高二数学必修三的全部导学案
人教版高中数学必修第三册全册WORD讲义《导学案》
8.1.1向量数量积的概念(教师独具内容)课程标准:1.通过物理中功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积.2.通过几何直观,了解平面向量投影的概念以及投影向量的意义.3.会用数量积判断两个平面向量的垂直关系.教学重点:平面向量数量积的含义及几何意义.教学难点:向量的投影及数量积的几何意义.知识点一两个向量的夹角(1)定义:给定两个01非零向量a,b(如图所示),在平面内任选一点O,作OA→=a,OB→=b,则称02[0,π]内的∠AOB为向量a与向量b的夹角,记作03〈a,b〉.(2)根据向量夹角的定义可知,两个非零向量的夹角是唯一确定的,而且040≤〈a,b〉≤π,〈a,b〉=05〈b,a〉.时,称向量a与向量b垂直,记作07a⊥b.在(3)垂直:当〈a,b〉=06π2讨论垂直问题时,规定08零向量与任意向量垂直.知识点二向量数量积(内积)的定义一般地,当a与b都是非零向量时,称01|a||b|cos〈a,b〉为向量a与b的数量积(也称为内积),记作a·b,即a·b=02|a||b|cos〈a,b〉.由定义可知,两个非零向量a与b的数量积是一个实数.知识点三平面向量的数量积的性质(1)当e是单位向量时,因为|e|=1,所以a·e=01|a|·cos〈a,e〉.(2)a⊥b⇔02a·b=0.(3)a·a=03|a|2,即04|a|=a·a.(4)cos〈a,b〉=05a·b(|a||b|≠0).|a||b|(5)|a·b|06≤|a||b|,当且仅当a∥b时等号成立.知识点四向量的投影如图1,设非零向量AB→=a,过A,B分别作直线l的垂线,垂足分别为A′,B′,则称向量为向量a在直线l上的01投影向量或投影.类似地,给定平面上的一个非零向量b,设b所在的直线为l,则a在直线l 上的投影称为a在向量b上的02投影.如图2中,向量a在向量b上的投影为03.可以看出,一个向量在一个非零向量上的投影,一定与这个非零向量04共线,但它们的方向既有可能05相同,也有可能06相反.知识点五向量数量积的几何意义如图(1)(2)(3)所示.当〈a ,b 〉<π2时,A ′B ′→的方向与b 的方向01相同,而且||=02|a |cos〈a ,b 〉;当〈a ,b 〉=π2时,为零向量,即||=030;当〈a ,b 〉>π2时,的方向与b 的方向04相反,而且||=05-|a |cos 〈a ,b 〉.一般地,如果a ,b 都是非零向量,则称06|a |cos 〈a ,b 〉为向量a 在向量b 上的投影的数量.投影的数量与投影的长度有关,但是投影的数量既可能是07非负数,也可能是08负数.两个非零向量a ,b 的数量积a ·b ,等于a 在向量b 上的投影的数量与b 的模的乘积.这就是两个向量数量积的几何意义.1.a 在b 方向上的投影的数量也可以写成a ·b|b |,它的符号取决于角θ的余弦值.2.在运用数量积公式解题时,一定要注意两向量夹角的范围是0°≤θ≤180°.3.a ·b 的符号与a 与b 的夹角θ的关系设两个非零向量a与b的夹角为θ,则(1)若a·b>0⇔θ为锐角或零角.当θ=0°时,a与b共线同向,a·b>0.或a与b中至少有一个为0.(2)a·b=0⇔θ=π2(3)a·b<0⇔θ为钝角或平角,当θ=180°时,a与b共线反向,a·b<0.特别注意a,b共线同向与共线反向的特殊情况,即a·b>0(<0),向量夹角不一定为锐角(钝角).4.向量的数量积a·b=|a||b|cosθ的主要应用(1)利用公式求数量积,应先求向量的模,正确求出向量的夹角(向量的夹角由向量的方向确定).求夹角,应正确求出两个整体:数量积a·b与模(2)利用公式变式cosθ=a·b|a||b|积|a||b|,同时注意θ∈[0,π].(3)利用a·b=0证明垂直问题.1.判一判(正确的打“√”,错误的打“×”)(1)若a·b=0,则a⊥b.()(2)两个向量的数量积是一个向量.()(3)当a∥b时,|a·b|=|a||b|.()答案(1)√(2)×(3)√2.做一做(1)已知向量a与向量b的夹角为30°且|a|=3,则a在b上的投影的数量为____.(2)已知|a|=4,|b|=22,且a与b的夹角为135°,则a·b=____.(3)在直角坐标系xOy内,已知向量AB→与x轴和y轴正向的夹角分别为120°和30°,则BA→在x轴、y轴上的投影的数量分别为____和____.答案(1)32(2)-8(3)12|AB→|-32|AB→|题型一两个向量夹角的定义例1已知向量a,b的夹角为60°,试求下列向量的夹角:(1)-a,b;(2)2a,23b.[解]如图,由向量夹角的定义可知:(1)向量-a,b的夹角为120°.(2)向量2a,23b的夹角为60°.(1)向量的夹角是针对非零向量定义的.(2)注意向量的夹角是[0°,180°].(3)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC不是向量CA→与AB→的夹角,作AD→=CA→,则∠BAD才是向量CA→与AB→的夹角.|a|,求a-b与a的夹角.[跟踪训练1]已知向量a与b的夹角为60°且|b|=12解如图,作OA→=a,OB→=b,则∠BOA=60°,连接BA,则BA→=a-b.取OA的中点D,连接BD,∵|b|=1|a|,∴OD=OB=BD=DA,2∴∠BDO=60°=2∠BAO,∴∠BAO=30°.∴a-b与a的夹角为30°.题型二向量数量积的定义例2(1)已知|a|=5,|b|=2,若①a∥b;②a⊥b;③a与b的夹角为30°,分别求a·b.(2)已知|a|=4,|b|=2,b2-a2=3a·b,求向量a与向量b的夹角.[解](1)①当a∥b时,若a与b同向,则它们的夹角为0°,∴a·b=|a||b|cos0°=5×2×1=10;若a与b反向,则它们的夹角为180°,∴a·b=|a||b|cos180°=5×2×(-1)=-10.②当a⊥b时,则它们的夹角为90°,∴a ·b =|a ||b |cos90°=5×2×0=0.③当a 与b 的夹角为30°时,a ·b =|a ||b |cos30°=5×2×32=53.(2)由题意,得4-16=3a ·b ,∴a ·b =-4,∴cos 〈a ,b 〉=a ·b |a ||b |=-12,向量a 与向量b 的夹角为120°.1.求向量数量积的一般步骤及注意事项(1)确定向量的模和夹角,根据定义求出数量积.(2)a 与b 垂直当且仅当a ·b =0.(3)非零向量a 与b 共线当且仅当a ·b =±|a ||b |.2.求向量夹角的一般步骤及注意事项(1)确定向量的模和数量积,根据夹角公式求出向量夹角的余弦值.(2)注意向量夹角的范围为[0,π],从而确定夹角的大小.[跟踪训练2](1)已知|a |=4,|b |=5,向量a 与b 的夹角θ=π3,求a ·b .(2)已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,求a 与b 的夹角.解(1)a ·b =|a ||b |cos θ=4×5×12=10.(2)设a 与b 的夹角为θ,cos θ=a ·b |a ||b |=21×4=12,又因为θ∈[0,π],所以θ=π3.题型三向量的投影例3已知直线l ,(1)|OA →|=4,〈OA→,l 〉=60°,求OA →在l 上的投影的数量OA 1;(2)|OB →|=4,〈OB →,l 〉=90°,求OB →在l 上的投影的数量OB 1;(3)|OC→|=4,〈OC→,l〉=120°,求OC→在l上的投影的数量OC1.=2.[解](1)OA1=4cos60°=4×12(2)OB1=4cos90°=4×0=0.(3)OC1=4cos120°=4 2.对向量投影的理解从定义上看,向量b在直线(或非零向量)上的投影是一个向量,投影的数量可正、可负、可为零.(1)当θ(2)当θ(3)当θ=0时,该数量为|b|.(4)当θ=π时,该数量为-|b|.注意:此处b为非零向量.时,该数量为0.(5)当θ=π2时,a在e方向[跟踪训练3]已知|a|=8,e为单位向量,当它们的夹角为π3上的投影的数量为()A.43B.4C.42D.8+32答案B解析因为a在e方向上的投影的数量为|a|cosπ=4,故选B.3题型四向量数量积的几何意义及应用例4(1)已知|b |=3,a 在b 方向上的投影的数量是32,则a ·b 为()A .3 B.92C .2D.12(2)如图,四边形ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,且AB =2DC =4.E 为腰BC 上的动点.求AE→·AB →的取值范围.[解析](1)设a 与b 的夹角为θ,a ·b =|a ||b |cos θ=|b ||a |cos θ=3×32=92.(2)如图,过E 作EE ′⊥AB ,垂足为E ′,过C 作CC ′⊥AB ,垂足为C ′.则AE →在AB →上的投影为AE ′→,∴AE →在AB →上的投影的数量为|AE ′→|,由向量数量积的几何意义知AE →·AB →=|AE ′→||AB →|=4|AE ′→|.∵E 在腰BC 上运动,∴点E ′在线段C ′B 上运动,∴|AC ′→|≤|AE ′→|≤|AB→|,∴2≤|AE ′→|≤4,∴8≤4|AE ′→|≤16,∴AE→·AB→的取值范围是[8,16].[答案](1)B(2)见解析利用向量数量积的几何意义求两向量的数量积需明确两个关键点:相关向量的模和一个向量在另一向量方向上的投影的数量,代入向量数量积的公式即可.利用向量数量积判断几何图形形状或解决最值范围问题时,常结合图形直观分析得到结果.[跟踪训练4](1)若E,F,G,H分别为四边形ABCD所在边的中点,且(AB→+BC→)·(BC→+CD→)=0,则四边形EFGH是()A.梯形B.菱形C.矩形D.正方形(2)已知a·b=16,若a在b方向上的投影的数量为4,则|b|=____.答案(1)C(2)4解析(1)因为(AB→+BC→)·(BC→+CD→)=0,所以AC→·BD→=0,所以AC→⊥BD→.又因为E,F,G,H分别为四边形ABCD所在边的中点,所以四边形EFGH的两组对边分别与AC,BD平行,且EF⊥EH,所以四边形EFGH为矩形.(2)设a与b的夹角为θ,因为a·b=16,所以|a||b|cosθ=16.又a在b方向上的投影的数量为4,所以|a|cosθ=4,所以|b|=4.1.已知|a|=3,|b|=5,且a·b=12,则向量a在向量b上的投影的数量为()A.125B.3C.4D.5答案A解析设a与b的夹角为θ,则向量a在b上的投影的数量为|a|cosθ=a·b|b|=12 5.2.已知|a|=4,|b|=2,当它们之间的夹角为π3时,a·b=() A.43B.4C.83D.8答案B解析根据向量数量积的定义得a·b=|a||b|cos〈a,b〉=4×2×cosπ3=4.3.已知|a|=2|b|≠0,且关于x的方程x2+|a|x+a·b=0有实根,则a与b的夹角θ的取值范围是()A.0,π6 B.π3,πC.π3,2π3 D.π6,π答案B解析由题意可得,Δ=|a|2-4a·b≥0,∵|a|=2|b|,∴cosθ≤12θ∈π3,π.故选B.4.(多选)已知两个单位向量e1,e2的夹角为θ,则下列结论正确的是() A.e1在e2上的投影的数量为sinθB.e21=e22C.任给θ∈[0,π],(e1+e2)⊥(e1-e2)D.不存在θ,使e1·e2=2答案BCD解析对于A,因为e1,e2为单位向量,所以e1在e2上的投影的数量为|e1|cosθ=cosθ,A错误;对于B,e21=e22=1,B正确;对于C,如图,设AB→=e1,AD→=e2,则易知四边形ABCD是菱形,AC⊥BD,即(e1+e2)⊥(e1-e2),C正确;对于D,e1·e2=1×1×cosθ=cosθ≤1,所以D正确.5.在△ABC中,已知|AB→|=|AC→|=6,且AB→·AC→=18,则△ABC的形状是____.答案等边三角形解析∵AB→·AC→=|AB→||AC→|cos∠BAC,∴cos∠BAC=12,∴∠BAC=60°.又|AB→|=|AC→|,∴△ABC为等边三角形.