初中数学三角形中14种辅助线添加方法

合集下载

中考总复习—全等三角形中辅助线的添加(最经典最全面)-有答案

中考总复习—全等三角形中辅助线的添加(最经典最全面)-有答案

DC B AEDFCBA全等三角形及其辅助线作法常见辅助线的作法有以下几种:1) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”(或构造平行线的X 型全等).2) 遇到角平分线,一是可以自角平分线上的某一点向角的两边作垂线,二是在角的两边上截取相同的线段,构成全等。

利用的思维模式是三角形全等变换中的“对折”,也是运用了角的对称性。

3) 截长法与补短法,具体做法是在较长线段上截取一条线段与特定线段相等,使剩下的线段与另一条线段相等;或者是将两条较短线段中的一条延长,使这两条线段的和等于较长的线段。

这种作法,适合于证明线段的和、差、倍、分等题目.4) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.也可以将两腰分拆到两个三角形中,证明这两个三角形全等。

特殊的应用有等边三角形与等腰直角三角形。

5) 此外,还有旋转、折叠等情况。

(一)、中点线段倍长问题(中线倍长或者倍长中线):1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.2、如图△ABC 中,点D 是BC 边中点,过点D 作直线交AB 、CA 延长线于点E 、F 。

当AE=AF 时,求证BE=CF 。

3、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.4、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.E D CB AA BC D E F5 如图,AB=AC ,AD=AE ,M 为BE 中点,∠BAC=∠DAE=90°。

求证:AM ⊥DC 。

应用:1、以△ABC 以的两边AB 、AC 为腰分别向外作等腰Rt △ABD 和等腰Rt △ACE ,且∠BAD=∠CAE-90°,连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当△ABC 为直角三角形时,AM 与DE 的位置关系是, 线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt △ABD 绕点A 沿逆时针方向旋转θ° (0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.(二)角平分线与轴对称1、如图,已知AD 为△ABC 的角平分线,∠C=2∠B ,求证:AB=AC+CD.2、 如图,直线l 1∥l 2,直线m 与直线l 1 、l 2交于A 、B 两点。

做数学怎么懂得做辅助线方法

做数学怎么懂得做辅助线方法

做数学怎么懂得做辅助线方法几何最难的地方就是辅助线的添加了,但是对于添加辅助线,还是有规律可循的,下面给大家分享一些关于做数学怎么懂得做辅助线方法,希望对大家有所帮助。

一.三角形中常见辅助线的添加1. 与角平分线有关的(1) 可向两边作垂线。

(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2. 与线段长度相关的(1) 截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可(2) 补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

(4)遇到中点,考虑中位线或等腰等边中的三线合一。

3. 与等腰等边三角形相关的(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °二.四边形中常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。

下面介绍一些辅助线的添加方法。

1. 和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。

(1) 利用一组对边平行且相等构造平行四边形(2)利用两组对边平行构造平行四边形(3)利用对角线互相平分构造平行四边形2. 与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.3. 和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.(1)作菱形的高(2)连结菱形的对角线4. 与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线三.圆中常见辅助线的添加1. 遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

初中数学三角形辅助线大全(精简、全面)

初中数学三角形辅助线大全(精简、全面)

