概率论课件.ppt
合集下载
概率论课件之随机事件PPT课件
(4)德 摩根律 : A B A B, A B A B.
例1 设A,B,C 表示三个随机事件,试将下列事件 用A,B,C 表示出来.
(1) A 发生,且 B 与 C 至少有一个发生;
A( B∪C))
(2) A 与 B 发生,而 C 不发生; (3) A , B, C 中恰有一个发生;
ABC ABC ABC ABC
(4) A , B, C 中至少有两个发生;
AB BC AC
(5) A , B, C 中至多有两个发生;
ABCA不BC发生;
(6) A , B, C 中不多于一个发生.
AB BC AC
或ABC ABC ABC ABC
3. 小结
(1) 随机试验、样本空间与随机事件的关系
(4) 事件 A 与 B 积事件(交) 事件 A B { x x A 且 x B}称为事件
A 与事件 B 的积事件. A和B同时发生 A B发生 积事件也可记作 A B 或 AB.
实例 某种产品的合格与否是由该产品的长度 与直径是否合格所决定,设C=“产品合格” ,A =“长度合格”,B=“直径合格”.
AA B
B
Ω
B A
B
A AB Ω
(7) 事件 A 的对立事件
设 A 表示“事件 A 出现”, 则“事件 A 不出现”
称为事件 A 的对立事件或逆事件. 记作
A.
实例 “骰子出现1点”
“骰对子立不出现1点”
图示 A 与 B 的对立.
A
若 A 与 B对立,则有
A B 且 AB .
B A Ω
对立事件与互斥事件的区别 A、B 互斥(互不相容) A、B 对立(互逆)
(5) 事件 A 与 B 互不相容 (互斥)
例1 设A,B,C 表示三个随机事件,试将下列事件 用A,B,C 表示出来.
(1) A 发生,且 B 与 C 至少有一个发生;
A( B∪C))
(2) A 与 B 发生,而 C 不发生; (3) A , B, C 中恰有一个发生;
ABC ABC ABC ABC
(4) A , B, C 中至少有两个发生;
AB BC AC
(5) A , B, C 中至多有两个发生;
ABCA不BC发生;
(6) A , B, C 中不多于一个发生.
AB BC AC
或ABC ABC ABC ABC
3. 小结
(1) 随机试验、样本空间与随机事件的关系
(4) 事件 A 与 B 积事件(交) 事件 A B { x x A 且 x B}称为事件
A 与事件 B 的积事件. A和B同时发生 A B发生 积事件也可记作 A B 或 AB.
实例 某种产品的合格与否是由该产品的长度 与直径是否合格所决定,设C=“产品合格” ,A =“长度合格”,B=“直径合格”.
AA B
B
Ω
B A
B
A AB Ω
(7) 事件 A 的对立事件
设 A 表示“事件 A 出现”, 则“事件 A 不出现”
称为事件 A 的对立事件或逆事件. 记作
A.
实例 “骰子出现1点”
“骰对子立不出现1点”
图示 A 与 B 的对立.
A
若 A 与 B对立,则有
A B 且 AB .
B A Ω
对立事件与互斥事件的区别 A、B 互斥(互不相容) A、B 对立(互逆)
(5) 事件 A 与 B 互不相容 (互斥)
概率论课件 第一节 随机试验与随机事件
-5
•
D C A
0
•
3
•
9
•
20
•
概率统计
-5
•
D = { x x < −5 }, E = { x x ≥ 9 }
由图可见:
A = { x x ≤ 20 }, B = { x x > 3 }, C = { x x < 9 }
D C A
0
•
3
•
9
•
B E
20
•
A ⊃ C ⊃ D, B ⊃ E ; D 与 B , D与 E 互不相容; C 与 E 为对立事件; B 与 C , B与 A, E 与 A 相容.
S
A B
A ∩ B = { x x ∈ A且 x ∈ B }
注 ▲ 它是由事件 A与 B 的所有 公共样本点构成的集合。 ▲称
∞
k =1
∩ Ak 为 n 个事件 A1 , A2 ,
n
An 的积事件
的积事件
k =1
∩ Ak 为可列个事件 A1 , A2 ,
概率统计
5.事件的差: 若事件 A 发生而事件 B 不发生,则称 这样的事件为事件 A 与事件 B 的差。
A 和 B 所有样本点构成的集合 注 ▲ 它是由事件 n ▲ 称 ∪ A k 为 n 个事件 A1 , A 2 , , An 的和事件
k =1
∪ Ak 为可列个事件 A1 , A2 ,
∞
k =1
的和事件
概率统计
4. 事件的积(交): 若 “两个事件A与 B 同时发生” 也是一个事件, 则称这样的事件为 A与 B 的积 B AB A (交)。记作: A B 或
S
.e
样本点e
•
D C A
0
•
3
•
9
•
20
•
概率统计
-5
•
D = { x x < −5 }, E = { x x ≥ 9 }
由图可见:
A = { x x ≤ 20 }, B = { x x > 3 }, C = { x x < 9 }
D C A
0
•
3
•
9
•
B E
20
•
A ⊃ C ⊃ D, B ⊃ E ; D 与 B , D与 E 互不相容; C 与 E 为对立事件; B 与 C , B与 A, E 与 A 相容.
