参数 提出假设,并进行检验。
详细描述
一元线性回归是一种最简单的回归分析方 法,用于研究一个因变量和一个自变量之 间的线性关系。
一元线性回归模型通常表示为`Y = β0 + β1*X + ε`,其中Y是因变量,X是自变量, ε是误差项。β0和β1是需要估计的参数。
重要概念
适用范围
一元线性回归模型假设因变量Y和自变量X 之间存在线性关系,即Y的变化可以由X的 变化来解释。
02
置信区间
根据自助法计算的统计量的置信区间,可以用来估计总体参数的区间范
围。
03
应用
在社会科学和医学研究中,自助法和置信区间被广泛应用于估计样本参
数的可靠性和精度。例如,在估计人口平均年龄的置信区间时,自助法
可以用来确定样本大小和置信水平之间的关系。
CHAPTER 06
实验设计初步
完全随机设计
描述 马尔科夫链通常用状态转移图来表示,其中每个状态通过 箭头连接到其他状态,箭头上标记了从一个状态转移到另 一个状态的概率。
实例 例如天气预报、股票价格等都可以被视为马尔科夫链。
平稳过程与遍历性
定义
平稳过程是一类特殊的随机过程,它具有“时间齐次性”和“空 间齐次性”的性质。
描述

数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)

数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)

B)
A.布袋中有2个红球和5个其他颜色的球
B.如果摸球次数很多,那么平均每摸7次,就有2次
摸中红球
C.摸7次,就有2次摸中红球
D.摸7次,就有5次摸不中红球
2.下列事件中是必然事件的是( D ) A.从一个装有蓝、白两色球的缸里摸出一个球,摸 出的球是白球 B.小丹的自行车轮胎被钉子扎坏 C.小红期末考试数学成绩一定得满分 D.将油滴入水中,油会浮在水面上
第二十五章 概率初步
小结与复习
复习目标
1.梳理本章的知识要点,回顾与复习本章知识. 2.巩固并能熟练运用列举法、列表法和树状图法求 概率.(重、难点) 3.能应用频率估计概率解决生活中的实际问题.
要点梳理
一、事件的分类及其概念
事件
不可能事件:必然不会发生的事件
随机事件:在一定条件下可能发生也可能不发生 的事件
考点二 概率的计算 例2 (1)一个口袋中装有3个红球,2个绿球,1 个黄球,每个球除颜色外其他都相同,搅匀后
1
随机地从中摸出一个球是绿球的概率是___3___.
(2)三张分别画有平行四边形、等边三角形、圆的 卡片,它们的背面都相同,现将它们背面朝上,
从中任取一张,卡片上所画图形恰好是中心对称 2
(2) 如果只考虑中奖因素,你将会选择去哪个超市购 物?说明理由.
(2) 选甲超市.理由如下: ∵P(甲)>P(乙), ∴选甲超市.
成活 数
47
235 369 662 1335 3203 6335 8073 12628
成活 频率
0.94
0.87 0.923 0.883 0.89 0.915 0.905 0.897 0.902
由此可以估计该种幼树移植成活的概率约为( C ) (结果保留小数点后两位)

高中数学概率论复习(全)PPT

高中数学概率论复习(全)PPT
(2)有界性:对任意实数 x ,有 0 F(x) 1,且
F() lim F(x) 0 x
F() lim F(x) 1 x
(3)右连续性:F(x) 是右连续的函数,即对任
意实数 x ,有 F(x 0) F(x) . (4)对任意实数 x1, x2 (x1 x2 ) ,有 P{x1 X x2} P{X x2} P{X x1}
F (x2 ) F (x1)
【注】满足单调性、有界性和右连续性这三个性质的 函数,一定可以作为某个随机变量的分布函数.
离散型随机变量
离散型随机变量 X 的概率分布满足以下两个基本性质:
(1)非负性: pi 0 , i 1, 2, ;
(2)规范性: pi 1 . i 1
【注】满足非负性和规范性的数组 pi (i 1, 2, ) ,一 定是某个离散型随机变量的概率分布.
pij
( xi , y j )G
(4)
P{X xi} pij , i 1, 2, j 1
P{Y y j} pij , j 1, 2, i 1
二维连续型随机变量
(1)非负性 p(x, y) 0 ;
(2)规范性 p(x, y)dxdy F (, ) 1.
【注】若二元函数 p(x, y) 具有非负性和规范性,则 p(x, y) 一定是某个二维连续型随机变量的联合概率 密度函数.
定理 设随机变量 X 具有数学期望
E( X ) μ,方差 D( X ) σ 2,则对于任
(3)右连续性 F( x, y ) 分别对 x , y 右连续,即
F(x 0, y) lim F(x , y) F(x, y) 0
F(x, y 0) lim F(x, y ) F(x, y) 0
(4)非负性 对于任意的实数 x1 x2 , y1 y2 ,有

