四轴加工理论讲解

合集下载

UG四轴加工讲解

UG四轴加工讲解

创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*UG四轴加工讲解A.零件的建模:梅花滚筒ф100×3001)建模时要特别小心:在草图上作出梅花的曲线后,采用缠绕的方法使曲线附着在圆柱上。

2)图案的深度是5mm,而不在同一平面上的曲线拉伸后成的是片体。

所以采用片体修剪,缝合成实体,再与圆柱求差的方法。

因而最初拉伸时可以开始为-2结束为8,上下多2mm。

3)要保证图案的深度,在作修剪圆片体时,草图YZ平面上的ф100的圆心向-Z平移5mm 即可。

4)注意修剪片体时的方法,采用曲线修剪省事,先修剪原点的圆柱片体,再作平移5mm 的片体,在修剪这个平移5mm的片体。

最后缝合成实体。

5)作出第一个实体后,采用变换的方法(实例特征不支持)作出其他七个。

6)最后与圆柱体求差。

加工序号加工工序加工方法投影矢量刀轴刀具部件余量公差转速r/min进给mm/min1 粗加工型腔铣无Z轴T1B8 0.5±0.05 1000 3002 精加工腔可变轴指向直线离开直线T2D6 0 ±0.01 2000 150C.加工参数:1)粗加工切削模式:跟随周边,步距:%刀具平直,平面直径百分比:20,每一刀的深度:1,创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*【切削层】类型:用户定义,已测量从:顶层,范围深度:5.0 其他默认就行。

其结果如下:对其进行变换,结果:其中,CA VITY_MILL_1_1为第一个(即原始生成的)CA VITY_MILL_2_1为将CA VITY_MILL_1_1轴向(+X)平移100复制出来的。

其他6个刀轨为“绕直线旋转”“Multiple Copies”(多重复制)出来的。

2)精加工腔(采用可变轴铣,即4轴联动)3 精加工侧壁可变轴指向直线离开直线T2D6 0 ±0.01 2000 150a.采用边界的驱动方式来限制刀具的切削区域创建的边界生成的刀轨边界只能创建在平面上,所以刀轨在上下显得余量很大b.其他采用精加工的默认参数即可。

四轴加工理论讲解

四轴加工理论讲解

四轴加工理论讲解 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT四轴加工典型案例教程第1节四轴机床结构特点与工作原理1.四轴的定义:一台机床上至少有4个坐标,分别为3个直线坐标和1个旋转坐标2.四轴加工特点:(1).三轴加工机床无法加工到的或需要装夹过长(2).提高自由空间曲面的精度、质量和效率(3).四轴与三轴的区别;四轴区别与三轴多一个旋转轴,四轴坐标的确立及其代码的表示Z轴的确定:机床主轴轴线方向或者装夹工件的工作台垂直方向为Z轴X轴的确定:与工件安装面平行的水平面或者在水平面内选择垂直与工件的旋转轴线的方向为X轴,远离主轴轴线的方向为正方向3.直线坐标X轴Y轴Z轴旋转坐标A轴、B轴A轴:绕X轴旋转为A轴(G代码)B轴:绕Y轴旋转为B轴(G代码)XYZ+A、XYZ+B、两种形式四轴XYZ+A适合加工旋转类工件、车铣复合加工XYZ+B工作台相对较小、主轴刚性差、适合加工小产品四轴可以实现产品除底面外5个面都可以做加工,加工前我们必须对产品进行分析,确定四轴机床。

第2节四轴加工优点应运典型零件的工艺方案实际生产加工常发生的问题及其解决方案1.三轴加工的缺点:1.刀具长度过长,刀具成本过高2.刀具振动引发表粗糙度问题3.工序增加,多次装夹4.刀具易破损5.刀具数量增加6.易过切引起不合格工件7.重复对刀产生累积公差2.四轴优点:1.刀具得到很大改善2.加工工序缩短装夹时间3.无需夹具4.提高表面质量5.延长刀具寿命6.生产集中化7.有效提高加工效率和生产效率3.四轴加工主要应运的领域:航空、造船、医学、汽车工业、模具4.四轴应运的典型零件:凸轮、涡轮、蜗杆、螺旋桨、鞋模、人体模型、汽车配件、其他精密零件加工5.四轴加工工工艺及其实际生产加工常发生的问题及其解决方案:(1).四轴工件坐标系的确立、四轴G代码NC程序表示(2).各种不同机台复杂零件的装夹(3).加工辅助线、辅助面的制作(4).四轴加工刀具与工件点接触,非刀轴中心的补偿(5).加工过程中刀具碰撞问题(6).刀轨的校验及其仿真加工(7).不同四轴机器,不同刀轨和后处理第3节结合案例讲解软件的综合使用技巧和新增功能的使用麻花钻四轴加工及其多轴驱动的讲解多轴驱动的应用,四轴加工的基本流程曲面驱动四轴开粗流线加工曲线、点加工2.多轴加工的装夹及其UG5多轴驱动的讲解多轴等高加工多轴外形轮廓加工多轴顺序铣加工第4节几何体9种驱动方法的详细讲解和各参数设置曲线/点驱动方法加工3D刻字、3D流道螺旋式、边界加工曲面加工(重点)曲面必须连续曲面UV方向一致辅助面驱动流线加工(常用)刀轨、径向切削、外形轮廓加工、用户自定义第5节多轴加工18种刀轴方向的控制和复杂零件轴向的判定刀轴:远离直线、朝向直线、远离点、朝向点、相对于矢量、(前倾角、后倾角)垂直于部件、相对于部件插补矢量、插补角度至部件、插补矢量至驱动、(前倾角、后倾角)优化后驱动、垂直于驱动体、侧刃驱动体、相对于驱动体(前倾角、后倾角)前倾角:沿着刀具加工方向来设定倾斜角度侧倾角:刀具加工方向两侧位置夹角的控制如果前倾角控制的是X方向,那么后倾角控制是Y方向,4轴垂直于部件、4轴垂直于驱动当切削方向发生变化后,旋转角度也相对应的发生变化旋转角度:沿着刀具加工方向来设定倾斜角度,加工方向为正角,反方向为负角4轴相对于部件、4轴相对驱动双4轴在部件上、双4轴在驱动上。