S
A B
A ∩ B = { x x ∈ A且 x ∈ B }
注 ▲ 它是由事件 A与 B 的所有 公共样本点构成的集合。 ▲称
∞
k =1
∩ Ak 为 n 个事件 A1 , A2 ,
n
An 的积事件
的积事件
k =1
∩ Ak 为可列个事件 A1 , A2 ,
概率统计
5.事件的差: 若事件 A 发生而事件 B 不发生,则称 这样的事件为事件 A 与事件 B 的差。
A 和 B 所有样本点构成的集合 注 ▲ 它是由事件 n ▲ 称 ∪ A k 为 n 个事件 A1 , A 2 , , An 的和事件
k =1
∪ Ak 为可列个事件 A1 , A2 ,
∞
k =1
的和事件
概率统计
4. 事件的积(交): 若 “两个事件A与 B 同时发生” 也是一个事件, 则称这样的事件为 A与 B 的积 B AB A (交)。记作: A B 或
S
.e
样本点e
概率论课件第二章
第二章 随机变量及其分布 §2.1 随机变量
例1. 抛硬币试验中S {H,T}, 样本点H与T不是数量。
例2. 测试灯泡寿命试验, S={e}={t|t≥0},样本点本身 是数量。
定义 : 设随机试验E的样本空间是S,若 X : S R为单值实范数,则称X为随机变量 (random variable, 简记为r.v.) 。
2. 特例: (1,) 是参数为的指数分布. (=1) 3. 伽玛函数的性质: (i) (+1)= ();
1 (iii)( ) . 2
(ii) 对于正整数n, (n+1)=n!;
§5. 随机变量的函数的分布
一、 X为离散型r.v. 例1.设X具有以下的分布律,求Y=(X-1)2分布律: X -1 0 1 2 pk 0.2 0.3 0.1 0.4
(二) 贝努利试验
(二项分布)
定 义 : 设 试 验E只 有 两 个 可 能 结 果 A与 A , 且 P( A ) p ( 0 p 1), 将 试 验E独 立 重 复 地 进 行 n次 , 这 样 的 试 验 称 为 贝 努 利 试 验.
设X是n重贝努利试验中事件A发生的次数, 则X 是一个随机变量, 于是
§4. 连续型随机变量及其概率密度
F(x) , 存在非负函 1.定义 : 对于r.v.X的分布函数 数f(x) , 使对于任意的实数 x, 有
则称X为连续型r.v.f(x)称为X概率密度函数, 简称概率密度. 连续型r.v.的分布函数是连续函数.
F(x ) f(t)dt
x
2.概率密度 f(x)的性质:
25
标准正态分布的上分位点:
设X ~ N(0,1), 若z 满足条件
例1. 抛硬币试验中S {H,T}, 样本点H与T不是数量。
例2. 测试灯泡寿命试验, S={e}={t|t≥0},样本点本身 是数量。
定义 : 设随机试验E的样本空间是S,若 X : S R为单值实范数,则称X为随机变量 (random variable, 简记为r.v.) 。
2. 特例: (1,) 是参数为的指数分布. (=1) 3. 伽玛函数的性质: (i) (+1)= ();
1 (iii)( ) . 2
(ii) 对于正整数n, (n+1)=n!;
§5. 随机变量的函数的分布
一、 X为离散型r.v. 例1.设X具有以下的分布律,求Y=(X-1)2分布律: X -1 0 1 2 pk 0.2 0.3 0.1 0.4
(二) 贝努利试验
(二项分布)
定 义 : 设 试 验E只 有 两 个 可 能 结 果 A与 A , 且 P( A ) p ( 0 p 1), 将 试 验E独 立 重 复 地 进 行 n次 , 这 样 的 试 验 称 为 贝 努 利 试 验.
设X是n重贝努利试验中事件A发生的次数, 则X 是一个随机变量, 于是
§4. 连续型随机变量及其概率密度
F(x) , 存在非负函 1.定义 : 对于r.v.X的分布函数 数f(x) , 使对于任意的实数 x, 有
则称X为连续型r.v.f(x)称为X概率密度函数, 简称概率密度. 连续型r.v.的分布函数是连续函数.
F(x ) f(t)dt
x
2.概率密度 f(x)的性质:
25
标准正态分布的上分位点:
设X ~ N(0,1), 若z 满足条件
概率论绪论PPT课件
也可以按某种标准把支出分为高、 中、低三档. 这时,样本点有(高,高), (高,中),…,(低,低)等9种,样本空 间就由这9个样本点构成 .
引入样本空间后,事件便可以表示为 样本空间的子集 .
