《实变函数》第四章习题解答
实变函数第四章答案
实变函数第四章▉▉第4章 Lebesgue (习题及参考解答)E E A 1.设是)(x f 上的可积函数,如果对于上的任意可测子集,有()0Af x dx =∫,试证:=0,)(x f ].[.E e a }1)(|{}0)(|{1kx f x E x f x E k ≥=≠∞=∪k ∀∈ 证明 因为,,而}1)(|{kx f x E ≥}1)(|{}1)(|{k x f x E k x f x E −≤≥=∪,由已知,有111{||()|}{|()}{|()}()()()E x f x E x f x E x f x kkkf x dx f x dx f x dx ≥≥≤−=+∫∫∫000=+=.又因为11{|(){|()}1110(){|()}E x f x E x f x kkf x dx dx mE x f x k k k≥≥0=≥=≥∫∫≥ 并且11{|()}{|()1110(){|()E x f x E x f x kkf x dx dx mE x f x k k k ≥−≥−⎛⎞=≤−−≤⎜⎟⎝⎠∫∫}0−≤ 所以,0}1)(|{}1)(|{=−≤=≥kx f x mE k x f x mE .故,0}1)(|{}1)(|{}1|)(|{=−≤+≥=≥kx f x mE k x f x mE k x f x mE因此,11{|()0}[{|()|}k mE x f x m E x f x k∞=≠=≥∪111{|()|}00k k mE x f x k ∞∞==≤≥==∑∑0)(=x f .从而,,.].[.E e a2. 设,f g 都是E 上的非负可测函数,并且对任意常数,都有a })(|{})(|{a x g x mE a x f x mE ≥=≥)()(x g x f =,试证:,从而,()Ef x dx =∫()Eg x dx ∫.证明 我们证与f g 是同一个简单函数序列的极限函数. ∞=1){m m ψ对于及,令m ∀∈ 12,,1,0−=mm k }21)(2|{,m m k m k x f k x E E +≤≤= })(|{2,m x f x E E mm m ≥=并且再令,则是互不相交的可测集,并且. 定义简单函数k m E ,k m m k E E m ,21==∪∑==mk m m k E m m x kx 20)(2)(,χψ. E x ∈)()(lim x f x m m =∞→ψ.下面证明:,m ∀∈ m m m E x 2,0∈E x ∈∀0+∞=)(0x f , 若. 事实上,,则,有)()(0∞→∞→=m m x m ψ)()(lim 00x f x m n =∞→ψ. 即, .所以, +∞<)(0x f 若,则可取正整数,当)(00x f m >0m m ≥∀时, 有}21)(2|{})(0|{1210mm m k k x f k x E m x f x E x m +<≤=<≤∈−=∪ 故,存在使得)120(−≤≤mm k k }21)(2|{0mm k x f k x E x +<≤∈ mm k x f k 21)(20+<≤. 因此, 即,m m k E m m kx k x mk m 2)(2)(20,==∑=χψ. 故000|()()|()()m m 0f x x f x x ψψ−=− 011()02222m m m m k k k f x +−<−=→=)()(lim 00x f x m n =∞→ψ.从而,实变函数第四章▉▉同理,对m ∀∈ ,定义简单函数列∑==mkm m k E m m x kx 20)(2)(*,χψ,其中:}21)(2|{*,mm k m k x g k x E E +<≤=,. 12,,1,0−=mm k 并且.})(|{*,m x g x E E k m ≥=E x ∈)()(lim 0x g x m n =∞→ψ.,同上一样,我们可以证明:因,有a ∀∈ })(|{})(|{a x g x mE a x f x mE ≥=≥,则,a ∀∈ })(|{b x f a x mE <≤})(|{b x g a x mE <≤=.从而,,有)120(−≤≤∀m m k k,1{|()}22m k m mk k mE mE x f x +=≤< *,1{|()}22m k m m k k mE x g x mE +=≤<=并且.即,,mm m m m m mEm x g x mE m x f x mE mE 2,*2,})(|{})(|{=≥=≥=N m ∈∀=)(x m ψ)(x m ϕ.)()(lim )(lim )(x g x x x f m m m m ===∞→∞→ϕψ.因此,⎪⎩⎪⎨⎧=为有理数,当为无理数,当x x x x x f 31)(3. 若,计算.∫1,0[)(dx x f x x E |]1,0[{0∈=01]1,0[E E −=为有理数},解 设,则∫]1,0[)(dx x f +=∫∫1)()(]1,0[E dx x f dx x f∫∫∫+==0111E EE dx xdx xdx x10E E E ==+∫∫∫ 2]2[11101]1,0[====∫∫x dx xdx x .4. 设是中n 个可测集,若内每一点至少属于个集中的个集,证明:中至少有一个测度不小于n 1,,n E E ]1,0[]1,0[nq 1,,q n E E . 证明 令,其中:∑==ni E x x f i1)()(χi E χ为上的特征函数并且,有i E ]1,0[∈∀x q x x f ni E i≥=∑=1)()(χ所以,. 又因为q qdx dx x f =≥∫∫]1,0]1,0[)(1[0,1][0,1]()()inE i q f x dx x χ=≤=∑∫∫dx1n.1110,1()()i i nnnE E i i i i E i x dx x dx mE χχ=======∑∑∑∑∫∫nqmE i <,则 如果每个∑∑===⋅=>ni n i i q nq n n qmE 11nqmE i ≥这与矛盾. 从而,存在∑=≤ni i mE q 1(1)i i n ≤≤. 使得5. 设与都是f g E 上的可积函数,试证明:22g f +E 也是上可积函数.E 证明:(1)先证:设与都是)(x f )(xF 0()f x ≤上的可测函数并且E E ()F x ≤ ,若在].[.E e a )(x F 可积,则在)(x f 可积.N m l ∈∀,)()(0x F x f ≤≤ ,故].[.E e a ,因为事实上,l l x F x f )}({)}({0≤≤.因此,+∞<≤≤≤∫∫∫EE llE ldx x f dx x F dx x F dx x f mm)()}({)}({)}({,其中:m m S E E ∩=,}||||{∞<=x x S m . 从而,是∞=∫1})}({{l l E dx x F m实变函数第四章▉▉单调递增有上界的数列,故∫Edx x F )(∫∫∫≤=∞→EE ll E dx x F dx x f dx x f mm)()}({lim )(.又因单调递增有上界,所以存在,并且∫∞=mE m dx x f 1})({∫∞→mE l dx x f )(lim∫∫∫+∞<≤=∞→EE ll Edx x F dx x f dx x f m)()}({lim )(即. 所以,在+∞<≤∫dx x f E)(∫∞→∞→mE l l m dx x f )}({lim lim E )(x f 可积.E (2上可积.在E E 事实上,因为与在f g 上都可积. 所以, 与在||f ||g 上可积. 从而, +在E ||f ||g 上可积.||||f g ≤+E ,由(1)上可积.在6. 设+∞<mE ,是)(x f E 上的非负可测函数,,∞+<∫Edx x f )(})(|{k x f x E E k >=0lim =⋅∞→dx mE k k l .,试证明:k ∀∈ 证明 ,因为+∞<≤≤≤∫∫EE k dx x f dx x f kmE k)()(0所以)(0)(10∞→→≤≤∫k dx x f k mE Ek lim 0k k mE →∞=.