三角形作辅助线方法大全1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 的外角,∴∠BDC >∠DEC ~ 同理:∠DEC >∠BAC ∴∠BDC >∠BAC证法(二):连结AD ,并延长交BC 于F∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC…2.有角平分线时常在角两边截取相等的线段,构造全等三角形.例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC在△BDE 和△NDE 中,DN = DB`∠1 = ∠2ED = ED∴△BDE ≌△NDE ∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF:3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM 、FM△BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MDFABCDED CBA4321NFE DCBA∴△BDE ≌△CDM —∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180o ∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o △EDF 和△MDF 中 }ED = MD∠FDM = ∠EDF DF = DF∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上):4. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 的中线 ∴BD = CD在△ACD 和△EBD 中( BD = CD∠1 = ∠2 AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD5.截长补短作辅助线的方法…截长法:在较长的线段上截取一条线段等于较短线段; 补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法.当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法: ①a >b ②a ±b = c ③a ±b = c ±d例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,MABCDE F1234512ED B A《求证:AB -AC >PB -PC证明:⑴截长法:在AB 上截取AN = AC ,连结PN在△APN 和△APC 中, AN = AC∠1 = ∠2AP = AP ∴△APN ≌△APC & ∴PC = PN∵△BPN 中有PB -PC <BN ∴PB -PC <AB -AC⑵补短法:延长AC 至M ,使AM = AB ,连结PM 在△ABP 和△AMP 中 AB = AM ∠1 = ∠2 : AP = AP ∴△ABP ≌△AMP ∴PB = PM又∵在△PCM 中有CM >PM -PC ∴AB -AC >PB -PC练习:1.已知,在△ABC 中,∠B = 60o ,AD 、CE 是△ABC 的角平分线,并且它们交于点O求证:AC = AE +CD $ 2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4.求证:BC = AB +CD6.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。

初中常用辅助线添加方法

初中常用辅助线添加方法

初中常用辅助线添加方法一、添辅助线有两种情况1、按定义添辅助线:如证明线段倍半关系可倍线段取中点或半线段加倍。

2、按基本图形添辅助线二、基本图形1、平行线2、等腰三角形3、等腰三角形中的重要线段4、直角三角形斜边上中线基本图形5、三角形中位线基本图形6、全等三角形7、相似三角形8、特殊角直角三角形:当出现30、45、60、135、150度特殊角时可添加特殊角直角三角形。

9、半圆上的圆周角三、基本图形的辅助线的画法1、三角形问题添加辅助线方法(1)有关三角形中线的题目,常将中线加倍。

含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易的解决了问题。

(2)含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

(3)结论是两条线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

(4)结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法。

2、平行四边形中常用辅助线的添加方法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添加辅助线方法上也有相同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,常用方法有以下几种:(1)连对角线或平移对角线。

(2)过顶点作对边的垂线构成直角三角形。

(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线。

(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

(5)过顶点作对角线的垂线,构成线段平行或三角形全等。

3、梯形中常用辅助线的添法(1)在梯形内部平移一腰(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰(5)过梯形上底的两端点向下底作高(6)平移对角线(7)连接梯形一顶点及一腰的中点(8)过一腰的中点作另一腰的平行线(9)作中位线在梯形的有关证明和计算中,添加辅助线并不是固定不变的、单一的。

初中数学几何图形的辅助线添加方法大全

初中数学几何图形的辅助线添加方法大全

初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。

如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

六:两圆相切、离,连心,公切线。

如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。

七:切线连直径,直角与半圆。

如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。

即切线与直径互为辅助线。

如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。

即直角与半圆互为辅助线。

八:弧、弦、弦心距;平行、等距、弦。

如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

初中数学关于添加辅助线的方法总结

初中数学关于添加辅助线的方法总结

初中数学关于添加辅助线的方法总结辅助线关于同学们来说都不生疏,解几何题的时候经常用到。

当题目给出的条件不够时,我们通过添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这便是辅助线的作用。

一条巧妙的辅助线常常使一道难题迎刃而解。

因此我们要学会巧妙的添加辅助线。

添加辅助线的几种方法。

添辅助线有二种情形:▌1、按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

▌2、按差不多图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做差不多图形,添辅助线往往是具有差不多图形的性质而差不多图形不完整时补完整差不多图形,因此“添线”应该叫做“补图”!如此可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个差不多图形:当几何中显现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的差不多图形:当几何问题中显现一点发出的二条相等线段时往往要补完整等腰三角形。

显现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的差不多图形:显现等腰三角形底边上的中点添底边上的中线;显现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的差不多图形。

(4)直角三角形斜边上中线差不多图形显现直角三角形斜边上的中点往往添斜边上的中线。

显现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线差不多图形。

(5)三角形中位线差不多图形几何问题中显现多个中点时往往添加三角形中位线差不多图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当显现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线差不多图形;当显现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线差不多图形。

