第8讲最短路问题

合集下载

最短路问题的求解方法

最短路问题的求解方法

最短路问题的求解方法最短路问题是图论中的一个经典问题,它在很多实际应用中都有着重要的作用。

在现实生活中,我们经常需要求解最短路径,比如在地图导航、网络通信、交通运输等领域。

因此,研究最短路问题的求解方法具有重要的理论意义和实际应用价值。

在图论中,最短路问题的求解方法有很多种,其中比较经典的有Dijkstra算法、Bellman-Ford算法、Floyd-Warshall算法等。

这些算法各有特点,适用于不同的场景和要求。

下面我们就逐一介绍这些算法的原理和求解方法。

Dijkstra算法是一种用于求解单源最短路径的算法,它采用贪心策略,每次找到当前距离最短的节点进行松弛操作,直到所有节点都被遍历。

Dijkstra算法的时间复杂度为O(V^2),其中V为节点的个数。

这种算法适用于边权值为正的图,可以求解从单个源点到其他所有点的最短路径。

Bellman-Ford算法是一种用于求解单源最短路径的算法,它可以处理边权值为负的图,并且可以检测负权回路。

Bellman-Ford算法的时间复杂度为O(VE),其中V为节点的个数,E为边的个数。

这种算法适用于一般情况下的最短路径求解,但是由于其时间复杂度较高,不适用于大规模图的求解。

Floyd-Warshall算法是一种用于求解所有点对最短路径的算法,它可以处理边权值为正或负的图,但是不能检测负权回路。

Floyd-Warshall算法的时间复杂度为O(V^3),其中V为节点的个数。

这种算法适用于求解图中所有点对之间的最短路径,可以同时求解多个源点到多个目标点的最短路径。

除了上述几种经典的最短路求解算法外,还有一些其他的方法,比如A算法、SPFA算法等。

这些算法在不同的场景和要求下有着各自的优势和局限性,需要根据具体情况进行选择和应用。

在实际应用中,最短路问题的求解方法需要根据具体的场景和要求进行选择,需要综合考虑图的规模、边权值的情况、时间效率等因素。

同时,对于大规模图的求解,还需要考虑算法的优化和并行化问题,以提高求解效率。

最短路问题

最短路问题

最短路问题基本内容:(1)问题的提法——寻求网络中两点间的最短路就是寻求连接这两个点的边的总权数最小的通路。

(注意:在有向图中,通路——开的初等链中所有的弧应是首尾相连的。

)(2)应用背景——管道铺设、线路安排、厂区布局、设备更新等。

D氏标号法(Dijkstra)(1)求解思路——从始点出发,逐步顺序地向外探寻,每向外延伸一步都要求是最短的。

(3)选用符号的意义:①P 标号(Permanent固定/永久性标号),从始点到该标号点的最短路权。

1、一辆送货车从配送中心所在地V1 给V6,V7 两地客户实现共同配送。

已知车辆自身成本消耗0.2 元/ 公里。

各站点间的距离(单位:公里)数如下图所示。

在V6,V7两地的线路间有一收费站,每次每台车辆通过均收费15 元。

问题:(1)用标号法求出送货车的最优送货路线(2)此次送货,车辆总的花费是多少解:把收费站的收费折算成路线后,如下图:用用标号法解出各站点距V1的最短路径用标号法解出最短路线:V1-V2-V4-V5-V6-V7按上述路线的走法花费最少,TC=95×0.2+15=34 元若避开收费站走:V1-V2-V4-V5-V6-V5-V7TC=(85+20+45)×0.2=30 元因此,最优送货路线:V1-V2-V4-V5-V6-V5-V7;此次送货,车辆总的花费是30 元。

2、下图为某地区的交通运输道路示意图。

其中V1为配送中心位置,V8为要货客户位置,现V8客户向配送中心提出了4吨订货要求,并且要越快越好。

配送中心物流计划人员已做出了用一台4吨东风卡车配送的计划安排。

但要以最快的速度将货物送达,就必须确定最短的配送路线,而该计划人员不知如何确定。

(1)请您帮该物流计划人员优化出最佳的送货路线?(2)已知车辆的平均行驶速度为50公里/小时,如早晨8:00发车,货物什么时间可以送达客户?解:用T 标号法求解得最短路线为:V1-V2-V3-V6-V7-V8。

