速算巧算(一)
四年级奥数知识点:速算与巧算(一)
四年级奥数知识点:速算与巧算(一)例1 计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成10001去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2 计算201999+20199+2019+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)201999+20199+2019+199+19=(20199+1)+(20199+1)+(2019+1)+(199+1)+(19+1)-5=201900+20190+2019+200+20-5=222220-5=22225.例3 计算(1+3+5++1989)-(2+4+6++1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990497+9951990497=995.例4 计算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数. 389+387+383+385+384+386+388=3907137564=273028=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=3807+9+7+3+5+4+6+8=2660+42=2702.例5 计算(4942+4943+4938+4939+4941+4943)6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)6=(49406+2+321+1+3)6=(49406+6)6(这里没有把49406先算出来,而是运=494066+66运用了除法中的巧算方法)=4940+1=4941.副标题#e#例6 计算54+9999+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+9999+45=(54+45)+9999=99+9999=99(1+99)=99100=9900.例7 计算 99992222+33333334解:此题如果直接乘,数字较大,容易出错.如果将9999变为33333,规律就出现了.99992222+33333334=333332222+33333334=33336666+33333334=3333(6666+3334)=333310000=33330000.例8 2019+999999解法1:2019+999999=1000+999+999999=1000+999(1+999)=1000+9991000=1000(999+1)=10001000=1000000.解法2:2019+999999=2019+999(1000-1)=2019+999000-999=(2019-999)+999000=1000+999000=1000000.观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
速算巧算习题及解析(1)
速算巧算习题(1)1、计算:(1)184+339+252+416+761(2)900-124-76-38(3)2686-(686+479)2、计算:(1)986+426+588(2)417-(317-89)+211(3)8+98+998+9998+999983、计算:189+937-451+129-937+1514、计算:(1)375+383+372+376+379+374(2)6+66+666+6666+666665、计算:876+997-1997+4524-148-526、计算:(1)125×236×8(2)67×314+33×314(3)497500÷4÷257、计算:(1)25×232×5(2)4256÷56(3)1997×19998、计算:(1)21210÷42×6(2)8125÷25+375÷25(3)2005×187610、计算:1949×-1999×11、计算:(1)5678+1999;(2)8765-1998.12、计算:(8641+8642+8643+8641+8643+8638+8639)÷7.13、计算:(1)85×27+85×73;(2)99×99+99.14、计算:56×32+56×27+56×96-56×57+56.15、计算999×222+333×334.16、计算125×31.17、计算:(1)23×27,64×66,75×75;(2)43×63,27×87,56×56.18、计算5÷(7÷15)÷(15÷17)÷(17÷21).19、计算:(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999).20、求所得结果末尾有多少个零?21、五个连续奇数的和是555,求其中最大的和最小的数.22、计算98766×98768-98765×98769.23、将下列乘式结果按从大到小排序.331×339,332×338,333×337,334×336,335×335.24、计算765×213÷27+765×327+27.25、有一个按一定规律排列的数列1,4,9,16,25,36,…,请问第2004个数比第2003个数大多少?26、计算(1+46+57+68)×(46+57+68+79)-(1+46+57+68+79)×(46+57+68).速算巧算习题解析(1)1、分析与解答:(1)本题中184与416、339与761的和均为整百数,我们把这种关系称为互补关系.根据加法交换律和结合律,可令这样的两个数先相加,使计算简单化.所以:原式=(184+416)+(339+761)+252=600+1100+252=1952(2)类似地,在本题中的两个减数124和76互为补数,我们可以利用减法的性质(a-b -c=a-(b+c))把这两个数先求和,再相减.所以有:原式=900-(124+76)=900-200=700(3)观察题目中的数字特点,发现如果2686能先减去686就可以得到一个整百数;再观察运算符号的特点,发现可以经过转化达到这一目的,所以我们不妨反向利用减法的性质,打开括号,先减686,再减479,即:原式=2686-686-479=2000-479=15212、分析与解答:(1)观察题目中的三个加数,发现任意两个加数间都没有互补关系.但观察到986加14就得到1000,所以我们可以把其余两个加数中的一个数拆成14与一个数的和,从而达到简算的目的,所以:解法一:原式=1000+1000=2000解法二:原式=2000由以上这道题,我们发现:当一个算式从数字上不具备简算特征时,通过转化,我们仍可以使计算简单化.(2)观察发现,417和317相减具备简算特征,而89和211相加也具备简算特征.现在考察运算符号:根据加减法计算中去括号的法则:a-(b-c)=a-b+c,可以把原式转化为:417-317+89+211进行简算.所以:原式=417-317+(89+211)=100+300=400(3)观察题中数字特点,发现几个数都比整十、整百数少2,如果把每个加数都补上2,那么本题就简单了.所以:解法一:可以把8拆成4个2的和,这样:原式=(2+98)+(2+998)+(2+9998)+(2+99998)=111100解法二:也可以用先补后减的方法,即:原式=(8+2)+(98+2)+(998+2)+(9998+2)+(99998+2)-10=1111003、分析与解答:观察算式的特点,不难发现:先加937,再减937,相当于没加没减;451和151如果能相减,也能简算,所以计算时,我们可以利用“带符号搬家”的计算方法(即同级运算可以调整运算顺序)把可能简算的数凑到一起,然后再利用运算定律、性质简算.即:原式=189+129+937-937-451+151=(189+129)+(937-937)-(451-151)=318+0-300=184、分析与解答:(1)观察算式的数字特征,发现算式中没有任意两个数可以简算.但注意到每个加数都在370以上且仅比370多一些.