数控4轴简单编程方法

数控4轴简单编程方法

数控4轴简单编程方法什么是数控四轴数控四轴是一种具有四个轴向运动控制功能的数控机床,通常用于加工复杂形状的工件或进行多面加工。

它具有高精度、高效率、高刚性、高可靠性等优点,已广泛应用于航空航天、汽车制造、模具加工等领域。

数控四轴编程基础1. 基本概念数控四轴编程是通过预先编写好的程序指令,将加工工艺参数转化为各轴运动的指令,从而实现工件的自动加工。

在四轴编程中,必须清楚以下几个概念:- 坐标系:数控系统中采用的坐标系一般为数学直角坐标系,由X、Y、Z、A四轴构成。

- 原点:数控四轴坐标系中的一个定义点,通常为工件与机床的交点。

- 绝对坐标和相对坐标:绝对坐标是以原点为参考点的坐标,相对坐标是以上一刀具结束位置点为起点的坐标。

2. 数控四轴编程指令数控四轴编程将加工工艺参数转化为各轴运动指令的方式有多种,其中最常用的是G指令和M指令。

- G指令:用于定义运动方式和轴的速度,例如G00表示快速移动,G01表示线性插补运动,G02表示顺时针圆弧插补运动,G03表示逆时针圆弧插补运动。

- M指令:用于定义机床的辅助功能,例如M03表示主轴正转,M04表示主轴反转,M05表示主轴停止。

3. 编程案例以下是一个简单的数控四轴编程案例:markdown程序号:O0001N10 G90 G54 G17 G40 G49 G80N20 S500 M03N30 G43 Z100. H01 M08N40 G01 X50. Y50. Z5. F200.N50 G02 X100. Y100. R50.N60 G03 X150. Y150. R50.N70 G01 Z-10. F100.N80 G00 X0. Y0. Z100.N90 M05N100 M304. 编程步骤进行数控四轴编程时,一般按照以下步骤进行:1. 分析工件图纸,确定加工过程和每个工序的加工要求。

2. 根据工序要求选择合适的刀具,确定坐标系原点和刀具尺寸。

(完整word)四轴加工理论讲解

(完整word)四轴加工理论讲解

UG8。

5四轴加工典型案例教程第1节四轴机床结构特点与工作原理1。

四轴的定义:一台机床上至少有4个坐标,分别为3个直线坐标和1个旋转坐标2.四轴加工特点:(1).三轴加工机床无法加工到的或需要装夹过长(2).提高自由空间曲面的精度、质量和效率(3)。

四轴与三轴的区别;四轴区别与三轴多一个旋转轴,四轴坐标的确立及其代码的表示Z轴的确定:机床主轴轴线方向或者装夹工件的工作台垂直方向为Z轴X轴的确定:与工件安装面平行的水平面或者在水平面内选择垂直与工件的旋转轴线的方向为X轴,远离主轴轴线的方向为正方向3。

直线坐标X轴Y轴Z轴旋转坐标A轴、B轴A轴:绕X轴旋转为A轴(G代码)B轴:绕Y轴旋转为B轴(G代码)XYZ+A、 XYZ+B、两种形式四轴XYZ+A 适合加工旋转类工件、车铣复合加工XYZ+B 工作台相对较小、主轴刚性差、适合加工小产品四轴可以实现产品除底面外5个面都可以做加工,加工前我们必须对产品进行分析,确定四轴机床。

第2节四轴加工优点应运典型零件的工艺方案实际生产加工常发生的问题及其解决方案1。

三轴加工的缺点:1。

刀具长度过长,刀具成本过高2。

刀具振动引发表粗糙度问题3.工序增加,多次装夹4.刀具易破损5。

刀具数量增加6。

易过切引起不合格工件7.重复对刀产生累积公差2。

四轴优点:1.刀具得到很大改善2.加工工序缩短装夹时间3。

无需夹具4.提高表面质量5。

延长刀具寿命6.生产集中化7。

有效提高加工效率和生产效率3.四轴加工主要应运的领域: 航空、造船、医学、汽车工业、模具4。

四轴应运的典型零件:凸轮、涡轮、蜗杆、螺旋桨、鞋模、人体模型、汽车配件、其他精密零件加工5.四轴加工工工艺及其实际生产加工常发生的问题及其解决方案:(1).四轴工件坐标系的确立、四轴G代码NC程序表示(2).各种不同机台复杂零件的装夹(3)。

加工辅助线、辅助面的制作(4)。

四轴加工刀具与工件点接触,非刀轴中心的补偿(5).加工过程中刀具碰撞问题(6)。

UG四轴加工讲解

UG四轴加工讲解

UG四轴加工讲解300A.零件的建模:梅花滚筒ф100×1)建模时要特别小心:在草图上作出梅花的曲线后,采用缠绕的方法使曲线附着在圆柱上。

2)图案的深度是5mm,而不在同一平面上的曲线拉伸后成的是片体。

所以采用片体修剪,缝合成实体,再与圆柱求差的方法。

因而最初拉伸时可以开始为-2结束为8,上下多2mm。

3)要保证图案的深度,在作修剪圆片体时,草图YZ平面上的ф100的圆心向-Z平移5mm即可。

4)注意修剪片体时的方法,采用曲线修剪省事,先修剪原点的圆柱片体,再作平移5mm的片体,在修剪这个平移5mm的片体。

最后缝合成实体。

5)作出第一个实体后,采用变换的方法(实例特征不支持)作出其他七个。

6)最后与圆柱体求差。

B.加工过程:C.加工参数:1)粗加工切削模式:跟随周边,步距:%刀具平直,平面直径百分比:20,每一刀的深度:1,【切削层】类型:用户定义,已测量从:顶层,范围深度:5.0 其他默认就行。