[管理学]最短路问题

[管理学]最短路问题

最短路的子路也是最短路。
思想:将D=(V,A,W)中vs到所有其它顶点的最短
路按其路长从小到大排列为: u0≤ u1 ≤ u2 ≤…≤ un
u0表示vs到自身的长度,相应最短路记为: P0,P1,P2,…,Pn,P1一定只有一条弧。 记X 0 v s , X 0 V \ X 0 , 则
例 用Dijkstra算法求前面例子中从v1到各点的最短路。
v2
6
1 2 6
v5
4 3 10 2
2
v9
6
4
3
v1
1
3
v3
2
v8
v4
10
v6
v7
解:u1=0,u2=6,u3=3,u4=1,u5=u6=u7=u8=u9=+ ,
j=1 (j=2,3,…,9)
X0={v1} ,X0={v2,v3,…,v9}
。设
步骤2 若m+1=n-1,结束。若m+1<n-1,置m=m+1,转步骤1
v2
1
2 5 3 -4
v3
2 3 l(v1)=0, l(vj)=1 (j=2,3,4,5)
v4
u1
(1)
v1
u2 u3
( 2) (1) ( 2) (1)
v5
u 2 w22 1, u 2 w23 3, u5 w54 6, u3 w35 1, u 2 w22 1, u3
uj(m) =
算法步骤:
步骤0 令 l(v1)=0,l(vj)=1(2 j n); m=1,u1(m)=0,uj(m)=w1j (2 j n)。
uk (m) + wkj 步骤1 对于一切2 j n,计算 min 1 k n

最短路的问题装名词解释

最短路的问题装名词解释

最短路的问题装名词解释在计算机科学领域中,最短路问题是一类经典的算法问题,其主要解决的是在加权图中找到两个节点之间的最短路径。

这个问题在实际应用中非常重要,例如在网络路由中,寻找两个节点之间最短路径的算法可以帮助我们优化数据传输的效率。

为了更好地理解最短路问题,我们首先来解释一些关键的术语。

在计算机科学中,图是由一组节点和连接这些节点的边组成的抽象数学模型。

每个节点代表一个实体,而边则代表节点之间的连接关系。

加权图是一种特殊的图,其边上带有权重。

这个权重可以代表任何实际应用中的度量,例如距离、时间、费用等。

最短路径是指连接两个节点之间的路径中,权重总和最小的路径。

更具体地说,我们可以定义一个函数d(u,v),它表示节点u到节点v的最短路径的权重。

这个函数可以通过使用不同的算法来计算得到。

最短路问题的目标就是找到这个函数的值,并找到代表最短路径的实际路径。

在解决最短路问题时,有两种常见的算法:Dijkstra算法和Bellman-Ford算法。

Dijkstra算法是一种贪心算法,它从一个节点开始,逐步扩展到其他节点,直到找到最短路径。

该算法通过维护一个距离数组来记录到达每个节点的当前最短路径长度。

开始时,所有节点的距离被初始化为无穷大,然后逐步更新距离数组,直到找到最短路径。

与之相比,Bellman-Ford算法则更加灵活,可以处理带有负权边的图。

该算法通过使用一种松弛操作来逐步减小节点之间的距离估计值。

开始时,所有节点的距离估计值被初始化为正无穷大,然后通过对每条边进行一系列松弛操作,不断更新距离估计值,直到没有更多的更新为止。

如果在这个过程中发现了负权环,说明图中存在无穷小权重的路径,就会报告一个负权环的存在。

最短路问题的解决方法不仅限于这两个算法,还有其他一些算法,例如Floyd-Warshall算法和A*算法等。

Floyd-Warshall算法可以找到图中任意两个节点之间的最短路径。

它通过迭代更新一个矩阵来计算最短路径权重。

《最短路问题》课件

《最短路问题》课件

3 最短路问题的历史
渊源
最短路问题最早由荷兰 数学家 Edsger Dijkstra 在 1956 年提出。
最短路问题的定义
图论中的最短路问 题指什么?
在无向连通图或有向连通图 中,从某一起点到其余各顶 点的最短路径。
什么是路径长度?
路径长度是指路径上边或弧 的权值之和。
什么是无环图?
无环图指不存在环的图,可 以用拓扑排序求解最短路。
《最短路问题》PPT课件
欢迎来到最短路问题的世界。在本课件中,我们将介绍四种最短路算法及其 应用,并分析它们的优缺点。
问题背景
1 什么是最短路问题? 2 为什么需要解决最
短路问题?
最短路问题是计算从源 节点到目标节点的最短 路径的问题。它是图论 中的一个经典算法问题。
很多实际问题都涉及到 最短路径的计算,比如 电网、交通、通信等领 域。
Floyd-Warshall算法解决的是所有点对之间 的最短路径问题,可以处理有向图或负边权 图。
Bellman-Ford算法
Bellman-Ford算法解决的是有向图中含有负 权边的单源最短路径问题。
A*算法
A*算法综合了贪心和广度优先搜索,在启发 函数的帮助下,可以高效解决带权图上的单 源最短路径问题。
算法示例
1
Step 1
假设我们要求从 A 点到其他各点的最
Step 2
2
短路径。
首先初始化 A 点到其他各点的距离为
无穷大,A 点到自身的距离为 0。
3
Step 3
找到 A 点的直接邻居,更新其距离值。
Step 4
4
重复 Step 3,直到所有节点的距离值 都已经更新。
总结