如何正确添加数学辅助线

如何正确添加数学辅助线

如何正确添加数学辅助线如何正确添加数学辅助线一、添辅助线有二种情况:1、按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

初中数学常见辅助线做法

初中数学常见辅助线做法

初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线;2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”这样可防止乱添线,添辅助线也有规律可循;举例如下:1平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线2等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形;出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形;3等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形;4直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线;出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形;5三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形;6全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转;当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线7相似三角形:相似三角形有平行线型带平行线的相似三角形,相交线型,旋转型;当出现相比线段重叠在一直线上时中点可看成比为1可添加平行线得平行线型相似三角形;若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法;8特殊角直角三角形当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明9半圆上的圆周角出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样;二.基本图形的辅助线的画法1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍;含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题;方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题;方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理;方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段;2.平行四边形中常用辅助线的添法平行四边形包括矩形、正方形、菱形的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:1连对角线或平移对角线:2过顶点作对边的垂线构造直角三角形3连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;5过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形;它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决;辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:1在梯形内部平移一腰;2梯形外平移一腰3梯形内平移两腰4延长两腰5过梯形上底的两端点向下底作高6平移对角线7连接梯形一顶点及一腰的中点;8过一腰的中点作另一腰的平行线;9作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的;通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键;4.圆中常用辅助线的添法在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的;1见弦作弦心距有关弦的问题,常作其弦心距有时还须作出相应的半径,通过垂径平分定理,来沟通题设与结论间的联系;2见直径作圆周角在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题;3见切线作半径命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题;4两圆相切作公切线对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系;5两圆相交作公共弦对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来;。

三角形中作辅助线的八种常见方法

三角形中作辅助线的八种常见方法

三角形中作辅助线的八种常见方法
1.垂线分割法:在三角形的一边上作一条垂线,将三角形分割为两个小三角形,便于进行角度和边长的计算。

2. 中位线法:从三角形的一个角出发,作一条经过对边中点的线段,将三角形分割为两个小三角形,便于进行面积和长度的计算。

3. 角平分线法:从三角形的一个角出发,作一条平分角的直线,将三角形分割为两个小三角形,便于进行角度和边长的计算。

4. 高线法:从三角形的一个角出发,作一条垂直于对边的线段,将三角形分割为两个小三角形,便于进行面积和长度的计算。

5. 中心连线法:将三角形的三条中心(外心、内心、重心)连起来,将三角形分割为六个小三角形,便于进行角度和边长的计算。

6. 正弦定理法:利用三角形中某个角的正弦值与对边长度的关系,求解未知量。

7. 余弦定理法:利用三角形中某个角的余弦值与两边长度的关系,求解未知量。

8. 海伦公式法:利用三角形的三边长度求解面积,公式为:S=√[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2为半周长。