一、选择题1.若|a|=2,|b|=12,〈a,b〉=60°,则a·b等于()A.1 2B.1 4C.1D.2答案A解析a·b=|a||b|cos〈a,b〉=2×12×12=12.2.在Rt△ABC中,角C=90°,AC=4,则AB→·AC→等于()A.-16B.-8C.8D.16答案D解析解法一:∵AB→·AC→=|AB→||AC→|cos A,△ACB为直角三角形,∴AB→·AC→=|AB→|·|AC→|·|AC→||AB→|=|AC→|2=16.故选D.解法二:∵△ACB为直角三角形,∴AB→在AC→上的投影为AC→,∴AB→·AC→=AC→2=16.故选D.3.向量a的模为10,它与x轴正方向的夹角为150°,则它在x轴正方向上的投影的数量为()A.-53B.5C.-5D.53答案A解析a在x轴正方向上的投影的数量为|a|cos150°=-53.4.已知向量a,b满足|a|=4,|a·b|≥10,则|a-2b|的最小值是()A.1B.2C.3D.4答案A解析设a,b的夹角为θ,因为|a·b|=4|b||cosθ|≥10,所以|b|≥104|cosθ|≥52,由向量形式的三角不等式得,|a-2b|≥||a|-|2b||=|2|b|-4|≥|2×52-4|=1.5.(多选)关于菱形ABCD的下列说法中,正确的是()A.AB→∥CD→B.(AB→+BC→)⊥(BC→+CD→)C.(AB→-AD→)·(BA→-BC→)=0D.AB→·AD→=BC→·CD→答案ABC解析∵四边形ABCD为菱形,∴AB∥CD,∴AB→∥CD→,A正确;∵对角线AC 与BD互相垂直,且AB→+BC→=AC→,BC→+CD→=BD→,∴AC→⊥BD→,即(AB→+BC→)⊥(BC→+CD→),B正确;∵AB→-AD→=DB→,BA→-BC→=CA→,∵DB→⊥CA→,即DB→·CA→=0,∴(AB→-AD→)·(BA→-BC→)=0,C正确;易知〈AB→,AD→〉=180°-〈BC→,CD→〉,且|AB→|=|AD→|=|BC→|=|CD→|,∴AB→·AD→=-BC→·CD→,D错误.故选ABC.二、填空题6.△ABC中,∠A,∠B,∠C的对边长分别为a,b,c,a=3,b=1,∠C=30°,则BC→·CA→等于____.答案-332解析BC→·CA→=|BC→||CA→|cos(180°-30°)=ab cos150°=-332.7.若|a|=2,b=-2a,则a·b=____.答案-8解析|b|=2|a|=4,且b与a反向,∴〈a,b〉=180°.∴a·b=|a||b|cos180°=2×4×(-1)=-8.8.给出下列命题:①若a=0,则对任一向量b,有a·b=0;②若a≠0,则对任意一个非零向量b,有a·b≠0;③若a≠0,a·b=0,则b=0;④若a·b=0,则a,b至少有一个为0;⑤若a≠0,a·b=a·c,则b=c;⑥若a·b=a·c,且b≠c,当且仅当a=0时成立.其中真命题为____.答案①解析由数量积的定义逐一判断可知,只有①正确.三、解答题9.已知正方形ABCD的边长为1,分别求:(1)AB→·CD→;(2)AB→·AD→;(3)AC→·DA→.解如图,(1)〈AB→,CD→〉=π,∴AB→·CD→=-1.(2)〈AB →,AD→〉=π2,∴AB →·AD →=0.(3)〈AC →,DA →〉=3π4,∴AC →·DA →=2×1×cos 3π4=-1.10.已知△ABC 的面积S 满足3≤S ≤3,且AB →·BC →=6,AB →与BC →的夹角为θ.求θ的取值范围.解∵AB→·BC →=|AB →||BC →|cos θ=6>0,∴cos θ>0,∴θ为锐角,如图,过C 作CD ⊥AB ,垂足为D ,则|CD |=|BC |sin θ.由题意,知AB→·BC →=|AB →||BC →|cos θ=6,①S =12|AB ||CD |=12|AB →||BC →|sin θ.②由②÷①得S 6=12tan θ,即3tan θ=S .∵3≤S ≤3,∴3≤3tan θ≤3,即33≤tan θ≤1.又θ为AB →与BC →的夹角,θ∈[0,π],∴θ∈π6,π4.1.(多选)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,AH 为BC 边上的高,给出以下结论,其中正确的是()A.AH→·(AC→-AB→)=0B.AB→·BC→<0⇒△ABC为钝角三角形C.AC→·AH→|AH→|=c sin BD.BC→·(AC→-AB→)=a2答案ACD解析因为AC→-AB→=BC→,且AH⊥BC,所以AH→·(AC→-AB→)=0,故A正确;在△ABC中,由AB→·BC→<0,只能得出角B为锐角,不能判断出△ABC的形状,故B不正确;AH→|AH→|是AH→的单位向量,依据数量积的几何意义可知AC→·AH→|AH→|为AC→在AH→方向上的投影,为b sin C=c sin B,故C正确;因为AC→-AB→=BC→,所以BC→·(AC→-AB→)=|BC→|2=a2,故D正确.2.已知a,b是两个非零向量.(1)若|a|=3,|b|=4,|a·b|=6,求a与b的夹角;(2)若|a|=|b|=|a-b|,求a与a+b的夹角.解(1)∵a·b=|a||b|cos〈a,b〉,∴|a·b|=||a||b|cos〈a,b〉|=|a||b||cos〈a,b〉|=6.又|a|=3,|b|=4,∴|cos〈a,b〉|=6|a||b|=63×4=12,∴cos〈a,b〉=±12.∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π3或2π3.(2)如图所示,在平面内取一点O ,作OA→=a ,OB →=b ,以OA →,OB →为邻边作平行四边形OACB ,使|OA →|=|OB →|,所以四边形OACB 为菱形,OC 平分∠AOB ,这时OC→=a +b ,BA →=a -b .由于|a |=|b |=|a -b |,即|OA→|=|OB →|=|AB →|,所以∠AOC =π6,即a 与a +b 的夹角为π6.8.1.2向量数量积的运算律(教师独具内容)课程标准:理解掌握数量积的性质和运算律.教学重点:向量数量积的性质与运算律及其应用.教学难点:平面向量数量积的运算律的证明.知识点平面向量数量积的运算律已知向量a ,b ,c 与实数λ,则交换律a ·b =01b ·a结合律(λa)·b=02λ(a·b)=03a·(λb)分配律(a+b)·c=04a·c+b·c对向量数量积的运算律的几点说明(1)向量数量积不满足消去律:设a,b,c均为非零向量且a·c=b·c,不能得到a=b.事实上,如右图所示,OA→=a,OB→=b,OC→=c,AB⊥OC于D,可以看出,a,b在向量c上的投影分别为|a|cos∠AOD,|b|cos∠BOD,此时|b|cos∠BOD=|a|cos∠AOD=OD.即a·c=b·c.但很显然b≠a.(2)向量的数量积不满足乘法结合律:一般地,向量的数量积(a·b)c≠a(b·c),这是由于a·b,b·c都是实数,(a·b)c表示与c方向相同或相反的向量,a(b·c)表示与a方向相同或相反的向量,而a与c不一定共线.1.判一判(正确的打“√”,错误的打“×”)(1)对于向量a,b,c等式(a·b)·c=a·(b·c)恒成立.()(2)若a·b=a·c(a≠0),则b=c.()(3)(a+b)·(a-b)=a2-b2.()答案(1)×(2)×(3)√2.做一做(1)已知|a|=2,b在a上的投影的数量为-2,则a·(a-b)=____.(2)已知|a|=3,|b|=4,则(a+b)·(a-b)=____.(3)已知|a|=6,|b|=8,〈a,b〉=120°,则|a2-b2|=____,|a-b|=____,|a2+b2|=____.答案(1)8(2)-7(3)28237100题型一求向量的数量积例1已知|a|=2,|b|=3,a与b的夹角为120°,求:(1)a·b;(2)a2-b2;(3)(2a-b)·(a+3b).[解](1)a·b=|a||b|cos120°=2×3 3.(2)a2-b2=|a|2-|b|2=4-9=-5.(3)(2a-b)·(a+3b)=2a2+5a·b-3b2=2|a|2+5|a||b|cos120°-3|b|2=8-15-27=-34.求向量的数量积的两个关键点求向量的数量积时,需明确两个关键点:相关向量的模和夹角.若相关向量是两个或两个以上向量的线性运算,则需先利用向量数量积的运算律及多项式乘法的相关公式进行化简.[跟踪训练1]在边长为1的正三角形ABC中,设BC→=2BD→,CA→=3CE→,则AD→·BE→=____.答案-14解析由已知得AD→=12(AB→+AC→),AE→=23AC→,BE→=BA→+AE→=23AC→-AB→,所以AD→·BE→=12(AB→+AC→)·-=12×→|2-|AB→|2-13AB→·=1 2×1-13cos60°=-14.题型二求向量的夹角例2已知单位向量e1,e2的夹角为60°,求向量a=e1+e2,b=e2-2e1的夹角.[解]设a,b的夹角为θ,∵单位向量e1,e2的夹角为60°,∴e1·e2=|e1||e2|cos60°=12.∴a·b=(e1+e2)·(e2-2e1)=e1·e2+e22-2e21-2e1·e2=e22-2e21-e1·e2=1-2-12=-32,|a|=a2=(e1+e2)2=|e1|2+|e2|2+2e1·e2=1+1+1=3.|b|=b2=(e2-2e1)2=|e2|2-4e1·e2+4|e1|2=1+4-4×12=3.∴cosθ=a·b|a||b|=-323×3=-12.∵θ∈[0,π],∴θ=120°.求向量a,b夹角θ的思路(1)解题流程求|a|,|b|→计算a·b→计算cosθ=a·b|a||b|→结合θ∈[0,π],求出θ(2)解题思想:由于|a|,|b|及a·b都是实数,因此在涉及有关|a|,|b|及a·b的相应等式中,可用方程的思想求解(或表示)未知量.[跟踪训练2]已知|a|=3,|b|=5,|a+b|=7,求a·b及a与b的夹角.解∵|a+b|=7,∴(a+b)2=a2+2a·b+b2=|a|2+2a·b+|b|2=34+2a·b=49,∴a·b=152.设a与b的夹角为θ,则cosθ=a·b|a||b|=1523×5=12又θ∈[0,π],故a与b的夹角θ=60°.题型三求向量的模例3已知x=1是方程x2+|a|x+a·b=0的根,且a2=4,〈a,b〉=120°.求:(1)向量b的模;(2)向量2b+a的模.[解](1)∵a2=4,∴|a|2=4,即|a|=2.把x=1代入方程x2+|a|x+a·b=0,得1+|a|+a·b=0,∴a·b=-3,则a·b=|a||b|cos〈a,b〉=2|b|cos120°=-3,∴|b|=3.(2)(2b+a)2=4b2+a2+4a·b=4×9+4+4×(-3)=28,∴|2b+a|=27.极化恒等式求模长(1)两个结论①(a+b)2=a2+2a·b+b2;②(a+b)·(a-b)=a2-b2.证明:①(a+b)2=(a+b)·(a+b)=a·a+a·b+b·a+b·b=a2+2a·b+b2.②(a+b)·(a-b)=a·a-a·b+b·a-b·b=a2-b2.说明:下列结论也是成立的:(a-b)2=a2-2a·b+b2,(a+b)·(c+d)=a·c+a·d+b·c+b·d.(2)由上述结论,我们不难得到4a·b=(a+b)2-(a-b)2,即a·b=1[(a+b)2-(a-b)2].4我们把该恒等式称为“极化恒等式”.(3)应用向量数量积的运算律求向量的模的方法①求模问题一般转化为求模平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.②一些常见的等式应熟记,如(a±b)2=a2±2a·b+b2,(a+b)(a-b)=a2-b2等.提醒:向量的模是非负实数;一个向量与自身的数量积等于它的模的平方.,求|a-b|,|a+b|.[跟踪训练3]已知|a|=|b|=5,向量a与b的夹角为π3解解法一:|a+b|=(a+b)2=a2+b2+2a·b=|a|2+|b|2+2|a||b|cos〈a,b〉=53.=52+52+2×5×5×cosπ3|a-b|=(a-b)2=a2+b2-2a·b=|a|2+|b|2-2|a||b|cos〈a,b〉=5.