所以计算时可以把它们都看作是370和另一个数的和,这样利用乘法的意义使计算简单化.所以:原式=370×6+(5+13+2+6+9+4)=2220+39=2259(2)观察算式中各数是有规律地排列的,可以每一个数化成6与1,6与11,6与111,6与1111及6与11111的积,然后简算.原式=6×(1+11+111+1111+11111)=6×12345=740705、分析与解答:在本题中如果按顺序计算会发现减1997时不够减,看样子要选用一定的计算方法改变运算顺序.注意到加997再减1997,如果能让1997先减997就可以凑成整百数;而且876和4524相加也可以凑成整百数;148和52又是互补数,如果能相加也可凑成整百数.所以:原式=876+4524-1997+997-148-52=(876+4524)-(1997-997)-(148+52)=5400-1000-200=42006、分析与解答:(1)本题中125与8的积是1000,又因为1与任何数相乘结果仍得原数,所以计算时可根据乘法交换律和乘法结合律,即:原式=(125×8)×236=236000(2)首先观察算式中运算符号的特点,发现是两乘积相加,符合乘法分配律a×(b+c)=ac+be的特点;再观察数字中有相同的因数314,所以可以应用乘法分配律简算.即:原式=(67+33)×314=31400(3)观察算式,发现这是一道整数除法中的连除算式,而且数目较大.但进一步观察发现:除数4与25的积刚好是100,这样计算就简便得多.能不能这样做呢?根据混合运算中乘除法间的关系a÷b÷c=a÷(b×c) ①a÷b×c=a÷(b÷c) ②可以把除数4和25通过加括号的方法改成求积,所以:原式=497500÷(4×25)=49757、分析与解答:(1)观察算式:发现有因数25和5,而5×2=10,25×4=100,所以要巧算本题就要从因数中拆出2和4.注意到232=4×2×29,所以根据乘法交换律和结合律有:原式=25×(4×29×2)×5=(25×4)×29×(2×5)=29000(2)观察算式发现:这是一道除数是两位数的除法算式,计算时较麻烦,注意到被除数4256一定能除以7,而除数56=7×8,根据关系式:a÷(b×c)=a÷b÷c有:原式=4256÷(7×8)=4256÷7÷8=608÷8=76(3)这是一道四位数乘法计算题,计算时较繁琐,注意到因数1999=2000-1,而1997乘以2可以口算,所以根据a×(b-c)=ac-bc有:原式=1997×(2000-1)=1997×2000-1997=-1997=8、分析与解答:(1)按照运算顺序要先用21210除以42,这一步计算较复杂.如果根据关系式a÷b×c=a÷(b÷c)能不能简算呢?注意到42除以6商7是一位数,计算时比较简单.所以根据上述关系有:原式=21210÷(42÷6)=21210÷7=3030(2)首先观察算式中数字特点,发现有相同的除数25,且被除数8125与375求和后可得整百数;再观察运算符号,发现与乘法分配律极相似,所以有:原式=(8125+375)÷25=8500÷25=85×4=340算一算6÷(3+3)和6÷3+6÷3.它们的商一样吗?想想什么时候才能去括号?另解:本题也可以根据商不变的性质.分别解答,但与前一种方法比要复杂一些.原式=8125×4÷100+375×4÷100=325+15=340(3)同例2中的(3)相类似,发现2005=2000+5,即把2005拆成2000与5的和,再根据乘法分配律进行简算.此外因为5=10÷2,所以1876×5=1876×10÷2,也可以口算出得数.所以:原式=(2000+5)×1876=2000×1876+5×1876=+9380=9、分析与解答:(1)观察算式,从运算符号上看不出可以简算,同时数字也不是很接近整十、整百的数,所以也不能应用乘法分配律进行简算.但注意到两个因数十位数字都是7,而且个位数字和是10.我们把这种情况称为“头同尾补”,像这种“头同尾补”的乘法算式可以这样算:原式=7×(7+1)×100+4×6=5600+24=5624规律是:积的末两位是两个个位数字之积,首位是十位数字乘以比它大1的数.也就是用“头数×(头数+1)×100+尾数×尾数.”(2)如果因数中有9、99、999等数字就可以利用乘法分配律进行计算,分析算式,注意到333=3×111,这样可以凑成999,从而使计算简便.所以:原式=(333×3)×111=(1000-1)×111=110889(3)受题(2)的启示,可以把拆成的积,从而凑出.所以:原式=22……200……0-22222222210、分析与解答:观察题目中,被减数与减数的因数部分虽然各不相同,但它们间数字极相似.注意到=1999×10001,=1949×10001,这样:原式=1949×1999×10001-1999×1949×10001=011、分析算式中出现有接近整十、整百、整千……的数时,利用补数凑整是十分常用的办法,但需要注意的是,在凑整的计算过程中,应注意把多加的数减去,多减的数加上,切忌发生该加却减,该减却加的情况.解(1)5678+1999=5678+2000-1=7678-1=7677.(2)8765-1998=8765-(2000-2)=8765-2000+2=6765+2=6767.12、分析这里的7个加数都不接近整十、整百、整千……不能采用上题的凑整的办法,但是可以发现括号内所有加数都接近于8640,要么大一点点,要么小一点点,这样我们可以选择8640作基准数,然后再补上大的或是小的那一点.解(8641+8642+8643+8641+8643+8638+8639)÷7=(8640×7+1+2+3+1+3-2-1)÷7=(8640×7+7)÷7=8640+1=8641.13、分析在计算两个积的和或差时,常常使用乘法分配律,提出相同的项,剩下的项求和或是求差刚好可以凑成整数.解(1)85×27+85×73=85×(27+73)=85×100=8500.(2)99×99+99=99×99+99×1=99×(99+1)=99×100=9900.14、分析乘法分配律同样适用于多个乘法算式相加减的情况,在计算加减混合运算时要特别注意提走公共乘数后所剩的乘数前面的符号.同样的,乘法分配律也可以反着用,即将一个乘数凑成一个整数,再补上它们的和或是差.解56×32+56×27+56×96-56×57+56=56×(32+27+96-57+1)=56×99=56×(100-1)=56×100-56×1=5600-56=5544.15、分析看到此题的结构,应感觉到也许可以用前面的乘法分配律进行简算,但4个乘数中并没有相同项,仔细观察可以发现999=333×3,这样我们就制造出一个相同的乘数,然后再利用乘法分配律.解999×222+333×334=333×3×222+333×334=333×666+333×334=333×(666+334)=333×1000=333000.16、分析我们都知道5×2=70,25×4=100,125×8=1000,所以当见到题目中出现的125时,就会想到去找125×8,但本题却是125和一个奇数相乘,应该怎么办呢?可以联想到前面的乘法分配律,我们将31写成32-1,32是8的4倍,这样就有8了.解125×31=125×(32-1)=125×32-125×1=125×8×4-125=4000-125=3875.17、分析(1)这3道题中,相乘的两个两位数有如下特点,十位数字相同,个位数字之和为10,我们把这种情况称为头同尾补,头同尾补有如下速算法:积=头×(头+1)×100+尾×尾.对于23×27可以这样计算23×27=2×(2+1)×100+3×7=621.这个方法不仅对于两位数适用,对于多位数的头同尾补也适用,例如:191×199=19×(19+1)×100+1×9=38009.(2)这3道题中,相乘的两个两位数,十位数字之和为10,个位数字相同,我们称之为头补尾同,这时的速算法为:积=(头×头+尾)×100+尾×尾.对于43×63可以这样计算43×63=(4×6+3)×100+3×3=2709.