例如,掷一颗骰子,观察出现的点数
样本空间:
Ω = { i :i=1,2,3,4,5,6}
B = {1,3,5}
计学是概率论的一种应用. 但是它们是两个并列 的数学分支学科,并无从属关系.
概率论是一门研究客观世界随机现象数量 规律的 数学分支学科. —— 其起源与博弈问题 有关.
16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;17世纪中叶,法国数学家B. 帕 斯卡、荷兰数学家C. 惠更斯 基于排列组合的方 法,研究了较复杂 的赌博问题, 解决了“ 合理 分配赌注问题” ( 即得分问题 ).
A1, A2,..., An 构成一个完备事件组.
举例
例1:掷一颗骰子的试验,观察其出现的点 数:事件A表示{出现奇数点};事件B表示 {出现点数小于5};事件C表示{出现小于5 的偶数点}。用列举法表_示_ 事件:
Ω ,A+B,A-B,B-A,AB,AC, A B
例2:设A、B、C为三个随机事件,表示下列 事件:
序论
第二次世界大战军事上的需要以及大工业 与管理的复杂化产生了运筹学、系统论、信息 论、控制论与数理统计学等学科.
数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考察的 问题作出推断或预测,直至为采取一定的决策 和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:《概率论》是数理统计学的基础,数理统
引入样本空间后,事件便可以表示为 样本空间的子集 .
例如,掷一颗骰子,观察出现的点数
样本空间:
Ω = { i :i=1,2,3,4,5,6}
B = {1,3,5}
计学是概率论的一种应用. 但是它们是两个并列 的数学分支学科,并无从属关系.
概率论是一门研究客观世界随机现象数量 规律的 数学分支学科. —— 其起源与博弈问题 有关.
16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;17世纪中叶,法国数学家B. 帕 斯卡、荷兰数学家C. 惠更斯 基于排列组合的方 法,研究了较复杂 的赌博问题, 解决了“ 合理 分配赌注问题” ( 即得分问题 ).
A1, A2,..., An 构成一个完备事件组.
举例
例1:掷一颗骰子的试验,观察其出现的点 数:事件A表示{出现奇数点};事件B表示 {出现点数小于5};事件C表示{出现小于5 的偶数点}。用列举法表_示_ 事件:
Ω ,A+B,A-B,B-A,AB,AC, A B
例2:设A、B、C为三个随机事件,表示下列 事件:
序论
第二次世界大战军事上的需要以及大工业 与管理的复杂化产生了运筹学、系统论、信息 论、控制论与数理统计学等学科.
数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考察的 问题作出推断或预测,直至为采取一定的决策 和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:《概率论》是数理统计学的基础,数理统
概率论课件
例3 盒中有3个红球,2个白球,,每次从袋中任 取一只,观察其颜色后放回,并再放入一只与所 取之球颜色相同的球,若从合中连续取球4次,试 求第1、2次取得白球、第3、4次取得红球的概率 。
解:设Ai为第i次取球时取到白球,则
1.7 全概率公式
例:市场上有甲、乙、丙三家工厂生产的同一品牌产品, 已知三家工厂的市场占有率分别为1/4、1/4、1/2,且三 家工厂的次品率分别为 2%、1%、3%,试求市场上该品 牌产品的次品率。
古典概型中的概率: 设事件A中所含样本点个数为M ,以N记样 本空间S中样本点总数,则有
M P ( A) N
P(A)具有如下性质: (1) 0 P(A) 1;
(2) P()=1; P( )=0
(3) AB=,则 P( A B )= P(A) +P(B)
例1:有三个子女的家庭,设每个孩子是男是女的概
1.6 条件概率和乘法定理
袋中有十只球,其中九只白球,一只红球,十
人依次从袋中各取一球(不放回),问
第一个人取得红球的概率是多少?
第二个人取得红球的概率是多少?
若已知第一个人取到的是白球,则第二个人取 到红球的概率是多少? 若已知第一个人取到的是红球,则第二个人取到 红球的概率又是多少? 已知事件A发生的条件下,事件B发生的概率称为 A条件下B的条件概率,记作P(B|A)
• 随机事件
定义 试验中可能出现或可能不出现的情况叫“随 机事件”, 简称“事件”.记作A、B、C等. 在每次试验的结果中某事件一定发生,则该事件称 为必然事件,记作U。 在每次试验的结果中某事件一定不发生,则该事件 称为不可能事件,记作V。
频率:
设随机事件A在n次试验中发生了m次
m f n ( A) n
概率论与数理统计课件(共199张PPT)
P(An|A1A2…An-1).
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定:义 若 B 1,B 2, ,B n一组事 : 件
计算条件概率有两种方法:
1. 公式法:
先计P算(A)P, (AB然 ), 后按公式计算
P(B| A) P(AB.) P(A)
31
2. 缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其 中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取 后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称 为 A与B的 和 事 . 件
即AB,中 至 少 有 一 ,称个 为 A与 发 B的生,和 记AB.