故,又因为,由积分的绝对连续性(即,P85,定理4), 对于∫+∞<Edx x f )(δ<mA 0>∀ε0>∃δE A ⊂,,使得对于任何可测集,恒有,∫Adx x f |)(|∫<=Adx x f ε)(.0>δN k ∈0对于,根据,存在0lim =∞→k k mE ,0k k ≥∀时,δ<k mE ,有ε<≤⋅≤∫dx x f mE k kE k )(0.0lim =⋅∞→k k mE k .从而, +∞<mE E E 7. 设为可测集,并且,为)(x f 上的非负可测函数,,试证:在}1)(|{+<≤=∧k x f k x E E k E )(x f 上可积当且仅当级数收敛.∧∞=∑kk Ekm 1证明 设,k }1)(|{+<≤=∧k x f k x E E k ∈ )(⇒,因为在)(x f E 可积,故111()()kkk k k k EE E f x dx f x dx k dx k mE ∞∞∞====≥=∑∑∑∫∫∫⋅即,级数收敛.∑∞=∧⋅1k kEm k k ∀∈ )(⇐, 因为,则}1)(|{+<≤=k x f k x E E k k E k k E mE kmE mE k dx k dx x f kk+=+=+≤∫∫)1()1()(.又因并且,根据Lebesgue 基本定理,有∑∞==1)()()(k E x x f x f k χdx x x f dx x f m kE EE )()()(χ∫∫=1()()()kE k EE f x dx f x x dx χ∞==∑∫∫11()()kk k k k E f x dx kmE mE ∞∞===≤+∑∑∫+∞<+=+=∑∑∑∞=∞=∞=k k k k k k k mE kmE mE kmE 111.E 从而,在)(x f 上可积.8. 设是 上的可积函数,证明:.∫=−+→],[00|)()(|limb a k dx x f b x f f实变函数第四章▉▉R ′0>∀ε)(x ϕ证明 (1)先证:,使得,存在时直线上的连续函数∫<−+→],[0|)()(|limb a k dx x f b x f ε.对于,记:N ∀∈ ⎪⎩⎪⎨⎧−<−>≤=N x f N N x f N N x f x f x f n )(,)(,|)(|,)()]([],[b a E x =∈,其中则0,|()|()[()](),()(),()N f x N f x f x f x N f x N f x N f x N≤⎧⎪−=−>⎨⎪+<−⎩因此,[,]|()[()]|N a b f x f x d −∫x=+dx x f x f N f E n|)]([)(|)|(|∫≤−dx x f x f N f E n|)]([)(|)|(|∫>−(||)|()[()]|N E f N f x f x d >−∫x =dx N x f N f E |)(|)|(|∫>+≤dx x f N f E |)(|)|(|∫>≤.0>∀ε0>∃δ因为在上是Lebesgue 可积的,故对于)(x f ],[b a ,,使∀δ<mA E A ⊂,恒有:Adx x f Aε<∫|)(|又因是单调的集列并且,则)|(|)|(|1+∞==>∞=f E n f E n ∩∞=1|)}(|{n f E =>=>∞→∞→)]|(|lim [)|(|lim n f E m n f mE n n 0)|(|=+∞=f mE .4|)(|)|(|ε<∫>dx x f N f E 0>δN ∃∈ .所以,对于,使得现在对于,取04>=NεηN x f )]([,由连续扩张定理,存在闭集F [,]a b ⊂)(x ϕ以及 上的连续函数,使得F F N x x f |)(|)]([ϕ=(A ); NF E m 4)(ε<−(B );N x ≤|)(|ϕ(C ). 因此,[,][]||[]|N N a b E Ff dx f dx ϕϕ−−=−∫∫([]||)|2()242N E Ff dx N m E F N Nεεϕ−≤+≤⋅−<⋅∫=从而,[,][,]()()||()[()]||[]()|N N a b a b f x x dx f x f x dx f x dx ϕϕ−≤−+−∫∫εεεϕ=+⋅≤−+≤∫∫>242|)(][||)(|2],[)|(|dx x f dx x f b a N N f E (2)再证:.0|)()(lim],[0=−+∫→dx x f b x f b a h 0>∀ε)(x ϕ,由(1)知,存在上的连续函数 使得对于3|)()(]1,1[εϕ<−∫+−dx x x f b a .)(x ϕ因为在上一致连续,则]1,1[+−b a )1(0<>∃δδ使得,当],[b a x ∈∀)1(||<<δh 时,恒有)(3|)()(|a b x h x −<−+εϕϕ.又因为[,]|()()|a b f x h f x dx +−≤∫[,]|()()|a b f x h x h dx ϕ+−+∫++dx x h x b a |)()(|],[∫−+ϕϕdx x f x b a |)()(|],[∫−ϕ],[b a x ∈(||1)h h δ∀<<(1,1x h a b )+∈−+,故并且对于,,有3|)()(|]1,1[εϕ<−≤∫+−dx x x f b a dx h x h x f b a |)()(|],[∫+−+ϕ所以,实变函数第四章▉▉≤−+∫dx x f h x f b a |)()(|],[[1,1]|()()|a b f x x d ϕ−+−∫xεεεε=++<333dx x x f dx x h x b a b a |)()(||)()(|],[],[∫∫−+−+ϕϕϕ+.从而,.0|)()(|lim],[0=−+∫→dx x f h x f b a h9. 设是f E 上的非负可积函数,是任意常数,满足c ∫≤≤Edx x f c )(0试证:存在,使得.c dx x f E =∫1)(E E ⊂1证明:设常数,合于,当时,存在,使得. 不妨设.∫≤≤Edx x f c )(0∫=Edx x f c )(c ∫≤≤Edx x f c )(0c dx x f E =∫1)(E E =1我们先证:在∫−=Et t dx x f t F ∩],[)()(),0[0+∞∈∀t),0[+∞上连续,,事事实上,对于0t t >∀,因为000[,][,]0()()()()t t Et t EF t F t f x dx f x dx −−≤−=−∫∫∩∩00[,][,]()()t t Et t Ef x dx f x dx −−=+∫∫∩∩δ<mA 0>∃δE A ⊂∀由积分的绝对连续性(p.85,定理4),,有,,2)(|)(|ε<=∫∫AAdx x f dx x f .δ<−≤∀00:t t t δ<−≤−00)),([t t E t t m ∩,故故,对于,因为εεε=+=+=−≤∫∫−−22)()()()(0],[],[000Ety t Et t dx x f dx x f t F t F ∩∩.)()(lim 00t F t F t t =+→. 所以,),0[0+∞∈∀t 同理,对,用上述完全类似方法可得.故,在)()(lim 00t F t F t t =−→)(t F ),0[+∞上连续.又因为(根据p.89的定义4), 则,使得c dx x f dx x f EEt t t >=∫∫−+∞→)()(lim],[∩00>∃t c dx x f t F Et t >=∫−∩],[0)()(.)()0(0t F c F <<.故由于在闭区间上连续,由连续函数的介值定理,∃],0[0t 1t ∈)(t F E E t t E ⊂−=∩],[1110(0,)t ,有,使得c t F dx x f dx x f Et t E ===∫∫−)()()(1],[01∩.E 10. 设是g 上的可测函数,是大于1的数,是的共轭数,即p q p 111=+qp . 如果对任意,都有)(E L f P ∈1()fg L E ∈,试证:. )(E L g q∈11. 