解(1)23×27=2×(2+1)×100+3×7=621,64×66=6×(6+1)×100+4×6=4224,75×75=7×(7+1)×100+5×5=5625.(2)43×63=(4×6+3)×100+3×3=2709,27×87=(2×8+7)×100+7×7=2349,56×56=(5×5+6)×100+6×6=3136.18、分析按照一般的运算优先次序,应该先计算括号内的算式,可是括号内的除法不能整除,商都不是整数,计算起来比较麻烦,我们利用去括号和带符号搬家的办法来解这道题,在乘除法运算中去括号或添括号的办法是如果括号前面是乘号,去掉括号后,原括号内的符号不变,如果括号前面是除号,去掉括号后,原括号内的乘号变成除号,原除号变成乘号,添括号的方法与去括号类似.解5÷(7÷15)÷(15÷17)÷(17÷21)=5÷7×15÷15×17÷17×21=5÷7×21=5×(21÷7)=5×3=15.19、分析题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦.但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…=1000-999=1,因此可以对算式进行分组运算.解解法一:分组法解法二:等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250=(1002-1000)×250=500.20、分析对于一个乘数中所有数字都是9的乘法运算,最常用的办法就是凑数.在本题中可将化为来运算.解答结果末尾有4016个零.21、分析我们已经知道在奇数个数组成的等差数列中,中项是数列中所有数的平均值,求出中项,自然可以得到其他的数.解555÷5=111,最大的数和最小的数分别比中间数大4和小4.所以这五个数是107,109,111,113,115.答最小的数是107,最大的数是115.22、分析将乘数进行拆分后可以利用乘法分配律,将98766拆成98765+1,将98769拆成98768+1,这样就保证了减号两边都有相同的项.解98766×98768-98765×98769=(98765+1)×98768-98765×(98768+1)=98765×98768+98768-(98765×98768+98765)=98765×98768+98768-98765×98768-98765=98768-98765=3.23、分析这几组乘式符合头同尾补的速算法,即积=头×(头+1)×100+尾×尾.由于所有乘数的前两位都相同,因此要比较大小,我们只需看它们尾数之积的大小,即比较1×9,2×8,3×7,4×6,5×5的大小,可以看出335×335最大.请注意上面每个乘式中两个乘数之和都等于670,也就是说这些数是由同一个整数670拆成的两部分,对于这种情况有下面的规则.一般地说,将一个整数拆成两部分或两个整数,两部分的差值越小,这两部分的乘积越大.解结果从大到小是335×335,334×336,333×337,332×338,331×339.24、分析类似乘法分配律,求除数相同的两个商的和或差有a÷C+b÷C=(a+b)÷C;a÷C-b÷C=(a-b)÷C.25、分析首先要找到题中数列的规律,发现第一项1=1×1,第二项4=2×2,第三项9=3×3,第四项16=4×4,……可以推出第2004项是2004×2004,第2003项是2003×2003,然后利用乘法分配律求差.解2004×2004-2003×2003=2004×(2003+1)-2003×2003=2004×2003+2004-2003×2003=2004×2003-2003×2003+2004=(2004-2003)×2003+2004=2003+2004=4007.26、分析我们注意到算式的特点,式子(1+46+57+68),(46+57+68)反复出现.我们不妨把一些长式子看作一个整体,设(1+46+57+68)=a,(46+57+68)=b,则有a -b=1.则原式=a×(b+79)-(a+79)×b=a×b+79×a-a×b-79×b=79×(a-b)=79.。
三年级计算速算与巧算(一)教师版
速算与巧算(一)知识要点一、加减法中的速算与巧算⑴凑整法:凑整法就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数再将各组的结果相加.①移位凑整法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.②借数凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.③分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.⑵找“基准数”法:当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)凑整【例1】 计算:⑴ 6599+ ⑵ 36102+ ⑶ 25898- ⑷ 351103-【分析】⑴原式6510011651164=+-=-=;⑵原式=36+100+2=136+2=138;⑶原式25810021582160=-+=+=;⑷原式35110032513248=--=-=;通过以上题目的运算,我们发现一个快捷运算的规律:在⑴中,在加100时多加了1,所以要减去,这样保证结果不变,所以“多加的要减去”;⑵中,少加了2,在后面要加上,所以“少加的要加上”;⑶中,多减了2,所以要加上,所以“多减的要加上”;⑷中,少减了3,后面要再减去3,二、基本运算律及公式一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a +b =b +a其中a ,b 各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a +b +c =(a +b )+c =a +(b +c )其中a ,b ,c 各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
速算与巧算 (1)
凝涵数理化第一讲速算与巧算【经典例题一】325÷25【思路导航】在除法里,被除数和除数同时乘或除以一个相同的数,商不变。
325÷25=(325×4)÷(25×4)=1300÷100=13【练一练1】(1)450÷25 (2)525÷25【经典例题二】计算25×125×4×8【思路导航】如果先把25与4相乘,可以得到100,同时把125与8相乘,可以得到1000;再把100和1000相乘就可以了。
运用了乘法交换律和结合律。
25×125×4×8=(25×4)×(125×8)=100×1000=100000【练一练2】(1)125×15×8×4 (2)125×25×32【经典例题三】计算:(1)125×34+125×66 (2)43×11+43×36+43×52+43【思路导航】利用乘法分配律来计算这两题(1)125×34+125×66 (2)43×11+43×36+43×52+43=125×(34+66)=43×(11+36+52+1)=125×100 =43×100=12500 =4300【练一练3】计算下面各题:(1)125×64+125×36 (2)64×45+64×71-64×16【经典例题四】计算(1)(360+108)÷36 (2)1÷2+3÷2+5÷2+7÷2【思路导航】两个数的和、差除以一个数,可以用这个数分别去除这两个数,再求出两个商的和(差)。
一年级数学下册:速算与巧算(一)
一年级数学下册:速算与巧算(一) 要想在数学计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧,今天数学网带为大家带来一年级数学下册:速算与巧算一起来学习吧。
一年级数学下册:速算与巧算(一)一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
速算与巧算——精选推荐
速算与巧算速算与巧算(⼀)加减法中的巧算⽅法:1、运⽤运算律和运算性质;2、凑整;3、拆⼩补⼤;4、找准基数;5、数列求和等等。