- 1 -。

(完整版)初中数学添加辅助线的方法汇总

(完整版)初中数学添加辅助线的方法汇总

初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。

如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

六:两圆相切、离,连心,公切线。

如条件中出现两圆相切(外切,内切),或相离(内含、夕卜离),那么,辅助线往往是连心线或内外公切线。

七:切线连直径,直角与半圆。

如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。

即切线与直径互为辅助线。

如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角一一直角为辅助线。

即直角与半圆互为辅助线。

八:弧、弦、弦心距;平行、等距、弦。

如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

三角形中点常用辅助线添加方法

三角形中点常用辅助线添加方法

三角形中点常用辅助线添加方法一.倍长中线法例1.如图①,在△ABC 中,AB=10, AC=6, AD 是BC 边上的中线,求AD 的取值范围. 解:如图②,延长AD,使得ED=AD,连接BE在△BDE 和△CDA 中:BD=CD,∠BDE=∠CDA, ED=AD∴△BDE ≌△CDA∴BE=AC=6∴AB -BE < KAE< <AB+BE∴ 10-6<AE<10+6又 ∵AD=21AE ∴2<AD<8二.倍长类中线法例2.如图①,在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC,延长BE 交AC 于点F.求证: AF=EF.证明:如图②,延长DE 至点G ,使得DE=DG,连接CG在△BDE 和△CDG 中:BD=CD,∠BDE=∠CDG, DE=DG∴ △BDE ≌△CDG (SAS)∴∠BED=∠DGC, BE=CG又∵ BE=AC∴ AC=GC∴∠EAC=∠DGC,又∵∠BED=AEF∴∠AEF= ∠FAE∴AF=EF例3:如图,在△ABC 中,AD 为∠A 的角平分线,M 为BC 的中点,AD//ME. 求证: BE=CF=3 证明:延长FM 至点G,使得FM=MG,连接BG在△BMG 和△CMF 中: BM=CM ,∠BMG=∠CMF, FM=GM∴△BMG ≌△CMF(SAS)∴∠G= ∠CFM ,BG=CF又∵AD//EM,∴∠BAD=∠E,∠DAF=∠EFA又∵∠BAD=∠DAF,∴∠E=∠EFA ∴ AE=AF又∵∠AFE=∠CFM ∴∠E=∠CFM ∴∠G=∠E∴ BE=BG=CF,∴AB+AC=AB+AF+FC=AB+AE+BE=BE+BE =2BE∴BE=CF=21(AB+AC)三.直角三角形斜边上的中线例4:如图,已知△ABC 中,BD 和CE 均为高线,点M 是BC 的中点,点N 是DE 的中点. 求证: MN ⊥DE.证明:连接EM 、DM∵点M 是BC 的中点∴在Rt △BEC 中,EM=21 BC, 在Rt △BDC 中,DM=21 BC ∴ EM=DM,又∵ EN=ND, ∴MN ⊥DE (三线合一 )四.构造三角形中位线例5:如图①,在四边形ABCD 中,E.F 分别是BC. AD 的中点,连接EF 并延长,分别与BA, CD 的延长线交于点M ,N,则∠BMF=∠CNE,求证: AB=CD.证明:如图②.连接BD,取DB 的中点G,连接EG.FG.∴点E 是BC 中点,∵ EG 是△BCD 的中位线∴ EG//CD, EG=21 CD, 同理,点F 是AD 的中点,∴FG// AB, FG=21AB, ∴∠BMF=∠GFE,∴∠CNE=∠GEF.又∵∠BMF= ∠CNE,∴∠GFE=∠GEF.∴ EG=FG. ∴ AB=CD.例6:如图①,△ABC 中, 点F 是BC 边的中点,D 是AC 边上一点,E 是AD 的中点,连接FE 并延长,交BA 的延长线于点G.若AB=DC=10,∠FEC=60° ,求EF 的长度解:连接BD,取DB 的中点H ,连接EH, FH.∵点E 是AD 的中点,H 是BD 的中点∴ EH 是△ABD 的中位线 ∴ EH=21 AB 同理FH 是△BCD 的中位线∴FH=21 CD 又∵ AB=CD, ∴ EH=FH ∴∠HEF=∠HFE又∵ FH 是△BCD 的中位线∴ FH// CD ∴∠HFE=∠FEC=60° ,∴△EFH 是等边三角形. ∴EF=EH=21 AB=21 X10=5课后巩固练习15题1.如图,四边形ABCD 中,∠DAB=90°,∠DCB=90°,E. F 分别是BD, AC 的中点,AC=8, BD=10, 求EF 的长.2.如图,已知D 为BC 中点,点A 在DE 上,且AB=CE,求证:∠BAD= ∠CED.3.如图,△ABC 中上,AC>AB,M 为BC 的中点,AD 是∠BAC 的平分线,若CF ⊥AD 交AD 的延长线于F. 求证: MF=21(AC -AB).4.在梯形ABCD 中,AD//BC, AB=AD+BC, E 为CD 的中点,求证: AE ⊥BE.5.如图,在△ABC 中,∠A=90°,D 是BC 的中点,DE ⊥DF.求证: BE 2 +CF 2 =EF 2.6.如图,在正方形ABCD 中,F 是AB 的中点,连接CF,作DE ⊥CF 于点M ,交BC 于点E.求证: AM=AD.7.如图,在四边形ABCD 中,AB=CD, E.F 分别是BC. CD 的中点,BA. CD 的延长线分别交EF 的延长线于点G. H.求证:∠BGE= ∠CHE.8.已知,△ABD 和△ACE 都是直角三角形,点C 在AB .上,且∠ABD=∠ACE=90°,连接DE,设M 为DE 的中点,连接MB, MC.求证: MB=MC.9.如图,在△ABC 中,N 是AC 上的一点,D 是BC 的中点,DM ⊥DN ,如果BM 2 +CN 2 =DM 2 +DN 2.求证: AD 2=41(AB 2 +AC 2 )10.如图,在△ABC 中,AB=AC=5, BC=6, M 为BC 的中点,MN ⊥AC 于点N,求MN 的长度。