试证:1)1(1lim),0(1=+∫+∞∞→dt tkt kk k (i ).dx x e dx x n x x n k ∫∫+∞−+∞−∞→=−),0(),0(11(lim αα(ii) .2≥∀k 证明:(i )时,(寻找控制函数) )10(≤<t t 时,因为当tttttktt f kkk k 4111)1(1)(2111≤=≤≤+=;而当时,1>t 112111()(1)1((1)()2!k k k kk f t t k k t t k t t k k k=≤=−+⋅+++实变函数第四章▉▉224)211(2t t =−≤令⎪⎪⎩⎪⎪⎨⎧+∞≤<≤<=t t t tt F 1,410,4)(2从而,),0(+∞∈∀t ,并且在)()(t F t f k ≤)(t F ),0(+∞是R-可积的,故在)(t F ),0(+∞是L-可积的. 又因为tt kk tt kk kk k k k e etkt t ktt f −∞→∞→∞→∞→==⋅+=+=11lim])1[(1lim)1(1lim)(lim 11则由Lebesgue 控制收敛定理,∫∫∫∞∞→∞∞→∞∞→==+),0(),0(),0(1)(lim )(lim)1(1limdt t fdt t fdt tkt kk kk kk k10==∫+∞−dt e t ∫∞−=),0(dt et.(ii), 定义n ∀∈ 1(1),(0,]()0,(n n x ,)xx n f x nx n α−⎧−∈⎪=⎨⎪∈+∞⎩, 并且,1)(−−=αx ex F x),0(+∞∈x ),0(+∞∈∀x , 则对于,有)(1(lim )(lim 11x F x e x nxx f x n n n n ==−=−−−∞→∞→αα. N n ∈∀,.)()(1x f x f n n +≤下面证明:ttx t G )1()(−=),0(+∞∈∀x ),1[+∞∈t ,取 事实上,,令,1ln()(ln txt t G −=,则▉▉第四章习题参考解答x t xt x t x t x t txt G t G −+−=−+−=′)1ln(11)1ln()()(2. x t xt x t h −+−=′)1ln()(,又因 又记222)()()(11)(x t xx t t x x t x t x tx t h −−−=−−−=′0)()()(222<−−=−−−=x t t x x t t tx x t x .xt xt x t G t G t h −+−=′=)1ln()()()(所以,关于单调递减并且故,t 0)(lim =∞→t h t ),1[+∞∈∀t ,有. 因此,0)(>t h 0)()()(>⋅=′t h t G t G .即, 在)(t G ),1[+∞n ∀∈ 单调增加. 从而,,)1(11()1()(1+=+−<−=+n G n x n x n G n n .所以,)()11()1()(1111x f x n x x n x x f n n n n +−+−=+−<−=αα.因此, ,n ∀∈ 1)()(|)(|−−=≤=αx e x F x f x f x n n ),0(+∞∈x,因为在1)(−−=αx e x F x ),0(+∞上可积,由Lebesgue 控制收敛定理,有∫∫∫+∞−−+∞∞→−∞→===−),0(1),0(),0(1)(lim )1(limdx x e dx x f dx x n x x n n n n n αα.+∞<mE 12. 设,试证明:在E 上当且仅当0⇒k f 0||1||lim =+∫∞→dx f f Ek k k . k ∀∈ 0>∀σ)(⇒,因为证明 ,实变函数第四章▉▉)1|(|]||1||[σσσ−≥=≥+k k k f E f f E 并且(在0⇒k f E 上),则我们有01|(|lim )||1||{lim =−≥=≥+∞→∞→σσσk k k k k f mE f f mE .0||1||⇒+k k f f E .故在上,1||1||≤+k k f f k ∀∈ +∞<mE ,由Lebesgue又因为对于,并且有界收敛定理,有00||1||lim ==+∫∫∞→E E k k k dx dx f f .0>∀σ)(⇐,因为对于(||)0(||)11kk E f EmE f dx σσσσσσ≥≤≥=++∫ ∫≥+Ef E k k k dx f f )|(|||1||σ≤)(0∞→→k . 则有0)|(|lim 10≤≥−≤∞→δσσk k f mE . 从而,0)|(|lim =≥∞→δk k f mE . 即.0⇒k f。
实变函数教程答案详解
目录:Chapter1:Q8,Q9,Q17,Q18;Chapter2:Q1,Q2,Q3,Q4,Q5;Chapter3:Q1,Q2;Chapte4r:Q22,例题4.8.1,4.8.2,4.8.3,4.8.4;Chapter1Q8,3R 中顶点坐标是有理数的四面体的全体是可数集。
证明:设M 是 3R 中顶点坐标为有理数的四面体的全体组成的集合。
由有理数的全体Q 是可数集,且R3空间中的的一个四面体由四个顶点共12个相互独立的数确定。
}1,{1221...n i Q x M M i x x x ≤≤∈=故M 是可数集。
Q9,平面上穿过任何一对有理坐标点的直线的全体是可数集。
证:设M 是平面上穿过任何一对有理坐标上的直线的合体,由于有理数Q 是可数集,平面上的一条直线可由连个有理坐标确定,即4个有理数确定一条直线,所以M 中的每一个元素由Q 中的四个相互独立的有理数确定,即M={}Q x x x x M x x x x ∈4321,,,4321故M 为可数集。
Q17.证明[a,b]上定义的连续函数全体势为c 。
证明①记[a,b]上的连续函数全体为c ([a,b])因[a,b]上的常数函数都是[a,b]山的连续函数。
即[a,b]和c ([a,b])中的子集对等。
即c ([a,b])≥c ([a,b]~[0,1]势为c )故只需证明c b a c ≤]),([②把[a,b]上的有理数排成列......21n r r r 则c ([a,b])中的任一连续函数f (x )可由它在......21n r r r 上的值)...()...()(21n r f r f r f 完全决定,这是因为对任意的x ],[b a ∈,存在上述有理数列的一个子列)(∞→→k x r k n 由f (x )的连续性知:)(lim )(k n k r f x f ∞→=油此作映射:φ:f (x )→()...()...()(21n r f r f r f )则φ是一一到上的映射,又B={)...()...()(21n r f r f r f }是∞R (实数列全体的一个子集,且c ([a,b]))⇒c ([a,b])≤c ,由Bernstain 定理知c ([a,b])=c Q18证明[a,b]上定义的单调增加函数的全体势为c 。
实变函数(程其襄版)第一至四章课后习题答案
若集合A和B满足关系:对任意 ∈A,可以得到x∈B,则成A是B的子集,记为A B或B A,若A B但A并不与B相同,则称A是B的真子集.
例7. 若 在R上定义,且在[a,b]上有上界M,即任意对
∈[a,b]有 M.用集合语言表示为:[a,b] { : M}.
用集合语言描述函数性质,是实变函数中的常用方法,请在看下例.
定理1
(交换律)
证明我们只证明
先设 则有 且有 于是这证来自了在证反过来的包含关系,设 ,则有 ,此即 ,因此 于是 。
综合起来,便是等式成立。
这表面,集合运算的分配律,在无限并的情况下依然成立
3、集合的差集和余集
若A和B是集合,称 为A和B是差集,A\B也可以记为A-B,如图1.3是A-B的示意图:
请读者注意:我们怎样把描述函数列性质的 语言,转换为集合语言。
例12 设 是定义在E上的函数列,若x是使 收敛与0的点,则对任意的 ,存在 ,使得对任意 即
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
例1设 和 是定义在E上的函数,则对任意
例2.