练习:1、147+369+353+631 32+81+157+19+682、852-39-153-161 5613-(613+261)-2393、656-289+144-111 745+(672-525)-5724、537-(543-163)-57 756-576+376+2445、659+427-727-159 1256+125+875-2566、9998+3+99+998+3+9 9+99+999+9999+999997、75+86+83+72+78+80+81+79+878、1+2+3+…+9+10+9+…+3+2+1速算与巧算⼆乘除法的巧算主要靠乘法的运算律和除法的运算性质,并进⾏适当的扩展,使计算更灵活、合理;做到算得快、准。
练习:1、125×25×8×4 125×16×52、36×98 56×2013、4400÷25÷4÷11 236+1800÷(9×25)4、720-198×25÷99×4 12000÷125+325÷255、56×165÷7÷11 123×456÷789÷456×789÷1237、9999×2222+3333×3334 54+99×99+458、1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)和差问题1、和差问题基本模式:已知两个数的和与差,求两个数。
2、和差问题的基本关系式:(和+差)÷2=较⼤数(和-差)÷2=较⼩数3、解题的关键要找准两个数的和与差。
四秋 第1讲 速算与巧算(一)
速算与巧算(一)一、知识站点1、加法结合律2、加法交换律3、基本的运算技巧4、“取整补零”二、注意事项1、认真地观察算式中各个数的特点,确定简算的方法;2、简算的步骤必须清楚完整、简练。
例1、用简便方法计算下面各题。
(1)275+156+225+44 (2)9999+998+97+9(3)68+192+40 (4)529-395练一练:(1)172+55+62+45+28 (2)9+97+996+995(3)653-498 (4)865-489例2、用简便方法计算下面各题。
1)50+56+48+46+52+60 2)178+188-78练一练:(1)43+39+38+40+39+41 (2)88+79+82+75+85+81 (3)785+992-232 (4)5131+4367-1131-1367例3、用简便方法计算下面各题。
1)867-45-55 2)845-(45+130)3)324-(124-96)练一练:(1)375-88-12 (2)845-(88+45)(3)785-(185-99)例4、用简便方法计算下面各题。
1)18-16+14-12+10-8+6-4+2 2)42+39+50-38-32-42+48+37练一练:(1)97-95+93-91+89-87+85-83+81-79 (2)30+32+35+28-32-33课后测试题1★用简便方法计算下面各题。
(1)56+27+44+13 (2)85+32+68(3)4231+5648-4648-2231 (4)219+648+51-138-548-62(5)99998+9998+998+98+82★★歌唱比赛中,七位选手的分数分别为85分、82分、76分、78分、70分、76分、65分。
这七位选手的平均成绩是多少?3★★用简便方法计算下面各题。
1)80-79+78-77+76-75+74-73+72-71 2)65+58+55+60-57-62-553)52+49+57+50+48+514★★★用简便方法计算下面各题。
四年级思维拓展-速算与巧算(一)
速算与巧算(一)☜知识要点速算与巧算是学习数学、解决生活中数学问题的基础,只有掌握了速算与巧算才能又快又准的计算出正确的结果。
如何掌握此类问题的特征,并能熟练、灵活地加以运用,是研究此类问题所要思考的。
1.找互补数:两个数相加和是10、100、1000、10000、、、、、、我们就称这两个数互为补数。
☜精选例题【例1】(1)72+28 ;(2)654+346;(3)8742+42+1258;(4)2345+3243+7655+6757;☝思路点拨:对于算式(1)72+28 、(2)654+346,同学们会很快得出答案为100、1000。
对于算式(3)、(4)我们可以运用加法交换律:a+b=b+a 和加法结合律:(a+b)+c=a +(b+c),先把相加能得到10000的加起来再和其它数相加。
☝标准答案:解:(1)72+28=100 (2)654+346=1000(3)8742+42+1258 (4)2345+3243+7655+6757=8742+1258+42 =(2345+7655)+(3243+6757)=10000+42 =10000+10000=10042 =20000✌活学巧用1. 327+43+6732. 8973+342+1027+6583. 785342+________=10000004. 3270+______=10000总结:找互补数的方法:知道一个互补数求另一个互补数,如果知道的这个互补数个位不为零,它的互补数就等于用10来减去这个数的最高位与最低位,其它位上的数字用9来减。
注意个位为零时看前一位。
2.凑整:把相加能得到整十、整百、整千、整万、、、、、、的数先加起来有利于我们的计算简便。
【例2】简便计算:(1)48+54;(2)3999+5+456+539+5+6;(3)79998+7998+798+78+8;☝思路点拨:题目中没有能够凑成整十、整百、整千、、、、、的数,但是有些数很接近,我们可以把(1)的48分成2+46,这样46就可以和54凑成整百了,(2)中的5可以分解成1+4,分别加到前后的数上凑整,(3)式可以分别给这五个数添加上他们凑整所需的2,最后再减去5个2就行了。
速算与巧算(一)(含答案)-
速算与巧算(一)速算与巧算是在运算过程中,根据数的特点与数之间的特殊关系,恰当,准确,灵活地运用定律,性质及和、差、积、商的变化规律,进行一种简便、迅速的计算。
(一)指导探索:例L 计算8 + 89 + 899 + 8999 + 89999分析与解:观察题目的特点发现:8可以看作9-1, 89可以看作90-1, 899可以看作900-1……,又是连加的算式。
根据这个特点,可以看作9, 90, 900, 9000与90000的和再减去5个1的和。
8 + 89÷899+ 8999 + 89999= (9-1) + (90-1) + (900-1) + (9000-1)÷ (90000-1)=(9+90 ÷ 900+ 9000 +90000)-(1 + 1 +1 + 1 + 1)=99999 - 5=99994还可以这样想:8 + 89 + 899 + 8999 + 89999= 4 + 1 + 1 + 1 + 1 + 89 + 899 + 8999 + 89999= 4 + (89 + 1) + (899 + 1) + (8999 + 1) + (89999 +1)= 4 + 90 + 900 + 9000 + 90000=99994例 2.计算:20+19 — 18—17 + 16+15—14- 13+・・・+4 + 3 — 2 — 1分析与解:这是一道加,减混合算式,由于加、减数较多,要仔细观察能不能简化计算。
观察发现:20-18 = 2, 19-17 = 2, 16-14 = 2, 15-13 = 2, -4-2 = 2,3-1 = 2,因此通过前后次序的交换,把某些数结合在一起算,比较简便。