2024届新教材高考数学二轮复习 概率 课件(69张)

2024届新教材高考数学二轮复习 概率 课件(69张)

A.15
B.13
C.25
D.23
【解析】 从 6 张卡片中无放回抽取 2 张,共有(1,2),(1,3),(1,4),
(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),
(5,6),15 种情况,其中数字之积为 4 的倍数的有(1,4),(2,4),(2,6),(3,4),
2.古典概型 一般地,设试验 E 是古典概型,样本空间 Ω 包含 n 个样本点,事件 A 包含其中的 k 个样本点,则定义事件 A 的概率 P(A)=nk=nnΩA. 其中,n(A)和 n(Ω)分别表示事件 A 和样本空间 Ω 包含的样本点个数.
多 维 题 组·明 技 法
角度1:随机事件的关系 1. (2023·柳州模拟)从数学必修一、二和政治必修一、二共四本书中 任取两本书,那么互斥而不对立的两个事件是( D ) A.至少有一本政治与都是数学 B.至少有一本政治与都是政治 C.至少有一本政治与至少有一本数学 D.恰有1本政治与恰有2本政治
A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率 为(1-α)(1-β)2
B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1- β)2
C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1 -β)3
D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率 大于采用单次传输方案译码为0的概率
【解析】 由题意可得事件1表示{1,3,5},事件2表示{2,4,6},事件3 表示{4,5,6},事件4表示{1,2},所以事件1与事件2为对立事件,事件1与 事件3不互斥,事件2与事件3不互斥,事件3与事件4互斥不对立,故选 项A,C,D错误,选项B正确.故选B.

《高二数学概率复习》课件

《高二数学概率复习》课件
条件概率的公式
P(A|B) = P(A∩B) / P(B)。其中,P(A∩B)表示事件A和事件B同时发生的概率, P(B)表示事件B发生的概率。
条件概率的性质
非负性
P(A|B) ≥ 0。
规范性
当事件B是必然事件时,P(A|B) = P(A)。
条件概率的加法规则
如果两个事件B1和B2是互斥的,那么对于任一事件A,有 P(A|B1∪B2) = P(A|B1) + P(A|B2)。
04
概率的应用
概率在日常生活中的应用
天气预报
通过概率分析,预测未来天气变 化,为日常生活和出行提供参考

彩票
彩票中奖概率的计算,让人们理性 对待,避免盲目投入。
医学诊断
通过概率统计方法,提高疾病诊断 的准确率。
概率在科学实验中的应用
物理实验
在物理学中,概率被广泛应用于 粒子实验、量子力学等领域。
解析5
进阶题目5的答案是$frac{4}{8} times frac{3}{7} = frac{12}{56} = frac{3}{14}$,因为第一次摸出白球的概 率为$frac{4}{8}$,第二次摸出白球的概率为$frac{3}{7}$ 。
解析6
进阶题目6的答案是$frac{7}{10} times frac{3}{9} = frac{21}{90} = frac{7}{30}$,因为第一次摸出红球的概 率为$frac{7}{10}$,第二次摸出白球的概率为 $frac{3}{9}$。
《高二数学概率复习》ห้องสมุดไป่ตู้ppt课件
目 录
• 概率的基本概念 • 古典概型与几何概型 • 条件概率与独立性 • 概率的应用 • 复习题与答案解析