=52+52-2×5×5×cosπ3解法二:以a,b为邻边作▱ABCD,设AC,BD相交于点E,如图所示.∵|a|=|b|且∠DAB=π3,∴△ABD为正三角形,∴|a-b|=|DB→|=5,|a+b|=|AC→|=2|AE→|=2|AB→|2-|BE→|2=252-5 2253.题型四用向量数量积解决垂直问题例4已知平面上三个向量a,b,c的模均为1,它们相互之间的夹角为120°,求证:(a-b)⊥c.[证明]证法一:∵|a|=|b|=|c|=1,且a,b,c之间的夹角均为120°,∴(a-b)·c=a·c-b·c=|a||c|·cos120°-|b||c|cos120°=0.∴(a-b)⊥c.证法二:如图,设OA→=a,OB→=b,OC→=c,连接AB,AC,BC,三条线段围成正三角形ABC,O为△ABC的中心,∴OC ⊥AB.又BA→=a-b,∴(a-b)⊥c.要解决的问题是用向量表示,它往往对应一个几何图形;如果是几何的形式表示,它往往对应一个向量关系式.要善于发现这二者之间的关系,从一种形式转化为另一种形式,用哪种形式解决问题方便就选用哪种形式.[跟踪训练4]如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明设AD→=a ,AB →=b ,则|a |=|b |,a ·b =0,又DE→=DA →+AE →=-a +b 2,AF →=AB →+BF →=b +a 2,所以AF →·DE →a 12a 2-34a ·b +b 22=-12|a |2+12|b |2=0.故AF →⊥DE→,即AF ⊥DE .1.若向量a 的方向是正北方向,向量b 的方向是西偏南30°方向,且|a |=|b |=1,则(-3a )·(a +b )等于()A.32B .-32C.23D .-23答案B解析由题意知a 与b 的夹角为120°,∴a ·b =-12.∴(-3a )·(a +b )=-3a 2-3a ·b =-32.2.已知a ,b 均为单位向量,它们的夹角为60°,那么|a -b |等于()A.1 B.2C.3D.2答案A解析|a-b|=(a-b)2=a2+b2-2a·b=12+12-2·1·cos〈a,b〉=2-2cos60°=1.3.若O为△ABC所在平面内一点,且满足(OB→-OC→)·(OB→+OC→-2OA→)=0,则△ABC的形状为()A.正三角形B.直角三角形C.等腰三角形D.以上均不正确答案C解析由(OB→-OC→)·(OB→+OC→-2OA→)=0,得CB→·(AB→+AC→)=0,又CB→=AB→-AC→,∴(AB→-AC→)·(AB→+AC→)=0,即|AB→|2-|AC→|2=0.∴|AB→|=|AC→|.∴△ABC为等腰三角形.,则4.已知a,b,c为单位向量,且满足3a+λb+7c=0,a与b的夹角为π3实数λ=____.答案-8或5解析由3a+λb+7c=0,可得7c=-(3a+λb),则49c2=9a2+λ2b2+6λa·b.,即λ2+3λ-40由a,b,c为单位向量,得a2=b2=c2=1,则49=9+λ2+6λcosπ3=0,解得λ=-8或λ=5.5.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61,(1)求a与b的夹角θ;(2)求|a+b|和|a-b|.解(1)因为(2a-3b)·(2a+b)=61,所以4a2-4a·b-3b2=61,,所以4×42-4×4×3cosθ-3×32=61,cosθ=-12又因为θ∈[0,π],所以θ=120°.(2)因为|a+b|2=a2+2a·b+b2=16+2×4×3cos120°+9=13,所以|a+b|=13,同理可求得|a-b|=37.一、选择题1.已知向量a,b满足|a|=2,|b|=1,(a-b)·b=0,那么向量a与b的夹角为()A.30°B.45°C.60°D.90°答案C,解析由题意可得a·b-b2=0,设a与b的夹角为θ,则2cosθ=1,cosθ=12又θ∈[0,π],∴θ为60°.2.已知平面向量a,b满足|a|=3,|b|=2,a·b=-3,则|a+2b|=()A.1 B.7C.4+3D.27答案B解析根据题意,得|a+2b|=a2+4a·b+4b2=7.3.若AB →·BC →+AB →2=0,则△ABC 为()A .直角三角形B .钝角三角形C .锐角三角形D .等腰直角三角形答案A解析∵0=AB→·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →,∴AB →⊥AC →,∴∠BAC =90°.故选A.4.如图,O ,A ,B 是平面上的三点,C 为线段AB 的中点,向量OA→=a ,OB →=b ,设P 为线段AB 的垂直平分线上任意一点,向量OP →=p .若|a |=4,|b |=2,则p ·(a -b )=()A .1B .3C .5D .6答案D解析由题图知CP →⊥BA →,则CP →·BA →=0,p =OP→=OC →+CP →=12(OA →+OB →)+CP →,则p ·(a -b )=12(a +b )+CP →·(a -b )=12(a +b )·(a -b )+CP→·(a -b )=12(a 2-b 2)+CP →·BA →=12(|a |2-|b |2)+0=12×(42-22)=6.5.(多选)设a ,b ,c 是任意的非零向量,且它们相互不共线,则下列结论正确的是()A .a ·c -b ·c =(a -b )·cB .(b ·c )·a -(c ·a )·b 不与c 垂直C .|a |-|b |<|a -b |D .(3a +2b )·(3a -2b )=9|a |2-4|b |2答案ACD解析因为a ,b ,c 是任意的非零向量,且它们相互不共线,则由向量数量积的运算律,知A ,D 正确;由向量减法的三角形法则,知C 正确;因为[(b ·c )·a -(c ·a )·b ]·c =(b ·c )·(a ·c )-(c ·a )·(b ·c )=0.所以(b ·c )·a -(c ·a )·b 与c 垂直,B 错误.故选ACD.二、填空题6.若a ⊥b ,c 与a 及与b 的夹角均为60°,|a |=1,|b |=2,|c |=3,则(a +2b -c )2=____.答案11解析原式展开,得|a |2+4|b |2+|c |2+4|a ||b |cos90°-2|a ||c |cos60°-4|b ||c |cos60°=11.7.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 的夹角的余弦值为____.答案-13解析由|a |=3|b |,得|b ||a |=13.由|a |=|a +2b |,两边平方得|a |2=|a +2b |2=|a |2+4|b |2+4a ·b ,整理得a ·b =-|b |2.设a ,b 的夹角为θ,则cos θ=a ·b |a ||b |=-|b |2|a ||b |=-|b ||a |=-13.8.已知向量AB→与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP→⊥BC →,则实数λ的值为____.答案712解析因为向量AB→与AC→的夹角为120°,且|AB→|=3,|AC→|=2,所以AB→·AC→=|AB→||AC→|cos120°=3×2 3.由AP→⊥BC→,得AP→·BC→=0,即AP→·BC→=(λAB→+AC→)·(AC→-AB→)=0,所以AC→2-λAB→2+(λ-1)AB→·AC→=0,即4-9λ-3(λ-1)=0,解得λ=7.12三、解答题9.已知|a|=4,|b|=8,a与b的夹角是120°.(1)计算|4a-2b|;(2)当k为何值时,(a+2b)⊥(k a-b).解由已知,得a·b=4×816.(1)∵(4a-2b)2=16a2-16a·b+4b2=16×16-16×(-16)+4×64=3×162,∴|4a-2b|=16 3.(2)若(a+2b)⊥(k a-b),则(a+2b)·(k a-b)=0.∴k a2+(2k-1)a·b-2b2=0,即16k-16(2k-1)-2×64=0,∴k=-7.10.如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足AP→=λPB→.(1)若λ=12,用向量OA →,OB →表示OP →;(2)若|OA→|=4,|OB →|=3,且∠AOB =60°,求OP →·AB →的取值范围.解(1)∵AP →=12PB →,∴OP →-OA →=12(OB →-OP →).∴32OP →=OA →+12OB →,即OP →=23OA →+13OB →.(2)OA→·OB →=|OA →||OB →|cos60°=6.∵AP→=λPB →,∴OP→-OA →=λ(OB →-OP →),(1+λ)OP →=OA →+λOB →,∴OP →=11+λOA →+λ1+λOB →.∵AB→=OB →-OA →,∴OP →·AB →+λ1+λOB OB →-OA →)=-11+λOA →2+λ1+λOB →2·OB →=-16+9λ+6-6λ1+λ=3λ-101+λ=3-131+λ.∵λ>0,∴3-131+λ∈(-10,3).∴OP→·AB →的取值范围是(-10,3).1.已知向量OA→与OB→的夹角为θ,|OA→|=2,|OB→|=1,OP→=tOA→,OQ→=(1-t)OB→,t∈R,|PQ→|在t=t0时取得最小值,当0<t0<15时,夹角θ的取值范围是()A.0,π3π3,π2C.π2,2π30,2π3答案C解析因为向量OA→与OB→的夹角为θ,|OA→|=2,|OB→|=1,所以OA→·OB→=2cosθ,由PQ→=OQ→-OP→=(1-t)OB→-tOA→,得|PQ→|2=PQ→2=(1-t)2OB→2-2t(1-t)·OA→·OB→+t2OA→2=(5+4cosθ)t2-(2+4cosθ)t+1,所以t0=1+2cosθ5+4cosθ,由0<1+2cosθ5+4cosθ<15,解得-1 2<cosθ<0,因为0≤θ≤π,所以π2<θ<2π3.故选C.2.平面四边形ABCD中,AB→=a,BC→=b,CD→=c,DA→=d,且a·b=b·c=c·d=d·a,试问四边形ABCD的形状.解∵AB→+BC→+CD→+DA→=0,即a+b+c+d=0,∴a+b=-(c+d),由上式可得(a+b)2=(c+d)2,即a2+2a·b+b2=c2+2c·d+d2.又a·b=c·d,故a2+b2=c2+d2.①同理可得a2+d2=b2+c2②由①②,得a2=c2,且b2=d2,即|a|=|c|,且|b|=|d|,也即AB=CD,且BC=DA.∴四边形ABCD为平行四边形.故AB→=-CD→,即a=-c,∴a·b=b·c=-a·b,即a·b=0,∴a⊥b,即AB→⊥BC→.综上知,四边形ABCD为矩形.8.1.3向量数量积的坐标运算(教师独具内容)课程标准:1.能用坐标表示平面向量的数量积,会表示两个平面向量的夹角.2.能用坐标表示平面向量垂直的条件.教学重点:平面向量数量积的坐标表示以及模、角度、垂直关系的坐标表示.教学难点:用坐标法处理模、角度、垂直问题.知识点一向量数量积的坐标运算已知a=(x1,y1),b=(x2,y2),则a·b=01x1x2+y1y2,即两个向量的数量积等于02它们对应坐标乘积的和.知识点二向量的长度已知a=(x1,y1),则|a|=01x21+y21,即向量的长度等于02它的坐标平方和的算术平方根.知识点三两向量夹角的余弦设a=(x1,y1),b=(x2,y2),则cos〈a,b〉=01x1x2+y1y2x21+y21x22+y22.知识点四两点间的距离如果A(x1,y1),B(x2,y2),则|AB→|=01(x2-x1)2+(y2-y1)2.知识点五用坐标表示两向量垂直设a=(x1,y1),b=(x2,y2),则a⊥b⇔01x1x2+y1y2=0.1.两个向量垂直的条件已知a=(x1,y1),b=(x2,y2),如果a⊥b,则x1x2+y1y2=0;反之,如果x1x2+y1y2=0,则a⊥b.运用向量垂直的条件,既可以判定两向量是否垂直,又可以由垂直关系去求参数.