最短路问题实际案例

最短路问题实际案例

最短路问题实际案例介绍最短路问题是图论中的一个经典问题,其目标是找到两个顶点之间的最短路径。

这个问题在日常生活中有着广泛的应用,例如导航系统、网络路由以及物流配送等场景中都需要解决最短路问题。

本文将通过实际案例来深入探讨最短路问题及其应用。

什么是最短路问题?最短路问题是指在一个给定的图中,找到两个顶点之间的最短路径。

通常情况下,路径的长度可以通过边的权重来衡量。

最短路问题可以分为单源最短路问题和全源最短路问题,前者是指从一个固定的起点出发,求到图中其他所有顶点的最短路径;后者是指求图中任意两个顶点之间的最短路径。

实际案例:导航系统导航系统是最短路问题的一个典型应用。

当我们使用导航系统来规划路线时,系统需要找到最短路径以优化我们的行车时间。

下面以一个具体案例来说明导航系统如何解决最短路问题。

案例场景假设我们身处一座陌生的城市,想要前往城市中心的一个著名景点。

我们打开导航系统,输入起点和终点信息。

导航系统会根据地图数据自动生成最短路径,并提供导航指引。

导航系统的实现导航系统实现最短路径规划的过程可以分为以下几个步骤:1.构建路网图:将城市中的道路以及交叉口等信息转化为图的形式。

图中的节点表示交叉口,边表示道路,边的权重可以表示行驶距离、时间等。

2.选择算法:根据实际需求选择合适的最短路径算法。

常见的算法有Dijkstra算法、Bellman-Ford算法和A*算法等。

3.计算最短路径:根据选定的算法,在路网图上计算起点到终点的最短路径。

算法会考虑边的权重以及路径的方向等因素。

4.导航指引:根据计算得到的最短路径,导航系统会生成具体的导航指引,包括行驶指示、路口转向、距离和预计时间等信息。

优化策略导航系统通过不断的优化,提高了最短路径的计算效率和准确性。

以下是几种常见的优化策略:1.路网数据更新:导航系统会及时更新路网数据,包括道路信息、交通状况等。

这样可以保证计算得到的最短路径更准确。

2.平行算法:为了加快计算速度,导航系统采用并行算法来计算最短路径。

最短路问题(整理版)

最短路问题(整理版)

最短路问题(short-path problem)若网络中的每条边都有一个权值值(长度、成本、时间等),则找出两节点(通常是源节点与结束点)之间总权和最小的路径就是最短路问题。

最短路问题是网络理论解决的典型问题之一,可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。

最短路问题,我们通常归属为三类:单源最短路径问题(确定起点或确定终点的最短路径问题)、确定起点终点的最短路径问题(两节点之间的最短路径)1、Dijkstra算法:用邻接矩阵a表示带权有向图,d为从v0出发到图上其余各顶点可能达到的最短路径长度值,以v0为起点做一次dijkstra,便可以求出从结点v0到其他结点的最短路径长度代码:procedure dijkstra(v0:longint);//v0为起点做一次dijkstrabegin//a数组是邻接矩阵,a[i,j]表示i到j的距离,无边就为maxlongintfor i:=1 to n do d[i]:=a[v0,i];//初始化d数组(用于记录从v0到结点i的最短路径), fillchar(visit,sizeof(visit),false);//每个结点都未被连接到路径里visit[v0]:=true;//已经连接v0结点for i:=1 to n-1 do//剩下n-1个节点未加入路径里;beginmin:=maxlongint;//初始化minfor j:=1 to n do//找从v0开始到目前为止,哪个结点作为下一个连接起点(*可优化) if (not visit[j]) and (min>d[j]) then//结点k要未被连接进去且最小begin min:=d[j];k:=j;end;visit[k]:=true;//连接进去for j:=1 to n do//刷新数组d,通过k来更新到达未连接进去的节点最小值,if (not visit[j]) and (d[j]>d[k]+a[k,j]) then d[j]:=a[k,j]+d[k];end;writeln(d[n]);//结点v0到结点n的最短路。