初中数学三角形相关辅助线:倍长中线、角平分线、手拉手模型

初中数学三角形相关辅助线:倍长中线、角平分线、手拉手模型

初一全等三角形相关辅助线板块一、倍长中线中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.下面举例说明.△ABC中AD是BC边中线方式1:延长AD到E,使DE=AD,连接BE;方式2:作CF⊥AD于F,作BE⊥AD的延长线于E;方式3:过点C作NC∥AB,交AB于M点;例1 如图,在△ABC 中,AD 为BC 边上的中线.求证:AB +AC >2AD .DABC例2 如图,在△ABC 中,AB >AC ,E 为BC 边的中点,AD 为∠BAC的平分线,过E 作AD 的平行线,交AB 于F ,交CA 的延长线于G .求证:BF =CG .例3 如图4,CB ,CD 分别是钝角△AEC 和锐角△ABC 的中线,且AC =AB .求证:CE =2CD .变式1:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF变式2:在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F ,求证:AB=AF+CF 。

FEDBCEABC课堂练习:如图, 在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠第 1 题图ABFDEC板块二、角平分线角平分线是三角形中的重要线段之一,在利用角平分线解决几何问题时,常常采用“轴对称”添加辅助线.所谓轴对称,根据翻折对称的思想,构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.下面举例说明.(l)若PA ⊥OM 于点A ,如图 (a),可以过P 点作PB ⊥ON 于点B ,则PB=PA.可记为“图中有角平分线,可向两边作垂线”.(a)B AOPM N(b)B OPMNA(2)若点A 是射线OM 上任意一点,如图 (b),可以在ON 上截取OB=OA ,连接PB ,构造△OPB ∽△OPA.可记为“图中有角平分线,可以将图对折看,对称以后关系现”.(3)若AP ⊥OP 于点P ,如图 (c),可以延长AP 交ON 于点B ,构造△AOB 是等腰三角形,P 是底边AB 的中点,可记为“角平分线加垂线,三线合一试试看”.(c)BAOPM N(d)QOPMN(4)若过P 点作PQ ∥ON 交OM 于点Q ,如图 (d),可以构造△POQ 是等腰三角形,可记为“角平分线十平行线,等腰三角形必呈现”.例1 (1)如图2-3(a),在△ABC 中,∠C=90。

初中数学常用辅助线添加技巧

初中数学常用辅助线添加技巧

初中数学常用辅助线添加技巧人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加关心线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

初中数学常用关心线添加技巧一.添关心线有二种状况:1按定义添关心线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添关心线。

2按基本图形添关心线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添关心线往往是具有基本图形的性质而基本图形不完好时补完好基本图形,因此“添线”应当叫做“补图”!这样可防止乱添线,添关心线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添关心线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简洁的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完好等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完好时则需补完好三角形; 当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

初三数学三角形辅助线添加方法整理

初三数学三角形辅助线添加方法整理

初三数学三角形辅助线添加方法整理三角形中常见辅助线的添加1. 与角平分线有关的(1)可向两边作垂线(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2. 与线段长度相关的(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可。

(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可。

(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

(4)遇到中点:考虑中位线或等腰等边中的三线合一等知识。

3. 与等腰等边三角形相关的(1)考虑三线合一;(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °四边形常见辅助线的添加图片特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形。