例3若记
例4 若 是一族开区间,而 ,则存在
使得 (有限覆盖定理)
例5若 是定义在E上的函数,则
2、集合的交集
设A,B是任意两个集合,由一切既属于A又属于B的元素组成的集合C称为A和B的交集或积集,简称为交或积,记作 ,它可以表示为
实变函数课后习题答案
第一章习题1.证明:(1) (A -B )-C =A -(B ∪C ); (2)(A ∪B )-C =(A -C )∪(B -C ). 证明:(1) 左=(A ∩B c )∩C c =A ∩(B c ∩C c )= A ∩(B ∪C )c =右; (2)左=(A ∪B )∩C c =(A ∩C c )∪(B ∩C c )=右. 2.证明: (1)();(2)().IIIIA B A B A B A B αααααααα∈∈∈∈-=--=-(1)ccI IA B A B αααα∈∈⎛⎫=== ⎪⎝⎭证明:左()右;(2)()c cI I A B A B αααα∈∈⎛⎫=== ⎪⎝⎭左右.111111.{},,1.{}1.n n n n n nnA B A B A A n B B A n νννννν-===⎛⎫==- ⎪⎝⎭>=≤≤∞ 3 设是一列集合,作证明:是一列互不相交的集合,而且,证明:用数学归纳法。
当n=2时,B 1=A 1,B 2=A 2-A 1, 显然121212B B B B B B n k =∅== 且,假设当时命题成立,1211,,,kkk B B B B A νννν===两两互不相交,而且,111111111kk k kkkk k n k B A A B A BA B νννννννν++=++====+=-==-⇒下证,当时命题成立,因为而,所以11211+1111111111111,,,;k k k k k k k k k kk k k k k B B B B B B B B B B A A A A A A A νννννννννννννννν++=++===+++====⎛⎫=∅ ⎪⎝⎭⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是,两两互不相交;由数学归纳法命题得证。
{}21214.0,,(0,),1,2,,n n n A A n n A n-⎛⎫=== ⎪⎝⎭设求出集列的上限集和下限集。
实变函数论与泛函分析(曹广福)1到5章课后答案
第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inf lim )(inf lim x x n nA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf 0=≥x m A n m χ故1)(inf sup )(inf lim ==≥∈x x m n A nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf 0=⇒=⇒∉≥x A x m nk m A nm A k χχ,故0)(inf sup =≥∈x m A nm N b χ ,即)(inf lim x n A nχ=0 ,从而)(inf lim )(inf lim x x n nA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交. (ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|min 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i ni B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥}1)(|{k a x f x E x m n m N n +≤∈≥∈ =}1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈=}1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。
《实变函数论与泛函分析(曹广福)》1到5章课后习题答案
第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。
若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。
实变函数引论参考答案_曹怀信_陕师大版第一到第四章
习题1.11.证明下列集合等式. (1) ;(2) ()()()C B C A C B A \\\ =;(3) ()()()C A B A C B A \\\=.证明 (1) )()C \B (c C B A A =)()( c c C B A A B A =c C A B A )()( =)(\)(C A B A = .(2) c C B A A )(C \B)(=)()(c c C B C A ==)\()\(C A C A .(3) )(\C)\(B \c C B A A =c c C B A )( =)(C B A c =)()(C A B A c =)()\(C A B A =.2.证明下列命题.(1) ()A B B A = \的充分必要条件是:A B ⊂;(2) ()A B B A =\ 的充分必要条件是:=B A Ø;(3) ()()B B A B B A \\ =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A c c ==== )()()()\(的充要[条 是:.A B ⊂(2) c c c c B A B B B A B B A B B A ===)()()(\)(必要性. 设A B B A =\)( 成立,则A B A c = , 于是有c B A ⊂, 可得.∅=B A 反之若,∅≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与c B A ⊂矛盾.充分性. 假设∅=B A 成立, 则c B A ⊂, 于是有A B A c = , 即.\)(A B B A =(3) 必要性. 假设B B A B B A \)()\( =, 即.\c C A B A B A == 若,∅≠B 取,B x ∈ 则,c B x ∉ 于是,c B A x ∉ 但,B A x ∈ 与c C A B A =矛盾.充分性. 假设∅=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =.3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且∞=∞→=1;lim n n n n A A (2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且 ∞=∞→=1.lim n n n n A A 证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意∞=∈1,n n A x 存在N 使得,N A x ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂ 又因为∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A 由此可见{}n A 收敛且 ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1 ∞=∞→⊂n n n nA A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂ 所以可知{}n A 收敛且 ∞=∞→=1.lim n n n n A A 4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1 ; (2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有 ⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111 . 证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得n c x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11 ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E 另一方面, 若,11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11 ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E (2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有n c x f 1)(+<, 于是 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11 ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E 另一方面, 设 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<,由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[] ∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E . (3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k k c k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以 ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x , 故[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ; 另一方面, 设 ∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k n n k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0. 由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有k c x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Z k , 存在2N 使得当2N n ≥时, 有k x f x f n 1|)()(|00<-. 取},m ax {21N N N =, 则有k c x f n 1)(0->与k x f x f n 1|)()(|00<-同时成立, 于是有k c x f k x f n 1)(1)(00->>+, 从而k c x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有 [] ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ; 综上所述:[].11lim 111 ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E 5.证明集列极限的下列性质.(1) c n n c n n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____; (2) c n n c n n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ; (4) ()n n n n A E A E ∞→∞→=lim \\lim . 证明 (1) c n n n n m c m n c n m m c n n m m c n n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____ . (2) c n n n n n m c m c n m m c n n m m c n n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛ . (3) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n n m n n m c m c m n n m m n n A E A E A E A E c n n m m n c n m m n n m c m A E A E A E )())(()(111 ∞=∞=∞=∞=∞=∞==== ∞=∞=∞→==1lim \\n n m n n m A E A E . (4) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n n m cm n n m n n m c m m n n A E A E A E A E c n nm m n c n m m n n m c m A E A E A E )())(()(111 ∞=∞=∞=∞=∞=∞==== ∞=∞=∞→==1lim \\n n m n n m A E A E .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A 都收敛且(1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim . 习题1.21.建立区间)1,0(与]1,0[之间的一一对应.解 令1111{,,,,}2345E =, 111{0,1,,,}234F =,(0,1)\D E =, 则(0,1)E D =,[0,1]F D =. 定义:(0,1)[0,1]φ→为: ;11();(1,2,)210;2x x D x x n n n x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩ 则φ为(0,1)[0,1]→之间的一个一一对应. 2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,.解 定义: :[,][,]a b c d φ→为:()().([,])d c d c bc ad x x a c x x a b b a b a b a φ---=-+=+∀∈--- 可以验证: :[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,.解 令{,,,}234b a b a b a E a a a ---=+++,{,,,,}23d c d c F c d c c --=++ (,)\D a b E =. 定义:(,)[,]a c d φ→为: ;();(1,2.)2;.2d c bc ad x x D b a b a d c b a x c x a n n n b a c x a φ--⎧+∈⎪--⎪--⎪=+=+=⎨+⎪-⎪=+⎪⎩可以验证: :(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[ ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4]; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4]不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R .证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯.任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y b b b == 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b =, 则得到单射:f A A A ⨯→. 