最短路问题数学模型

最短路问题数学模型

最短路问题数学模型
最短路问题是指在带权有向图中,求两个顶点之间的最短路径。

这个问题在现实生活中有很多应用,如在交通规划、电信网络设计、人工智能等领域。

为了解决这个问题,需要建立一个数学模型。

数学模型是指用数学方法对实际问题进行抽象和描述,从而进行定量分析和求解的方法。

对于最短路问题,可以使用图论和运筹学的方法建立数学模型。

在图论中,最短路问题可以使用迪杰斯特拉算法或弗洛伊德算法求解。

这些算法基于图的边权和,采用动态规划的思想,逐步计算每个节点到源节点的最短距离,最终得到整个图中每对节点之间的最短路径。

在运筹学中,最短路问题可以被看作是一种线性规划问题。

可以将每个节点看作是一个决策变量,节点之间的边权看作是线性约束条件,目标函数则是从源节点到目标节点的路径长度。

通过对目标函数进行最小化,可以得到最短路径的解。

总之,最短路问题数学模型可以通过图论和运筹学的方法进行建立和求解。

建立好的数学模型可以为实际问题提供科学解决方案,优化效率和效果。

- 1 -。

最短路问题的求解方法

最短路问题的求解方法

最短路问题的求解方法最短路问题是图论中的经典问题之一,它在实际生活中有着广泛的应用,比如在交通规划、通信网络、物流配送等领域都有着重要的作用。

在解决最短路问题时,我们需要找到图中两个顶点之间的最短路径,即使得路径上的边的权值之和最小。

针对不同的图,我们可以采用不同的方法来求解最短路问题,下面将介绍几种常见的求解方法。

首先,最简单直接的方法是暴力搜索法。

暴力搜索法适用于小规模的图,它通过穷举所有可能的路径来找到最短路径。

虽然这种方法在理论上是可行的,但是在实际应用中由于时间复杂度过高,通常不适用于大规模的图。

其次,我们可以使用迪杰斯特拉算法来解决最短路问题。

迪杰斯特拉算法是一种贪心算法,它通过逐步扩展离源点距离最短的节点来逐步求解最短路径。

迪杰斯特拉算法的时间复杂度为O(V^2),其中V为顶点数,因此适用于稠密图。

另外,我们还可以使用贝尔曼-福特算法来求解最短路问题。

贝尔曼-福特算法是一种动态规划算法,它通过多次松弛操作来逐步逼近最短路径。

贝尔曼-福特算法适用于存在负权边的图,但是由于其时间复杂度为O(VE),因此在稠密图中效率较低。

最后,我们还可以使用Floyd-Warshall算法来解决最短路问题。

Floyd-Warshall算法是一种动态规划算法,它通过逐步考察所有顶点对之间的路径来求解最短路径。

Floyd-Warshall算法的时间复杂度为O(V^3),因此适用于小规模图。

总的来说,不同的最短路求解方法适用于不同的图,我们需要根据具体的情况来选择合适的方法。

在实际应用中,我们还可以结合启发式算法、并行算法等方法来进一步提高求解效率。

希望本文介绍的内容能够对读者有所帮助,谢谢!。

第8讲-最短路问题

第8讲-最短路问题
偶对的集合的映射,称为关联函数. 例1 设 G=(V,E, ),其中
V={v1 ,v2 , v3 , v4}, E={e1, e2 , e3, e4, e5},
(e1) v1v2 , (e2 ) v1v3, (e3 ) v1v4 , (e4 ) v1v4 , (e5 ) v3v3 .
G 的图解如图.
否则
即当vk被插入任何两点间旳最短 途径时,被统计在R(k)中,依次 求 D时( ) 求得 ,R() 可由 来R() 查找 任何点对之间最短路旳途径.
返回
算法原理—— 查找最短路途径旳措施
若 rij( ) p1 ,则点 p1 是点 i 到点 j 的最短路的中间点.
然后用同样的方法再分头查找.若:
称为 G 的由 E1 导出的子图,记为 G[E1].
G
G[{v1,v4,v5}]
G[{e1,e2,e3}]
返回
关联矩阵
对无向图G,其关联矩阵M=(mij ) ,其中:
mij 10
若vi与e j相关联 若vi与e j不关联
注:假设图为简朴图
e1 e2 e3 e4 e5
1 0 0 0 1 v1
M= 1 1 0 1 0 v2
d (v4 ) 4
d (v4 ) 2 d (v4 ) 3 d (v4 ) 5
定理1 d (v) 2 (G) vV (G)
推论1 任何图中奇次顶点的总数必为偶数.
例 在一次聚会中,认识奇数个人旳人数一定是偶数。
返回
子图
定义 设图 G=(V,E, ),G1=(V1,E1,1 )
(1) 若 V1 V,E1 E,且当 e E1 时,1 (e)= (e),则称 G1 是 G 的子图.
所以, 可采用树生长旳过程来求指定顶点到其他顶点 旳最短路.

