2014年高考三角函数做题技巧与方法总结

2014年高考三角函数做题技巧与方法总结
2014年高考三角函数做题技巧与方法总结

2014年高考三角函数做题技巧与方法总结

知识点梳理

1.正弦函数、余弦函数、正切函数的图像

1-1y=sinx

-3π2

-5π2

-7π2

7π2

2

3π2

π2

-π2

-4π-3π

-2π4π

2ππ

o

y x

1-1y=cosx

-3π

2

-5π2

-7π

2

7π2

5π2

3π2

π2

-π2

-4π-3π-2π4π

π

o

y

x

y=tanx

3π2

π

π2

-

3π2

-

π2

o

y

x

y=cotx

3π2

π

π2

-

π2

o

y

x

2、三角函数的单调区间:

x y sin =的递增区间是??????

+-2222ππππk k ,)(Z k ∈,递减区间是?????

?

++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,

-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,

x y tan =的递增区间是??? ??

+-22ππππk k ,)(Z k ∈,

3、三角函数的诱导公式

sin (2kπ+α)=sinα sin (π+α)=-sinα sin (-α)=-sinα

cos (2kπ+α)=cosα cos (π+α)=-cosα cos (-α)=cosα

tan (2kπ+α)=tan α tan (π+α)=tanα tan (-α)=-tanα

sin (π-α)=sinα sin (π/2+α)=cosα sin (π/2-α)=cosα

cos (π-α)=-cosα cos (π/2+α)=-sinα cos (π/2-α)=sinα

tan (π-α)=-tanα tan (π/2+α)=-cotα tan (π/2-α)=cotα

sin 2(α)+cos 2(α)=1

4、两角和差公式

5、 二倍角的正弦、余弦和正切公式

sin (α+β)=sinαcosβ+cosαsinβ sin2α=2sinαcosα

sin (α-β)=sinαcosβ-cosαsinβ cos2α=cos 2(α)-sin 2(α)=2cos 2(α)-1=1-2sin 2(α)

cos (α+β)=cosαcosβ-sinαsinβ tan2α=2tanα/(1-tan 2(α)) cos (α-β)=cosαcosβ+sinαsinβ tan (α+β)=(tanα+tanβ )/(1-tanα ·tanβ) tan (α-β)=(tanα-tanβ)/(1+tanα ·tanβ) 6、半角公式:

2cos 12

sin

αα

=; 2

cos 12cos α

α+±=; α

αααααα

sin cos 1cos 1sin cos 1cos 12

tan

-=+=+-±

=

7、函数B

x A y ++=)sin(?ω),(其中00>>ωA 最大值是B A +,最小值是A B -,周期是ω

π

2=

T ;其图象的对称轴是直线

)(

2

Z k k x ∈+

=+π

π?ω,

凡是该图象与直线B y =的交点都是该图象的对称中心 8、由y =sin x 的图象变换出y =sin(ωx +?)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现

无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”

起多大变化,而不是“角变化”多少。

途径一:先平移变换再周期变换(伸缩变换)

先将y =sin x 的图象向左(?>0)或向右(?<0)平移|?|个单位,再将图象上各点的横坐标变为原来的

ω

1

倍(ω>0),便得y =sin(ωx +?)的图象

途径二:先周期变换(伸缩变换)再平移变换。 先将y =sin x 的图象上各点的横坐标变为原来的ω

1

倍(ω>0),再沿x 轴向左

(?>0)或向右(?<0=平移ω

?|

|个单位,便得y =sin(ωx +?)的图象。

9、对称轴与对称中心:

sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈;

cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+;

对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。

10、求三角函数的单调区间:

一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单

调性三角函数大小一般要化为同名函数,并且在同一单调区间; 11、求三角函数的周期的常用方法:

经过恒等变形化成“sin()y A x ωφ=+、cos()y A x ωφ=+”的形式,在利用周期公式,另外还有图像法和定义法。

12、经常使用的公式 ①升(降)幂公式:

21c o s 2s i n 2αα-=

、 21cos 2cos 2αα+=、 1

sin cos sin 22ααα

=;

②辅助角公式:

22

sin cos sin()a b a b ααα?+=++(?由,a b 具体的值确定);

二、典型例题 弦切互化

例1.已知2tan =θ,求(1)

θ

θθ

θsin cos sin cos -+;

解:(1)2232

121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+

=

-+θθθ

θθθ

θθθθ; 练习:θθθθ22cos 2cos .sin sin +-的值.

解:θ

+θθ+θθ-θ=θ+θθ-θ22222

2cos sin cos 2cos sin sin cos 2cos sin sin

3

24122221cos sin 2cos sin cos sin 2222-=++-=+θ

θ+θθ

-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。

函数的定义域问题

例2、求函数1sin 2+=x y 的定义域。

解:由题意知需01sin 2≥+x ,也即需21sin -≥x ①在一周期??