可 列 个A1事 , A2,件 的 和 事 件 记 Ak. 为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,
即事件A与B同时发A生. A B 可简记为AB.
i1
1i jn
P(A i A j Ak )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事 件的概率:
( 1 ) P ( A B ) (; P ( 2 A B ) ( ) ; P ( 3 A B ) ) (; ( 4 A B )
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定:义 若 B 1,B 2, ,B n一组事 : 件
计算条件概率有两种方法:
1. 公式法:
先计P算(A)P, (AB然 ), 后按公式计算
P(B| A) P(AB.) P(A)
31
2. 缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其 中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取 后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称 为 A与B的 和 事 . 件
即AB,中 至 少 有 一 ,称个 为 A与 发 B的生,和 记AB.
可 列 个A1事 , A2,件 的 和 事 件 记 Ak. 为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,
即事件A与B同时发A生. A B 可简记为AB.
i1
1i jn
P(A i A j Ak )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事 件的概率:
( 1 ) P ( A B ) (; P ( 2 A B ) ( ) ; P ( 3 A B ) ) (; ( 4 A B )
概率论高等院校概率论课件
应用场景
强大数定律在统计学中用于 估计极端事件发生的概率和 风险,在决策理论中用于评 估最优策略和期望收益,在 可靠性工程中用于分析系统 的可靠性和寿命。
注意事项
强大数定律的应用有一定的 限制条件,例如随机序列必 须是独立同分布的。此外, 强大数定律并不能保证每个 随机事件的绝对正确性,而 只是给出了最大值分布的稳 定性。
连续随机过程
如布朗运动,每一步都是连续 的,每一步的状态都是连续的
。
随机游走与布朗运动
随机游走
一个随机过程,其中每一步都是随机的,通 常用来描述粒子的无规则运动。
布朗运动
一种连续随机过程,由大量微小粒子在流体 中无规则运动产生,通常用来描述微观粒子 的运动。
马尔科夫链与马尔科夫过程
马尔科夫链
一个随机过程,其中下一个状态只依赖于当前状态,与过去状态 无关。
注意事项
大数定律的前提是试验次数必须足够多,并且随 机事件之间必须是独立的。此外,大数定律并不 能保证每个随机事件的绝对正确性,而只是给出 了频率趋于概率的稳定性。
强大数定律
总结词
强大数定律是概率论中的重 要定理之一,它描述了随机 序列中最大值的分布性质。
详细描述
强大数定律指出,对于任意 给定的正整数序列$a_n$和 $b_n$,有$lim_{n to infty} frac{a_n}{b_n} = 1$的概率 为1。这个定理说明了随机 序列中最大值的分布具有很 强的稳定性。
随机变量的性质
随机变量具有可测性、可加性和有限 可加性。
离散型随机变量及其分布
离散型随机变量的定义
离散型随机变量是在样本空间中取有 限个或可数个值的随机变量。
离散型随机变量的分布
《概率论讲义》课件
线性回归
介绍线性回归模型的基本原理和应用案例。
多元非线性回归
探讨多元非线性回归分析的方法和实际应用。
蒙特卡罗方法
1
简介和基本概念
介绍蒙特卡罗方法的基本思想和使用领域。
2
模拟方法
说明蒙特卡罗方法的模拟过程和实际应用。
3
抽样方法
讨论蒙特卡罗方法中的抽样技术和抽样步骤。
应用案例
金融风险管理
探讨概率论在金融风险管理中的应用和重要性。
2
弱大数定律
探讨具体的弱大数定律和其适用性。
3
中心极限定理
详细解释中心极限定理及其在概率论中的重要性。
统计推断
1 点估计
介绍点估计的概念和方法,以及其在概率论中的应用。
2 区间估计
说明区间估计的原理和步骤,并讨论其实际应用。
3 假设检验
讲解假设检验的基本思想和步骤,以及其在统计学中的作用。
回归分析
《概率论讲义》PPT课件
概率论讲义PPT课件大纲
简介