其结果如下:对其进行变换,结果:其中,CAVITY_MILL_1_1为第一个(即原始生成的)CAVITY_MILL_2_1为将CAVITY_MILL_1_1轴向(+X)平移100复制出来的。

其他6个刀轨为“绕直线旋转”“Multiple Copies”(多重复制)出来的。

2)精加工腔(采用可变轴铣,即4轴联动)a.采用边界的驱动方式来限制刀具的切削区域创建的边界生成的刀轨边界只能创建在平面上,所以刀轨在上下显得余量很大b.其他采用精加工的默认参数即可。

c.将刀轨复制平移,然后Multiple Copies。

3)精加工侧壁驱动几何体:曲线(由边缘曲线采用3mm所得)生成的刀具轨迹D.程序顺序视图粗加工精加工腔精加工侧壁E.采用NX自带的机床仿真由于采用一半的圆柱体作为毛坯因而只能显示一半零件毛坯F.创建带A轴的后处理器1)设置A轴参数2)其他参数3)分别在程序头和程序尾添加一些注解文件信息,包括NC生成的日期、零件名称及路径、NC的名称。

UG四轴加工讲解

UG四轴加工讲解

UG四轴加工讲解A.零件的建模:梅花滚筒ф100×3001)建模时要特别小心:在草图上作出梅花的曲线后,采用缠绕的方法使曲线附着在圆柱上。

2)图案的深度是5mm,而不在同一平面上的曲线拉伸后成的是片体。

所以采用片体修剪,缝合成实体,再与圆柱求差的方法。

因而最初拉伸时可以开始为-2结束为8,上下多2mm。

3)要保证图案的深度,在作修剪圆片体时,草图YZ平面上的ф100的圆心向-Z平移5mm即可。

4)注意修剪片体时的方法,采用曲线修剪省事,先修剪原点的圆柱片体,再作平移5mm的片体,在修剪这个平移5mm的片体。

最后缝合成实体。

5)作出第一个实体后,采用变换的方法(实例特征不支持)作出其他七个。

6)最后与圆柱体求差。

B.加工过程:C.加工参数:1)粗加工切削模式:跟随周边,步距:%刀具平直,平面直径百分比:20,每一刀的深度:1,【切削层】类型:用户定义,已测量从:顶层,范围深度:其他默认就行。

其结果如下:对其进行变换,结果:加工序号加工工序加工方法投影矢量刀轴刀具部件余量公差转速r/min进给mm/min1 粗加工型腔铣无Z轴T1B8 ±1000 3002 精加工腔可变轴指向直线离开直线T2D6 0 ±2000 1503 精加工侧壁可变轴指向直线离开直线T2D6 0 ±2000 150其中,CA VITY_MILL_1_1为第一个(即原始生成的)CA VITY_MILL_2_1为将CA VITY_MILL_1_1轴向(+X)平移100复制出来的。

其他6个刀轨为“绕直线旋转”“Multiple Copies”(多重复制)出来的。

2)精加工腔(采用可变轴铣,即4轴联动)a.采用边界的驱动方式来限制刀具的切削区域创建的边界生成的刀轨边界只能创建在平面上,所以刀轨在上下显得余量很大b.其他采用精加工的默认参数即可。

c.将刀轨复制平移,然后Multiple Copies。

四轴加工理论讲解

四轴加工理论讲解

四轴加工理论讲解This model paper was revised by the Standardization Office on December 10, 2020U G8.5四轴加工典型案例教程第1节四轴机床结构特点与工作原理1.四轴的定义:一台机床上至少有4个坐标,分别为3个直线坐标和1个旋转坐标2.四轴加工特点:(1).三轴加工机床无法加工到的或需要装夹过长(2).提高自由空间曲面的精度、质量和效率(3).四轴与三轴的区别;四轴区别与三轴多一个旋转轴,四轴坐标的确立及其代码的表示Z轴的确定:机床主轴轴线方向或者装夹工件的工作台垂直方向为Z轴X轴的确定:与工件安装面平行的水平面或者在水平面内选择垂直与工件的旋转轴线的方向为X轴,远离主轴轴线的方向为正方向3.直线坐标X轴Y轴Z轴旋转坐标A轴、B轴A轴:绕X轴旋转为A轴(G代码)B轴:绕Y轴旋转为B轴(G代码)XYZ+A、XYZ+B、两种形式四轴XYZ+A适合加工旋转类工件、车铣复合加工XYZ+B工作台相对较小、主轴刚性差、适合加工小产品四轴可以实现产品除底面外5个面都可以做加工,加工前我们必须对产品进行分析,确定四轴机床。