20+19-18-17 + 16+15-14-13+ ∙∙∙+4 + 3-2-l=(20-18)+ (19-17)+ (16-14) + - ÷(4-2)+ (3-1)= 2 + 2+∙∙∙+2 + 210个2=20例 3. 444 × 25分析与解:25是个特殊数,它与4相乘可以得到100,因此25与一个数相乘时,就要想办法从这个数中分离出4o方法一:444 × 25= (400 + 40 + 4)×25= 400×25 + 40×25 + 4×25=10000+1000+100= 11100方法二:444 × 25= (111×4)×25= 111×(4×25)= 11100方法三:444 × 25=(444 ÷4)× (25 × 4)= lll×100= 11100例 4. 375×480 + 6250×48分析与解:观察题目的特点发现:“乘、力∏,乘”的形式符合乘法分配律的符号特征,另外480比48末尾多了一个0,如果去掉6250末尾的0就与375凑成1000o 375 × 480 + 6250 × 48=375 × 480 + 625 × 480=480 × (375 ÷ 625)= 480×1000=480000例 5.计算:333333×333333分析与解:如果把一个因数改变成连续几个9的形式,就可以把它看成一个整十(整百、整千,整万……)数-1的形式,从而利用乘法分配律简算,我们知道333333 × 3 = 999999 ,因此根据积不变的规律,把一个因数扩大3倍,变成999999,另 一个因数缩小3倍,变成111111。
三年级思维拓展-速算与巧算(一)
速算与巧算(一)☜知识要点在我们的日常生活和学习中,离不开数字计算。
为了做到计算又快速又准确,需要掌握一些速算技巧和方法。
本章主要介绍如何运用一定的方法,来进行加减法的简便计算。
一、加法运算定律1. 加法交换律:两个数相加,交换加数的位置,他们和不变。
即:a+b=b+a。
2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再和第一个数相加,他们的和不变。
即:(a+b)+c=a+(b+c)。
在整数的加法运算中,我们常常可以利用加法交换律和结合律把能凑成整十、整百、整千……的数先相加,然后再加上剩下的数,从而让计算简单。
二、加减混合运算中的巧算技巧1. 带着符号搬家:在加减混合运算中,可以交换加数、减数的位置。
但必须在交换位置时,连同前面的运算符号一起“搬家”,运算的结果不会改变。
2. 去括号:加减混合运算中,如果括号前面是“+”号,去掉括号的时候不改变括号里面的符号;如果括号前面是“—”号,去掉括号的时候括号里面的符号要改变:即“+”变“—”,“—”变“+”。
3. 添括号:加减混合运算中,可通过添加括号来改变运算顺序,添加括号时,如果括号前面是“+”号,不改变括号里面的符号;如果括号前面是“—”号,括号里面的符号要改变:即“+”变“—”,“—”变“+”。
三、补数如果两个数的和恰好可以凑成整十、整百、整千……的数,那么其中一个数叫做另一个数的“补数”。
例如;1+9=10,1叫做9的补数。
而一个数的个位数字和它的补数的个位数字之和是10,其他位的数字之和是9。
☜精选例题☝【例1】:请用简便方法计算下列各题。
(1)19+128+72(2)82+354+18(3)64+97+103+36☝思路点拨:运用加法的交换律和结合律,先计算互为补数的两个数,可使计算简单。
☝答案:(1)19+128+72 (2)82+354+18 =19+(128+72)=82+18+354=19+200 =100+354=219 =454(3)64+97+103+36=(64+36)+(97+103)=100+200=300✌活学巧用1.口算43+57= 237+63= 1358+642= 2347+7653= 100-28= 1000-367= 10000-4523= 4000-1238=2. 请用简便方法计算下列各题。
四年级奥数 速算与巧算(1)
第1讲速算与巧算(一)【例1】计算9+99+999+9999+99999思路点拨:凑整(答案:111105)【例2】计算199999+19999+1999+199+19思路点拨:凑整(答案:222215)【例3】计算(1+3+5+...+1989)-(2+4+6+ (1988)思路点拨:配对、打包(答案:995)【例4】计算389+387+383+385+384+386+388思路点拨:基准数(答案:2702)【例5】计算(4942+4943+4938+4939+4941+4943)÷6思路点拨:基准数(答案:4941)【例6】计算54+99×99+45思路点拨:观察数的特征(答案:9900)【例7】计算9999×2222+3333×3334思路点拨:等积变形(答案:33330000)【例8】计算1999+999×999思路点拨:多9数的特征(答案:1000000)思路点拨:多9数的特征(答案:)巩固练习1:1.计算899998+89998+8998+898+88(答案:999980)2.计算799999+79999+7999+799+79(答案:888875)3.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)(答案:994)4.计算1-2+3-4+5-6+…+1991-1992+1993(答案:997)5.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推。
从1点到12点这12个小时内时钟共敲了多少下?(答案:78)6.求出从1→25的全体自然数之和。
(答案:325)7.计算1000+999-998-997+996+995-994-993+…+108+107-106-105+104+103-102-101(答案:900)8.计算92+94+89+93+95+88+94+96+87(答案:828)9.计算(125×99+125)×16(答案:200000)10.计算3×999+3+99×8+8+2×9+2+9(答案:3829)11.计算999999×78053(答案:78052921947)12.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?(答案:11111111108888888889)13.已知被乘数是888…8,乘数是999…9,它们的积是多少?(答案:888…87111…12)。
四年级上奥数第13讲 速算与巧算(一)
四秋第13讲 速算与巧算(一)一、教学目标速算与巧算是小学数学竞赛永恒的话题,每个杯赛都会有1-2道题目考察学生的运算能力,主要集中在整数的巧算,极少涉及小数。
掌握速算与巧算的技巧,往往能够在极短的时间内解决运算问题。
巧算的方法主要有:提取公因式、凑整、拆分、分组、换元,同学们需根据具体情况具体分析,选择合适的方法。
二、例题精选加减凑整:【例1】 计算:1、699999+69999+6999+699+692、1000-91-1-92-2-93-3-94-4-95-5-96-6-97-7-98-8-99-9【巩固1】计算:1、199+298+397+496+595+202、987654-151-269-149-31+346【例2】 计算:10020092000920000920009++++L L 14243个【巩固2】计算:98+998+9998+......+99 (98)乘除凑整:【例3】 计算:(1)125428525⨯⨯⨯⨯⨯ (2)2100425÷÷10个9【巩固3】计算:(1)125258÷÷⨯ (2)456⨯⨯÷⨯⨯36825()乘法分配律:【例4】 计算:(1)2748+5227⨯⨯ (2)329+2999⨯ (3)10199⨯【巩固4】计算:(1)3426+2666⨯⨯ (2)13250+25870⨯⨯ (3)9835⨯重叠数:【例5】 计算:123123123321321321321123⨯-⨯位值原理:【例6】 用7、8、9可以组成6个各位数字不相同的三位数,那么这6个数的和是多少?三、回家作业【作业1】计算:458+356+289+244-58+711【作业2】计算:11+12+13+14+21+22+23+24+31+32+33+34++91+92+93+94L【作业3】计算:197+1997+19997+......+199 (97)【作业4】计算:67200254335467_______⨯+⨯+⨯=【作业5】计算:82198219821919818119811981191983⨯-⨯10个9。
第1课 速算与巧算(1)暑假一