如果a⊥b,则向量(x1,y1)与(-y2,x2)平行.这是因为a⊥b,有x1x2+y1y2=0(*),当x2y2≠0时,(*)式可以表示为x1-y2=y1x2,即向量(x1,y1)与向量(-y2,x2)平行.对任意的实数k,向量k(-y2,x2)与向量(x2,y2)垂直.2.不等式|a·b|≤|a||b|的代数形式若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,|a |=x 21+y 21,|b |=x 22+y 22.由|a·b |≤|a ||b |得|x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22,当且仅当a ∥b ,即x 1y 2-x 2y 1=0时取等号,即不等式(x 1x 2+y 1y 2)2≤(x 21+y 21)(x 22+y 22)成立.1.判一判(正确的打“√”,错误的打“×”)(1)若a =(1,1),b =(-2,2),则a·b =0.()(2)若a =(4,2),b =(6,m )且a ⊥b ,则m =-12.()(3)若a·b >0(a ,b 均为非零向量),则〈a ,b 〉为锐角.()答案(1)√(2)√(3)×2.做一做(1)已知向量a =(1,3),b =(3,1),则a 与b 夹角的大小为____.(2)已知a =(1,3),b =(-2,0),则|a +b |=____.(3)设a =(2,0),|b |=1,〈a ,b 〉=60°,则a·b =____.(4)已知a =(3,4),则与a 垂直的单位向量有________,与a 共线的单位向量有________.答案(1)π6(2)2(3)1-45,-35,-题型一向量数量积的坐标运算例1已知向量a 与b 同向,b =(1,2),a ·b =10,求:(1)向量a 的坐标;(2)若c=(2,-1),求(a·c)b.[解](1)∵a与b同向,且b=(1,2),∴a=λb=(λ,2λ)(λ>0).又a·b=10,∴λ+4λ=10,∴λ=2,∴a=(2,4).(2)∵a·c=2×2+(-1)×4=0,∴(a·c)b=0.(1)通过向量的坐标表示实现向量问题代数化,应注意与方程、函数等知识的联系.(2)向量问题的处理有两种思路:一种是纯向量式,另一种是坐标式,两者互相补充.[跟踪训练1]已知a=(2,-1),b=(3,-2),求(3a-b)·(a-2b).解解法一:(3a-b)·(a-2b)=3a2-7a·b+2b2.∵a·b=2×3+(-1)×(-2)=8,a2=22+(-1)2=5,b2=32+(-2)2=13,∴(3a-b)·(a-2b)=3×5-7×8+2×13=-15.解法二:∵a=(2,-1),b=(3,-2),∴3a-b=(6,-3)-(3,-2)=(3,-1),a-2b=(2,-1)-(6,-4)=(-4,3),∴(3a-b)·(a-2b)=3×(-4)+(-1)×3=-15.题型二向量的夹角问题例2已知a+b=(2,-8),a-b=(-8,16),求a与b的数量积及a与b的夹角的余弦值.[解]+b =(2,-8),-b =(-8,16),=(-3,4),=(5,-12).∴a ·b =(-3,4)·(5,-12)=(-3)×5+4×(-12)=-63.cos 〈a ,b 〉=a ·b |a ||b |=-63(-3)2+42×52+(-12)2=-635×13=-6365.∴a 与b 的夹角的余弦值为-6365.利用数量积求两向量夹角的步骤特别提醒:已知两个非零向量的坐标,就可以利用该公式求得两个向量的夹角,因为向量的夹角范围为[0,π],故不存在讨论角的终边所在象限的问题.[跟踪训练2]设向量a =(-2sin α,2cos α)(0≤α≤π),b =(-25,0),则a 与b 的夹角为____.答案|π2-α|解析设a 与b 的夹角为θ,则cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22=45sin α2×25=sin α,∵α∈[0,π],∴θ=|π2-α|.题型三向量的长度、距离问题例3已知向量a,b满足|a|=|b|=1,且|3a-2b|=3.求|3a+b|的值.[解]设a=(x1,y1),b=(x2,y2).∵|a|=|b|=1,∴x21+y21=1,x22+y22=1,3a-2b=3(x1,y1)-2(x2,y2)=(3x1-2x2,3y1-2y2),∵|3a-2b|=(3x1-2x2)2+(3y1-2y2)2=3,∴9x21-12x1x2+4x22+9y21-12y1y2+4y22=9,∴13-12(x1x2+y1y2)=9.∴x1x2+y1y2=13.∵3a+b=3(x1,y1)+(x2,y2)=(3x1+x2,3y1+y2),∴|3a+b|=(3x1+x2)2+(3y1+y2)2=9x21+6x1x2+x22+9y21+6y1y2+y22=10+6(x1x2+y1y2)=10+6×13=23.(1)在上述解题过程中,根据|a|=|b|=1,可以设a=(cosβ,sinβ),b=(cosα,sinα).(2)利用本题的解法可解决下面的一般性问题:若向量a,b满足|a|=|b|=r1,及|λ1a+μ1b|=r2求|λ2a+μ2b|的值.(3)注意区别m=n与|m|=|n|,其中m=n表示的是向量关系,即(x1,y1)=(x2,y2),而|m|=|n|表示的是数量关系,即x21+y21=x22+y22.[跟踪训练3]若向量OA→=(1,-3),|OA→|=|OB→|,OA→·OB→=0,则|AB→|=____.答案25解析解法一:设OB→=(x,y),由|OA→|=|OB→|,知x2+y2=10.①由题意知OA→·OB→=x-3y=0.②=3,=1=-3,=-1.当x=3,y=1时,AB→=OB→-OA→=(2,4),则|AB→|=25;当x=-3,y=-1时,AB→=(-4,2),则|AB→|=25.故|AB→|=25.解法二:由题意知,|AB→|就是以OA→,OB→对应线段为邻边的正方形的对角线长,因为|OA→|=10,所以|AB→|=2×10=25.题型四两向量垂直条件的应用例4如图所示,以原点O和点A(5,2)为两个顶点作等腰直角三角形AOB,使∠B=90°,求点B的坐标.[解]设点B(x,y),则OB→=(x,y),AB→=(x-5,y-2).因为∠B=90°,所以x(x-5)+y(y-2)=0,又|AB→|=|OB→|,所以x2+y2=(x-5)2+(y-2)2,2+y 2-5x -2y =0,x +4y =29,1=72,1=-322=32,2=72.即点B利用向量可以解决与长度、角度、垂直、平行等有关的几何问题,解题的关键在于把其他语言转化为向量语言,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题.常用方法是建立平面直角坐标系,借助向量的坐标运算再将向量问题转化为代数问题来解决.[跟踪训练4]在等腰直角三角形ABC 中,∠ACB 是直角,AC =BC ,D 是BC 的中点,E 是AB 上一点,且AE =2EB .求证:AD ⊥CE .证明建立如图所示的平面直角坐标系,设CA =CB =2,则A (2,0),B (0,2),C (0,0),设E (x ,y ).∵D 为BC 的中点,∴D (0,1).∵AE =2EB ,∴AE →=23AB →,∴(x -2,y )=23(-2,2),-2=-43,=43,=23,=43,∴∴AD→·CE→=(-=-43+43=0,∴AD→⊥CE→,∴AD⊥CE.题型五向量数量积的综合应用例5若函数f(x)=-2<x<10)的图像与x轴交于点A,过点A的直线l与函数的图像交于B,C两点,O为坐标原点,则(OB→+OC→)·OA→=() A.-32B.-16C.16D.32[解析]令f(x)=0,得π6x+π3kπ,k∈Z,∴x=6k-2,k∈Z.∵-2<x<10,∴x=4,即A(4,0).设B(x1,y1),C(x2,y2),∵过点A的直线l与函数的图像交于B,C两点,∴B,C两点关于点A对称,即x1+x2=8,y1+y2=0.故(OB→+OC→)·OA→=(x1+x2,y1+y2)·(4,0)=4(x1+x2)=32.[答案]D与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点问题.解此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、夹角的坐标运算公式外,还应掌握三角函数的图像和性质等知识.[跟踪训练5]设O(0,0),A(1,0),B(0,1),点P是线段AB上的一个动点,AP→=λAB→.若OP→·AB→≥P A→·PB→,则实数λ的取值范围是()A.12≤λ≤1B.1-22≤λ≤1C.12≤λ≤1+22D.1-22≤λ≤1+22答案B解析设P(x,y),则由AP→=λAB→,得(x-1,y)=λ(-1,1),-1=-λ,=λ,∴x-1+y=0.①又OP→·AB→≥PA→·PB→,∴(x,y)·(-1,1)≥(1-x,-y)·(-x,1-y).整理,得x2+y2-2y≤0,即x2+(y -1)2≤1.②将①整理,得x=1-y,代入②中,得(y-1)2≤12.即-22≤y-1≤22.∴1-22≤y≤1+22.结合题意,得1-22≤y≤1,即1-22≤λ≤1.故选B.1.若a=(2,-3),b=(x,2x),且3a·b=4,则x等于()A.3 B.13C.-13D.-3答案C解析∵3a·b=(6,-9)·(x,2x)=-12x=4,∴x=-13.2.已知A(1,2),B(4,0),C(8,6),D(5,8)四点,则四边形ABCD是() A.梯形B.矩形C.菱形D.正方形答案B解析∵AB→=(3,-2),DC →=(3,-2),∴AB →=DC →,又AD→=(4,6),∴AB →·AD →=0,∴AB →⊥AD →.∵|AB→|≠|AD →|,∴选B.3.正三角形ABC 的边长为1,设AB →=c ,BC →=a ,CA →=b ,那么a ·b +b ·c +c ·a 的值是____.答案-32解析解法一:如图,以点A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,则A (0,0),B (1,0),∴a -12,b -12,-c =(1,0),∴a ·b +32×=-12,同理b ·c =c ·a =-12,∴a ·b +b ·c +c ·a =-32.解法二:a·b +b·c +c·a =1×1×cos120°+1×1×cos120°+1×1×cos120°=3=-32.4.设向量a 与b 的夹角为α,且a =(3,3),2b -a =(-1,1),则cos α=____.答案31010解析∵a =(3,3),由2b -a =(-1,1)可得b =(1,2),∴cos α=a ·b |a ||b |=918×5=31010.5.如图,已知△ABC 的面积为32,AB =2,AB→·BC →=1,求边AC 的长.解以点A 为坐标原点,AB →为x 轴正方向建立平面直角坐标系,设点C 的坐标为(x ,y )(y >0),因为AB =2,∴点B 的坐标是(2,0),∴AB→=(2,0),BC →=(x -2,y ).∵AB →·BC →=1,∴2(x -2)=1,解得x =52.又S △ABC =32,∴12·|AB |·y =32,∴y =32,∴C AC →∴|AC→|==342,故边AC 的长为342.一、选择题1.已知a=(-3,4),b=(5,2),则a·b=()A.23B.7C.-23D.-7答案D解析a·b=(-3)×5+4×2=-7.2.已知A(1,2),B(2,3),C(-2,5),则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形答案A解析∵AB→=(1,1),AC→=(-3,3),∴AB→·AC→=1×(-3)+1×3=0,∴AB→⊥AC→,∴A=90°,故选A.3.已知a=(2,-3),b=(1,-2),且c⊥a,b·c=1,则c的坐标为() A.(3,-2)B.(3,2)C.(-3,-2)D.