第2节四轴加工优点应运典型零件的工艺方案实际生产加工常发生的问题及其解决方案1.三轴加工的缺点:1.刀具长度过长,刀具成本过高2.刀具振动引发表粗糙度问题3.工序增加,多次装夹4.刀具易破损5.刀具数量增加6.易过切引起不合格工件7.重复对刀产生累积公差2.四轴优点:1.刀具得到很大改善2.加工工序缩短装夹时间3.无需夹具4.提高表面质量5.延长刀具寿命6.生产集中化7.有效提高加工效率和生产效率3.四轴加工主要应运的领域:航空、造船、医学、汽车工业、模具4.四轴应运的典型零件:凸轮、涡轮、蜗杆、螺旋桨、鞋模、人体模型、汽车配件、其他精密零件加工5.四轴加工工工艺及其实际生产加工常发生的问题及其解决方案:(1).四轴工件坐标系的确立、四轴G代码NC程序表示(2).各种不同机台复杂零件的装夹(3).加工辅助线、辅助面的制作(4).四轴加工刀具与工件点接触,非刀轴中心的补偿(5).加工过程中刀具碰撞问题(6).刀轨的校验及其仿真加工(7).不同四轴机器,不同刀轨和后处理第3节结合案例讲解软件的综合使用技巧和UG8.5新增功能的使用麻花钻四轴加工及其UG8.5多轴驱动的讲解1.UG多轴驱动的应用,四轴加工的基本流程曲面驱动四轴开粗流线加工曲线、点加工2.多轴加工的装夹及其UG5多轴驱动的讲解多轴等高加工多轴外形轮廓加工多轴顺序铣加工第4节UG8.5几何体9种驱动方法的详细讲解和各参数设置曲线/点驱动方法加工3D刻字、3D流道螺旋式、边界加工曲面加工(重点)曲面必须连续曲面UV方向一致辅助面驱动流线加工(常用)刀轨、径向切削、外形轮廓加工、用户自定义第5节UG8.5多轴加工18种刀轴方向的控制和复杂零件轴向的判定刀轴:远离直线、朝向直线、远离点、朝向点、相对于矢量、(前倾角、后倾角)垂直于部件、相对于部件插补矢量、插补角度至部件、插补矢量至驱动、(前倾角、后倾角)优化后驱动、垂直于驱动体、侧刃驱动体、相对于驱动体(前倾角、后倾角)前倾角:沿着刀具加工方向来设定倾斜角度侧倾角:刀具加工方向两侧位置夹角的控制如果前倾角控制的是X方向,那么后倾角控制是Y方向,4轴垂直于部件、4轴垂直于驱动当切削方向发生变化后,旋转角度也相对应的发生变化旋转角度:沿着刀具加工方向来设定倾斜角度,加工方向为正角,反方向为负角4轴相对于部件、4轴相对驱动双4轴在部件上、双4轴在驱动上。

UG四轴加工讲解

UG四轴加工讲解

UG 四轴加工讲解A.零件的建模:梅花滚筒ф100×3001) 建模时要特别小心:在草图上作出梅花的曲线后,采用缠绕的方法使曲线附着在圆柱上。

2) 图案的深度是5mm ,而不在同一平面上的曲线拉伸后成的是片体。

所以采用片体修剪,缝合成实体,再与圆柱求差的方法。

因而最初拉伸时可以开始为-2结束为8,上下多2mm 。

3) 要保证图案的深度,在作修剪圆片体时,草图YZ 平面上的ф100的圆心向-Z 平移5mm 即可。

4) 注意修剪片体时的方法,采用曲线修剪省事,先修剪原点的圆柱片体,再作平移5mm 的片体,在修剪这个平移5mm 的片体。

最后缝合成实体。

5) 作出第一个实体后,采用变换的方法(实例特征不支持)作出其他七个。

6) 最后与圆柱体求差。

B.加工过程:C.加工参数:1)粗加工切削模式:跟随周边,步距:%刀具平直,平面直径百分比:20,每一刀的深度:1, 【切削层】类型:用户定义,已测量从:顶层,范围深度:5.0 其他默认就行。

其结果如下:加工序号 加工工序 加工方法 投影矢量 刀轴 刀具 部件余 量 公差 转速r/min 进给mm/min 1 粗加工 型腔铣 无 Z 轴 T1B8 0.5 ±0.05 1000 300 2 精加工腔 可变轴 指向直线 离开直线 T2D6 0 ±0.01 2000 150 3精加工侧壁可变轴指向直线离开直线T2D6±0.012000150对其进行变换,结果:其中,CA VITY_MILL_1_1为第一个(即原始生成的)CA VITY_MILL_2_1为将CA VITY_MILL_1_1轴向(+X)平移100复制出来的。

其他6个刀轨为“绕直线旋转”“Multiple Copies”(多重复制)出来的。

2)精加工腔(采用可变轴铣,即4轴联动)a.采用边界的驱动方式来限制刀具的切削区域创建的边界生成的刀轨边界只能创建在平面上,所以刀轨在上下显得余量很大b.其他采用精加工的默认参数即可。

精雕软件5轴学习第六章

精雕软件5轴学习第六章

第六章四轴旋转加工四轴旋转加工是使用X、Y、Z轴再加一个A/B的旋转轴进行铣削加工的一种方法,主要应用在多轴加工中类似旋转体的开粗和精加工方面。

图6-1四轴旋转加工四轴旋转加工按照不同的加工需求,提供分层粗加工、旋转精加工、单笔清根加工方式,分别实现四轴旋转加工中的开粗、精加工以及清根加工。

图6-2加工方式6.3 四轴旋转走刀方式四轴旋转加工为方便用户根据加工对象的外形及复杂情况,提供了:外圆加工、凹腔加工、指向导动面三种走刀方式,满足用户多种加工需求。