?

???-23,2ππ上符合①

的角为??????-67,6ππ,由此可得到函数的定义域为??????

+-672,62ππππk k ()Z k ∈ 说明:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1,0log ≠>=a a x f y a

的函数,则其定义域由

()x f 确定。(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义

同时还要使实际问题有意义。 函数值域及最大值,最小值 (1)求函数的值域

一般函数的值域求法有:观察法,配方法判别式法等,而三角函数是函数的

特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。 例3、求下列函数的值域

(1)x y 2sin 23-= (2)2sin 2cos 2

-+=x y x 分析:利用1cos ≤x 与1sin ≤x 进行求解。 解:(1) 12sin 1≤≤-x ∴[]5,151∈∴≤≤y y (

2

()[].

0,4,1sin 11sin 1sin 2sin 2sin 22

22

cos -∈∴≤≤---=-+-=-+=y x x x x x x y 说明:

练习:求函数21sin cos (sin cos )y x x x x =++++的值域。

解:设sin cos 2sin()[22]4

π

t x x x =+=+∈-,,

则原函数可化为2213

1()24

y t t t =++=++,

因为[22]t ∈-,,所以当2t =时,max 32y =+,当12t =-时,min 3

4

y =,

所以,函数的值域为3

[32]4

y ∈+,。 (2)函数的最大值与最小值。

求值域或最大值,最小值的问题,一般的依据是: (1)sinx,cosx 的有界性; (2)tanx 的值可取一切实数;

(3)连续函数在闭区间上存在最大值和最小值。 例4、求下列函数的最大值与最小值

(1)x y sin 2

1

1-= (2)4sin 5cos 22-+=x x y (3)

??

?

???∈+-=32,31cos 4cos 32ππx x x y

分析:(1)可利用sinx,cosx 的值域求解求解过程要注意自变量的去值范围(2)(3)可利用二次函数c bx ax x f ++=2)(在闭区间[]n m ,上求最值得方法。 解:(1)

221sin ;261sin 1sin 11

sin 10

sin 21

1min max =

==-=∴≤≤-∴?????≤≤-≥-y x y x x x x 时当时,当 (2)

[]2

2

2

592cos 5sin 42sin 5sin 22sin ,sin 1,1,48y x x x x x x ?

?=+-=-+-=--+∈- ??

?

∴当sin 1x =-,即2(2

x k k Z π

π=-+∈)

时,y 有最小值9-; 当sin 1x =,即2(2

x k k Z π

π=+∈)

,y 有最大值1。 (

3

4

13,21cos 415y 32,21cos ,21,21cos ,32,3,31)32(cos 31cos 4cos 3min max 22-

=====-=??

?

???-∈??????∈--=+-=y x x x x x x x x x y 时,即当时,、即

从而ππππ

函数的周期性

例5、求下列函数的周期

()x x f 2

c o s )(1= ())6

2s i n (2)(2π

-=x x f 分析:该例的两个函数都是复合函数,我们可以通过变量的替换,将它们归结为基本三角函数去处理。

(1)把x 2看成是一个新的变量u ,那么u cos 的最小正周期是π2,就是说,当π2+u u 增加到且必须增加到π2+u 时,函数u cos 的值重复出现,而

),(2222πππ+=+=+x x u 所以当自变量x 增加到π+x 且必须增加到π+x 时,

函数值重复出现,因此,x y 2sin =的周期是π。

(2)??? ??-=+-62sin 2)262sin(2πππx x 即())62sin(2642

1

sin 2πππ-=??????-+x x

)6

2s i n (2)(π

-=∴x x f 的周期是π4。

说明:由上面的例题我们看到函数周期的变化仅与自变量x 的系数有关。

一般地,函数)sin(?ω+=x A y 或)cos(?ω+=x A y (其中?ω,,A 为常数,),0,0R x A ∈>≠ω的周期ω

π

2=

T 。

例6、已知函数2()4sin 2sin 22f x x x x R =+-∈,。

求()f x 的最小正周期、()f x 的最大值及此时x 的集合; 解:22()4sin 2sin 222sin 2(12sin )f x x x x x =+-=-- 2s i n 22c o s 2

22s i n (2

)

4

π

x x x =-

=- 所以()f x 的最小正周期T π=,因为x R ∈, 所以,当2242ππx k π-=+,即38

π

x k π=+时,()f x 最大值为22; 函数的奇偶性

例7、判断下列函数的奇偶性

)s i n ()()1(x x x f +=π x

x

x x f s i n 1c o s s i n 1)()2(2+-+=

分析:可利用函数奇偶性定义予以判断。 解:(1)函数的定义域R 关于原点对称

是偶函数

。)()(s i n )s i n ()()(,s i n )s i n ()(x f x f x x x x x f x x x x x f ∴=-=--=--=+=ππ (2)函数应满足.,2320sin 1?