(-3,2)答案C解析设c=(x,y)2x-3y=0,x-2y=1,x=-3,y=-2.4.与已知向量a 72,12,b12,-72的夹角相等,且模为1的向量是()-45,-223,答案B解析设与向量ab1的向量为(x,y)+y2=1,+12y=12x-72y,=45,=-35=-45,=35,故选B.5.(多选)设A(a,1),B(2,b),C(4,5)为坐标平面上的三点,O为坐标原点.若OA→与OB→在OC→方向上的投影相同,则a,b的取值可能为()A.a=2,b=1B.a=7,b=5C.a=9,b=6D.a=12,b=9答案ABD解析由图知,要使OA→与OB→在OC→方向上的投影相同,只需使AB→⊥OC→,即(2-a,b-1)·(4,5)=0,得4a-5b-3=0,则a,b需满足关系式4a-5b=3,结合选项可知,A,B,D中a,b的取值满足条件.故选ABD.二、填空题6.若a=(x,2),b=(-3,5),且a与b的夹角是钝角,则实数x的取值范围是____.答案103,+∞解析x应满足(x,2)·(-3,5)<0且a,b不共线.解得x>103且x≠-65,∴x>103.7.已知向量a=(1,2),b=(-2,-4),|c|=5,若(a+b)·c=52,则a与c的夹角为____.答案120°解析由已知,得a+b=-a,∴a与c的夹角与c与a+b的夹角互补.又cos〈a+b,c〉=(a+b)·c|a+b||c|=12.∴〈a+b,c〉=60°.∴a与c的夹角是120°.8.已知向量a=(cos2θ,sin2θ),向量b=(2,0),则|2a-b|的最大值是____.答案22解析令t=cos2θ(0≤t≤1),则a=(t,1-t),所以|2a-b|2=(2t-2)2+(2-2t)2=8(t-1)2.所以|2a-b|=22|t-1|=22(1-t),故当t=0时,|2a-b|取得最大值22.三、解答题9.在△ABC中,A(2,-1),B(3,2),C(-3,-1),AD是BC边上的高,求。
人教A版高中数学必修三新课标古典概型导学案
精讲互动
(1)解析“自主学习”;
(2)例题解析
例1.一个口袋中有形状、大小都相同的6个小球,其中有2个白球、2个红球和2个黄球。从中一次随机摸出2个球,试求:
(1)2个球都是红球的概率;
(2)2个球同色的概率;
(3)“恰有1个球是白球的概率”是“2个球都是白球的概率”的多少倍?
例2.(选讲)先后抛掷一枚骰子两次,将得到的点数分别记为a,b。
(1ห้องสมุดไป่ตู้求a+b=4的概率;
(2)求点(a,b)在函数 图像上的概率;
(3)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率。
(3)回答教材p141的“思考交流”
达标训练
1.课本p142练习1 2
2.教辅资料
作业
布置
§3.2古典概型2
授课
时间
第周星期第节
课型
新授课
主备课人
学习
目标
理解概率模型的特点及应用,根据需要会建立合理的概率模型,解决一些实际问题。
重点难点
重点:建立古典概型,解决简单的实际问题
难点:从多种角度建立古典概型
学习
过程
与方
法
自主学习
1.在建立概率模型时,把什么看作是一个基本事件(即一个试验结果)是人为规定的,要求每次试验_______________基本事件出现,只要基本事件的个数是___________,并且它们的发生是_____________,就是一个________________。
1.习题3-2 3,4,5
2.教辅资料
3.预习下一节内容
学习小结/教学
反思
高中数学必修三导学案
高中数学必修三导与练班级:姓名:高一数学组编算法的概念学习目标1.了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求。
2.通过例题分析,体会算法的基本思路。
学习过程一、课前准备算法概念:二、新课导学探究:算法的概念问题:解二元一次方程组 ⎩⎨⎧=+-=-1212y x y x参照教材第2页用加减消元法写出它的求解过程. 解:第一步: ; 第二步: ;第三步: ;第四步:_______________________________;第五步:_______________________________。
思考:试写出求方程组()01221222111≠-⎩⎨⎧=+=+b a b a ②c y b x a ①c y b x a 的求解步骤.解:第一步: ;第二步: ;第三步: ;第四步:_______________________________;第五步:_______________________________。
新知:算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.算法的特点:(1)有限性:一个算法的步骤序列是有限的.(2)确定性:算法中的每一步应该是确定的.(3)顺序性:算法分为若干有序的步骤,按顺序运行.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、三、 典型例题例1.(1)设计一个算法,判断5是否为质数。
(2)设计一个算法,判断35是否为质数。
例2.写出用二分法求方程022=-x (x >0)的近似解的算法.课后作业1.下列说法正确的是( )A .算法就是某个问题的解题过程;B .算法执行后可以产生不同的结果;C .解决某一个具体问题算法不同,结果不同;D .算法执行步骤的次数不可以很大,否则无法实施.2.家中配电盒至电视机的线路断了,检测故障的算法中,为了使检测的次数尽可能少,第一步检测的是( )A. 靠近电视的一小段,开始检查B. 电路中点处检查C. 靠近配电盒的一小段开始检查D. 随机挑一段检查3.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法( )A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶4.算法:S1 输入n ;S2 判断n 是否是2,若2=n ,则n 满足条件,若2>n ,则执行S3;S3 依次从2到1-n 检验能不能整除n ,若不能整除n ,则n 满足条件;满足上述条件的n 是( )A.质数B.奇数C.偶数D.约数5.算法:S1 m =a ;S 2 若b <m ,则m=b ;S3 若c <m ,则m =c ;S4 若d <m ,则 m =d ;S5 输出m 。
高中数学必修3《用样本的数字特征估计总体的数字特征(二)》导学案
数学(高二上)导学案必修三第二章第二节课题:用样本估计总体二、合作探究归纳展示任务1 标准差问题平均数向我们提供了样本数据的重要信息,但是平均数有时也会使我们作出对总体的片面判断,因为这个平均数掩盖了一些极端的情况,而这些极端情况显然是不能忽视的.因此,只有平均数还难以概括样本数据的实际状态.如:有两位射击运动员在一次射击测试中各射靶10次,每次命中的环数如下:甲:7879549107 4乙:9578768677如果你是教练,你应当如何对这次射击作出评价?思考1甲、乙两人本次射击的平均成绩分别为多少环?答经计算得:x甲=110(7+8+7+9+5+4+9+10+7+4)=7,同理可得x乙=7.思考2观察下图中两人成绩的频率分布条形图,你能说明其水平差异在哪里吗?答直观上看,还是有差异的.如:甲成绩比较分散,乙成绩相对集中.思考3对于甲乙的射击成绩除了画出频率分布条形图比较外,还有没有其它方法来说明两组数据的分散程度?答还经常用甲乙的极差与平均数一起比较说明数据的分散程度.甲的环数极差=10-4=6,乙的环数极差=9-5=4.它们在一定程度上表明了样本数据的分散程度,与平均数一起,可以给我们许多关于样本数据的信息.显然,极差对极端值非常敏感,注意到这一点,我们可以得到一种“去掉一个最高分,去掉一个最低分”的统计策略.思考4 如何用数字去刻画这种分散程度呢?答 考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示 . 思考5 所谓“平均距离”,其含义如何理解?答 假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数.x i 到x 的距离是|x i -x |(i =1,2,…,n ).于是,样本数据是x 1,x 2,…,x n 到x 的“平均距离”是S =|x 1-x |+|x 2-x |+…+|x n -x |n .由于上式含有绝对值,运算不太方便,因此,通常改用如下公式来计算标准差: s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 思考6 标准差的取值范围如何?若s =0表示怎样的意义?答 从标准差的定义可以看出,标准差s ≥0,当s =0时,意味着所有的样本数据等于样本平均数. 任务2 方差思考1 方差的概念是怎样定义的?答 人们有时用标准差的平方s 2—方差来代替标准差,作为测量样本数据分散程度的工具,方差:s 2=1n ·[(x 1-x )2+(x 2-x )2+…+(x n -x )2].思考2 对于一个容量为2的样本:x 1,x 2(x 1<x 2),它们的平均数和标准差如果分别用x 和a 表示,那么x 和a 分别等于什么? 答 x =12(x 1+x 2),a =12(x 2-x 1).思考3 在数轴上,x 和a 有什么几何意义?由此说明标准差的大小对数据的离散程度有何影响?答 x 和a 的几何意义如下图所示.说明了标准差越大离散程度越大,数据较分散;标准差越小离散程度越小,数据较集中在平均数周围.思考4 现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道的.如何求得总体的平均数和标准差呢?答 通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.例1求出问题中的甲乙两运动员射击成绩的标准差,并说明他们的成绩谁比较稳定?解x甲=110(7+8+7+9+5+4+9+10+7+4)=7,同理可得x乙=7.根据标准差的公式,s甲=110[(7-7)2+(8-7)2+…+(4-7)2]=2;同理可得s乙≈1.095.所以s甲>s乙.因此说明甲的成绩离散程度大,乙的成绩离散程度小.由此可以估计,乙比甲的射击成绩稳定.跟踪训练1如图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.答案 6.8任务3标准差及方差的应用例2画出下列四组样本数据的条形图,说明它们的异同点.(1)5,5,5,5,5,5,5,5,5;(2)4,4,4,5,5,5,6,6,6;(3)3,3,4,4,5,6,6,7,7;(4)2,2,2,2,5,8,8,8,8.解四组样本数据的条形图如下:四组数据的平均数都是5.0,标准差分别是:0.00,0.82,1.49,2.83.它们有相同的平均数,但它们有不同的标准差,说明数据的分散程度是不一样的.跟踪训练2从甲、乙两种玉米中各抽10株,分别测得它们的株高如下:甲:25、41、40、37、22、14、19、39、21、42;乙:27、16、44、27、44、16、40、40、16、40;(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?解(1)x甲=110(25+41+40+37+22+14+19+39+21+42)=30,x乙=110(27+16+44+27+44+16+40+40+16+40)=31,x甲<x乙.即乙种玉米的苗长得高.(2)由方差公式得:s2甲=110[(25-30)2+(41-30)2+…+(42-30)2]=104.2,同理s2乙=128.8,∴s2甲<s2乙.即甲种玉米的苗长得齐.答乙种玉米苗长得高,甲种玉米苗长得齐.例3甲、乙两人同时生产内径为25.40 mm的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm):甲25.4625.3225.4525.3925.3625.3425.4225.4525.3825.4225.3925.4325.3925.4025.44的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性.用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.四、作业布置 1、基础知识:1.下列说法正确的是( )A .在两组数据中,平均值较大的一组方差较大B .平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C .方差的求法是求出各个数据与平均值的差的平方后再求和D .在记录两个人射击环数的两组数据中,方差大的表示射击水平高 答案 B2.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( )A.1169B.367C .36D.677答案 B3.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是x =2,方差是13,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数和方差分别为( )A .2,13B .2,1C .4,13D .4,3答案 D4.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4.则:(1)平均命中环数为________; (2)命中环数的标准差为________.。