6.4 四轴旋转走刀方向四轴旋转加工提供了常用的多种走刀方向,来控制加工过程中刀具的走向,方便用户选择,提高加工效率。

图6-11外圆加工和凹腔加工走刀方式图6-12指向导动面走刀方式图6-16螺旋开粗展开效果生成的路径倾斜方式——螺纹特征注意:对螺纹线不在同一圆柱上的螺纹,按螺纹特征方法是生成不了螺图6-20不能生成螺纹走刀指每条路径子段按照导动面的U向进行加工,路径子段之间按照导动面说明:1、ES-SurfMill6.0软件中四轴旋转加工是以X轴为旋转轴生成的加工路径,所以要注意调整加工图形的轴线必须与当前加工坐标系或局部坐标系的X轴重合。

2、四轴旋转加工的深度范围与其它加工方法的深度范围参数略不相同,详细使用说明如下:图6-23深度范围设置3、四轴旋转加工支持轮廓线限定加工区域,裁剪加工路径。

1)支持闭合边界曲线裁剪路径。

闭合边界曲线指曲线绕旋转轴线展开后,曲线处于闭合状态。

图6-24闭合边界曲线裁剪2)支持开边界曲线裁剪路径。

开边界曲线指曲线绕旋转轴线展开后,曲线处于非闭合状态图6-25非闭合边界曲线裁剪。

UG四轴加工讲解

UG四轴加工讲解

UG 四轴加工讲解A.零件的建模:梅花滚筒ф100×3001) 建模时要特别小心:在草图上作出梅花的曲线后,采用缠绕的方法使曲线附着在圆柱上。

2) 图案的深度是5mm ,而不在同一平面上的曲线拉伸后成的是片体。

所以采用片体修剪,缝合成实体,再与圆柱求差的方法。

因而最初拉伸时可以开始为-2结束为8,上下多2mm 。

3) 要保证图案的深度,在作修剪圆片体时,草图YZ 平面上的ф100的圆心向-Z 平移5mm 即可。

4) 注意修剪片体时的方法,采用曲线修剪省事,先修剪原点的圆柱片体,再作平移5mm 的片体,在修剪这个平移5mm 的片体。

最后缝合成实体。

5) 作出第一个实体后,采用变换的方法(实例特征不支持)作出其他七个。

6) 最后与圆柱体求差。

B.加工过程:C.加工参数:1)粗加工切削模式:跟随周边,步距:%刀具平直,平面直径百分比:20,每一刀的深度:1, 【切削层】类型:用户定义,已测量从:顶层,范围深度:5.0 其他默认就行。

其结果如下:加工序号 加工工序 加工方法 投影矢量 刀轴 刀具 部件余 量 公差 转速r/min 进给mm/min 1 粗加工 型腔铣 无 Z 轴 T1B8 0.5 ±0.05 1000 300 2 精加工腔 可变轴 指向直线 离开直线 T2D6 0 ±0.01 2000 150 3精加工侧壁可变轴指向直线离开直线T2D6±0.012000150对其进行变换,结果:其中,CAVITY_MILL_1_1为第一个(即原始生成的)CAVITY_MILL_2_1为将CAVITY_MILL_1_1轴向(+X)平移100复制出来的。

其他6个刀轨为“绕直线旋转”“Multiple Copies”(多重复制)出来的。

2)精加工腔(采用可变轴铣,即4轴联动)a.采用边界的驱动方式来限制刀具的切削区域创建的边界生成的刀轨边界只能创建在平面上,所以刀轨在上下显得余量很大b.其他采用精加工的默认参数即可。

UG四轴加工讲解

UG四轴加工讲解

UG四轴加工讲解300A.零件的建模:梅花滚筒ф100×2)图案的深度是5mm,而不在同一平面上的曲线拉伸后成的是片体。

所以采用片体修剪,缝合成实体,再与圆柱求差的方法。

因而最初拉伸时可以开始为-2结束为8,上下多2mm。

3)要保证图案的深度,在作修剪圆片体时,草图YZ平面上的ф100的圆心向-Z平移5mm即可。

4)注意修剪片体时的方法,采用曲线修剪省事,先修剪原点的圆柱片体,再作平移5mm的片体,在修剪这个平移5mm的片体。

最后缝合成实体。

5)作出第一个实体后,采用变换的方法(实例特征不支持)作出其他七个。

6)最后与圆柱体求差。

B.加工过程:C.加工参数:1)粗加工切削模式:跟随周边,步距:%刀具平直,平面直径百分比:20,每一刀的深度:1,【切削层】类型:用户定义,已测量从:顶层,范围深度:5.0 其他默认就行。

其结果如下:对其进行变换,结果:其中,CAVITY_MILL_1_1为第一个(即原始生成的)CAVITY_MILL_2_1为将CAVITY_MILL_1_1轴向(+X)平移100复制出来的。

其他6个刀轨为“绕直线旋转”“Multiple Copies”(多重复制)出来的。

2)精加工腔(采用可变轴铣,即4轴联动)a.采用边界的驱动方式来限制刀具的切削区域创建的边界生成的刀轨边界只能创建在平面上,所以刀轨在上下显得余量很大b.其他采用精加工的默认参数即可。

c.将刀轨复制平移,然后Multiple Copies。

3)精加工侧壁驱动几何体:曲线(由边缘曲线采用3mm所得)生成的刀具轨迹D.程序顺序视图粗加工精加工腔精加工侧壁E.采用NX自带的机床仿真由于采用一半的圆柱体作为毛坯因而只能显示一半零件毛坯F.创建带A轴的后处理器1)设置A轴参数2)其他参数3)分别在程序头和程序尾添加一些注解文件信息,包括NC生成的日期、零件名称及路径、NC的名称。

主轴停转加工完毕返回程序开始所用加工时间NC程序的大小4)选择新建的后处理器5)生成的NC程序程序头部分程序尾部分G.采用Vericut仿真数控程序1)构建机床模型由NX自带的机床模型导出STL文件,再将这些STL文件导入Vericut中机床模型及项目树2)加工结果THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