?????∈+≠∈∴≠+Z k k x R x x x π

π,且函数的定义于为 ∴ 函数的定义域不关于原点对称。∴ 函数既不是奇函数又不是偶函数。

评注:判断函数奇偶性时,必须先检查定义域是否关于原点对称的区间,如果是,再验证

)(x f -是否等于)(x f -

或)(x f ,进而判断函数的奇偶性,如果不是,则该函数必为非奇非偶函数。

练习:已知函数)(,2cos sin 8cos 23)(42x f x

x

x x f 求--=

的定义域,判断它的奇偶性,并求其值域.

解:x

x

x x x x x f 2cos sin 8sin 212cos sin 8)sin 1(23)(4242-+=---=

)

9.()(),()(,)()

7}.(,4

2,|{,4

2,22,02cos )

4(.1sin 42cos )sin 21)(sin 41(222分是偶函数且的定义域关于原点对称因为分且所以函数的定义域为解得得由分x f x f x f x f z k k x R x x z

k k x k x x x x

x x ∴=-∈+≠∈∈+≠+≠≠+=-+=π

ππ

πππ )

12(}.3,51|{)(,4

2,1sin 4)(2分且的值域为且又≠≤≤∴∈+≠

+=y y y x f z k k x x x f π

π

函数的单调性

例8、下列函数,在??

?

???ππ,2上是增函数的是( )

x y A sin .= x y B c o s = x y C 2s i n = x y D 2c o s =

分析:判断。

在各象限的单调性作出与可根据x x x x cos sin .22,2

ππππ

≤≤∴≤≤

解:sin y x = 与cos y x =在2ππ??

????,上都是减函数,∴排除,A B ,2x ππ≤≤ ,

22,x ππ∴≤≤知sin 2y x =在[]2,2x ππ∈内不具有单调性,∴又可排除C ,∴应选D 。 例9、已知函数2

3

5cos 35cos sin 5)(2+

-=x x x x f (Ⅰ)求f(x)的最小正周期; (Ⅱ)求f(x)的递增区间. 解:(Ⅰ)2

3

5cos 35cos sin 5)(2+

-=x x x x f )3

sin 2cos 3cos

2(sin 52cos 352sin 25

23522cos 1352sin 25π

π

x x x x x x -=-=++-=

)3

2sin(5π

-=x

∴最小正周期T=

ππ

=2

2 (Ⅱ)由题意,解不等式ππ

π

ππ

k x k 22

3

222

+≤

-

≤+-

得 )(12

512

Z k k x k ∈+≤

≤+-

ππ

ππ

)(x f ∴的递增区间是)](12

5,

12[Z k k k ∈++-

ππ

ππ

小结:求形如)0,0)(cos()sin(>≠+=+=ω?ω?ωA x A y x A y 其中或的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:

式的方向相同(反)。

的单调区间对应的不等与时,所列不等式的方向)视为一个整体;(把“)(cos ),(sin )0(02)"0()1(R x x y R x x y A A x ∈=∈=

<>>+ω?ω

三、练习 1. 函数x

y sin 1

=

的定义域为( ) {}

[)(]

{}0.

1,00,1.

,.

.≠-∈≠∈x x D C Z k k x R x B R A π

2. 函数)6cos(π

+

=x y ,???

???∈2,0πx 的值域是( ) ??

??????

?

?

????

????-??

? ??-

1,211,2323,2121,23.D

C

B

A 3. 函数)0)(4

sin(>+

=ωπ

ωx y 的周期为

3

,则ω=------------. 4. 下列函数中是偶函数的是( )

1sin sin sin 2sin .+==-==x y D x y C x y B x y A

5. 下列函数中,奇函数的个数为( )

(1)x x y sin 2=(2)[]π2,0,sin ∈=x x y (3)[]ππ,,sin -∈=x x y (4)x x y cos =

432.1.D C B A

6. 在区间??

?

??2,0π上,下列函数为增函数的是( )

x y D x y C x

y B x

y A cos sin cos 1sin 1.-=-=-

==

7. 函数x y 2sin =的单调减区间是( )

[]

()

Z k k k D

k k C

k k B k k A ∈??

????+-++??

????

+

+??????++4,423,243,4223,22ππππππππππππππππ

8. 如果4

π

x ,则函数x x y sin cos 2+=的最小值是——————

9. 函数)2

434

(

tan π

ππ

≠≤=x x

x y 且的值域为( ) []

(][)

(]

[)+∞-∞-+∞-∞--,11,,11,1,1D

C

B

A

10、求函数)6

cos(sin sin 2x x x y -+=π

的周期和单调增区间.

解 )s i n 6

s i n c o s 6(c o s s i n s i n 2

x x x x y π

π++=

x x x cos sin 23sin 232+=x x 2sin 4

3)2cos 1(43+-= )2cos 4

3

2sin 43(43x x -+=)32sin(2343π++

=x . ∴ 函数的周期 ππ

==2

2T .