因此由定理1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知: A A A ≤⨯. 最后, 根据Bernstein 定理知: (0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为: (0,1)~R , 则由对等的传递性知: 2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ. 6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数.证明 令221{(,):(1,2,3,)}E x y x y n n =+==, \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+. 则,A E D B F D ==. 定义: :A B φ→为: 2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩ 可以验证: :A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以 A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern 定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ.习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集. 证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集. 证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q )1,0(:→E f . 因为∞=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q 所以∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q . 其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+=- 且Q . 又因为Q Q ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E =无限不可数. 如此下去,可得),3,2,1( =n E n 都可数且不相交,从而1011)()\(E E E E E E i i n i ==∞=∞=. 其中)0(≥i E i 无限且不交. 4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_0000>==--+→→+x f x f x f x f x x x x . 于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=, 从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x d x E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(d y D d x D ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x d x ≤∈}:)3,{(,故a E ≤. 习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么?答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a b a a =≤≤Q Q ],[.2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明:(1) 设},,,,{],[21 n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()( ==k r g r f k k ;(2) 公式)),(,),(),(()(21 n r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[.证明 (1) 必要性. 显然.充分性. 假设),2,1)(()( ==k r g r f k k 成立. 因为},,,{\],[321 r r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得 )()lim ()(lim x f x f x f n n n ==∞→∞→及)()lim ()(lim x g x g x g n n n ==∞→∞→. 又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即 )),(,),(),(()),(,),(),((2121 n n r g r g r g r f r f r f =.由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明:(1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c 2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射. (3) 由(1)知:c P b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c ≤=,故c b a F 2],[=.4.证明:c n =C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n=C . 5.证明:若E 为任一平面点集且至少有一内点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\ ==;(2) ()()()G F G E G F E \\\ =.证明 (1) 因为\()()()()()\c c c c c E E F EE F E E F E E E F E F ====, ()\()()()\c c c E F F E F F E F F F E F ===.所以\\()()\E F E E F E F F ==.(2) 因为()\()()()(\)(\),c c c c E F G E F G E F G E G F G E G F G ==== 所以()()()G F G E G F E \\\ =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞== ;(2) ()B A B A n n n n \\11∞=∞== . 证明 (1)1111\()()(\)c c n n n n n n n n A B A B A B A B ∞∞∞∞=======. (2) 1111\()()(\)c c n n n n n n n n A B A B A B A B ∞∞∞∞=======. 3.证明:22[][][]cc E f g c E f E g +≥⊂≥≥,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥, 则有()2c f x <且()2c g x <, 于是 ()()()()f x g x f g x c +=+<, 故()x E f g c ∉+≥. 所以()()()22c c E f g c E f E g +≥⊂≥≥. 4.证明:n R 中的一切有理点之集n Q 与全体自然数之集对等. 证明 因为0Q =ℵ,所以0Q Q Q Q n =⨯⨯⨯=ℵ(推论1.3.1). 又因为0N =ℵ, 所以0Q n N ==ℵ, 故Q ~n N .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数?6.证明:一切有理系数的多项式之集][x Q 是可数集.证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x 于是.][Q ][Q 0 ∞==n n x x 显然,Q~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x = 7.证明:一切实系数的多项式之集][x R 的基数为c .证明 记 },R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x 于是.][R ][R 0 ∞==n n x x 显然,R ~][R 1n +x n 所以,R ][R 1n c x n ==+ 因此由定理1.4.3知:.][R c x =8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210 n P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体 ∞==0n n A A 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R c B A B ===9.证明:A B B A \~\,则B A ~.证明 因为),()\(),()\(B A A B B B A B A A ==又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A所以由保并性知),()\(~)()\(B A A B B A B A即.~B A10.证明:若,,D B B A <≤则D A <. 证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <.11.证明:若c B A = ,则c A =或c B =.证明 假设,a B A == 则有,a B A = 这与c B A = 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z ,则存在+∈Z k 使得c A k =. 证明同上.。
(完整版)《实变函数》第四章可测函数
第四章 可测函数(总授课时数 14学时)由于建立积分的需要,我们还必须引进一类重要的函数——Lebesgue 可测函数,并讨论其性质和结构。
§1 可测函数及其性质教学目的 本节将给出可测函数的定义并讨论其基本性质教学要点 可测函数有若干等价的定义. 它是一类范围广泛的函数, 并且有很好的运算封闭性. 可测函数可以用简单函数逼近, 这是可测函数的构造性特征。
本节难点 可测函数与简单函数的关系。
授课时数 4学时———---—-——-——-—-—--——-——————-—1可测函数定义定义:设()f x 是可测集E 上的实函数(可取±∞),若[],f a a R E>∀∈可测,则称()f x 是E 上的可测函数。
2可测函数的性质性质1 零集上的任何函数都是可测函数。
注:称外测度为0的集合为零集;零集的子集,有限并,可数并仍为零集性质2 简单函数是可测函数若1nii E E ==⋃ (iE 可测且两两不交),()f x 在每个iE 上取常值ic ,则称()f x 是E 上的简单函数;1()()i ni E i f x c x χ==∑ 其中1()0ii E i x E x x E E χ∈⎧=⎨∈-⎩注:Dirichlet 函数是简单函数性质3 可测集E 上的连续函数()f x 必为可测函数 设()f x 为E 上有限实函数,称()f x 在0x E ∈处连续00(,)((),)0,0,()x f x f OE Oδεεδ∀>∃>⋂⊂若使得对比:设()f x 为(),a b 上有限实函数,0()(,)f x x a b ∈在处连续lim ()()x x f x f x →=若0,0,|||()()|x x f x f x εδδε∀>∃>-<-<即当时,有00(,)((),)0,0,()x f x x Of x O δεεδ∀>∃>∈∈即当时,有00(,)((),)0,0,()x f x f OOδεεδ∀>∃>⊂即使得()f x 在0[,]x a b ∈处连续(对闭区间端点则用左或右连续)证明:任取[]x E f a ∈>, 则()f x a >,由连续性假设知, 对(),0,xf x a εδ=-∃>使得(,)((),)()(,)x x f x f OE Oa δε⋂⊂⊂+∞即(,)[]x x f a OE Eδ>⋂⊂。
《实变函数论与泛函分析(曹广福)》1到5章课后习题答案
第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。
若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。
实变函数论课后答案解析第四章4
现设 连续,则 开集 , 是开集,
记 ,可证 是一个 代数,且包含全部开集,从而包含全部 集
证1) 可测
2)若 ,则 显然也可测,
3)若 ,则 , 可测, 可测 是 代数
连续,则 , 包含全部开集,从而包含全部 集
为非奇异线性, 显然连续
方体半开半闭(显然为 集), 可测
(i)坐标 之间的交换
(ii)
(iii)
在(i)的情形显然 (2.9)成立
在(ii)的情形下, 矩阵可由恒等矩阵在第一行乘以 而得到
从而可知 (2.9)式成立
在(iii)的情形,此时 ( )
而且
(
则
反过来, , 则
令 则 ,
则 , )
记
,则
( ,则 , ,则
,且 ,则反过来, ,则存在 , Fra bibliotek使, ,且
实变函数论课后答案第四章4
第四章第四节习题
1.设 于 , 于 ,证明: 于
证明: ,
(否则,若 ,而 ,
矛盾),则
( )
从而
2.设 于 , ,且 于 ,证明 于
证明:由本节定理2( 定理)从 知 的子列 使
于
设 , , 于 ,从条件 于 ,设
, , 于 上
令 ,则 ,且
故
,则
令 ,
故 有 ,从而命题得证
显然
周民强书P35思考题:
6.设 是定义在 上的实值函数族, 是可数集,则存在 ( )使得 在 上收敛.
我怀疑本题有错:若不假设 是 上一致有界的,会有反例:
令 = ,设 这里 ,则显然任取无穷个 于 ,故 不会收敛!
时,
实变函数与泛函分析基础第4章习题答案
δ > 0,
Í «Þ » ¡ m(E − Eδ) < δ, f(x) E a.e.
Eδ ⊂ E
¨ Á ¡Í E)
<
1 n
.
Å∞ E0 = E − En, n=1
¦ « Å ∞
n, mE0 = m(E −
En)
≤
m(E
− En)
<
1 n
.
n → ∞,
n=1
∞
∞
ÙE
[ lim
n→∞
fn
>
lim fn]
n→∞
¼ 6, lim fn(x) n→∞
Ò ¬¯ Â Ò ¯ ¡¨ fn
lim
n→∞
fn(x)
E
E
[ lim
n→∞
fn
=
−∞]
» ¡Ý E[ lim fn = +∞]
Â Ò ¯ n→∞
fn
−∞
Â Ò ¯ fn(x) E
E
−
F [ lim
n→∞
fn
=
+∞]
−
{fn(x)}
E
¬¤  ¥ ǫ0 > 0,
mE[| fnk − f |≥ η0] > ǫ0 > 0.
(1)
E
» Ã ¬ ¾ {fnk}
 ¨ a.e.
f,
mE < +∞,
 f(x) ª ¦¶
» á ℄« Æ» à ǰ¡ E fnkj ⇒ f(x),
{fnkj } (1)
¾ 13. mE < ∞,  ¼ f(x) g(x), È¢
¬ ¡¨
f¬
实变函数(程其襄版)第一至四章课后习题答案
早在中学里我们就已经接触过集合的概念,以及集合的并、交、补的运算,因此这章的前两节具有复习性质,不过,无限多个集合的并和交,是以前没有接触过的,它是本书中常常要用到,是学习实变函数论时的一项基本功。
康托尔在19世纪创立了集合论,对无限集合也以大小,多少来分,例如他断言:实数全体比全体有理数多,这是数学向无限王国挺近的重要里程碑,也是实变函数论的出发点。
{ : >1}=
习惯上,N表示自然数集,(本书中的自然数集不包含0),Z表示整数集,Q表示有理数集,R表示实数集.
设 是定义在E上的函数,记 ={ : ∈E},称之为f的值域。若D是R中的集合,则 ={ : ∈E ,},称之为D的原像,在不至混淆时,{ : ∈E, 满足条件p}可简写成{ : 满足条件 }.