最短路问题

最短路问题

最短路问题何谓最短路?最短路问题考虑的是有向网络N=(V,A,W),其中弧(i,j)∈A 对应的权又称为弧长或费用。

对于其中的两个顶点s,t∈V,以s 为起点,t 为终点的有向路称为s-t 有向路,其所经过的所有弧上的权(或弧长、费用)之和称为该有向路的权(或弧长、费用)。

所有s-t 有向路中权最小的一条称为s-t 最短路。

ij w 如何得到最短路?最短路问题的线性规划描述如下:(,)m i ni j i j i j A w x ∈∑ (1):(,):(,)1,,..1,,0,,ij ji j i j A j j i A i s s t x x s i s t ∈∈=⎧⎪t −=−=⎨⎪≠⎩∑∑ (2) 0ij x ≥ (3) 其中决策变量表示弧(i,j)是否位于s-t 路上:当=1时,表示弧(i,j)位于s-t 路上,当=0时,表示弧(i,j)不在s-t 路上。

本来,应当是0-1变量,但由于约束(2)的约束矩阵就是网络的关联矩阵,它是全幺模矩阵,因此0-1变量可以松弛为区间[0,1]中的实数(当用单纯形法求解时,将得到0-1整数解)。

ij x ij x ij x ij x 值得注意的是,我们这里将变量直接松弛为所有非负实数。

实际上,如果可以取0-1以外的整数,则约束条件并不能保证对应于非零的弧所构成的结构(记为P)一定是一条路,因为这一结构可能含有圈。

进一步分析,我们总是假设网络本身不含有负圈,而任何正圈不可能使目标函数最小,因此上面的约束条件(2),(3)可以保证当达到最优解时,P 如果包含圈,该圈一定是零圈,我们从P 中去掉所有的零圈,就可以得到最短路。

ij x ij x ij x 无圈网络与正费用网络一般采用标号设定算法。

Bellman 方程(最短路方程)将约束条件(2)两边同时乘以-1,得到其对偶问题为:m ax()t s u u − (4)..,(,)j i ij s t u u w i j A −≤∀∈ (5)根据互补松弛条件,当x 和u 分别为原问题和对偶问题的最优解时:()0,(,i j j i i j )x u u w i j −−=∀∈A (6) 因此,当某弧(i,j)位于最短路上时,即对应的变量>0时,一定有ij x j i i u u w −=j 。

最短路问题的知识表示方法

最短路问题的知识表示方法

最短路问题的知识表示方法最短路问题的知识表示引言最短路问题是图论中的经典问题之一,其目标是找出两个节点之间的最短路径。

本文将介绍最短路问题的知识表示,并详细讨论各种解决方法。

单源最短路问题Dijkstra算法•Dijkstra算法是解决单源最短路问题的经典算法之一。

•算法使用了贪心策略,逐步确定每个节点的最短距离。

•算法的时间复杂度为O(V^2),其中V表示图中的节点数。

Bellman-Ford算法•Bellman-Ford算法是解决单源最短路问题的另一种常用算法。

•算法通过对边进行松弛操作,找出最短路径。

•Bellman-Ford算法可以处理带有负权边的图。

•算法的时间复杂度为O(VE),其中V表示图中的节点数,E表示图中的边数。

多源最短路问题Floyd-Warshall算法•Floyd-Warshall算法是解决多源最短路问题的经典算法之一。

•算法通过动态规划的方式,逐步更新节点之间的最短距离。

•算法的时间复杂度为O(V^3),其中V表示图中的节点数。

Johnson算法•Johnson算法是解决多源最短路问题的另一种常用算法。

•算法通过引入一个虚拟节点,将图中的负权边转化为非负权边的形式。

•算法的时间复杂度为O(VE + V^2logV),其中V表示图中的节点数,E表示图中的边数。

应用领域•最短路问题在计算机网络中广泛应用,用于寻找数据包的最优路径。

•在交通运输领域,最短路问题被用于规划最短路径,提高运输效率。

•最短路问题还被应用于物流配送、电力网络等领域中。

总结最短路问题是图论中的重要问题,有多种解决方法。

本文介绍了单源最短路问题和多源最短路问题的几种经典算法,并讨论了它们的应用领域。

了解最短路问题的知识表示,可以为解决实际问题提供参考和指导。

最短路问题

最短路问题

v6
9
7
4
1 1 1
1 2 2
1 2 3
1 2 3
1 2 3
1 2
3
10 8
8 6
9
7
5 3 4
0 4 3
4 0 1
3
1
0
1 11
2 2 2
3 3 3
4 4 4
4 5 5
4
5 6
由于D(2) =D(3),故D(3)中的元素就是vi到vj的 最短距离,D(3)称为最短距离矩阵。
1 1 2 2 3
到其他不直接邻接的节点的最短 距离不会发ห้องสมุดไป่ตู้变化。
②在v1到所有其他节点的最短距离中选择最小的距 离,找到节点 vk,使下式满足:
求 min{T (v j )}
vk
满足
T (vk
)
min{T
v jS
(v
j
)}
令:P(vk ) T (vk )
比较v1到所有其它节点的最短距离,找到 节点vk,并将最小的距离记录在P(vk)中。
的最短路。
(1)使用条件—没有负回路
(2)步骤:


d 1 j
w1 j,j
2,3,, N,其中
w1 j为起点v1
到 v j 的弧(v1, v j )的权;
②用下列递推公式进行迭代:
d d k min
j
i
k 1
j
wij
j 2,3,, N
其中,
d k j
表示从起点 v1 到点 v j 走k步
的最短距离;
一、问题的提法及应用背景
(1)问题的提法——寻求网络中两点间 的最短路就是寻求连接这两个点的边的 总权数为最小的通路。(注意:在有向 图中,通路——开的初等链中所有的弧 应是首尾相连的。)

运筹学-最短路问题[课件参考]

运筹学-最短路问题[课件参考]

Page 10
1、最短路算法基于以下原理:
一个最优策略的任一子策略也是最优策略.
若P是从vs到vt间的最短路, vi是P中的一个点,则vs到vi的最
短路就是从vs 沿P到vi的那条路。 v2
v4
v1
v3
v5
v1 →v2 →v3一定是v1 →v3的最短路,
v2 →v3 →v4也一定是v2 →v4的最短路。
2.设节点 vi 为刚得到P标号的点,考虑点vj,其中 (vi , v j ) E ,且vj为T标号。对vj的T标号进行如下修改:
T (v j ) min[T (v j ) , P(vi ) wi j ]
3.比较与vi相邻的所有具有T标号的节点,把最小者改为P 标号,即: P(vk ) min[T (vi )]
精选课件
Chapter8 图与网络优化
本章主要内容:
§8.1 图的基本概念 §8.2 树 §8.3 最短路问题 §8.4 网络最大流问题 §8.5 最小费用最大流问题 §8.6 中国邮递员问题
精选课件
Page 3
§8.3 最短路问题
The Shortest-Path Problem
精选课件
§8.3 最短路问题
Page 17
解 :(1)首先给v1以P标号,给其余所有点T 标号。
P(v1) 0,T (vi ) (i 2, 3, , 8),(v1) 0;
(2) T (v2 ) min{T (v2 ), P(v1 ) w12 } min{ , 0 3} 3
T (v4 ) min{T (v4 ), P(v1 ) w14 } min{ , 0 7} 7
精选课件
§8.3 最短路问题

最短路问题(课堂PPT)

最短路问题(课堂PPT)
5
5
0
5
V2
3
6 5 5 V6
V1 4
7 2
V4 7
1
6
8
V5 4
V3
V7
4
6
(4)找出所有与v1,v2,v3相邻的未标记的点v4,v5,v6,求出
从v1直接到这些点的距离(v1->v4:7)以及经过v2到这些点 的距离(v1->v2->v4:11;v1->v2->v5:10;v1->v2->v6:8)以及 经过v3到这些点的距离(v1->v3->v4:6;v1->v3->v5:12)找出 这些距离中最短的路径为v1->v3->v4,最短距离为L14=6, 将v4标记为6
3 2 4 1
时间
2 3 3 2
25
0
5
V2
3
6 5 5 V6
V1 4
7 2
V4 7
1
6
8
V5 4
V3
V7
4
(2)找出同v1相邻的未标号的点有v2,v3,v4,求出从
v1到其所有相邻点的距离(v1->v2:5;v1->v3:4;v1>v4:7),距离最短路径为v1->v3,最短距离为L13=4, 将v3标记为4
0
5
V2
3
6 5 5 V6
5
0
5
V2
3
6 6 5 5 V6
V1 4
7 2
V4 7
1
6
8
V5 4
V3
V7
4
7
(5)找出所有与v1,v2,v3,v4相邻的未标记的点v5,v6,求出