当 22ππ-k ≤32π+x ≤22ππ+k ,即 125ππ-k ≤x ≤12

π

π+k (k ∈Z ) 时函数

单调增加,即函数的增区间是 [125ππ-k ,12

π

π+k ] (k ∈Z ).

答案:B B 3 C C D B

2

2

1- B

2020年高考数学三角函数专题解题技巧

三角函数专题复习 在三角函数复习过程中,认真研究考纲是必须做的重要工作。三角函数可以当成函数内容中的重要一支,要注意与其它知识的联系。 一、研究考题,探求规律 1. 从表中可以看出:三角函数题在试卷中所处的位置基本上是第一或第二题,本章高考重点考查基础知识,仍将以容易题及中档为主,题目的难度保持稳定,估计这种情况会继续保持下去 2. 特点:由于三角函数中,和差化积与积化和差公式的淡出,考查主体亦发生了变化。偏重化简求值,三角函数的图象和性质。考查运算和图形变换也成为了一个趋势。三角函数试题更加注重立足于课本,注重考查基本知识、基本公式及学生的运算能力和合理变形能力,对三角变换的要求有所降低。三角化简、求值、恒等式证明。图象。最值。 3、对三角函数的考查主要来自于:①课本是试题的基本来源,是高考命题的主要依据,大多数试题的产生是在课本题的基础上组合、加工和发展的结果。②历年高考题成为新高考题的借鉴,有先例可循。 二、典例剖析 例1:函数22()cos 2cos 2x f x x =-的一个单调增区间是 A .2(,)33ππ B .(,)62ππ C .(0,)3π D .(,)66 ππ- 【解析】函数22()cos 2cos 2 x f x x =-=2cos cos 1x x --,从复合函数的角度看,原函数看作2()1g t t t =--,cos t x =,对于2()1g t t t =--,当1[1,]2t ∈-时,()g t 为减函数,当1[,1]2 t ∈时,()g t 为增函数,当2(,)33x ππ∈时,cos t x =减函数,且11(,)22 t ∈-, ∴ 原函数此时是单调增,选A 【温馨提示】求复合函数的单调区间时,需掌握复合函数的性质,以及注意定义域、自变量系数的正负.求复合函数的单调区间一般思路是:①求定义域;②确定复合过程;③根据外层函数f(μ)的单调性,确定φ(x)的单调性;④写出满足φ(x)的单调性的含有x 的式子,并解出x 的范围;⑤得到原函数的单调区间(与定义域求交).求解时切勿盲目判断. 例2、已知tan 2θ=. (Ⅰ)求tan 4πθ??+ ??? 的值; (Ⅱ)求cos2θ的值. 【解析】 (Ⅰ)∵tan 2θ=, tan tan 4tan 41tan tan 4π θπθπθ+??∴+= ???-

高中数学_三角函数公式大全全部覆盖

三角公式汇总 一、任意角的三角函数 在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y = αtan 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。 二、同角三角函数的基本关系式 商数关系:α α αcos sin tan = , 平方关系:1cos sin 22=+αα, 三、诱导公式 ⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。(口诀:函数名不变,符号看象限) ⑵ απ +2、απ-2 、απ+23、απ -23的三角函数值,等于α的异名函数值, 前面加上一个把α看成..锐角时原函数值的符号。(口诀:函数名改变,符号看象限) 四、和角公式和差角公式 βαβαβαsin cos cos sin )sin(?+?=+ βαβαβαsin cos cos sin )sin(?-?=- βαβαβαsin sin cos cos )cos(?-?=+

βαβαβαsin sin cos cos )cos(?+?=- βαβ αβαtan tan 1tan tan )tan(?-+=+ β αβ αβαtan tan 1tan tan )tan(?+-= - 五、二倍角公式 αααcos sin 22sin = ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(* α α α2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=- 六、万能公式(可以理解为二倍角公式的另一种形式) ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,α α α2 tan 1tan 22tan -=。 万能公式告诉我们,单角的三角函数都可以用半角的正切.. 来表示。 七、辅助角公式 )sin(cos sin 22?++=+x b a x b x a () 其中:角?的终边所在的象限与点),(b a 所在的象限相同, 2 2sin b a b += ?,2 2cos b a a += ?,a b = ?tan 。 八、正弦定理