加工中心4轴编程方法

加工中心4轴编程方法

加工中心4轴编程方法宝子们,今天咱们来唠唠加工中心4轴编程呀。

4轴编程呢,和普通的编程有相似的地方,但是也有它独特的小脾气哦。

咱得先了解一下4轴加工的原理。

4轴嘛,就是在原来的X、Y、Z轴的基础上又多了一个旋转轴,这个旋转轴可以让咱们加工出更复杂、更有造型感的零件呢。

在编程的时候呀,坐标系的设定就很关键啦。

要根据零件的形状和加工要求,巧妙地确定这个4轴的坐标系。

就像是给零件和加工中心找一个共同的语言一样,要是坐标系没定好,那加工出来的零件可就“歪瓜裂枣”啦。

刀具路径的规划也是个技术活。

咱得想象着刀具在4个轴的带动下,怎么在零件上欢快地“跳舞”。

比如说,要是加工一个有曲面的零件,刀具就要沿着曲面平滑地移动,这个时候旋转轴就要配合着X、Y、Z轴,该转的时候就转,就像跳交谊舞一样,得有默契。

还有哦,4轴编程里的参数设置也很有讲究。

转速啦、进给量啦,这些参数就像是给刀具下达的指令,告诉它要以什么样的速度和节奏去干活。

如果转速太快,刀具可能就累坏啦,要是进给量不合适,加工出来的表面质量就不好,就像脸上长了小痘痘一样不平整。

在编程软件的使用上呢,不同的软件都有自己的小窍门。

有些软件的界面看起来很复杂,但是只要你耐心地和它“交朋友”,就会发现其实很有趣。

比如说,在设置4轴联动的时候,可能要在菜单里翻一翻,找到那个隐藏的小按钮,就像在寻宝一样。

宝子们,4轴编程虽然有点小复杂,但是只要我们有耐心,多尝试,就像学骑自行车一样,摔几次就会骑得稳稳当当啦。

而且当你看到自己编程加工出来的精美零件,那种成就感简直不要太好哦。

加油呀,相信你们都能掌握这个有趣的4轴编程方法哒。

UG四轴加工讲解

UG四轴加工讲解

UG四轴加工讲解A.零件的建模:梅花滚筒ф100×3001)建模时要特别小心:在草图上作出梅花的曲线后,采用缠绕的方法使曲线附着在圆柱上。

2)图案的深度是5mm,而不在同一平面上的曲线拉伸后成的是片体。

所以采用片体修剪,缝合成实体,再与圆柱求差的方法。

因而最初拉伸时可以开始为-2结束为8,上下多2mm。

3)要保证图案的深度,在作修剪圆片体时,草图YZ平面上的ф100的圆心向-Z平移5mm即可。

4)注意修剪片体时的方法,采用曲线修剪省事,先修剪原点的圆柱片体,再作平移5mm的片体,在修剪这个平移5mm的片体。

最后缝合成实体。

5)作出第一个实体后,采用变换的方法(实例特征不支持)作出其他七个。

6)最后与圆柱体求差。

B.加工过程:C.加工参数:1)粗加工切削模式:跟随周边,步距:%刀具平直,平面直径百分比:20,每一刀的深度:1,【切削层】类型:用户定义,已测量从:顶层,范围深度:5.0 其他默认就行。

其结果如下:加工序号加工工序加工方法投影矢量刀轴刀具部件余量公差转速r/min进给mm/min1 粗加工型腔铣无Z轴T1B8 0.5±0.05 1000 3002 精加工腔可变轴指向直线离开直线T2D6 0 ±0.01 2000 1503 精加工侧壁可变轴指向直线离开直线T2D6 0 ±0.01 2000 150对其进行变换,结果:其中,CA VITY_MILL_1_1为第一个(即原始生成的)CA VITY_MILL_2_1为将CA VITY_MILL_1_1轴向(+X)平移100复制出来的。

其他6个刀轨为“绕直线旋转”“Multiple Copies”(多重复制)出来的。

2)精加工腔(采用可变轴铣,即4轴联动)a.采用边界的驱动方式来限制刀具的切削区域创建的边界生成的刀轨边界只能创建在平面上,所以刀轨在上下显得余量很大b.其他采用精加工的默认参数即可。

c.将刀轨复制平移,然后Multiple Copies。

NX 7.5四轴加工编程实例精讲(理论课)

NX 7.5四轴加工编程实例精讲(理论课)

B24工作室
3、四轴加工中心使用方式
四轴加工中心的使用方式主要分为:
1、定位加工 2、联动加工
B24工作室
1、定位加工

定位加工,即是在进行实际的工件切削前,机床的旋 转轴转到某一固定的方位,然后开始进行实际切削,在 实际切削过程中,机床的旋转轴不与机床的X、Y及Z轴一 起运动。当切削过程完成后,刀具离开工件,机床旋转 轴转到另一方位,再开始另一切削过程。 很多机械零件的加工,如轴对称棒零件、齿轮箱等 零件的加工就适应于这种加工方式。
外形轮廓铣 利用刀的侧刃加工倾斜壁。 清根 文本 用户函数 沿部件表面形成的凹角和凹部生成驱动点。 选择注释并指定要在部件上雕刻文本的深度。 通过临时退出 NX 并执行内部用户函数程序来生成驱动轨迹
B24工作室
5.2、投影矢量
投影矢量允许您 定义驱动点投影 到部件表面的方 式,和刀具接触 的部件表面侧。
指定矢量 固定投影矢量
刀轴
远离点 朝向点 远离直线 朝向直线 垂直于驱动体 朝向驱动体 仅用于“曲面区 域”驱动方法 可变投影矢量
B24工作室
5.3、刀轴
“刀轴”定义为从刀尖方向指向刀具夹持器方向的 矢量。 刀轴使用于4轴编程中有: 远离直线 朝向直线 4轴,垂直于部件 4轴,垂直于驱动体 4轴,相对于部件 4轴,相对于驱动体 双4轴在部件上 双4轴在驱动体上
轴对称棒零件
齿轮箱体
B24工作室
2、联动加工
联动加工,是指机床在进行零件的实际切削 过程中,一个旋转轴同时参加了机床的X、Y和Z 轴的运动。 主要加工轴对称的零件。典型的是叶轮加工, 刀具在进行切削的过程中,联动轴向将随着刀具 的移动而改变。
水泵叶轮