最短路问题的求解方法

最短路问题的求解方法

最短路问题的求解方法最短路问题是图论中的一个经典问题,它在现实生活中有着广泛的应用。

在很多实际情况下,我们需要找到两个节点之间的最短路径,以便在最短时间内到达目的地或者以最小的成本进行运输。

因此,求解最短路问题具有重要的意义。

在图论中,最短路问题可以分为单源最短路和多源最短路两种情况。

单源最短路指的是从图中的一个固定节点出发,到达其他所有节点的最短路径;而多源最短路则是求解图中任意两个节点之间的最短路径。

针对这两种情况,我们可以采用不同的算法来求解最短路问题。

其中,最著名的算法包括Dijkstra算法和Floyd-Warshall算法。

Dijkstra算法适用于单源最短路问题,它采用贪心策略,逐步确定从源节点到其他节点的最短路径。

而Floyd-Warshall算法则适用于多源最短路问题,它通过动态规划的方式,计算图中任意两个节点之间的最短路径。

除了这两种经典算法外,还有一些其他方法可以用来求解最短路问题,比如Bellman-Ford算法和SPFA算法。

这些算法各有特点,适用于不同的场景,可以根据具体情况选择合适的算法来解决最短路问题。

在实际应用中,最短路问题常常涉及到大规模的图和复杂的网络结构,因此算法的效率和性能也是非常重要的考量因素。

为了提高算法的求解速度,可以采用一些优化手段,比如使用堆优化的Dijkstra算法、矩阵快速幂优化的Floyd-Warshall算法等。

总之,最短路问题是图论中的一个重要问题,它在实际生活中有着广泛的应用。

通过合理选择算法和优化方法,我们可以高效地求解最短路问题,为实际应用提供有力的支持。

希望本文能够为读者对最短路问题的求解方法有所启发,也希望在未来的实际应用中能够发挥一定的作用。

最短路问题

最短路问题

17.
}
18.
}
19. }
20.}
二、Floyd算法及求解最小环
• Floyd算法可以求出每对点之间的最短距离,它对于图的要求是,可以是无向图和有
向图,边权可正可负,唯一的要求是不能有负环。
• 设d[i][j][k]表示路径中间只允许经过节点1…k的情况下,i到j的最短路距离。它
有两种情况:
• 最短路经过点k,d[i][j][k]=d[i][k][k-1]+d[k][j][k-1]
13.
d[y] = d[x] + z;
//更新
14.
if (!v[y]) q.push(y), v[y] = 1; //把新的二元组插入队列
15.
}
16.
}
17. }
18.}
【例题2】拯救大兵瑞恩(Hdu4845) 1944年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救
被敌军俘虏的大兵瑞恩。瑞恩被关押在一个迷宫里,迷宫地形复杂,但幸好麦克得到了 迷宫的地形图。迷宫的外形是一个长方形,其南北方向被划分为N 行,东西方向被划分 为M列,于是整个迷宫被划分为 N×M 个单元。每一个单元的位置可用一个有序数对(单 元的行号,单元的列号)来表示。南北或东西方向相邻的 2 个单元之间可能互通,也可 能有一扇锁着的门,或者是一堵不可逾越的墙。迷宫中有一些单元存放着钥匙,并且所 有的门被分成 P类,打开同一类的门的钥匙相同,不同类门的钥匙不同。
(u,v)是否满足关系式d[v]> d[u]+ w(u,v)来判断是否存在负权回路。
1.bool bellman(int v0)
2.{ int i,j;
3. for(i=1;i<=nv;i++)d[i]=maxx;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