高考数学分类讲解:三角函数

专题四 三角函数 高考试题中的三角函数题相对比较传统,位置靠前,通常以简单题形式出现。因此,在复习过程中要特别注重三角知识的基础性,突出三角函数的图象及其变换、周期性、单调性、奇偶性、对称性等性质,以及化简、求值和最值等重点内容的复习,要求考生熟练记忆和应用三角公式及其恒等变形,同时要注重三角知识的工具性.近年来,三角函数与向量联系问题有所增加,三角知识在几何及实际问题中的应用也是考查重点,应给于充分的重视。 一、知识整合 1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等;熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题. 2.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、特点,并会用五点画出函数sin()y A x ω?=+的图象;理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化. 3.注重三角函数与代数、向量、几何及实际问题中的应用,能利用三角函数相关知识解决综合问题. 二、典型例题分析 例1.扇形AOB 的中心角为2θ,半径为r ,在扇形AOB 中作内切圆1O 及与圆1O 外切,与,OA OB 相切的圆2O ,问sin θ为何值时,圆2O 的面积最大?最大值是多少? 解:设圆1O 及与圆2O 的半径分别为12,r r , 则11 1212()sin ()cos()2r r r r r r r θπ θ-=?? ?+-=-??,得11 2 sin 1sin (1sin )1sin r r r r θθθθ? =??+?-?=?+? , ∴122 (1sin )sin (1sin ) 1sin (1sin )r r r θθθθθ--= =++, ∵022θπ<<,∴0θπ<<,令sin 1(12)t t θ=+<<, 2222321312()48t t r t t -+-==--+,当134t =,即1 sin 3 θ= 时,

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

高考数学解题技巧三角函数

2018高考数学解题技巧 解答题模板2:三角函数 高考中三角函数解答题是历年高考必考内容之一,成为6道解答题中的第一题,难度一般比较小,三角函数中,以公式多而著称.解题方法也较灵活,但并不是无法可寻,当然有它的规律性,近几年的高考中总能体现出其规律性.而对三角函数的考查解法,归纳起来主要有以下六种方法:能够做好这道题也成了决定高考成败的关键,从近几年高考来看,三角函数解答题有如下几种题型 二、典型例题 弦切互化 例1.已知2tan =θ,求(1) θ θθ θsin cos sin cos -+; 解:(1)2232 121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+ = -+θθθ θθθ θθθθ; 函数的定义域问题 例2、求函数1sin 2+=x y 的定义域。 解:由题意知需01sin 2≥+x ,也即需21sin -≥x ①在一周期?? ????-23,2ππ上符合①的角为??? ???-67,6ππ,由此可 得到函数的定义域为????? ? +-672,62ππππk k ()Z k ∈ 说明:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()() 1,0log ≠>=a a x f y a 的函数,则其定义域由()x f 确定。(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 函数值域及最大值,最小值 (1)求函数的值域 一般函数的值域求法有:观察法,配方法判别式法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。 例3、求下列函数的值域 (1)x y 2sin 23-= (2)2sin 2cos 2 -+=x y x 分析:利用1cos ≤x 与1sin ≤x 进行求解。 解:(1) 12sin 1≤≤-x ∴[]5,151∈∴≤≤y y (2)()[].0,4,1sin 11sin 1sin 2sin 2sin 22 22 cos -∈∴≤≤---=-+-=-+=y x x x x x x y

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

高中三角函数公式大全

高中三角函数公式大全 2009年07月12日星期日19:27 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA tan(A-B) =tanAtanB 1tanB tanA cot(A+B) =cotA cotB 1-cotAcotB cot(A-B) =cotA cotB 1cotAcotB 倍角公式 tan2A =A tan 12tanA 2Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosA tan3a = tana ·tan( 3+a)·tan(3-a) 半角公式 sin(2 A )=2cos 1A cos(2 A )=2cos 1A tan(2 A )=A A cos 1cos 1cot(2A )= A A cos 1cos 1tan(2A )=A A sin cos 1=A A cos 1sin 和差化积 sina+sinb=2sin 2b a cos 2 b a

sina-sinb=2cos 2b a sin 2 b a cosa+cosb = 2cos 2b a cos 2 b a cosa-cosb = -2sin 2b a sin 2 b a tana+tanb=b a b a cos cos )sin(积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2-a) = cosa cos( 2-a) = sina sin( 2+a) = cosa cos(2 +a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2)2 (tan 12tan 2a a cosa=22)2 (tan 1)2(tan 1a a

(完整版)高中数学三角函数解题技巧和公式(已整理)

关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θ θθθcos sin 1 故:1212122+=?=-n m n m ,选B 。 例3 已知:tg α+ctg α=4,则sin2α的值为( )。