《概率论总复习》课件

《概率论总复习》课件

常见问题解答二:条件概率与独立性的关系?
总结词
条件概率与独立性是概率论中的重要概念,它们之间 存在密切的联系。
详细描述
条件概率是指在某个已知事件发生的条件下,另一个 事件发生的概率。而独立性则是指两个事件之间没有 相互影响,一个事件的发生不影响另一个事件的发生 。在条件概率中,如果两个事件在给定条件下是独立 的,那么它们同时发生的概率等于各自发生的概率的 乘积。因此,条件概率和独立性之间存在密切的联系 ,理解它们的概念和关系有助于更好地掌握概率论中 的相关内容。
04
概率论的应用
统计学中的概率论应用
统计推断
概率论为统计学提供了理论基 础,用于估计未知参数、检验 假设和进行预测。
随机抽样
概率论确保了随机抽样的公正 性和代表性,使得样本数据能 够反映总体特征。
统计决策
基于概率论的决策分析方法, 如贝叶斯决策和风险分析,帮 助决策者做出最优选择。
计算机科学中的概率论应用
100%
离散型随机变量的分布
离散型随机变量的分布通常由概 率质量函数或概率分布函数描述 。
80%
连续型随机变量的分布
连续型随机变量的分布由概率密 度函数描述,其总概率为1,即 ∫−∞∞f(x)dxF(x)=∫−∞∞f(x)dxF (x)=∫−∞∞f(x)dxF(x)=1。
02
概率论中的重要定理
贝叶斯定理
01
02
03
04
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5、互斥事件
若A∩B为不可能事件( A∩B = ),那么称事 件A与事件B互斥。
事件A与事件B互斥的含义是: 这两个事件在任何一次试验中都不
B
A
20会21/3/同7 时发生,可用图表示CHE为NLI :
7
5、对立事件
若A∩B为不可能事件, A ∪ B为必然事件,那么 事件A与事件B互为对立事件。
事件A与事件B互为对立事件的含义是:这两个 事件在任何一次试验中有且仅有一个发生。
m n
古典概型问题,求概率的基本步骤
1、判断问题是否是古典概型
2、计算在一次实验中的所有可能结果n (基本事件总数)
3、计算属于事件A的基本事件数m
4、利用公式计算事件A的概率
2021/3/7
CHENLI
12
几何概型
(1) 试验总所有可能出现的基本事件有无限个;
(2) 每个基本事件出现的可能性相等 我们将具有这两个特点的概率模型称为几何概
概率复习
2021/3/7
CHENLI
1
一、知识回顾:
随机事件