d (v4 ) 4
d (v4 ) 2 d (v4 ) 3 d (v4 ) 5
定理1 d(v) 2(G) vV (G)
推论1 任何图中奇次顶点的总数必为偶数.
例 在一次聚会中,认识奇数个人的人数一定是偶数。
返回
子图
定义 设图 G=(V,E, ),G1=(V1,E1, 1 )
(1) 若 V1 V,E1 E,且当 e E1 时,1 (e)= (e),则称 G1 是 G 的子图.
偶对的集合的映射,称为关联函数. 例1 设 G=(V,E, ),其中 V={v1 ,v2 , v3 , v4}, E={e1, e2 , e3, e4, e5},
(e1) v1v2 , (e2 ) v1v3, (e3 ) v1v4 , (e4 ) v1v4 , (e5 ) v3v3 .
G 的图解如图.
通路Wv1v4 v1e4v4e5v2e1v1e4v4 道路 Tv1v4 v1e1v2e5v4e6v2e2v3e3v4 路径 Pv1v4 v1e1v2e5v4
定义2 (1)任意两点均有路径的图称为连通图. (2)起点与终点重合的路径称为圈. (3)连通而无圈的图称为树.
定义3 (1)设 P(u,v)是赋权图 G 中从 u 到 v 的路径,
定义 在图 G 中,与 V 中的有序偶(vi, vj)对应的边 e,称为图的有向
边(或弧),而与 V 中顶点的无序偶 vivj 相对应的边 e,称为图 的无向边.每一条边都是无向边 的图,叫无向图 ;每一条边都是 有向边的图,称为有向图;既有无向边又有有向边的图称为混 合图.
定义 若将图 G 的每一条边 e 都对应一个实数 w(e),称 w(e)为边的权,
数学建模与数学实验 最短路问题
实验目的 实验内容
1、了解最短路的算法及其应用 2、会用Matlab软件求最短路
1、图 论 的 基 本 概 念
2、最 短 路 问 题 及 其 算 法
3、最 短 路 的 应 用 4、建模案例:最优截断切割问题
5、实验作业
图论的基本概念
一、 图 的 概 念 1、图的定义 2、顶点的次数 3、子图
特别的,若 V1=V,则 G1 称为 G 的生成子图.
(2) 设 V1 V,且 V1 ,以 V1 为顶点集、两个端点都在 V1 中的
图 G 的边为边集的图 G 的子图,称为 G 的由 V1 导出的子图,记为 G[V1].
(3)设 E1 E,且 E1 ,以 E1 为边集,E1 的端点集为顶点集的图 G 的子图,
若(vi , v j ) E,且wij为其权 若i j
若(vi , v j ) E
无向赋权图的邻接矩阵可类似定义.
v1
0
A= 2
7
v2 v3 v4
2 7 v1
0 8 3 v2
8 3
0 5
5 0
v3 v4
返回
最短路问题及其算法
一、 基 本 概 念 二、固 定 起 点 的 最 短 路 三、每 对 顶 点 之 间 的 最 短 路
并称图 G 为赋权图.
规定用记号 和 分别表示图的顶点数和边数.
常用术语: (1) 端点相同的边称为环. (2) 若一对顶点之间有两条以上的边联结,则这些边称为重边. (3) 有边联结的两个顶点称为相邻的顶点,有一个公共端点的边
称为相邻的边. (4) 边和它的端点称为互相关联的. (5) 既没有环也没有平行边的图,称为简单图. (6)任意两顶点都相邻的简单图,称为完备图,记为 Kn,其中 n
则称w(P) w(e) 为路径 P 的权. eE ( P)
v1
0
A= 1
0 1
v2 v3 v4
1 0 1 v1
0 1 1 v2
1 1
0 1
1 0
v3 v4
对有向图G=(V,E),其邻接矩阵 A (aij ) ,其中:
aij 10
若(vi,v j) E 若(vi,v j) E
对有向赋权图G,其邻接矩阵 A (aij ) ,其中:
wij aij 0
0 0
0 1
1 1
1 0
0 1
v3 v4
对有向图G,其关联矩阵M= (mij ) ,其中:
1 mij 1
0
若vi
是e
的起点
j
若vi
是e
的终点
j
若vi与e j不关联
返回
邻接矩阵
对无向图G,其邻接矩阵 A (aij ) ,其中:
aij 10
若vi与v j相邻 若vi与v j不相邻
注:假设图为简单图
返回
基本概念
定义1 在无向图 G=(V,E, )中: (1)顶点与边相互交错且(ei ) vi1vi (i=1,2,…k)的有限非空序列 w (v0e1v1e2 vk1ek vk ) 称为一条从v0 到vk 的通路,记为Wv0vk (2)边不重复但顶点可重复的通路称为道路,记为Tv0vk (3)边与顶点均不重复的通路称为路径,记为Pv0 vk
为顶点的数目.
( 7)若 V=X Y,X Y= ,X 中任两顶点不相邻,Y 中任两顶
点不相邻,称 G 为二元图;若 X 中每一顶点皆与 Y 中一切顶点 相邻,称为完备二元图,记为 Km,n,其中 m,n 分别为 X 与 Y 的顶 点数目.
返回
顶点的次数
定义 (1)在无向图中,与顶点 v 关联的边的数目(环算两次) 称为 v 的次数,记为 d(v). (2)在有向图中,从顶点 v 引出的边的数目称为 v 的出度, 记为 d+(v),从顶点 v 引入的边的数目称为的入度,记为 d-(v), d(v)=d+(v)+d-(v)称为 v 的次数.
二、 图 的 矩 阵 表 示 1、 关联矩阵
2、 邻接矩阵
返回
图的定义
定义 有序三元组G=(V,E, )称为一个图.
[1] V={v1, v2 , , vn } 是有穷非空集,称为顶点集,
其中的元素叫图 G 的顶点. [2] E 称为边集,其中的元素叫图 G 的边.
[3] 是从边集 E 到顶点集 V 中的有序或无序的元素
称为 G 的由 E1 导出的子图,记为 G[E1].
G
G[{v1,v4,v5}]
G[{e1,e2,e3}]
返回
关联矩阵
对无向图G,其关联矩阵M= (mij ) ,其中:
mij 10
若vi与e j相关联 若vi与e j不关联
注:假设图为简单图
e1 e2 e3 e4 e5
1 0 0 0 1 v1
M= 1 1 0 1 0 v2
相关文档
最新文档