高考三角函数试题分析

三角函数、解三角形题型分析及其复习计划 本文主要研究近五年高考中出现的三角函数题,其目的是加深自身对高中三角函数这部分内容的认识和理解,并通过对试题的分类、整理、分析、总结出一些关于高考中对三角函数试题的解题方法、技巧和应对策略,希望这些解题方法、技巧和应对策略能够对执教老师和学生起到一定的帮助和启发.同时,选择研究高考三角函数这部分内容也是想为将来的教学工作做一个充分的知识储备. 三角函数在高中数学中有着较高的地位,尤其是在函数这一块,它属于基本初等函数,同时,它还是描述周期现象的重要数学模型.通过整理、统计可以看出,每年高考中三角函数试题分值所占比例基本都在10%~15%之间.从近三年的课标卷、的高考三角函数题的分类、整理、分析知,高考三角函数这一知识点,主要还是考查学生的基础知识和基本技能,难度一般不大.但是,三角函数这部分内容考查的题型比较灵活,并且考查面较广.在选择题、填空题、解答题中均有考查,在前两类题型中多考查三角函数的基础知识,属于基础题;对于解答题则具有一定的综合性. 从总体上看,高考三角函数对文科学生能力的考查要求差异不大,但在考查题型上,文科方向的解三角形题量有所减少.从课改前后看,对三角函数考查的内容和范围没有明显变动,仍然是对三角函数的基础知识、三角函数与向量、与三角恒等变换等综合考查,但难度均不大. 考题分布

下面对近五近全国卷高考中三角函数的考题作一个归类分析,通过这个分析可以从中找到一些高三复习三角函数时的复习方向,能更好的、更精准的把握复习时应注意的方方面面。 近五年全国卷三角函数考题 角的概念及任意角的三角函数 1.(2014课标全国Ⅰ,文16)已知角α的终边经过点(-4,3),则cos α =( ) A.45 B.35 C .-35 D .-4 5 答案.D [解析] 根据题意,cos α= -4 (-4)2+32 =-4 5. 三角函数的图象与性质 1:(2012大纲卷,文3)若函数是偶函数,则( ) A . B . C . D . 答案C 【命题意图】本试题主要考查了偶函数的概念与三角函数图像性质,。 【解析】由为偶函数可知,轴是函数图像的对称轴,而三角函数的对称轴是在该函数取得最值时取得,故 ,而,故时,,故选答案C 。 []()sin (0,2)3 x f x ? ?π+=∈?=2 π 23π32π53π[]()sin (0,2)3 x f x ? ?π+=∈y ()f x 3(0)sin 13()3 3 2 2 f k k k Z ? ? π π π?π==±? = +?= +∈[]0,2?π∈0k =32 π ?=

高中数学三角函数公式大全 (1)

三角函数 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ②终边在x 轴上的角的集合: {} Z k k ∈?=,180|οββ ③终边在y 轴上的角的集合:{ } Z k k ∈+?=,90180|ο οββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90|οββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180|οοββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈57.30°=57°18ˊ. 1°=180 π≈0.01745(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:21 1||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y = αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

锐角三角函数的解题技巧

锐角三角函数的解题技巧 一、知识点回忆 (一)锐角的三角函数的意义 1、正切 在Rt△ABC中,∠C=90°,我们把锐角A的对边与邻边的比,叫做∠A的正切,记作tanA. 2、正弦和余弦 如图,在Rt△ABC中,∠C=90°,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即 3、三角函数:在直角三角形中,锐角A的正切(tanA)、正弦(sinA)、余弦(cosA),都叫做∠A的三角函数. (二)同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)商数关系: (三)两角的关系 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值,任意锐角的正切值与它的余角的正切值的积等于1.即若A+B=90°,则sinA=cosB,cosA=sinB,tanA·tanB=1.

(四)特殊锐角的三角函数值 (五)锐角三角函数值解法 1、用计算器 求整数度数的锐角三角函数值. 在计算器的面板上涉及三角函数的键有和键,当我们计算整数度数的某三角函数值时,可先按这三个键之一,然后再从高位向低位按出表示度数的整数,然后按,则屏幕上就会显示出结果. 例如:计算sin44°. 解: 按键,再依次按键. 则屏幕上显示结果为0.69465837. 求非整数度数的锐角三角函数值. 若度数的单位是用度、分、秒表示的,在用计算器计算三角函数值时,同样先按 和三个键之一,然后再依次按度分秒键,然后按键,则屏幕上就会显示出结果. 2、已知三角函数值,用计算器求角度