介绍概率论的基本概念和应 用领域,初步了解概率论的 历史和发展。
随机变量
定义随机变量,离散型和连 续型随机变量及其概率分布。
概率分布
二项分布,泊松分布和正态 分布。
大数定律与中心极限定理
1
定义大数定律和中心极限定理
深入了解大数定律和中心极限定理的概念和应用。
人口统计学
展示概率论如何应用于人口统计学数据的分析和预测。
物理学和天文学
介绍概率论在物理学和天文学研究中的关键作用。
结论
总结所学内容,展望概率论的未来发展和应用前景。
参考文献
推荐阅读经典著作和相关文献
提供经典著作和相关文献,供学习和研究参考。
《概率论基础》课件
《概率论基础》PPT课件
本课程将为您介绍概率论的基础知识,包括概率的基本概念、性质,常见的 概率模型,概率计算方法以及在实际问题中的应用。
课程介绍
欢迎参加《概率论基础》课程!它将帮助您理解概率论的重要性以及其在实 际生活中的应用。
在本课程中,您将学习概率的基本概念、概率的性质,以及如何使用概率模 型解决实际问题。
天气预报
探索概率在天气预报中的应 用。
医学研究
学习如何使用概率在医学研 究中进行数据分析。
总结和回顾
感谢您参加《概率论基础》课程!在本课程中,我们深入学习了概率的基本概念、性质,常见的 概率模型,概率计算方法以及概率在实际问题中的应用。 希望您通过本课程的学习,加深对概率论的理解,并能将其应用于实际生活和工作中。
连续概率分布
了解连续概率分布,如 正态分布和指数分布。
混合概率模型
探索混合概率模型和它 们的应用。
概率计算方法
1
排列组合
学习如何使用排列和组合计算概率。
条件概率树
2
掌握使用条件概率树解决复杂问题
的方法。
3
贝叶斯定理
了解贝叶斯定理在概率计算中的重 要性。
概率在实际问题中的应用
股票市场
了解如何使用概率计算股票 行情和投资决策。
概率的基本概念
1 随机事件
了解随机事件的定义和特征。
3 事件的概率
学习如何计算事件的概率。
2 样本空间
掌握样本空间的概念和表示方法。Βιβλιοθήκη 概率的性质互斥事件
研究互斥事件的特性和计算 方法。
独立事件
条件概率
探讨独立事件的概念和性质。
学习如何计算条件概率和应 用。
常见的概率模型
本课程将为您介绍概率论的基础知识,包括概率的基本概念、性质,常见的 概率模型,概率计算方法以及在实际问题中的应用。
课程介绍
欢迎参加《概率论基础》课程!它将帮助您理解概率论的重要性以及其在实 际生活中的应用。
在本课程中,您将学习概率的基本概念、概率的性质,以及如何使用概率模 型解决实际问题。
天气预报
探索概率在天气预报中的应 用。
医学研究
学习如何使用概率在医学研 究中进行数据分析。
总结和回顾
感谢您参加《概率论基础》课程!在本课程中,我们深入学习了概率的基本概念、性质,常见的 概率模型,概率计算方法以及概率在实际问题中的应用。 希望您通过本课程的学习,加深对概率论的理解,并能将其应用于实际生活和工作中。
连续概率分布
了解连续概率分布,如 正态分布和指数分布。
混合概率模型
探索混合概率模型和它 们的应用。
概率计算方法
1
排列组合
学习如何使用排列和组合计算概率。
条件概率树
2
掌握使用条件概率树解决复杂问题
的方法。
3
贝叶斯定理
了解贝叶斯定理在概率计算中的重 要性。
概率在实际问题中的应用
股票市场
了解如何使用概率计算股票 行情和投资决策。
概率的基本概念
1 随机事件
了解随机事件的定义和特征。
3 事件的概率
学习如何计算事件的概率。
2 样本空间
掌握样本空间的概念和表示方法。Βιβλιοθήκη 概率的性质互斥事件
研究互斥事件的特性和计算 方法。
独立事件
条件概率
探讨独立事件的概念和性质。
学习如何计算条件概率和应 用。
常见的概率模型
《概率论》课程PPT : 随机变量的分布函数
4
(1, 5)
0 其它
求 X 的分布函数
y
解 当x1时
x
F (x) f (x)dx
0 1 2345 x x
当1 < x 5 时F (x)
x
f (x)dx
1
f (x)dx
x
f (x)dx
1
0 x 1 dx 1 (x 1)
14
(2)X 的密度函数
(1) P(0.3 X 0.7) F(0.7) F(0.3) 0.72 0.32 0.4
(2)密度函数为
f
(x)
F(x)
2x 0
0 x 1 otherwise
例:已知密度函数求分布函数
已知连续型随机变量X的概率密度为
1
f
(
x)
随机变量的分布函数
Distribution Function 分布函数的定义
设X为一随机变量,则对任意实数x,(X<x) 是一个随机事件,称
F(x) P(X x)
为随机变量X的分布函数
F(x)是一个
普通的函数!