1.集合的表示
一个具体集合A可以通过例举其元素 来定义,可记
也可以通过该集合中的各个元素必须且只需满足的条件p来定义,并记为
A={x:x满足条件p}
如例1可以表示为{4,7,8,3}例3可以表示为
设A是一个集合,x是A的元素,我们称x属于A,记作 ,x不是A的元素,记作 。
为方便表达起见, 表示不含任何元素的空集,例如
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
若 ,说明所有的 没有公共的元素。
曹广福版实变函数与泛函分析第四章答案
曹⼴福版实变函数与泛函分析第四章答案第四章习题参考解答1.设)(x f 是E 上的可积函数,如果对于E 上的任意可测⼦集A ,有0)(=?dx x f A ,试证:)(x f ,].[.E e a证明:因为}1)(|{}0)(|{1k x f x E x f x E k ≥=≠∞= ,⽽N k ∈?,}1)(|{kx f x E ≥}1)(|{}1)(|{k x f x E k x f x E -≤≥= .由已知,=+=-≤≥≥kx f x E kx f x E kx f x E dx x f dx x f dx x f 1)(|{1)(|{1|)(|{)()()(000=+.⼜因为0}1)(|{11)(0}1)(|{}1)(|{≥≥=≥=≥≥??kx f x mE k dx k dx x f kx f x E kx f x E , 0}1)(|{1)1()(0}1)(|{}1所以,0}1)(|{}1)(|{=-≤=≥k x f x mE k x f x mE .故,0}1)(|{}1)(|{}1|)(|{=-≤+≥=≥kx f x mE k x f x mE k x f x mE ,从⽽00}1|)(|{}1|)(|{[}0)(|{111==≥≤≥=≠∑∑∞=∞=∞=k k k k x f x mE k x f x E m x f x mE .即,0)(=x f ,].[.E e a .2.设f ,g 都是E 上的⾮负可测函数,并且对任意常数a ,都有})(|{})(|{a x g x mE a x f x mE ≥=≥,试证:)()(x g x f =,从⽽,=?dx x f E )(dx x g E)(.证明:我们证f,g 是同⼀个简单函数序列∞=1){m m ψ的极限函数.N m ∈?及12,,1,0-=m m k ,令}21)(2|{,mm k m k x f k x E E +≤≤=,并且 })(|{2,m x f x E E m m m ≥=.则k m E ,是互不相交的可测集,并且k m m k E E m ,21== ,定义简单函数∑==mk m m k E m m x kx 20)(2)(,χψ. 下⾯证明:)()(lim x f x m m =∞→ψ,E x ∈.E x ∈?0,若+∞=)(0x f ,则N m ∈?,m m m E x 2,0∈,所以)()(0∞→∞→=m m x m ψ,即)()(lim 00x f x m n =∞→ψ;若+∞<)(0x f ,则可取正整数)(00x f m >,0m m ≥?时,210m m m k k x f k x E m x f x E x m +<≤=<≤∈-= .故,存在)120(-≤≤mm k k , }21)(2|{0m m k x f k x E x +<≤∈.即,m m k x f k 21)(20+<≤,m m k E m m kx k x mk m 2)(2)(20,==∑=χψ.所以,0212212)()()(|)()(|00000→=-+<-=-=-m m m m m m k k k x f x x f x x f ψψ,从⽽, )()(lim 00x f x m n =∞→ψ.同理,N m ∈?,定义简单函数列∑==mkm m k E m m x kx 20)(2)(*,χψ,其中:}21)(2|{*,m m k m k x g k x E E +<≤=,12,,1,0-=m m k .})(|{*,m x g x E E k m ≥=.同上⼀样可证明:)()(lim 0x g x m n =∞→ψ,E x ∈.因为R a '∈?,有})(|{})(|{a x g x mE a x f x mE≥=≥.故R a '∈?, })(|{b x f a x mE <≤})(|{b x g a x mE <≤=.从⽽,)120(-≤≤?mm k k ,有k m m m m m k m mE k x g k x mE k x f k x mE mE ,*,}21)(2|{}21)(2|{=+<≤=+<≤=m m m m m m mE m x g x mE m x f x mE mE 2,*2,})(|{})(|{=≥=≥=.即,N m ∈?,=)(x m ψ3.若=为有理数,当为⽆理数,当x x x x x f 31)(,计算?1,0[)(dx x f .解:设x x E |]1,0[{0∈=为有理数},01]1,0[E E -=,则+=1)()(]1,0[E dx x f dx x f]1,0[)(dx x f ?+==111E EE dx xdx xdx x=+==1111E E E dx xdx xdx x2]2[11101x dx xdx x.4.设21,,E E 是]1,0[中n 个可测集,若]1,0[内每⼀点⾄少属于n 个集中的q个集,证明:21,,E E 中⾄少有⼀个测度不⼩于nq.证:令∑==ni E x x f i1)()(χ,其中i E χ为i E 上的特征函数]1,0[∈?x ,有q x x f ni E i ≥=∑=1)()(χ,所以q qdx dx x f =≥??]1,0]1,0[)(.∑∑?∑∑??========≤n i ni i E n i E n i E mE dx x dx x dx x f q i i 11111,0]1,0[]1,0[)()()(χχ.如果每个n q mE i <,则∑∑===?=>n i n i i q n qn n q mE 11.这与∑=≤n)1(n i i ≤≤?使得nqmE i ≥. 5.设f ,g 都是E 上的可积函数,试证明:22g f+也是E 上可积函数.证明:(1)先证:设)(x f 与)(x F 都是E 上的可测函数且)()(0x F x f ≤≤ ].[.E e a ,若)(x F 在E 可积,则)(x f 在E 可积.事实上,N m l ∈?,,因为)()(0x F x f ≤≤ ].[.E e a ,故l l x F x f )}({)}({0≤≤,即+∞<≤≤≤EE llE ldx x f dx x F dx x F dx x f mm)()}({)}({)}({,其中:m m S E E =,}||||{∞<=x x S m .从⽽∞=?1})}({{l l E dx x F m是单调递增有上界?Edx x F )(的数列,故:≤=∞→EE ll E dx x F dx x f dx x f mm)()}({lim )(.⼜因为?∞=mE m dx x f 1})({单调递增有上界,所以?∞→mE l dx x f )(lim存在,并且+∞<≤=∞l Edx x F dx x f dx x f m)()}({lim )(,即?∞→∞→mE ll m dx x f )}({lim lim+∞<≤?dx x f E)(.所以)(x f 在E 可积.(2)再证:22g f+在E 上可积.事实上,因为f ,g 在E 上可积,所以||f 与||g 在E 上可积,从⽽||f +||g 在E 上可积. ⼜因为||||22g f g f+≤+,由(1)。
实变函数论课后答案第四章4
实变函数论课后答案第四章4第四章第四节习题 1.设()()n f x f x ⇒于E ,()()n g x g x ⇒于E ,证明:()()()n n f x g x f x g x +⇒+于E证明:0ε∀>,[||()()(()())|][||()()|][||()()|]22n n n n E x f x g x f x g x E x f x f x E x g x g x εεε+-+≥⊂-≥⋃-≥ A B εε⋃(否则,若[||()()(()())|n n x E x f x g x f x g x ε∈+-+≥,而x A B εε∉⋃,()c c c x A B A B εεεε∈⋃=⋂|()()||()()|22n n f x f x g x g x εε⇒-<-<|()()(()())||()()||()()|22n n n n f x g x f x g x f x f x g x g x εεεε⇒≤+-+≤-+-<+=矛盾),则[||()()(()())|][||()()|][||()()|]022n n n n mE x f x g x f x g x mE x f x f x mE x g x g x εεε+-+≥≤-≥+-≥→(()(),()()n n f x f x g x g x ⇒⇒) 从而()()()()n n f x g x f x g x +⇒+ 2.