第1课速算与巧算例1:简便运算(1)26+38+74 (2)121+357+379+143<分析与解答>(1) 26+38+74 (2) 121+357+379+143=(26+74)+38 =(121+379)+(357+143)=100+38 =500+500=138 =10001A、(1)37+96+63 (2)198+136+102 (3)528+434+172 (4)1234+626+766(5)829+435+171 (6) 237+184+763+816 1B、(1)172+(348+328)+152 (2)(223+334+477)+566 (3)(58+43)+57+42 (4)272+187+(359+328)+413(5)(372+149)+(628+351)+396例2:简便运算(1)996+548 (2)763+802<分析与解答>(1) 996+548 (2) 763+802=996+4+544 =763+800+2=1000+544 =1563+2=1544 =15652A、(1)97+85 (2)996+788(3)892+501 (4)1898+303(5)997+4882B、(1)1999+4567 (2)997+998 (3)3998+4996 (4)2874+1872+1129(5) 3196+1306+999例3:简便运算(1)346-72-28 (2)1994-124-225-651<分析与解答>(1) 346-72-28 (2) 1994-124-225-651=346-(72+28) =1994-(124+225+651)=346-100 =1994–1000=246 =9943A、(1)786–32–68 (2)443–125–175 (3)329–137–63 (4)1298–133–673B、(1)392–73–57–70 (2)887–123–227–150 (3)1892–544–456–500 (4)2367–106–113–148(5) 9392–1288–1101–1003例4:简便运算(1)1796–89–796 (2)(738+357+404) -257 <分析与解答>(1) 1796–89–796 (2)(738+357+404) -257=1796–796–89 =738+(357–257)+404=1000–89 =738+100+404=911 =838+404=12424A、(1)396–175–196 (2)247–99–147 (3)3588–892-588 (4)1744–256–244(5) 9898–1357–8984B、(1)4325+(496+673)-496 (2)(5328+176)+24–328 (3)4962+872–962+128 (4)414+(509–114)+91(5) 782+374–282+126例5:简便运算(1)3876-(876+49) (2)3876–(876–49)<分析与解答>(1) 3876-(876+49)(2) 3876-(876–49)=3876–876–49 =3876–876+49=3000–49 =3000+49=2951 =30495A、(1)537-(184+137)(2)1292-(292+188)(3)1337-(492+337)(4)1964-(464+298)(5)8878-(1072+878)5B、(1)4392-(1392–189)(2)3578-(2578–939)(3)7659-(1659–3838)(4)3027-(27–1103)(5) 9453-(5453–1808)例6:简便运算(1)1176–782+582 (2)612-(437–388)<分析与解答>(1) 1176–782+582 (2) 612-(437-388)=1176-(1176–582) =612–437+388=1176–200 =612+388–437=976 =1000–437=5636A、(1)4237–938+638 (2)1723–597+397 (3)9292–8317+317 (4)1878–936+536(5) 4325–5126+11266B、(1)432-(799–568)(2)2376-(1854–624)(3)3249-(1764–951)(4)8762-(543–238)(5) 1111-(234–889)例7:简便运算(1)3689–2003 (2)1754–899<分析与解答>(1) 3689–2003 (2) 1754 –899=3689–2000–3 =1754–900+1=1689–3 =854+1=1686 =8557A、(1)1369–210 (2)1482–908 (3)7276–5004 (4)3212–807(5) 4403–19057B、(1)487–298 (2)3191–2999 (3)1935–999 (4)4987–2996(5) 5939–2998例8:巧算51+53+50+48+53+46+54+56+49+52<分析与解答>为了计算方便,本题可选用50作为基准数:原式=50×10 +(1+3+0+3+4+6+2) -(2+4+1)=500+19-7=5128A、(1)82+76+84+80+78+83+81+80+73+85(2)102+101+103+99+97+100+105+103+94+99(3)117+123+122+118+124+117+126+121+119+1238B、(1)204+201+196+195+202+203+199+207+197+196(2)132+131+129+127+135+128+130+126+133+129(3)(95+98+107+104+106+99+93+99+108+101)÷5=例9:巧算(1)1+2+3+4+5+6+7+8+9+10 (2)1+2+3+4+……+15<分析与解答>(1) 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+10+10+ 9+ 8+ 7+ 6+ 5+ 4+ 3+ 2+ 111+11+11+11+11+11+11+11+11+11 有10个11这样就将本题相加了两次,这个总和是本题和的2倍,因此本题的和是:11×10÷2=110÷2=55,其中11=1+10=2+9=3+8……,为便于计算,通常就取两头的两个数,所以此题计算方法是:(1+10)×10÷2=11×10÷2=55.(2)按上题的计算方法:原式=(1+15)×15÷2=16×15÷2=8×15=1209A、(1)1+2+3+4+5+ (12)(2)1+2+3+4+5+ (20)(3)1+2+3+4+5+ (100)9B、(1)5+6+7+8+ (20)(2)11+12+13+ (50)(3)41+42+43+ (100)例10:巧算1+3+5+7+9+11+……+17+19<分析与解答>(1)连续两个自然数中,一个是奇数,一个是偶数,所以1--20有10个奇数,10个偶数,此题是10个连续奇数相加:(1+19)×10÷2=20×10÷2=100.(2)此题是自1起的10个连续奇数相加,可用:总和=个数×个数来进行计算。
速算与巧算
速算与巧算(一)【经典例题一】325÷25【思路导航】在除法里,被除数和除数同时乘或除以一个相同的数,商不变。
325÷25=(325×4)÷(25×4)=1300÷100=13【练一练1】(1)450÷25 (2)525÷25【经典例题二】计算25×125×4×8【思路导航】如果先把25与4相乘,可以得到100,同时把125与8相乘,可以得到1000;再把100和1000相乘就可以了。
运用了乘法交换律和结合律。
25×125×4×8=(25×4)×(125×8)=100×1000=100000【练一练2】(1)125×15×8×4 (2)125×25×32【经典例题三】计算:(1)125×34+125×66 (2)43×11+43×36+43×52+43 【思路导航】利用乘法分配律来计算这两题(1)125×34+125×66 (2)43×11+43×36+43×52+43 =125×(34+66)=43×(11+36+52+1)=125×100 =43×100=12500 =4300【练一练3】计算下面各题:(1)125×64+125×36 (2)64×45+64×71-64×16【经典例题四】计算(1)(360+108)÷36 (2)1÷2+3÷2+5÷2+7÷2 【思路导航】两个数的和、差除以一个数,可以用这个数分别去除这两个数,再求出两个商的和(差)。