定义域为 (-∞,+∞); 值域为 [0,1]。
分布函数表示事件的概率
引进分布函数F(x)后,事件的概率都可以用 F(x)的函数值来表示。
解
X的概率密度
3 e3x x 0 f (x)
0 x 0
P(x1 X x2)
x2 f (x)dx
x1
P(X 1)
f (x)dx
3e3xdx e3
1
1
《概率论》课件
物理学
描述粒子在气体或液体中的运动状态。
金融学
用于股票价格和收益率的分析。
隐马尔科夫模型
定义
隐马尔科夫模型是一种特殊的马尔科夫模型 ,其中观测状态与隐藏状态有关,而隐藏状 态之间相互独立。
应用
语音识别、手写识别、生物信息学等领域。
05
大数定律与中心极限定理
大数定律及其应用
大数定律
在独立重复试验中,当试验次数趋于无穷时,事件发 生的频率趋于该事件发生的概率。
《概率论》ppt课 件
目录
• 概率论简介 • 概率的基本性质 • 随机变量及其分布 • 随机过程与马尔科夫链 • 大数定律与中心极限定理 • 贝叶斯统计推断
01
概率论简介
概率论的定义
概率论
研究随机现象的数学学科,通过数学模型和公式 来描述随机事件、随机变量和随机过程。
随机变量
表示随机现象的数值变量,其取值具有随机性。
THANKS
感谢观看
计算机科学
概率论在计算机科学中用于算法设计和数据 挖掘等领域。
02
概率的基本性质
概率的公理化定义
概率的公理化定义是概率论的基础,它规定了概率的几个基本性质,包括非负性 、规范性、可加性和有限可加性。
非负性指的是任何事件的概率都不小于0;规范性指的是必然事件的概率为1;可 加性指的是两个独立事件的概率等于它们各自概率的和;有限可加性指的是任意 有限个两两独立的事件的概率等于这些事件概率的和。
应用
在统计学中,大数定律用于估计样本的统计量和参数 ,如平均值、方差等。
中心极限定理及其应用
中心极限定理
无论随机变量的分布是什么,当样本量足够大时,样 本均值的分布近似正态分布。
概率论第一章ppt课件
A 1 “: 至少有一人命中目标 A 2 “: 恰有一人命中目标” A 3 “: 恰有两人命中目标” A 4 “: 最多有一人命中目标 A 5 “: 三人均命中目标” A 6 “: 三人均未命中目标”
”:
ABC
: ABCABCABC
: AC BABC ABC
”: BCACAB
:
ABC
:
ABC
21
小结
i1
i1
13
3. 积(交)事件 : 事件A与事件B同时发生,记
作 AB 或AB。
推广:n个事件A1, A2,…, An同时发生,记作
n
n
A1A2…An或 A i 或 A i
i1
i1
14
4. 差事件: A-B称为A与B的差事件, 表示事件 A发生而事件B不发生
15
5. 互不相容事件(也称互斥的事件): 即事件 A与事件B不能同时发生。AB= 。
3
第一章 概率论的基本概念
§1.1 随机事件及其运算 §1.2 概率的定义及其性质 §1.3 古典概型与几何概型 §1.4 条件概率 §1.5 独立性
4
§1.1 随机事件及其运算
1.1.1 随机现象
自然界的现象按照发生的可能性(或者必然 性)分为两类:
一类是确定性现象,特点是条件完全决定结果 一类是随机现象,特点是条件不能完全决定结 果 在一定条件下,可能出现这样的结果,也可 能出现那样的结果,我们预先无法断言,这类现象 成为随机现象。
概率论与数理统计
1
概率论与数理统计是研究什么的?
随机现象:不确定性与统计规律性 概率论——从数量上研究随机现象的统计规律性的
科学。
数理统计——从应用角度研究处理随机性数据,建 立有效的统计方法,进行统计推理。
概率论ppt课件
先验概率与后验概率
先验概率是指在事件产生前对某一事件产生的概率的估计, 后验概率是指在事件产生后,根据新的信息对某一事件产生 的概率的重新估计。
贝叶斯分析在实践中的应用
金融风险评估
贝叶斯分析可以用于金融风险评估,通过对历史数据的分析,猜测未来市场的 走势和风险。
医学诊断
在医学诊断中,贝叶斯分析可以用于根据患者的症状和体征,结合疾病的特点 ,对疾病进行诊断和猜测。
遍历性和安稳散布
遍历性的定义
01
如果一个马尔科夫链的任意状态在长期平均下占据相同的时间
比例,则称该马尔科夫链具有遍历性。
安稳散布的定义
02
如果一个马尔科夫链的状态概率散布不随时间变化,则称该散
布为安稳散布。
遍历性和安稳散布的关系
03
一个具有遍历性的马尔科夫链通常会有一个唯独的安稳散布,
该散布描写了马尔科夫链在长期运行下的状态概率散布。
伯努利实验
只有两种可能结果的实验 ,例如抛硬币。
二项散布
在n次伯努利实验中成功的 次数所服从的散布。
泊疏松布
在单位时间内(或单位面 积上)随机事件的次数所 服从的散布。
连续型随机变量
正态散布
一种常见的连续型随机变量,其 概率密度函数呈钟形。
指数散布
描写某随机事件的时间间隔所服从 的散布。
均匀散布
在一定区间内均匀散布的概率密度 函数。
的散布假设检验中。
强大数定律
强大数定律的定义