高中数学《简单随机抽样》导学案
数学(高二上)导学案
本节课是人教版《高中数学》必修三第二章“统计”中的“随机抽样”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时,对于加深对概率相关计算公式的理解作了很好的铺垫。
高二数学 人教A版必修3导学案:3.2.2
§3.2古典概型2课前预习案 教材助读阅读教材P128-P130,找出疑惑之处。
复习:运用古典概型计算概率时,一 定要分析其基本事件是否满足古典概型的两个条件:①________________________________________;②________________________________________.课内探究案一、新课导学1、在建立概率模型时,把什么看作是一个基本事件(即一个试验结果)是人为规定的,要求每次试验_______________基本事件出现,只要基本事件的个数是___________,并且它们的发生是_____________,就是一个________________。
2、从不同的角度去考虑一个实际问题,可以将问题转化为不同的 来解决,而所得到的古典概型的所有可能结果数 ,问题的解决就变得越简单。
二、合作探究1、建立古典概率模型时,对基本事件的确定有什么要求?2、从分别写有A 、B 、C 、D 、E 的5张卡片中任取2张,所有基本事件有哪些?这2张上的字母恰好按字母顺序相邻的概率是多少?典型例题例1假设银行卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个。
假设一个人完全忘了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?小结:求古典概型的步骤:(1)判断是否为古典概型。
(2)列举所有的基本事件的总数n 。
(3)列举事件A 所包含的基本事件数m 。
(4)计算nm (A) P 。
变式训练:某口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球.(1)共有多少个基本事件?(2)摸出的2只球都是白球的概率是多少?例2、某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?总结:(1)注意区别互斥事件和对立事件;(2)求复杂事件的概率通常有两种方法:一是将所有事件转化为彼此互斥事件的和;二是先去求对立事件的概率,进而再求所有事件的概率。
人教版高中数学B版必修三导学案(全册)
学案:1.1.1-1.1.2算法与程序框图一、【使用说明】1、课前完成导学案,牢记基础知识,掌握基本题型;2、认真限时完成,规范书写;课上小组合作探究,答疑解惑。
二、【重点难点】1、体会算法的思想,了解算法的含义。
2、能说明解决简单问题的步骤,提高逻辑思维能力。
三、【学习目标】1、通过实例,发展对解决具体问题的过程与步骤进行分析的能力,发展应用算法的能力。
问题的能力;2初步了解高斯消去法的思想四、自主学习1、算法的要求例1、写出二元一次方程组11112212112222a x a xb a x a x b +=⎧⎨+=⎩的算法例2:用数学语言写出对任意3个整数. ,,a b c 求出最大值的算法。
五、合作探究1.试写出判断直线0Ax By C ++=与圆222()()x a y b r -+-=的位置关系算法。
2. 用数学语言写出对任意3个整数. ,,a b c 求出最小值的算法。
3正三棱锥S ABC -的侧棱长为l ,底面边长为a 写出求此三棱锥S ABC -体积的一个算法。
4.某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼、羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃菜,设计过河的算法。
六、总结升华1、知识与方法:2、数学思想及方法:七、当堂检测(见大屏幕)导学案:1.1.3(1)算法的三种基本逻辑结构和框图表示一、【使用说明】1、课前完成导学案,牢记基础知识,掌握基本题型;2、认真限时完成,规范书写;课上小组合作探究,答疑解惑。
二、【重点难点】1、重点是利用三种逻辑结构编写框图;2、解决实际问题。
三、【学习目标】1、理解三种框图的逻辑结构;2、会利用三种逻辑结构编写框图;3、通过设计程序框图解决实际问题;四、自主学习1、框图的三种逻辑结构有哪些?例1、已知点00(,)p x y 和直线:0l Ax By C ++=,求点00(,)p x y 到直线:0l Ax By C ++=的距离d 的算法,及其程序框图。
郑2012-13高二数学必修三导学案3.3.2
2 将[0,1]内的均匀随机数转化为[-2,6]内的均匀随机数, 需要实施 则 fn(A)=___________即为概率 P(A)的近似值. 法三:几何概型公式求: P(A)= ★3 某人对某台的电视节目作了长期的统计后得出结论: 他任意 9 时间打开电视看该台节目, 看不到广告的概率约为10, 那么该台每 ★★2、假设你家订了一份报纸,送报人可能在早上 6:30~7:30 之 间把报纸送到你家,你父亲离开家去工作的时间在早上 7:00~8:00 之间,问你父亲在离开家前能得到报纸(称为事件 A)的概率的多 ★4.半径为 1 的圆上固定一点, 然后再随机地取另一点作弦, 则 弦长超过圆内接等边三角形的边长的概率为________. 小时约有________分钟插播广告. 的变换为____________
(2)、算器上产生[0,1]的均匀随机数的函数是_____________函数. (3)、 Excel 软件产生[0,1]区间上均匀随机数的函数为_____________ (4)、由计算器不能直接产生【a,b】区间上的均匀随机数,只能通 过 线 性 变 换 得 到 , 如 果 X 是 [0,1] 区 间 上 的 均 匀 随 机 数 , 则 (a+(b-a)X)就是区间[a,b]区间上的均匀随机数,你能理解这个 问题吗?
课前完成导学案,掌握基本题型,时间不超过 20 分钟,A 层次完成所有会做的题目;B 层次完成除★★所有会做的题目; 2 C 层次完成不带★所有会做的题目,坚决杜绝抄袭现象
: 1、用模拟法估计与长度、角度有关的几何概率 取一根长度为 5 m 的绳子, 拉直后在任意位置剪断, 用均匀随机模 拟方法估计剪得两段的长都不小于 2 m 的概率有多大? 【解】 设剪得两段的长都不小于 2 m 为事件 A. 法一: 步骤是: (1)利用计算器或计算机产生 n 个 0~1 之间的均匀随机数, x=___________
人教版高中数学高二 基本初等函数的导数公式及导数的运算法则 精品导学案
§3.2.2基本初等函数的导数公式及导数的运算法则课前预习学案一.预习目标1.熟练掌握基本初等函数的导数公式;2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数二.预习内容1.基本初等函数的导数公式表2.(2)推论:[]'()cf x =(常数与函数的积的导数,等于: )三. 提出疑惑课内探究学案一. 学习目标1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数二. 学习过程(一)。
【复习回顾】复习五种常见函数y c =、y x =、2y x =、1y x=、y =(二)。
【提出问题,展示目标】我们知道,函数*()()n y f x x n Q ==∈的导数为'1n y nx-=,以后看见这种函数就可以直接按公式去做,而不必用导数的定义了。
那么其它基本初等函数的导数怎么呢?又如何解决两个函数加。
减。
乘。
除的导数呢?这一节我们就来解决这个问题。
(三)、【合作探究】1.(1)分四组对比记忆基本初等函数的导数公式表(2)根据基本初等函数的导数公式,求下列函数的导数. (1)2y x =与2xy =(2)3x y =与3log y x =2.(1推论:[]''()()cf x cf x =(常数与函数的积的导数,等于: )提示:积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号.(2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+(2)sin y x x =⋅;(3)2(251)xy x x e =-+⋅;(4)4xx y =;【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心.(四).典例精讲例1:假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t(单位:年)有如下函数关系0()(15%)tp t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?分析:商品的价格上涨的速度就是:解:变式训练1:如果上式中某种商品的05p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?例2日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98%分析:净化费用的瞬时变化率就是: 解:比较上述运算结果,你有什么发现?三.反思总结:(1)分四组写出基本初等函数的导数公式表:(2)导数的运算法则:四.当堂检测1求下列函数的导数(1)2log y x = (2)2xy e =(3)32234y x x =-- (4)3cos 4sin y x x =-2.求下列函数的导数(1)ln y x x = (2)ln xy x=课后练习与提高1.已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为: A ()2(1)f x x =- B 2()2(1)f x x =- C 2()(1)3(1)f x x x =-+- D ()1f x x =-2.函数21y ax =+的图像与直线y x =相切,则a =A18 B 14 C 12D 1 3.设函数1()n y x n N +*=∈在点(1,1)处的切线与x 轴的交点横坐标为n x ,则12n x x x ••⋅⋅⋅•=A l nB l 1n +C 1n n + D 14.曲线21xy xe x =++在点(0,1)处的切线方程为-------------------5.在平面直角坐标系中,点P 在曲线3103y x x =-+上,且在第二象限内,已知曲线在点P 处的切线的斜率为2,则P 点的坐标为------------6.已知函数32()f x x bx ax d =+++的图像过点P (0,2),且在点(1,(1))M f --处的切线方程为670x y -+=,求函数的解析式。
高中数学人教A版必修3导学案
..