速算巧算(一)
速算巧算(⼀)速算巧算(⼀)教学过程⼀、复习预习空⼆、知识讲解速算与巧算是计算中的⼀个重要组成部分。
掌握⼀些速算与巧算的⽅法,有助于提⾼我们的计算能⼒与思维能⼒。
加减法的速算与巧算⽅法主要根据加减法的运算定律和运算性质,通过对算式适当的变形从⽽使计算简便。
在巧算⽅法中,蕴含着⼀种重要的解决问题的策略—问题的转化。
即将所给的算式,根据运算定律和运算性质,改变它的运算顺序,或凑整数,从⽽变成⼀个易于算出结果的算式。
三、例题精析【例题1】【题⼲】计算8+98+998+9998【答案】8+98+998+9998=(10-2)+(100-2)+(1000-2)+(10000-2)=10+100+1000+10000-8=11110-8=11102【解析】仔细观察,不难发现这四个数分别接近10、100、1000、1000.在计算时,可以使⽤凑数法。
例如,将98转化为100-2,这是解决计算题常⽤的⼀种技巧。
【例题2】【题⼲】计算489+487+483+485+484+486+488【答案】489+487+483+485+484+486+488=490×7-(1+3+7+5+6+4+2)=3430-28=3402【解析】认真观察每个数,发现它们都和整⼗数490很接近,所以选490为基准数。
在计算时,先把七个数都当做490相加,原先⽐490⼤的,⼤多少就再加多少;原先⽐490⼩的,⼩多少就再减多少。
也可以选480作为基准数,利⽤同样的⽅法来解决问题。
【例题3】【题⼲】计算128+186+72-86【答案】128+186+72-86=128+72+186-86=(128+72)+(186-86)=200+100=300【解析】在⼀个没有括号的算式中,如果只有第⼀级运算,计算时可以根据运算定律和性质调换加数或减数的位置,这样并不影响计算结果。
【例题4】【题⼲】计算324-(124-97) 283+(358-183)【答案】324-(124-97) 283+(358-183)=324-124+97 =283+358-183=200+97 =283-183+358=297 =458【解析】在计算有括号的加减混合运算时,为了使计算简便可以去掉括号。
四年级奥数 第20讲 速算巧算(1)
第20周速算巧算(一)专题简析:速算与巧算是计算中的一个重要组成部分。
掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。
这一周我们学习加减法的巧算方法,这些方法主要根据加减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。
在巧算方法里,蕴含着一种重要的解决问题的策略——转化问题法,即将所给的算式,根据运算定律和运算性质,改变它的运算顺序(如凑整),从而变成一个易于算出结果的算式。
例1:计算8+98+998+9998练习:1、99999+9999+999+99+9 2、9+98+996+99973、19999+2998+396+4974、198+297+396+4955、1998+2997+4995+59946、19998+39996+49995+69996例2:计算489+487+483+485+484+486+488练习二:计算下面各题1、50+52+53+54+512、262+266+270+268+2643、89+94+92+95+93+94+88+96+874、381+378+382+383+3795、1032+1028+1033+1029+1031+10306、2451+2452+2446+2453例3:计算下列各题1、632-136-2322、128+186+72-86练习三:计算下列各题1、1208-569-2082、283+69-1833、132-85+684、2318+625-2318+625例4:计算下面各题1、248+(152-127)2、324−(124−97)3、283+(358−183)练习四:计算下面各题1、348+(252−166)2、629+(320−129)3、462−(262−129)4、662−(315−238)5、5623−(623−289)+452−(352−211)6、736+678+2368−(336+278)-386例5:计算下列各题1、286+879−6792、812-593+193练习五:计算下面各题1、368+1859−8592、887−343−2443、632−385+2854、2756−2478+1478+2445、612−375+275+(388+286)6、756+1478+346− (256+278)−246课后练习1、计算下面各题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
速算巧算(一)教学过程一、复习预习空二、知识讲解速算与巧算是计算中的一个重要组成部分。
掌握一些速算与巧算的方法,有助于提高我们的计算能力与思维能力。
加减法的速算与巧算方法主要根据加减法的运算定律和运算性质,通过对算式适当的变形从而使计算简便。
在巧算方法中,蕴含着一种重要的解决问题的策略—问题的转化。
即将所给的算式,根据运算定律和运算性质,改变它的运算顺序,或凑整数,从而变成一个易于算出结果的算式。
三、例题精析【例题1】【题干】计算8+98+998+9998【答案】8+98+998+9998=(10-2)+(100-2)+(1000-2)+(10000-2)=10+100+1000+10000-8=11110-8=11102【解析】仔细观察,不难发现这四个数分别接近10、100、1000、1000.在计算时,可以使用凑数法。
例如,将98转化为100-2,这是解决计算题常用的一种技巧。
【例题2】【题干】计算489+487+483+485+484+486+488【答案】489+487+483+485+484+486+488=490×7-(1+3+7+5+6+4+2)=3430-28=3402【解析】认真观察每个数,发现它们都和整十数490很接近,所以选490为基准数。
在计算时,先把七个数都当做490相加,原先比490大的,大多少就再加多少;原先比490小的,小多少就再减多少。
也可以选480作为基准数,利用同样的方法来解决问题。
【例题3】【题干】计算128+186+72-86【答案】128+186+72-86=128+72+186-86=(128+72)+(186-86)=200+100=300【解析】在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置,这样并不影响计算结果。
【例题4】【题干】计算324-(124-97) 283+(358-183)【答案】324-(124-97) 283+(358-183)=324-124+97 =283+358-183=200+97 =283-183+358=297 =458【解析】在计算有括号的加减混合运算时,为了使计算简便可以去掉括号。
如果括号前面是加号,去括号时,括号内的符号不变;如果括号前面是减号,去括号时,括号内的加号就要变成减号,减号就要变成加号。
可以把计算有括号的加减混合运算方法概括为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号。
【例题5】【题干】计算286+879-679 812-593+193【答案】286+879-679 812-593+193=286+(879-679) =812-(593-193)=286+200 =812-400=486 =412【解析】在计算没有括号的加减法混合运算时,有时可以根据题目的特点,采用添括号的方法使计算简便。
与去括号方法类似,可以把这种方法概括为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号。