UG四轴加工讲解上课讲义

UG四轴加工讲解上课讲义

UG 四轴加工讲解A.零件的建模:梅花滚筒ф100×3001) 建模时要特别小心:在草图上作出梅花的曲线后,采用缠绕的方法使曲线附着在圆柱上。

2) 图案的深度是5mm ,而不在同一平面上的曲线拉伸后成的是片体。

所以采用片体修剪,缝合成实体,再与圆柱求差的方法。

因而最初拉伸时可以开始为-2结束为8,上下多2mm 。

3) 要保证图案的深度,在作修剪圆片体时,草图YZ 平面上的ф100的圆心向-Z 平移5mm 即可。

4) 注意修剪片体时的方法,采用曲线修剪省事,先修剪原点的圆柱片体,再作平移5mm 的片体,在修剪这个平移5mm 的片体。

最后缝合成实体。

5) 作出第一个实体后,采用变换的方法(实例特征不支持)作出其他七个。

6) 最后与圆柱体求差。

B.加工过程:C.加工参数:1)粗加工切削模式:跟随周边,步距:%刀具平直,平面直径百分比:20,每一刀的深度:1, 【切削层】类型:用户定义,已测量从:顶层,范围深度:5.0 其他默认就行。

其结果如下:加工序号 加工工序 加工方法 投影矢量 刀轴 刀具 部件余 量 公差 转速r/min 进给mm/min 1 粗加工 型腔铣 无 Z 轴 T1B8 0.5 ±0.05 1000 300 2 精加工腔 可变轴 指向直线 离开直线 T2D6 0 ±0.01 2000 150 3精加工侧壁可变轴指向直线离开直线T2D6±0.012000150对其进行变换,结果:其中,CA VITY_MILL_1_1为第一个(即原始生成的)CA VITY_MILL_2_1为将CA VITY_MILL_1_1轴向(+X)平移100复制出来的。

其他6个刀轨为“绕直线旋转”“Multiple Copies”(多重复制)出来的。

2)精加工腔(采用可变轴铣,即4轴联动)a.采用边界的驱动方式来限制刀具的切削区域创建的边界生成的刀轨边界只能创建在平面上,所以刀轨在上下显得余量很大b.其他采用精加工的默认参数即可。

CNC四轴加工好不好?什么是CNC四轴加工?

CNC四轴加工好不好?什么是CNC四轴加工?

CNC四轴加工好不好?什么是CNC四轴加工?
所谓CNC四轴加工一般是加了一个旋转轴,通常称为第四轴。

一般的机床只有三轴也就是工件平台能左右(1轴)前后(2轴)主轴刀头(3轴)移动,用于切削工件,第四轴就是在移动的平台上加装一个可以360度旋转的电动分度头!这样可以自动分度打斜孔,铣斜边等等,而不用二次装夹流失精度。

CNC四轴加工特点:
(1).三轴加工机床无法加工到的或需要装夹过长
(2).提高自由空间曲面的精度、质量和效率
(3).四轴与三轴的区别; 四轴区别与三轴多一个旋转轴,四轴坐标的确立及其代码的表示
Z轴的确定:机床主轴轴线方向或者装夹工件的工作台垂直方向为Z轴
X轴的确定:与工件安装面平行的水平面或者在水平面内选择垂直与工件的旋转轴线的方向为X轴,远离主轴轴线的方向为正方向
CNC四轴加工优点:
1.刀具得到很大改善
2.加工工序缩短装夹时间
3.无需夹具
4.提高表面质量
5.延长刀具寿命
6.生产集中化
7.有效提高加工效率和生产效率
深圳市金佳利机电有限公司是一家以专业设计开发、生产、销售于一体的精密机械零配件、电气自动化夹冶具的制造公司。

公司现有设备:精密数控车(日本泷泽)、精密双主轴数控车铣复合机;CNC 加工中心(三轴、四轴)、中走丝及快走丝、精密铣床、精密磨床等。

配有先进的
检测设备:三次元、进口三丰高度仪、投影仪、三丰千分尺、数显卡尺等
等。

加工业务范围:精密设备、快速消费品零配件加工、五金结构件,工装夹具,测试检具等机械零件制造加工,专业OEM服务等。

涉及的行业有:微投、专业航拍器材、影视器材,户外照明、医疗设备、自动化设备、创意产品五金配件等。

UG四轴加工讲解

UG四轴加工讲解

U G四轴加工讲解公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]UG四轴加工讲解A.零件的建模:梅花滚筒ф100×3001)建模时要特别小心:在草图上作出梅花的曲线后,采用缠绕的方法使曲线附着在圆柱上。