已知三角函数值求角度,要用到、键的第二功能“sin-1,cos-1,tan-1”和键.具体操作步骤是:先按键,再按键之一,再依次按三角函数值,最后按键,则屏幕上就会显示出结果. 值得注意的是:型号不同的计算器的用法可能不同。 (六)直角三角形的解法 解直角三角形既是初中几何的重要内容,又是今后学习解斜三角形,三角函数等知识的基础,同时,解直角三角形的知识又广泛应用于测量、工程技术和物理之中,解直角三角形的应用题还有利于培养学生空间想象的能力。因此,通过复习应注意领会以下几个方面的问题: 解直角三角形的重点是锐角三角函数的概念和直角三角形的解法。前者又是复习解直角三角形的难点,更是复习本部分内容的关键。 掌握锐角三角函数和解直角三角形是进行三角运算解决应用问题和进一步研究任意角三角函数的重要基础。因此,解直角三角形既是各地中考的必考内容,更是热点内容。题量一般在4%~10%。分值约在8%~12%题型多以中、低档的填空题和选择题为主。个别省市也有小型综合题和创新题。几乎每份试卷都有一道实际应用题出现。 二、重点难点疑点突破 1、(1)sinA和cosA都是一个整体符号,不能看成sin·A或cos·A. (2)是一个比值,没有单位,只与角的大小有关,而与三角形的大小无关. (3)sinA+sinB≠sin(A+B)sinA·sinB≠sin(AB) (4)sin2A表示(sinA)2,cos2A=(cosA)2 (5)0<sinA<1,0<cosA<1 2、同名三角函数值的变化规律 当角α在0°~90°间变化时,它的正切和正弦三角函数值随着角度的增大而增大; 余弦三角函数值随着角度的增大而减少. 三、解题方法技巧点拨 1、求锐角三角函数的值 例1、(1)在Rt△ABC中,∠C=90°,若,求cosB,tanB的值.

高考三角函数的参数取值范围题型归类分析

三角函数的参数题型归纳 题型一 ω的取值范围与单调性相关 例1 已知函数()sin()(0)3 f x x π ωω=->,若函数()f x 在区间3(, )2 π π上为单调递减函数,则实数ω的取值范围是( ) A .211[,]39 B .511[,]69 C .23[,]34 D .25[,]36 变式1、若()cos sin f x x x =-在,22m m ?? - ???? 上是减函数,则m 的最大值是( ) A . 8 π B . 4 π C . 2 π D . 38 π 2、若函数ω(ω)=1 2(cos ω+sin ω)(cos ω?sin ω?4ω)+(4ω?3)ω在[0,ω 2]上单调递增,则实 数ω的取值范围为( ) A.ω≥32 B.3 2<ω<3 C.ω≥1 D.1<ω<3 - 3、若函数 2()4sin sin cos 2(0)42x f x x x πωωωω??=?++> ??? 在2,23ππ?? -????上是增函数,则ω的取值范围是____________. 题型二 ω的取值范围与三角函数的最值 例2 函数ω(ω)=ωωωω(ωω+ω ω)(ω>ω),当ω∈[ω,ω]上恰好取得5个最大值,则ω的取值范围为( ) A.[ ωωω ,ωωωω) B.[ ωωωω ,ωωω ω) C.[ ωωωω ,ωωω ω) D.[ ωωωω ,ωωω ω)

变式 1、若函数ω(ω)=ωωωωωω?ωωωω ( ωωω+ω ω )+ωωωωωω?ω (ω>ω)在[? ωω,ω ω ]内有且仅有一个最大值,则ω的取值范围是( ) A .[ω ω,ω) B .[ω,ω) C .[ω,ωω) D .(ω,ωω ] 2、已知函数ω(ω)=ωωω(ωω+ωω)(ω>ω),ω(ωω)=ω(ωω),且ω(ω)在区间(ωω,ω ω)上有最小值, 无最大值,则ω的值为( ) , A .ω ω B . ωωω C .ωωω D .ω ω 3、已知函数ω(ω)=ωωω(ωω+πω )+ωωωωω(ω>ω)在[ω,π]上的值域为[ω ω,√ω],实数ω的取值范围为 A.[ωω,ω ω] B.[ωω,ω ω] C.[ω ω,+∞] D.[ωω,ω ω] 4、已知函数()2sin f x x ω=(0)>ω在区间2,33ππ?? - ???? 上是增函数,其在区间[0,]π上恰好取得一次最大值2,则ω的取值范围是( ) A .13,24?????? B .15,22?????? C .35,42?? ???? D .5,32 ?????? 题型三 三角函数的零点与ω的取值范围 例3、已知1sin ,sin ,sin ,,222a x x b x ωωω???? == ? ???? ?其中0ω>,若函数()12f x a b =?-在区间(),2ππ内 没有零点,则ω的取值范围是( ) A .10,8?? ??? B .50,8?? ??? C .][150,,188??? ??? D .][1150,,848??? ??? 、

高三三角函数公式大全

第一部分三角函数公式 2两角和与差的三角函数 cos(α+β)=cosα2cosβ-sinα2sinβ cos(α-β)=cosα2cosβ+sinα2sinβ sin(α±β)=sinα2cosβ±cosα2sinβ tan(α+β)=(tanα+tanβ)/(1-tanα2tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα2tanβ) 2和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 2积化和差公式: sinα2cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα2sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα2cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα2sinβ=-(1/2)[cos(α+β)-cos(α-β)] 2倍角公式: sin(2α)=2sinα2cosα=2/(tanα+cotα) cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2 tan(2α)=2tanα/(1-tan^2α) cot(2α)=(cot^2α-1)/(2cotα) sec(2α)=sec^2α/(1-tan^2α) csc(2α)=1/2*secα2cscα 2三倍角公式: sin(3α) = 3sinα-4sin^3α = 4sinα2sin(60°+α)sin(60°-α) cos(3α) = 4cos^3α-3cosα = 4cosα2cos(60°+α)cos(60°-α) tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+ α)tan(π/3-α)