§1.1.2 程序框图与算法的基本逻辑结构 1
授课 时间
学习 目标
重点 难点
第 周 星期 第
节
课型
新授课
主备课人
1. 熟悉各种程序框及流程线的功能和作用; 2. 通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程 程中,理解流程图的顺序结构; 3. 通过比较,体会流程图的直观性、准确性 . 重点:流程图的画法 . 难点:流程图的画法 .
...
..
..
..
达标训练
1. 设计一个求解一元二次方程的算法,并画出程序框图表示。
2. 任意给定三个正实数, 设计一个算法, 判断以这三个正数为三边边长的三角形是否存在, 并画出这个算法的流程图 .
作业 布置 学习 小结 /教 学 反思
...
..
..
..
§1.1.2 程序框图与算法的基本逻辑结构 3
达标训练:下列语句描述的算法的输出结果 .
1、
a5
b3
c
ab 2
d cc
PRINT " d " ; d
2、
a1 b2 c ab b acb PRINT " a ,b ,c ";a,b,c
...
..
..
..
3、
a 10 b 20 c 30 ab bc ca PRINT " a ,b ,c ";a,b,c
达标训练 课本练习 1、 2.
作业 布置 学习 小结 /教 学 反思
练习 3,4.
...
..
..
..
§1.2.2 条件语句
授课 时间
第 周 星期 第
节
人教A版高中数学必修三新课标导学案
作业 布置 学习 小结 /教 学 反思
课本 50 页
复习参考题
①求解某一类问题的算法是唯一的
②算法必须在有限步操作之后停止
③算法的每一步操作必须是明确的,不能有歧义或模糊
④算法执行后一定产生确定的结果
A. 1
B. 2
C. 3
D. 4
2.就某一问题画出程序框图并写出算法
方法归纳:(1)画程序框图时一定要明确图中各个符号的作用并能正确使用三种基本
逻辑结构。(2)用程序设计语言描述算法时一定要注意有些符号与框图之中书写的不
第一章 章末小结
授课 时间 学习 目标 重点 难点
第 周 星期 第 节 课型 新授课
主备课 人
1.对本章知识形成知识网络,提高逻辑思维能力和归纳能力; 2.熟练应用算法、流程图和算法基本语句来解决问题.
重点:应用算法、流程图和算法基本语句来解决问题. 难点:形成知识网络.
自主学习
复习回顾:
①本章知识结构:
同。
例 2.设计算法求 1 1 1 1 的值.要求画出程序框图,写出
1 2 23 3 4
99 100
用基本语句编写的程序.
达标训练
1.阅读右上的程序框图。若输入 m = 4,n = 3,则输出 a = __12__,i =_3____ 。(注:
框图中的赋值符号“=”也可以写成“←”或“:
=”)
开始
输入 n
S 0,T 0
n 2? 是
否 ssn
n n 1 T T n n n 1
输出 S,T 结束
2.阅读如上右边的程序框图,若输入的 n
是 100,则输出的变量 S 和T 的
()
新课标A版必修3导学案 高二数学周测1
编号:SX2-013第1页 第2页装订线批阅记录装订线高二数学周测1 姓名 班级 组别 使用时间一、选择题(40分)1.下列的变量是相关关系的是( )A)出租车收费与行驶的里程 B)房屋面积与房屋价格 C)身高与体重 D)铁的体积与质量2.已知一组数据为20、30、40、50、60、60、70,则这组数据的众数、中位数、平均数的大小关系为( )A 、中位数 >平均数 >众数B 、众数 >中位数 >平均数C 、众数 >平均数 >中位数D 、平均数 >众数 >中位数3.一个容量为n 的样本,分成若干组,已知某组的频数和频率分别为40、0.125,则n 的值为( ) A .640 B .320 C .240 D .1604.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点。
公司为 了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为 ①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记 这项调查为②。
则完成①、②这两项调查宜采用的抽样方法依次是( ) A .分层抽样法,系统抽样法 B .分层抽样法,简单随机抽样法 C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法5.某班有60名学生,学号为1~60号,现从中抽出5位学生参加一项活动,用系统抽样的方法确定的抽样号码可能为( )A .5,10,15,20,25B .5,12,31,39,57C .5,15,25,35,45D .5,17,29,41,536.若样本数据n x x x ,,,21 的平均数是10,方差是2,则对于样本数据,21+x 2,,22++n x x 有( )A .平均数为10,方差为2B .平均数为10,方差为4C .平均数为12,方差为2D .平均数为12,方差为4 7.抽签法中确保样本代表性的关键是( )A 制签B 搅拌均匀C 逐一抽取D 抽取不放回8.某地区有10万户居民,从中调查了1000户,有冰箱的调查结果如下表冰箱 城市 农村 有 432 400 无48120若该地区城市与农村住户之比为4:6,估计该地区无冰箱的农村总户数为( ) A0.923万户 B1.385万户 C1.8万户 D1.2万户 二填空题(15分)9. 某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是 人10.一个总体为60的总体个体编号为0,1,2,…59,现在要抽取一个容量为10的样本,请根据编号按被6除余数是1的方法抽取样本则被抽取的第一个个体序号为11. 43中高一有280人,高二有320人,高三有400人,现在抽取一个容量为n 的样本,每个人被抽到的可能性为51则n=三解答题(45分)12.从40件产品中抽取10件进行检查,写出用抽签法抽取样品的过程。
高中数学必修3导学案(全套)
①②①②必修3 第一章 §3-1 算法初步【课前预习】阅读教材P 2—P 33 完成下面填空1.算法是指 ; 2.算法的特点是: 、 、 、 3.程序框有四种: 、 、 、 4.算法的三种基本逻辑结构:顺序结构: 条件结构: 循环结构: 5.算法的基本语句:①输入语句的格式: ;表示 ; ②输出语句的格式: ;表示 ; ③赋值语句的格式: ; 表示 ; ④条件结构及其算法语句的两种形式: ③循环结构及其算法语句的两种形式: 【课初5分钟】课前完成下列练习:1、下列不能看成算法的是( )A .从长沙到北京旅游,先坐火车,再坐飞机抵达B .做红烧肉的菜谱C .方程x 2-1=0有两个实根 D .求1+2+3+4+5的值,先计算1+2=3,再由于3+3=6,6+4=10,10+5=15,最终结果为15 2、将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是 ( )A. B. C. D. 3、用二分法求方程022=-x 的近似根的算法中要用到的算法结构( )A 顺序结构B . 条件结构C 循环结构D 以上都用4、判断下列给出的语句是否正确,将错误的语句改正过来?(1)INPUT c b a ;; (2)INPUT 3=x(3)PRINT 4=A (4)B =3 (5)0=+y x (6)4==B A强调(笔记):【课中35分钟】边听边练边落实5、某位同学用WHILE 型语句和UNTIL 型语句分别设计了一个求100131211++++的值的程序,程序如下:试判断是否正确?6、阅读下图的程序框图,若输入的n 是100, 则输出的变量s 和T 的值依次是_____、a=b b=a c=b b=a a=c b=a a=b a=c c=b b=a i=1 sum=1 WHILE i<100 sum =sum+1/i i=i+1 WEND PRINT sum END i=1 sum=0 DO sum =sum+1/i i=i+1 LOOP UNTIL i>=100 PRINT sum END7、下边为一个求20个数的平均数的程序,在横线上应填充的是 ( )A.i>20B.i<20C.i>=20D.i<=208、下图程序运行后输出的结果为 ( ) A. 50 B. 5 C. 25 D. 0 9、编写一个程序,求实数x 的绝对值。
数学必修3导学案
第一章统计第一节从普查到抽样编制人:刘才兴审核: 郭安佑领导签字:一、学习目标1.了解普查的意义2.结合具体的实际问题情境,理解随机抽样的必要性和重要性.二、重点、难点重点:结合具体的实际问题情境,理解随机抽样的必要性和重要性.难点:对什么是“有一定价值的统计问题”的理解.三、课前自学1.统计的概念统计是研究如何合理的学科.2.普查(1)定义:普查是指一个________或一个________专门组织的__________大规模的全面调查,目的是为了详细地了解________重要的国情、国力.(2)普查的主要特点:①所取得的资料更加全面、________;②主要调查在特定时段的社会经济现象总体的________.(3)普查的对象________时,普查无疑是一项非常好的调查方式.3.抽样调查(1)定义:通常情况下,从调查对象中______________抽取一部分,进行__________,获取数据,并以此对调查对象的某项指标作出推断,这就是抽样调查,其中,调查对象的全体称为________,被抽取的一部分称为________.(2)抽样调查最突出的优点①____________②______________________.。
四、课内探究探究一:阅读课文,并回答下列问题:1).人口普查对一个国家的发展有什么作用?依据上面的信息,你能举例说明吗?2).根据上面的有关信息,我国第五次人口普查中漏登的人数约有多少?你对人口普查中漏登率是如何认识的?3).你对上面“武汉一人口普查员劳累过度以身殉职”的报道有何看法?中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此调查对象的某项指标做出推断,这就是抽样调查.探究二:医生是如何检验人的血液中得血脂的含量是否偏高的?你觉得这样做的合理性是什么?探究三:为了缓解城市的交通拥堵情况,北京市准备出台限制私家车的政策,为此要进行民意调查。
某个调查小组调查了一些拥有私家车的市民,你认为这样的调查结果会怎样?五、当堂检测(时量:15分钟满分:15分)计分:1.下面的问卷是为了调查最近上映的影片的受欢迎程度而设计的,调查对象是去电影院看电影的人,你认为这份问卷好不好?为什么?姓名__________ 年龄__________地址__________________ 电话__________________工资收入____________ 工作单位________________今天晚上你看的电影是__________________________,电影院的名字是________________________________.影片好看吗?很好________,好________,不好________.用十分制为影片打分:1 2 3 4 5 6 7 8 9 10比起你看的上一场电影怎么样? 1 2 3 4 5,你认为这部影片什么地方最精彩?________________. 从事文艺工作吗?__________.买雪糕了吗?__________.是开私家车来的吗?__________.2.为了调查小区平均每户居民的月用水量,下面是3名同学设计的方案:学生A:我把这个用水量调查表放在互联网上,只要登陆网址的人就可以看到这张表,他们填的表可以很快地反馈到我的电脑中,这样我就可以很快地估计小区平均每户居民的月用水量;学生B:我给我们居民小区的每一个住户发一个用水调查表,只要一两天就可以统计出小区平均每户居民的月用水量;学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的用水量,然后就可以估计出小区平均每户居民的月用水量.请你分析上述3名学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有何建议?练案A组一、选择题1.为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是( )A.200个表示发芽天数的数值B.200个球根C.