设|()|n f x K ≤.a e 于E ,1n ≥,且()()n f x f x ⇒于E ,证明|()|f x K ≤.a e于E证明:由本节定理2(Riesz 定理)从()()n f x f x ⇒知∃{}()n f x 的子列{}()kn fx 使()lim ()k n k f x f x →∞=.a e 于E设A E ⊂,(\)0m E A =,()()kn f x f x →于A ,从条件|()|kn f x K ≤.a e 于E ,设k n B E ⊂,(\)0k n m E B =,|()|k n f x K ≤.a e 于k n B 上令1()kn k B B A +∞==⋂ ,则B K ⊂,且11(\)()(()(())k k ccccc n n k k m E B m E B m E B A m E A B E +∞+∞===⋂=⋂⋃=⋂⋃⋂111()()(\)(\)00k k ccn n k k k m E A m E B m E A m E B +∞+∞+∞===≤⋂+⋂=+=+∑∑∑故(\)0m E B =,,k n x B k B B A ∀∈∀⊂⋂,则|()|k n f x K ≤令k →∞,|()|f x K ≤故x B ∀∈有|()|f x K ≤,从而命题得证 3.举例说明mE =+∞时定理不成立解:取(0,)E =+∞,作函数列1(0,](){0(,)n x n f x x n ∈=∈+∞ 1,2,n =显然()1n f x →于E 上,但当01ε<<时[;|1|](,)n E x f n ε->=+∞,[;|1|](,)n mE x f m n ε->=+∞=+∞不0→故mE =+∞时定理不成立,即n f f →.a e 于E 不能推出()()n f x f x ⇒于E周民强《实变函数》P108Th2.25 若:n n T R R →是非奇异线性变换,n E R ⊂,则**(())|det |()m T E T m E =⋅ (2.8)|det |T 表示矩阵T 的行列式的绝对值.证明:记{}012(,,,);01,1n i I x i n ξξξξ==≤<≤≤{}12(,,,);02,1k n i I x i n ξξξξ-==≤<≤≤显然0I 是2nk 个I 的平移集{}j I x +(1,2,2nk j = )的并集,0()T I 是2nk个{}()j T I x +(1,2,2nk j = )的并集,且有{}{}***()()()j j m T I x m TI T x m TI +=+=,{}()()j mT I x m TI += 1,2,2nk j =现在假定(2.8)式对于0I 成立00(())|det |()|det |m T I T m I T =⋅= (2.9)则 0|det |(())2(())nk T m T I m T I ==因为()2nk m I -=,所以得到()2|det ||det |()nk m TI T T m I -=⋅=⋅这说明(2.8)式对于I 以及I 的平移集成立,从而可知(2.8)式对可数个互不相交的二进方体的并集是成立的(对任意方体0a ∀>,{}12(,,,);0a n iI x a ξξξξ==≤< 000(())()|det()|()|det ||det ||det |()n a m T I m T aI T aE m I T aE a T m I =⋅=⋅== 0|det |()|det |()aT m aE I T m I =⋅=) 对一般开集G ,1i i G I +∞== ,i I 为二进方体,i I 互补相交则111()()()|det |()|det |i i i i i i m TG m TI m TI T m I T mG +∞+∞+∞=======∑∑T 1-1 1i i TG TI +∞== ,T 连续,1T -连续 G 开,则()T G 开,从而可测于是应用等测包的推理方法立即可知,对一般点集(2.8)式成立 设G 为有界G δ集1i i G G +∞== ,i G 开,1nn i i S G == ,则n S 开,1n n G S +∞== 且不妨设11S G =有界,否则令1S G U =⊂ U 有界,令 1G G U =⋂即可. 1T -连续,则i TG 开,n TS 开,TG 可测(1n n T G T S +∞== ),12TS TS ⊃⊃ ,12n S S S ⊃⊃⊃⊃故1()()lim ()lim |det |()n n n n n n m TG m TS m TS T m S +∞→+∞→+∞====⋅1|det |lim ()|det |()|det |n n n n T m S T m S T mG +∞→+∞==== (n S 开)若G 为无界G δ集,令{};||m E x x m =<,则1m m G G E +∞==⋂ ,m G E ⋂为有界G δ集1()(())lim (())m m n m m TG m T G E m T G E +∞→+∞==⋂=⋂1lim |det |()|det |lim ()|det |()|det |m m m n n m T m G E T m G E T m G E T mG+∞→+∞→+∞==⋅⋂=⋂=⋂= n E R ∀⊂,T 线性,则n E R ∀⊂若0mE =,则(())0m T E =(后面证) n E R ∀⊂,则由注释书P69定理3,存在G δ集G E ⊃,*mG m E =,若E 有界,*m E <+∞则*(\)0m G E =,故**0((\))(\))m T G E m TG TE == (T 1-1)****()(\))()0()()m TG m TG TE m TE m TE m TG ≤+=+≤则*()()m TE m TG =,故**()()|det ||det |m TE m TG T mG T m E ===若E 无界,{};||m E x x m =<则1m m E E E +∞==⋂ ,m E E ⋂****1()(())lim (())lim |det |()m m m n n m m TE m T E E m T E E T m E E +∞→+∞→+∞==⋂=⋂=⋂**11|det |lim ()|det |()|det |(())m m m n m m T m E E T m G E T m E E +∞+∞→+∞===⋂=⋂=⋂*|det |()T m E =:n n T R R ∀→线性,若*()0m E =,则*()0m TE =证明:(0,,1,0,,0)n i e R =∈ 为n R 的基,()i i T e x =,n x R ∀∈,12(,,,)n x ξξξ= ,1122n n Tx x x x ξξξ=+++ ,令1221(||)i i M x +∞==∑,则112222112211|()|||||||||||||(||)(||)||nnn n i i i i T x x x x x M x ξξξξ==≤+++≤=∑∑则|()()|||,,n T x T y M x y x y R -≤-∀∈(即T 是Lipschitz 连续的)∀一边平行于坐标平面的开超矩体{}121122(,,,),(,)(,)(,)n i i i n n I x a b a b a b a b ξξξξ==<<=⨯⨯⨯ 于12n I I I ⨯⨯⨯ 221()(||)n ni i i diamI b a +∞==-∑12n TI TI TI TI =⨯⨯⨯ ,(,)i i i I a b =开,1T -连续,则i TI 是1R 中开集从而可测,从而12TI TI ⨯是2R 中可测集,由归纳法知12n TI TI TI ⨯⨯⨯ 是可测集若(2.9)式成立*0()|det |()o m TI T m I =,则∀矩体{},i i iI x a b ξ=<< , 1ni i I I == ,iI 为正方体,则对开集G 也有()|det |()m TG T m G =,特别对开区间{},i i i I x a b ξ=<<这一开集有*()|det |()m TI T m I =则可知n E R ∀∈,若*()0m E =,则*()0m TE =事实上,0ε∀>,{}1i i I +∞=∃开区间,1i i E I ∞=⊂ ,1||i i I ε∞=<∑****111()(())()()i i i i i i m TE m T I m TI m TI ∞∞∞===≤=≤∑111|det |()|det |()|det ||||det |i i i i i i T m I T m I T I T ε∞∞∞======<∑∑∑令0ε→知*()0m TE =若(2.9)成立,则T 将可测集映为可测集,还要看(2.8)证明过程是否用到T 将可测集映为可测集或*()0m E =推出*()0m TE =这一性质!下面证(2.9)成立.