强大数定律是概率论中的一个强大工具,它表明在独立同散布随 机变量序列中,几乎必定有任意给定的收敛子序列。
强大数定律的证明
可以通过切比雪夫不等式和Borel-Cantelli引理等工具来证明。
先验概率是指在事件产生前对某一事件产生的概率的估计, 后验概率是指在事件产生后,根据新的信息对某一事件产生 的概率的重新估计。
贝叶斯分析在实践中的应用
金融风险评估
贝叶斯分析可以用于金融风险评估,通过对历史数据的分析,猜测未来市场的 走势和风险。
医学诊断
在医学诊断中,贝叶斯分析可以用于根据患者的症状和体征,结合疾病的特点 ,对疾病进行诊断和猜测。
遍历性和安稳散布
遍历性的定义
01
如果一个马尔科夫链的任意状态在长期平均下占据相同的时间
比例,则称该马尔科夫链具有遍历性。
安稳散布的定义
02
如果一个马尔科夫链的状态概率散布不随时间变化,则称该散
布为安稳散布。
遍历性和安稳散布的关系
03
一个具有遍历性的马尔科夫链通常会有一个唯独的安稳散布,
该散布描写了马尔科夫链在长期运行下的状态概率散布。
伯努利实验
只有两种可能结果的实验 ,例如抛硬币。
二项散布
在n次伯努利实验中成功的 次数所服从的散布。
泊疏松布
在单位时间内(或单位面 积上)随机事件的次数所 服从的散布。
连续型随机变量
正态散布
一种常见的连续型随机变量,其 概率密度函数呈钟形。
指数散布
描写某随机事件的时间间隔所服从 的散布。
均匀散布
在一定区间内均匀散布的概率密度 函数。
的散布假设检验中。
强大数定律
强大数定律的定义
强大数定律是概率论中的一个强大工具,它表明在独立同散布随 机变量序列中,几乎必定有任意给定的收敛子序列。
强大数定律的证明
可以通过切比雪夫不等式和Borel-Cantelli引理等工具来证明。
《概率论总复习》课件
常见问题解答二:条件概率与独立性的关系?
总结词
条件概率与独立性是概率论中的重要概念,它们之间 存在密切的联系。
详细描述
条件概率是指在某个已知事件发生的条件下,另一个 事件发生的概率。而独立性则是指两个事件之间没有 相互影响,一个事件的发生不影响另一个事件的发生 。在条件概率中,如果两个事件在给定条件下是独立 的,那么它们同时发生的概率等于各自发生的概率的 乘积。因此,条件概率和独立性之间存在密切的联系 ,理解它们的概念和关系有助于更好地掌握概率论中 的相关内容。
04
概率论的应用
统计学中的概率论应用
统计推断
概率论为统计学提供了理论基 础,用于估计未知参数、检验 假设和进行预测。
随机抽样
概率论确保了随机抽样的公正 性和代表性,使得样本数据能 够反映总体特征。
统计决策
基于概率论的决策分析方法, 如贝叶斯决策和风险分析,帮 助决策者做出最优选择。
计算机科学中的概率论应用
100%
离散型随机变量的分布
离散型随机变量的分布通常由概 率质量函数或概率分布函数描述 。
80%
连续型随机变量的分布
连续型随机变量的分布由概率密 度函数描述,其总概率为1,即 ∫−∞∞f(x)dxF(x)=∫−∞∞f(x)dxF (x)=∫−∞∞f(x)dxF(x)=1。
02
概率论中的重要定理
贝叶斯定理
01
02
03
04
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总 体
…
寿命 X 可用指数分布 来刻划
寿命总体是指数分布总体
某批 灯泡的寿命
鉴于此,常用随机变量的记号 或用其分布函数表示总体.
如说总体X或总体F(x) .
类似地,在研究某地区中学生的营养状况时 , 若关心的数量指标是身高和体重,我们用X 和Y 分别表示身高和体重,那么此总体就可用二维随 机变量(X,Y)或其联合分布函数 F(x,y)来表示.
在概率论中所研究的随机变量,它的分布都 是假设已知的,在这一前提下去研究它的性质、 特点和规律性,例如求出它的数字特征,讨论随机 变量函数的分布,介绍常用的各种分布等。
而在数理统计中的随机变量,它的分布是未 知的,或者不完全知道,人们通过对所研究的随 机变量进行重复、独立的观察,得到许多观察值 ,对这些数据进行分析,从而对随机变量的分布 作出种种判断。
某批 灯泡的寿命
ห้องสมุดไป่ตู้
国产轿车每公里 的耗油量
该批灯泡寿命的全 体就是总体
国产轿车每公里耗油量 的全体就是总体
对研究对象上的某项数量指标进行观察。 试验的全部可能的观察值称为总体. 这些值不一定各不相同(可能重复),数目上 也不一定有限. 每一个可能的观察值称为个体. 总体中所包含的个体的个数称为总体的容量.
对无限总体, 因抽取一个个体不影响它的分布, 所以总是采用不放回抽样.
定义: 设X是具有分布函数F的随机变量,若X1, X2, …, Xn是具有同一分布函数的、相互独立的随机 变量,则称X1, X2, …, Xn为从分布函数F(或总体F、 或总体X) 得到的容量为n的简单随机样本,简称样 本,它们的观察值x1, x2,…, xn称为样本值,又称为X 的n个独立的观察值.