在解决一些和四边形有关的问题时往往需要添加辅助线。

下面介绍一些辅助线的添加方法。

1. 和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。

(1)利用一组对边平行且相等构造平行四边形;(2)利用两组对边平行构造平行四边形;(3)利用对角线互相平分构造平行四边形;2. 与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题。

(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题。

和矩形有关的试题的辅助线的作法较少。

3. 和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题。

(1)作菱形的高(2)连结菱形的对角线4. 与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多。

初中数学三角形辅助线大全(精简、全面)

初中数学三角形辅助线大全(精简、全面)

三角形作辅助线方法大全1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 的外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC2.有角平分线时常在角两边截取相等的线段,构造全等三角形.例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC在△BDE 和△NDE 中,DN = DB ∠1 = ∠2ED = ED ∴△BDE ≌△NDE∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM 、FM△BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180oFABC DE D C B A4321NF E DC B A∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDFDF = DF ∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)4. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 的中线 ∴BD = CD 在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD5.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段; 补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法.当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法: ①a >b ②a ±b = c ③a ±b = c ±d例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC证明:⑴截长法:在AB 上截取AN = AC ,连结PN在△APN 和△APC 中, AN = AC∠1 = ∠2AP = AP ∴△APN ≌△APC ∴PC = PN ∵△BPN 中有PB -PC <BNMABC D E F12345 12E DB AP 12N DCB A∴PB -PC <AB -AC⑵补短法:延长AC 至M ,使AM = AB ,连结PM 在△ABP 和△AMP 中 AB = AM ∠1 = ∠2 AP = AP∴△ABP ≌△AMP ∴PB = PM 又∵在△PCM 中有CM >PM -PC ∴AB -AC >PB -PC练习:1.已知,在△ABC 中,∠B = 60o ,AD 、CE 是△ABC 的角平分线,并且它们交于点O求证:AC = AE +CD2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4. 求证:BC = AB +CD6.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学三角形中14种辅助线添加方法
在三角形中,常用的辅助线有中线、高线、中垂线、角平分线等。

下面是三角形中14种辅助线添加方法:
1. 三角形中线的添加方法:在三角形的每个顶点上作一条连接对边中点的线段,则这些线段交于一点,且该点到三角形各顶点的距离相等,即为三角形的重心。

2. 三角形中垂线的添加方法:从三角形的顶点向所对边作垂线,垂足分别为A、B、C,则三个垂足所在直线相交于一点,为三角形的垂心。

3. 三角形高线的添加方法:从三角形的顶点向所对边作垂线,垂线所在直线与所对边的交点称为底部端点,连接三个底部端点,则构成一个矩形,其中两个对角线分别为三角形的两个高。

4. 角平分线的添加方法:从角的顶点向其对边作角平分线,将角平分为两个相等的角,且角平分线上的任意一点到两侧边的距离相等。

5. 外接圆的添加方法:三角形三边的中垂线交于一点,则以该点为圆心,三角形三个顶点分别为圆上的三个点的圆称为三角形的外接圆。

6. 内切圆的添加方法:三角形三条边所在直线的交点为内心,以内心为圆心,作内切圆,该圆与三角形的三边相切。

7. 垂直平分线的添加方法:从线段的中点向垂直于该线段的方向作一条线段,则该线段垂直于原线段且平分其长度。

8. 外角平分线的添加方法:从三角形的一顶点作一条射线,使其不在所在直线内,将相邻两个角的外部划分成两个大小相等的角,则这条射线为该顶点所对的角的外角平分线。

9. 旁切圆的添加方法:以三角形的某一边为半径,在其外侧作一条与该边平行的直线,使其与另外两边所在直线相交,其交点则为旁切圆心。

10. 中位线的添加方法:连接三角形任意两个顶点,则连接这两个顶点的中点的线段称为三角形的中位线,三角形三条中位线交于一点,即为三角形重心。

11. 等腰三角形的中线、高线和垂心重合。

12. 等边三角形的中线、高线、垂心和外心重合。

13. 直角三角形的垂心落在斜边上,且斜边上的高线与斜边垂直。

14. 任意三角形的外心到三个顶点的距离相等。

相关文档
最新文档