可以把去括号、添括号的方法进一步概括为:括号前面是加号,去、添括号不变号;括号前面是减号,去、添括号要变号。
四、课堂运用【基础】1.计算下面各题。
(1)99999+9999+999+99+9 (2)9+98+996+9997答案(1) 99999+9999+999+99+9=(100000-1)+(10000-1)+(1000-1)+(100-1)+(10-1)=(100000+10000+1000+100+10 )-5=111110-5=111105(2)9+98+996+9997=(10-1)+(100-2)+(1000-4)+(10000-3)=(10+100+1000+10000)-1-2-4-3=11110-10=11100解析采用凑数法,将每个数转化为与原来接近的整十、整百、整千、整万的数。
例如9997可以转化为10000-3,999可以转化为1000-1.2.计算50+52+53+54+51+55+56答案 50+52+53+54+51+55+56=50×7+(2+3+4+1+5+6)=350+21=371解析每个数都和整十数50很接近,所以选50为基准数。
在计算时,先把这几个数都当做50相加,原先比50大的,大多少就再加多少;原先比50小的,小多少就再减多少。
3.计算下面各题。
(1)1208-569-208(2)283+69-183答案(1)1208-569-208 (2)283+69-183=1208-208-569 =283-183+69=1000-569 =100+69=431 =169解析在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置,这样并不影响计算结果。
4.计算下面各题。
(1)348+(252-166)(2)629+(320-129)答案(1)348+(252-166)(2)629+(320-129)=348+252-166 =629+320-129=600-166 =629-129+320=434 =500+320=820解析去括号的方法可以使计算简便,方法为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号。
5. 计算下面各题。
(1)368+1859-859 (2)887-343-244答案(1)368+1859-859 (2)887-343-244=368+(1859-859) =887-(343+244)=368+1000 =887-587=1368 =300解析采用添括号的方法使计算简便。
具体方法为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号。
【巩固】1.计算下面各题。
(1)19999+2998+396+497 (2)495+198+396+297答案(1)19999+2998+396+497=(20000-1)+(3000-2)+(400-4)+(500-3)=(20000+3000+400+500)-1-2-4-3=23900-10=23890(2)9+98+996+9997=(10-1)+(100-2)+(1000-4)+(10000-3)=(10+100+1000+10000)-1-2-4-3=11110-10=11100解析采用凑数法,将每个数转化为与原来接近的整十、整百、整千、整万的数。
例如9997可以转化为10000-3,497可以转化为500-3.2.计算89+94+92+95+93+94+88+96+87答案89+94+92+95+93+94+88+96+87=90×9+(4+2+5+3+4+6-1-2-3)=810+18=828解析每个数都和整十数90很接近,所以选90为基准数。
在计算时,先把这几个数都当做90相加,原先比90大的,大多少就再加多少;原先比90小的,小多少就再减多少。
3.计算132-85+68答案132-85+68=132+68-85=200-85=115解析在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置,这样并不影响计算结果。
4.计算下面各题。
(1)462-(262-129)(2)662-(315-238)答案(1)462-(262-129)(2)662-(315-238)=462-262+129 =662-315+238=400+129 =662+238-315=529 =900-315=585解析去括号, 调换加数或减数的位置可以使计算简便,方法为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号。
5. 计算下面各题。
(1)632-385+285 (2)2756-2478+1478+244答案(1)632-385+285 (2)2756-2478+1478+244=632-(385-285) =2756+244-(2478-1478)=632-100 =3000-1000=532 =2000解析采用添括号的方法使计算简便。
具体方法为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号。
【拔高】1.计算下面各题。
(1)1998+2997+4995+5994 (2)19998+39996+49995+69996答案(1)1998+2997+4995+5994=(2000-2)+(3000-3)+(5000-5)+(6000-6)=(2000+3000+5000+6000)-2-3-5-6=16000-16=15984(2)19998+39996+49995+69996=(20000-2)+(40000-4)+(50000-5)+(70000-4)=(20000+40000+50000+70000)-2-4-5-4=180000-15=179985解析采用凑数法,将每个数转化为与原来接近的整十、整百、整千、整万的数。
例如19997可以转化为20000-3,69996可以转化为70000-4.2.计算.(1)1032+1028+1033+1029+1031+1030 (2)2451+2452+2446+2453答案(1)1032+1028+1033+1029+1031+1030 (2)2451+2452+2446+2453=1030×6+(2-2+3-1+1) =2450×4+(1+2+3-4)=6180+3=6183 =9800+2=9802解析第一题中每个数都和整十数1030很接近,所以选1030为基准数。
在计算时,先把这几个数都当做1030相加,原先比1030大的,大多少就再加多少;原先比1030小的,小多少就再减多少。
第二题中每个数都和整十数2450很接近,所以选2450为基准数。
在计算时,先把这几个数都当做2450相加,原先比2450大的,大多少就再加多少;原先比2450小的,小多少就再减多少。
3.计算2318+625-2318+625答案 2318+625-2318+625=2318-2318+625+625=625+625=1250解析在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置,这样并不影响计算结果。
4.计算下面各题。
(1)5623-(623-289)+452-(352-211)(2)736+678+2386-(336+278)-386答案(1)5623-(623-289)+452-(352-211)=5623-623+289+452-352+211=(5623-623)+(289+211)+(452-352)=5000+500+100=5600(2)736+678+2386-(336+278)-386=736+678+2386-336-278-386=(736-336)+(678-278)+(2386-386)=400+400+2000=2800解析去括号, 调换加数或减数的位置,可以使计算简便,方法为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号。