高中数学三角函数解题方法与技巧分析

龙源期刊网 https://www.360docs.net/doc/1e1943933.html, 高中数学三角函数解题方法与技巧分析 作者:王元蕾 来源:《文理导航》2017年第29期 【摘要】在高中学习期间,三角函数是相对独立又颇为重要的一块内容。分析历年来的高考试题可以发现,全国卷中涉及的三角函数的内容一般为选择题(或填空题)和一道大题。选择题的型多变,不易解答。而大题一般出现在第一道大题的位置上,较为简单。另外,数理不分家,三角函数在高中物理的叠加场大题中也发挥着关键作用。总之,加强对于高中数学三角函数内容的学习,十分必要。在本文中,我将介绍自己在高中学习过程中,对三角函数这块内容的理解以及一些解题方法、答题技巧。 【关键词】三角函数;答题技巧;高考 引言 三角函数,顾名思义,与角度和函数有关,数学上对函数的定义为:给定一个数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A),因此,角度也就是函数定义中A了。据专家、老师以及我的分析,在全国卷中,三角函数题属于低档题,而且三 角函数知识属于高中阶段的工具性知识,因此必须熟练掌握。下面我根据个人经验,从三个方面介绍三角函数的答题技巧。 1.解题时要注意灵活运用基础知识 如例2:如右图所示,在三角形ABC中,已知:tan∠B=3/4,sin∠ADC=4/5,AD长度为5米。求:AB的长度。 解析:由sina/cosa=tana、tan∠B=3/4两个条件可以得出,sina=3/4cosa,再由 sina+cosa=1,联立方程组,再观察图一三角形,可以判断正弦值为正数,可以计算出 sin∠B=3/5。又因为知道sin∠ADC=4/5,则sin∠ADB=sin(180°-∠ADC)=sin∠ADC=4/5。由正弦定理得AD/sin∠B=AB/sin∠ADB,代入数值,解得AB的长度为20/3米。 2.解题时要注重题目的隐含条件 我们都知道三角函数隶属于函数,笔者根据高一学函数时总结的经验可以发现,三角函数题(特别是给出图的题,对图中标注的条件观察不仔细而导致题做不出来)有时候会含有隐含条件,例如:奇偶性、极值、锐角三角形等。 如例3:在銳角三角形ABC中,如果tan∠B=2+√3,sin∠C=√3 /2。求∠A的余弦值。

(完整版)高中三角函数公式大全整理版

高中三角函数公式大全 sin30°=1/2 sin45°=√2/2 sin60°=√3/2 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3 cot30°=√3 cot45°=1 cot60°=√3/3 sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4 cos75°=(√6-√2)/4(这四个可根据sin (45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半) 正弦定理:在△ABC 中,a / sin A = b / sin B = c / sin C = 2R (其中,R 为△ABC 的外接圆的半径。) 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2Sin A?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA Tan3A=)3tan()3tan(tan )(tan 1)(tan 3tan 32 3A A A A A A +-=--ππ 半角公式

-2017三角函数高考真题教师版

2015-2017三角函数高考真题 1、(2015全国1卷2题)o o o o sin 20cos10cos160sin10- =( ) (A )(B (C )12- (D )1 2 【答案】D 【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30= 1 2 ,故选D. 2、(2015全国1卷8题)函数()f x =cos()x ω?+的部分图像如图所示,则()f x 的单调递减区间为( ) (A )13(,),44k k k Z ππ- +∈ (B )13 (2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13 (2,2),44 k k k Z -+∈ 【答案】D 【解析】由五点作图知,1 +42 53+42 πω?π ω??=????=??,解得=ωπ,=4π?,所以()cos()4f x x ππ=+, 令22,4 k x k k Z π ππππ<+<+∈,解得124k - <x <3 24 k +,k Z ∈,故单调减区间为(124k - ,3 24 k +),k Z ∈,故选D. 考点:三角函数图像与性质 3、(2015全国1卷12题)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 . 【答案】 【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得 sin sin BC BE E C = ∠∠,即o o 2sin 30sin 75 BE =,解得BE ,平移AD ,当D 与C 重合时,AB 最短,此时与 AB

高中三角函数公式大全

高中三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2 A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ]

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααc o s s i n 21c o s s i n 2c o s s i n )c o s (s i n 2 22±=±+=±故知道 )c o s (s i n αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3 cos sin -= -求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33( cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1 cos sin cos sin sin cos cos sin 22= +=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2= 12+n C .n m 22= D .22 m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 1 21)cos (sin 22-=-+m θθ

相关文档
最新文档