无数个球根发芽天数的数值集合D.无法确定2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是( )A.40 B.50 C.120 D.1503.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是1004.若要调查某城市家庭的收入情况,在该问题中,总体是( )A.某城市B.某城市的所有家庭的收入C.某城市的所有人口D.某城市的工薪阶层5.对于下列调查:①测定海洋中微生物的含量;②某种灯泡使用寿命的测定;③入学报考者的学历调查;④全国人口普查.其中不属于样本调查的是( )A.①② B.③④ C.②③ D.①④6.下列调查,比较适用普查而不适用抽样调查方式的是( )A.为了了解中央电视台春节联欢晚会的收视率B.为了了解初三年级某班的每个学生周末(星期六)晚上的睡眠时间C.为了了解夏季冷饮市场上一批冰淇淋的质量情况D.为了考察一片试验田某种水稻的穗长情况二、填空题7.抽样调查一定要保证________原则,尽可能地避免人为因素的干扰,并且要保证每个个体以相同的可能性被抽取到.8. (1)对某班学生视力作一个调查;(2)某汽车生产厂要对所生产的某种品牌的轿车的抗碰撞情况进行检验;(3)联合国教科文组织要对全世界适龄儿童的入学情况做一个调查.对于上述3个实际问题所应选用的调查方法分别为__________、____________、____________.9.某公司新上市一款MP4,为了调查产品在用户中受欢迎的情况,采用什么形式调查为好____________(填“普查”或“抽样调查”).10.春节前夕,质检部门检查一箱装有2 500件包装食品的质量,抽查总量的2%,在这个问题中,下列说法正确的是( )A.总体是指这箱2 500件包装食品B.个体是一件包装食品C.样本是按2%抽取的50件包装食品D.样本容量是50B组1.某校高中学生有900人,校医务室想对全体高中学生的身高情况做一次调查,为了不影响正常教学活动,准备抽取50名学生作为调查对象.校医务室若从高一年级中抽取50名学生的身高来估计全校高中学生的身高,你认为这样的调查结果会怎样?该问题中的总体和样本是什么?2.儿童的喂养及辅食添加是影响儿童生长发育、身体健康的重要因素,喂养不当及辅食添加不正确,容易导致儿童贫血及其他疾病,影响儿童生长发育.为了了解农村儿童的喂养、辅食添加情况、发现存在的问题、确定儿童的喂养及辅食添加的促进措施,欲在该地农村进行一次农村3岁以下儿童的喂养、辅食添加情况和贫血相关因素的调查研究.请给出一个合理的调查方案.(该地区共10个县)第二节抽样方法(一)——简单随机抽样编制人:刘才兴审核: 郭安佑领导签字:一、学习目标1.正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤 2.学会用简单随机抽样的方法从总体中抽取样本。
导学案
青云学府高二数学导学案主备人审核人排列(预习案)2010-12 【预习目标】理解并记住共线向量,共面向量定理及空间向量分解定理熟记基底、基向量、向量的线性组合的概念会用共线向量、共面向量定理和空间向量分解定理解决空间几何中的简单问题【自学指导】1.阅读课本P82—P84;2.复习回顾以前所学知识平面向量共线定理3.回答下列问题:(1)共线向量定理()(2)共面向量定理()(3)空间向量分解定理()思考讨论:空间中任意三个不共面的向量都可以作为空间向量的一个基底吗?【当堂检测】3.1.2空间向量基本定理(导学案)【学习目标】1、知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。
2、过程与方法:能运用所学的排列知识,正确地解决的实际问题3、情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.【学习重点难点】教学重点:排列数公式的理解与运用;排列应用题常用的方法有直接法,间接法教学难点:排列数公式的推导【教学过程】一、复习回顾 1分类加法计数原理:2.分步乘法计数原理二、讲解新课:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。
中任取 2 个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是 ab,ac,ba,bc,ca, cb,共有 3×2=6 种.问题2.从1,2,3,4这 4 个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?2.排列的概念:说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同3.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号m n A 只表示排列数,而不表示具体的排列4.排列数公式及其推导:求3n A 可以按依次填3个空位来考虑,∴3n A =(1)(2)n n n --,求m n A 以按依次填m 个空位来考虑(1)(2)(1)m n A n n n n m =---+ ,排列数公式:(1)(2)(1)m n A n n n n m =---+(,,m n N m n *∈≤)说明:(1)公式特征:第一个因数是n ,后面每一个因数比它前面一个少1,最后一个因数是1n m -+,共有m 个因数;(2)全排列:当n m =时即n 个不同元素全部取出的一个排列 全排列数:(1)(2)21!n n A n n n n =--⋅= (叫做n 的阶乘)另外,我们规定 0! =1 .!()!n mn nn m n m A n A A n m --==-.【课后小结】(1)学习了空间向量分解定理,要注意应用条件,(2)学习用基底表示空间任一向量的方法3.1.2空间向量分解定理(拓展案)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必修三的全部导学案
第一章
§1.1.1算法的概念
课标要求:通过分析解决具体问题的过程与步骤,体会算法的思想,了解算法的含义,能用自然语言描
描述解决特定问题的算法
三维目标:
知识和能力:1.通过实例体验算法的思想,理解算法的含义和主要特点。
2.能按步骤用自然语言写出简单问题的算法过程。
过程和方法:学生通过个人自学、两人讨论和小组合作完成学习任务。
情感、态度和价值观:激发学生探讨算法的乐趣,从而培养学生对数学的热爱情感
重点:算法的意义,求解二元初等方程组和判定一个数为素数的算法设计。
难点:将
自然语言转换为算法语言。
知识储备:了解什么是质数?二元一次方程组的解法?二分法?自主学习:阅读教材
p2?p5,回答下列问题:
12世纪的算法:?1.算法的概念:?数学算法:
现在的算法:?
2.算法和计算机:
3、算法的特征:
研究性学习:
问题1:根据生活经验,请设计完成洗衣服的过程中有哪几个步骤?
十、2岁?问题2:请写下二元基本方程2x?Y?1的求解过程。
问题3:你们所写的解答过程和课本上的解答有什么不同?课本提供的解答有什么特点?
a1x?b1y?C1,(1)问题4:对于一般的二元线性方程组?,a1b2-a2b1在哪里≠ 0,
ax?by?c,(2)22?2
您可以编写类似的解决方案步骤:步骤1:步骤2:步骤3:步骤4:步骤5:
思考4:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”。
我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容?
思考5:一般来说,算法由根据一定规则解决某类问题的基本步骤组成。
你认为:
(1)这些步骤的个数是有限的还是无限的?
(2)每个步骤都有明确的计算任务吗?
来源:~中国%&教育出版网中国教育出版@&~#网
思考6:基于以上分析,你能总结一下算法的概念吗?
来源#~^%:中教网*]合作探究:算法的步骤设计
思考1:如果让计算机判断7是否是质数,如何设计算法步骤?在第一步中,将2除以7得到余数1,因此2不能除以7[knowledge link]素数:它只能除以1和自身。
在第二步中,它是一个大于1的整数。
第三步,第四步,第五步,
因此,7质数。
思考2:如果让计算机判断35是否为素数,如何设计算法步骤?第一步,第二步,第三步,第四步,
思考3:整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?
思考4:需要87个步骤来移除89个,然后逐个找到剩余的2~88个。
这些步骤基本上是重复的操作。
我们可以根据以下思路对算法进行改进,减少算法的步骤。
(1)用i表示2~88中的任意一个整数,并从2开始取数;
(2)将89除以I得到余数R。
如果R=0,则89不是质数;如果R≠ 0,将I替换为I+1,然后执行相同的操作;
(3)这个操作一直进行到i取88为止.
你能根据这个想法设计一个“判断89是否是素数”的算法步骤吗?第一步是使I=2;
第三步,若r=0,则89质数,结束算法;若r≠0,将i用i+1替代;[来#源:~中^%*国教育出版网]
[来源#*:中国教育出版社~&网络]
第四步,判断“i>88”是否成立?若是,则89质数,结束算法;否则,返回第二步.
思考5:一般来说,如何设计判断大于2的整数是否为素数的算法步骤?第一步是给出一个大于2的整数n;
第二步,
第三步,
第四步,
第五步,[中文%教育出版版*@网站]
迁移应用:
例如,让函数f(x)的图像是一条连续曲线,并写出方程f?十、一种0的近似求解算法。
第一步,取函数f(x),给定精确度d.
第二步是确定[a,b]与[source:^:&@China~ education network]会面的时间间隔第3步,
课堂小结:
课后测试:
1、下面的结论正确的是()来@#源:%中教网
a、程序的算法步骤是可逆的
b.一个算法可以无止境地运算下去的
c.完成一件事情的算法有且只有一种
d.设计算法要本着简单方便的原则
2.以下算法的正确描述为()A.该算法只能用自然语言描述;B.算法只能以图形形式表示;C.同一个问题可以有不同的算法
d.同一问题的算法不同,结果必然不同3、下面哪个不是算法的特征()a.抽象性b.精确性c.有穷性d.唯一性
4.算法的有限性意味着(a)算法必须包含输出
b.算法中每个操作步骤都是可执行的
c.算法的步骤必须有限
d.以上说法均不正确作业
教科书P5中的练习
课后反思:
来自中国教育网@~]
§1.1.2程序框图与算法的基本逻辑结构
类名
学习目标:
1.理解程序框图的含义,能够阅读程序框图,熟悉各种程序框架和流程的功能和功能;
2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的算法的过程,学
习程序框图的画法;3、在具体问题解决过程中,理解程序框图的三种基本逻辑结构――
顺序结构、条件结构和循环结构。
关键点:带顺序的直接插入排序;算法设计和算法流程图难度:通过分析具体问题抽
象出算法设计的过程
知识清单:
1.程序框图,也称为程序框图,是用、和表示算法的图形。
绘制与以下名称相对应的
程序框:端子盒(起始框)输入和输出框
处理框(执行框)判断框流程线连接点
2.任何算法都由三个基本逻辑结构组成,它们是:。
3、顺序结构是任何一个算法都离不开的基本结构,它由组成。
可用程序框图表示为:
4.条件结构是指选择不同流向的算法结构。
可用的程序框图表示为:
5、循环结构中反复执行的步骤称为,循环结构又分为结构和结构,这两种形式的循
环结构在执行流程上有所不同。
6.直到类型循环结构参考;当圆形结构指。
教科书分析:
1、你能说出三种基本逻辑结构的特点吗?条件结构与循环结构有什么区别和联系?
2.用程序框图表示两种形式的条件结构,指出它们的区别和联系。
3、归纳设计一个算法的程序框图的规则。
在学习这部分知识时,我们应该掌握每个图形的形状、功能和使用规则。
绘制程序框
图的规则如下:
(1)使用标准的图形符号。
(2)方框图通常从上到下、从左到右绘制。
(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的惟一符号。
(4)有两种类型的判断框。
一个是判断框中“是”和“否”分支的判断,只有两个结果;另一种是多分支判断,它有几个不同的结果。
(5)在图形符号内描述的语言要非常简练清楚。