2)图案的深度是5mm,而不在同一平面上的曲线拉伸后成的是片体。

所以采用片体修剪,缝合成实体,再与圆柱求差的方法。

因而最初拉伸时可以开始为-2结束为8,上下多2mm。

3)要保证图案的深度,在作修剪圆片体时,草图YZ平面上的ф100的圆心向-Z平移5mm即可。

4)注意修剪片体时的方法,采用曲线修剪省事,先修剪原点的圆柱片体,再作平移5mm的片体,在修剪这个平移5mm的片体。

最后缝合成实体。

5)作出第一个实体后,采用变换的方法(实例特征不支持)作出其他七个。

6)最后与圆柱体求差。

B.加工过程:C.加工参数:1)粗加工切削模式:跟随周边,步距:%刀具平直,平面直径百分比:20,每一刀的深度:1,【切削层】类型:用户定义,已测量从:顶层,范围深度:其他默认就行。

其结果如下:加工序号加工工序加工方法投影矢量刀轴刀具部件余量公差转速r/min进给mm/min 1粗加工型腔铣无Z轴T1B8±1000300 2精加工腔可变轴指向直线离开直线T2D60±20001503精加工侧壁可变轴指向直线离开直线T2D60±2000150对其进行变换,结果:其中,CAVITY_MILL_1_1为第一个(即原始生成的)CAVITY_MILL_2_1为将CAVITY_MILL_1_1轴向(+X)平移100复制出来的。

其他6个刀轨为“绕直线旋转”“Multiple Copies”(多重复制)出来的。

2)精加工腔(采用可变轴铣,即4轴联动)a.采用边界的驱动方式来限制刀具的切削区域创建的边界生成的刀轨边界只能创建在平面上,所以刀轨在上下显得余量很大b.其他采用精加工的默认参数即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

UG8、5四轴加工典型案例教程
第1节四轴机床结构特点与工作原理
1、四轴的定义:一台机床上至少有4个坐标,分别为3个直线坐标与1个旋转坐标
2、四轴加工特点:
(1)、三轴加工机床无法加工到的或需要装夹过长
(2)、提高自由空间曲面的精度、质量与效率
(3)、四轴与三轴的区别; 四轴区别与三轴多一个旋转轴,四轴坐标的确立及其代码的表示
Z轴的确定:机床主轴轴线方向或者装夹工件的工作台垂直方向为Z轴
X轴的确定:与工件安装面平行的水平面或者在水平面内选择垂直与工件的旋转轴线的方向为X轴,远离主轴轴线的方向为正方向
3、直线坐标X轴Y轴Z轴
旋转坐标A轴、B轴
A轴:绕X轴旋转为A轴(G代码)
B轴:绕Y轴旋转为B轴(G代码)
XYZ+A、XYZ+B、两种形式四轴
XYZ+A 适合加工旋转类工件、车铣复合加工
XYZ+B 工作台相对较小、主轴刚性差、适合加工小产品
四轴可以实现产品除底面外5个面都可以做加工,加工前我们必须对产品进行分析,确定四轴机床。

第2节四轴加工优点应运典型零件的工艺方案实际生产加工常发生的问题及其解决方案
1、三轴加工的缺点:1、刀具长度过长,刀具成本过高
2、刀具振动引发表粗糙度问题
3、工序增加,多次装夹
4、刀具易破损
5、刀具数量增加
6、易过切引起不合格工件
7、重复对刀产生累积公差
2、四轴优点:1、刀具得到很大改善2、加工工序缩短装夹时间
3、无需夹具
4、提高表面质量
5、延长刀具寿命
6、生产集中化
7、有效提高加工效率与生产效率
3、四轴加工主要应运的领域: 航空、造船、医学、汽车工业、模具
4、四轴应运的典型零件:凸轮、涡轮、蜗杆、螺旋桨、鞋模、人体模型、汽车配件、其她精密零件加工
5、四轴加工工工艺及其实际生产加工常发生的问题及其解决方案:
(1)、四轴工件坐标系的确立、四轴G代码NC程序表示
(2)、各种不同机台复杂零件的装夹
(3)、加工辅助线、辅助面的制作
(4)、四轴加工刀具与工件点接触,非刀轴中心的补偿
(5)、加工过程中刀具碰撞问题
(6)、刀轨的校验及其仿真加工
(7)、不同四轴机器,不同刀轨与后处理
第3节结合案例讲解软件的综合使用技巧与UG8、5新增功能的使用麻花钻四轴加工及其UG8、5多轴驱动的讲解
1、UG多轴驱动的应用,四轴加工的基本流程
曲面驱动四轴开粗
流线加工
曲线、点加工
2、多轴加工的装夹及其UG5多轴驱动的讲解
多轴等高加工
多轴外形轮廓加工
多轴顺序铣加工
第4节UG8、5几何体9种驱动方法的详细讲解与各参数设置
曲线/点驱动方法加工3D刻字、3D流道
螺旋式、边界加工
曲面加工(重点) 曲面必须连续曲面UV方向一致辅助面驱动
流线加工(常用)
刀轨、径向切削、外形轮廓加工、用户自定义
第5节UG8、5多轴加工18种刀轴方向的控制与复杂零件轴向的判定刀轴:
远离直线、朝向直线、远离点、朝向点、
相对于矢量、(前倾角、后倾角)垂直于部件、相对于部件
插补矢量、插补角度至部件、插补矢量至驱动、(前倾角、后倾角)
优化后驱动、
垂直于驱动体、侧刃驱动体、相对于驱动体(前倾角、后倾角)
前倾角:沿着刀具加工方向来设定倾斜角度
侧倾角:刀具加工方向两侧位置夹角的控制
如果前倾角控制的就是X方向,那么后倾角控制就是Y方向,
4轴垂直于部件、4轴垂直于驱动
当切削方向发生变化后,旋转角度也相对应的发生变化
旋转角度:沿着刀具加工方向来设定倾斜角度,加工方向为正角,反方向为负角
4轴相对于部件、4轴相对驱动
双4轴在部件上、双4轴在驱动上。

相关文档
最新文档