6.1 随机样本 总体和样本
数理统计不同于一般的资料统计,它更侧重 于应用随机现象本身的规律性进行资料的收集、 整理和分析.
由于大量随机现象必然呈现出它的规律性, 因而从理论上讲,只要对随机现象进行足够多次 观察,被研究的随机现象的规律性一定能清楚地 呈现出来. 但客观上只允许我们对随机现象进行 次数不多的观察试验,也就是说, 我们获得的只 是局部观察资料.
有限总体 总体
无限总体
例1 研究某地区N个农户的年收人. 总体指他们的年收入的N个数字.
例2 用一把尺子去量一个物体的长度. 总体应该理解为一切所有可能的测量值的全体.
2、总体的分布
一般, 我们所研究的总体的某项数量指标X是一个 随机变量, 其取值在客观上有一定的分布. 因此, 对 总体的研究,就是对相应的随机变量X的研究。
在数理统计中,不是对所研究的对象全体 (称 为总体)进行观察,而是抽取其中的部分(称为样本) 进行观察获得数据(抽样),并通过这些数据对总体 进行推断.
数理统计方法具有“部分推断整体”的特征 .
1.总体
实际上,我们真正关心的并不是研究对象本身, 而是其某项数量指标.
比如某家工厂的一种产品的使用寿命这样一 项数量指标.
钱粮、户口、地震、水灾等等的记载,说明人 们很早就开始了统计的工作 . 但是当时的统计, 只是对有关事实的简单记录和整理,而没有在 一定理论的指导下,作出超越这些数据范围之 外的推断.
到了十九世纪末二十世纪初,随着近代数 学和概率论的发展,才真正诞生了数理统计学 这门学科.
数理统计学是一门应用性很强的学科. 它 是研究怎样以有效的方式收集、 整理和分析带 有随机性的数据,以便对所考察的问题作出推 断和预测,直至为采取一定的决策和行动提供 依据和建议.
2. 独立性: X1, X2,…, Xn是相互独立的随机变量.
当n次观察一经完成, 得到n个具体的数 x1, x2,…, xn , 称为样本X1, … , Xn的一次观察值, 简称样本值 .
对有限总体, 采用放回抽样可得简单随机样本, 但放回抽样使用起来不方便, 当个体总数N比要得 到的样本的容量n大得多时, 在实际中可将不放回抽 样近似当作放回抽样来处理.
(这里n1+n2+n3+n4+n5=N).
则总体X的分布为离散型分布, 其分布律为:
X 0.5 0.8 1 1.2 1.5 P k n1/N n2/N n3/N n4/N n5/N
例如:研究某批灯泡的寿命时,关心的数量指 标就是寿命,那么,此总体就可以用随机变量X 表示,或用其分布函数F(x)表示 .
样本容量为5
对总体X在相同的条件下, 进行n次重复、独立 观察, 其结果依次记为X1, X2, …, Xn, 这样得到的随 机变量X1, X2, …, Xn是来自总体X的一个简单随机样 本, 与总体随机变量具有相同的分布. n是样本的容 量. 这种抽样, 叫作“简单随机抽样”, 其特点:
1. 代表性: X1, X2,…, Xn中每一个与所考察的总体有 相同的分布.
3. 样本
总体分布一般是未知, 或只知道是包含未知参 数的分布, 为推断总体分布及各种特征, 按一定规 则从总体中抽取若干个体进行观察试验, 以获得有 关总体的信息 , 这一抽取过程称为 “抽样”, 所抽 取的部分个体称为样本. 样本中所包含的个体数目 称为样本容量.
从国产轿车中抽5辆 进行耗油量试验
今后, 我们称X的分布函数和数字特征分别为总 体的分布函数和数字特征, 并不再区分总体与相应 的随机变量X.
对总体的称呼: 总体, 总体X与总体F.
例3 (例l续) 例l中,若农户年收入以万元计, 假定N户中收入X为以下几种取值: 0.5, 0.8, l, 1.2和1.5. 取这些值的农户个数分别为:n1, n2, n3, n4, n5,
• 计算机科学学院 • 王艳娥
第六章 样本及抽样分布
引言 随机样本 抽样分布
引言
本章转入课程的第二部分 数理统计
概率论是数理统计的理论基础,数理统计是概 率论的重要应用。
数理统计是以概率论的理论为基础、通过试验 所得数据来研究随机现象的一门数学分支,应用广 泛,内容丰富。
从历史的典籍中,人们不难发现许多关于
现实世界中存在着形形色色的数据,分析这些 数据需要多种多样的方法.
因此,数理统计中的方法和支持这些方法的相 应理论是相当丰富的.概括起来可以归纳成两大类:
参数估计──根据数据,用一些方法对分布的 未知参数进行估计.
假设检验──根据数据,用一些方法对分布的 未知参数进行检验.
它们构成了统计推断的两种基本形式.这两种 推断渗透到了数理统计的每个分支.