Hale Waihona Puke 事必然事件机

不可能事件

件 的

概率的定义
概件
率的
概 率
怎样得到随机 事件的概率
2021/3/7
CHENLI
0<P<1
P=1
P=0
概率 频率
的概 稳率 定是 值频

用列举法求概率
用频率估计概率
2
在多次试验中,某个事件出现的次数
叫 频数
几何概型
CHENLI
A
B
D
C 16
典型例题
计算古典概型事件的概率 可分三步
例1:柜子里装有3双不同的①鞋算,出随基机本地事取件出的2总只个,数试n求,下
列事件的概率
②求出事件A所包含的基本事件
(1)取出的鞋子都是左个脚数的m;, (2)取出的鞋子都是同一③只代脚入的公;式求出概率P。
解:基本事件的总个数: 1 5
率模型,简称几何概型。 在几何概型中,事件A的概率计算公式如下 :
构成事件A的区域长度(面积或体积)
P(A)=
试验的全部结果所构成的区域长度(面积或体积)
2021/3/7
CHENLI
13
几何概型问题,求概率的基本步骤
1、判断问题是否是几何概型 2、计算在一次实验中的表示所有可能结果的点 (基本事件总数)围成的长度;(面积、体积) 3、计算表示属于事件A的基本事件的点围成的 长度;面积、体积
4、利用公式计算事件A的概率
2021/3/7
CHENLI
14
古典概型与几何概型的区别
相同:两者基本事件的发生都是等可能的;
不同:古典概型要求基本事件有有限个, 几何概型要求基本事件有无限多个.
2021/3/7
CHENLI
15
热身练习
1、甲乙两人下棋,两人下成和棋的概率是1/2,乙胜的概 率是1/3,
A或事件B发生,则称此事件为 事件A与事件B的并事件(或和 事件),记作: A ∪ B(或A+B) 可用图表示为:
B
A
A∪B
2021/3/7
CHENLI
6
4、交事件(积事件)
若某事件发生当且仅当事件 A发生且事件B发生,则称此事件 为事件A与事件B的交事件(或积 事件)记作:A∩B(或AB)
可用图表示为: B A∩BA
CHENLI
9
6、概率的加法公式
(1)当A、B是互斥事件时: P (A B ) P (A ) P (B ) (2)当A、B是对立事件时: P (A B ) P (A ) P (B ) 1
即P : (A)1P(A)
求法:(1)直接法:化成求一些彼此互斥事件的概率的和; (2)间接法:求对立事件的概率.
则乙不输的概率是(5/6 )
甲获胜的概率是 1(/6 )
概率的基本性质
甲不输的概率是 ( 2/3 )
古典概
2、同时掷两个骰子,出现点数之和大于11的概率是型(1/36 )
3、如图所示,在矩形ABCD中,AB=4cm, BC=2cm,在图 形上随机 地撒一粒黄豆,则黄豆落在阴影部分的概率
是8
2021/3/7
区别某可能事件发生的概率是一个定值.而这 一事件发生的频率是波动的.当试验次数不大 时,事件发生的频率与概率的差异甚至很大.
注意事件发生的频率不能简单地等同于其 概率
2021/3/7
CHENLI
4
事件的关系与运算:
1、事件的包含关系
可用图表示为:
一般地,对于事件A和事件B,
如果事件A发生,则事件B一定发生, 这时称事件B包含事件A(或称
(1)记“取出的鞋子都是左脚的”为事件A 包含基本事件

由古典概型的概率公式得 P(A)= 3 1
数为 3 ,
15 5
(2)记“取出的鞋子都是同一在只计脚算的基”本为事事件件总B数,和事
P( B)=
2021/3/7
23 15
2 件A包含的基本事件个数时,
5 要做到不重不漏。
CHENLI
17
牛刀小试

某个事件出现的次数与试验总次数的 比,叫做这个事件出现的 频率 ,
一个事件在多次试验中发生的可能性 叫做这个事件发生的 概率 。
2021/3/7
CHENLI
3
频率与概率的区别与联系
联系当试验次数很大时,一个事件发生的频率 稳定在相应的概率附近.即试验频率稳定于理
论概率。因此:我们可以通过多次试验,用一个 事件发生的频率来估计这一事件发生的概率.
2021/3/7
CHENLI
10
古典概型
(1) 试验中所有可能出现的基本事件只有有限个;
(2) 每个基本事件出现的可能性相等 我们将具有这两个特点的概率模型称为古典概率模
型,简称古典概型。
A包含的基本事件的个数
P(A)=
基本事件总数
2021/3/7
CHENLI
11
古典概型的概率计算公式
P(A)=
B
A
事件A包含于事件B),
记作:A B(或B A)
我们把不可能事件记作,任何事件都包含不可能事件
2、事件的相等关系
一般地,若B A,且A B,那么称事件A与
事件B相等,记作:A=B。
2021/3/7
CHENLI
5
注:两个事件相等也就是说这两个事件是 同一个事件。
3、并事件(和事件)
若某事件发生当且仅当事件
例1:柜子里装有3双不同的鞋,随机地取出2只,试求下 列事件的概率
(1)取出的鞋一只是左脚的,一只是右脚的; (2)取出的鞋不成对;
2021/3/7
CHENLI
8
互斥事件与对立事件的联系与区别:
1、两事件对立,必定互斥,但互斥未必对立
2、互斥的概念适用于多个事件,但对立概念只适 用于两个事件
3、两个事件互斥只表明这两个事件不能同时发生, 即至多只能发生一个,但可以都不发生; 而两事件对立则表明它们有且只有一个发生
2021/3/7
相关文档
最新文档