任一线性变换至多可分解为有限个初等变换的乘积(i )坐标12,,,n ξξξ 之间的交换 (ii )11,i i ξβξξβξ→→ (2,,)i n = (iii) 112,i i ξξξξξ→+→ (2,,)i n = 在(i )的情形显然00|det |1,T TI I ==(2.9)成立在(ii )的情形下,T 矩阵可由恒等矩阵在第一行乘以β而得到{}1211()(,,,),01,2,3,,,0(0),0(0)o n i T I x i n ξξξξξβββξβ==≤<=≤<><≤< 当当 从而可知0(())||m T I β= (2.9)式成立在(iii )的情形,此时det 1T = (1100010000100001T ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦) 而且{}01212()(,,,),01(1),01n i T I x i ξξξξξξ==≤<≠≤-< X ({}{}00122();,(,,,),01,1n i T I y x I y Tx i n ξξξξξ=∃∈==+≤<≤≤01221221(),(,,,),01,01n i y T I y ξξξξξξξξξ∀∈=+≤<≤+-=<则{}01212()(,,,),01(1),01n i T I x i ξξξξξξ⊂=≤<≠≤-< 反过来,12(,,,)n y X ξξξ∀=∈ ,01(1)i i ξ≤<≠则1201ξξ≤-<令122(,,,)n x ξξξξ=- 则0x I ∈,12(,,,)n Tx y ξξξ==则0()y T I ∈,0()X T I ⊂ ) 记{}1201(,,,)(),1n A x T I ξξξξ==∈< {}012()(,,,),01(1)n i T I x i ξξξξ==≤<≠10(1,0,,0),()\e B T I A == ,则{}12021(,,,),n A x I Y ξξξξξ==∈≤ {}112012\(,,,),n B e x I C ξξξξξ==∈<(12(,,,)n x Y ξξξ∀=∈ ,则01,1i i n ξ≤<≤≤,21ξξ≤,则12001,()x T I ξξ≤-<∈,且11ξ<,则x A ∈反过来,y A ∀∈,则存在120(,,,)n x I ξξξ=∈ ,01i ξ≤<,使122(,,,)n y Tx ξξξξ==+ ,12001,y I ξξ≤+<∈,且212,y YOK ξξξ≤+∈!1y B e ∀∈-,存在00()\z T I A ∈,使1\y z e =, 0x I ∃∈,122(,,,)01n i z Tx ξξξξξ==+≤<121z A ξξ∉+≥,,1122\(1,,,)n z e ξξξξ=+- , 12210011,\z e I ξξξ≤+-≤<∈1221111,\y z e C ξξξξ+-≤⇔<=∈反过来,y C ∀∈,12012(,,,),,01,1n i y I i n ξξξξξξ=∈<≤<≤≤112(1,,,)n z y e ξξξ=+=+ ,则 1212011(,01)i ξξξξξ≤-+<<≤<则0()z T I ∈,又10111,()\,\,z A z T I A B z e y z B ξ+≥∉∈==∈, 则11\,\,y B e C B e C B ∈∈=得证)由此得到0011(),{(),()T I A B A B I A B e A B e =⋃⋂=∅=⋃-⋂-=∅010(())(\)1|det |m T I mA mB mA m B e mI T =+=+===故(2.9)式成立 这里用到A,B可测,(),(,)(,)(A TIHH =⋂=-∞+∞⨯-∞+∞,0()T I 可测,H 开,则A 可测,0()\T I A B =可测故还是需要:若:n n T R R →为非奇异线性变换,则Borel ∀集n E R ⊂,()T E 是可测集,从而∀方块I ,()T I 可测,0()T I 可测有了,这就有(2.9),从(2.9)知T 将零测集E 变为零测集,从而有T 将可测集变为可测集1:n f R R →可测11()BorelB R f B -⇔∀⊂为可测集(江则坚P109习题10)现设:n n f R R →连续,则∀开集n O R ⊂,1()f O -是开集, 记{}1|()n n B R f B R -=⊂是中的可测子集1B ,可证1B 是一个σ-代数,且包含全部开集,从而包含全部Borel 集证1)1()f -∅∈∅=∅,1B 可测2)若A ∈1B ,则1111()()()()c n n f A f R A f R f A ----=-=-显然也可测,c A ∈1B3)若,(1,23,)i A i ∈= 1B ,则i ∀,1()i f A -可测,1111()()i i i i f A f A +∞+∞--=== 可测1B 是σ-代数 f 连续,则1()open Of O -∀∈1B ,1B 包含全部开集,从而包含全部Borel 集:n n T R R →为非奇异线性,1T -显然连续I ∀方体半开半闭(显然为Borel 集),11()T I TI --=可测 1[,)n i i i I a b ==∏为Borel ,111[,)ni i i m I a b m+∞===-∏ 事实上,0ε∀>从()()mkm m n f x g x →(当k →+∞)知00(,)N N m ε∃=,使当0k N ≥时|()()|m km m n f x g x ε→<而当0m a x (,(,))k m N m ε≥时,k mk k n n ≥,故|()()|k km m n f x g x ε→< (kkn 是{}1m k k n+∞=的子列中的一个元,故,m kk m k k l n n +=,0l ≥则0(,)k N m ε≥时,0m k k l N +≥ 则,|()()||()()|k mkk l m km m m m n nf xg x f x g x ε+→=→<)()k m f x 收敛于1()m g x R ∈,即k f 在E 上收敛.若条件改为:F 是一族一致有界的[,]a b 上的函数族,则结论成立 令{}123,,,[,]E x x x a b =⊂ 则0,|()|,[,]M f x M x a b ∃>≤∀∈, {}11()|x f x f =∈F F ,则1x F 是1R 中的有界集,由聚点原理∃一列n f ∈F 和1()g x R ∈,11()()kn f g x n →→∞同样令{}11(2)2()|1,2,kx n f x k == F (n f 为上述取定的一列n f ∈F )故12|()|kn f x M ≤,由聚点原理,存在1kn f 的子列2kn f 和1()g x R ∈(21k k n n k ≥≥)使22()kn f g x →,由此用归纳法可作出m N ∀∈,{}1mkn k f +∞=⊂F (m kn f 为1m kn f -的子列)使1()m km n f g x R →∈令k kk n f f =,则n f ∈F 且m ∀有()k km n f g x →故由Berstein 定理即知(0,1)B C c ≤≤=,C c =方法②建立十进位小数的展式中缺7的所有无尽十进位小数之集A 和(0,1)上一切无尽九进位小数之集B 之间的一一对应.集A 中每个十进位小数对应B 中这样的小数,该小数是前一个小数中凡是数字9都有数字7代替后而得到的,这个对应是一一的(九进小数中不含9,而A 中不含7,将9 7,而其他不动)显然(0,1),B c A c === 周民强书P35思考题:6.设F 是定义在[,]a b 上的实值函数族,[,]E a b ⊂是可数集,则存在n f ∈F (1,2,n = )使得{}()n f x 在E 上收敛.我怀疑本题有错:若不假设F 是[,]a b 上一致有界的,会有反例: 令[,]a b =[0,1],设{}|1,2,m f m == F 这里(),[,]m f x m x a b =∀∈,则显然任取无穷个(1,2,)()kkk n n f k f x n ∈==→+∞ F 于[,]x a b ∀∈,故()n f x 不会收敛!0a =时,{}111|lim ()0[|()]n j n k n i n j iE x f x E x f x k +∞+∞+∞+∞→∞====>=>故还有:[|lim ()][|lim(())][|lim(())]n n n n n n E x f x a E x f x a E x f x a →∞→∞→∞<=--<=->- 111111[|()][|()]j j k n i n j ik n i n j i E x f x a E x f x a k k +∞+∞+∞+∞+∞+∞+∞+∞=========->-+=<-鄂强91:介于0与1之间,而十进展开式中数字7的一切实数所成立之集具有什么势?证明:①从江则坚CH1§4.3题知2N c =,且从证明中知2N A ∀⊂与之1-1对应的是(1)(2)0.(0,1)A A χχ∈ ,故(0,1)中小数点全是0,1两位数字构成的数组成的集合,(0,1)B 满足(0,1)2N B c ==,而十进展开式中缺数字7的一切实数之集C 满足(0,1)B C ⊂⊂附加题:徐森林书P15.8设()(1,2,)i f x i = 为定义在n R 上的实函数列,适用点集 1{|()},1,2,i x f x i j j ≥= 表示点集[|lim ()0]n n x f x →∞> 证明:江则坚书第一章第一节习题8:若()()n f x f x →于E ,则1a R ∀∈有11[|()]liminf [|()]n k E x f x a E x f x a k +∞=≤=≤+ 111111[|()]liminf [|()][|()]cn i k k k n i n E x f x a E x f x a E x f x a k k +∞+∞+∞+∞+∞=====⎛⎫>=≤+=>+ ⎪⎝⎭ 即111[|lim ()][|()]n i n k n i n E x f x a E x f x a k+∞+∞+∞→∞===>=>+ 另一方面,{}()n f x ∀易知{}|sup ()[|()]m m m n m n E x f x a E x f x a +∞≥=>=> 故{}1|lim ()[|inf sup ()]n m n n m n E x f x a E x f x a →∞≥≥>=> 111111[|limsup ()][|sup ()][|()]m m m n m n m i k n i n k n i n m i E x f x a E x f x a E x f x a k k +∞+∞+∞+∞+∞+∞+∞→∞≥≥========>=>+=>+思考:若A 不可测, B 也不可测,且(,)0A B ρ>,则A B ⋃不可测? ((,)0A B ρ=显然不对, 1,,(,)0,R Q B R Q R Q R R ρ===⋃=可测 至少当,A B 有一个有界时,结论是对的? 若存在开集G 使G A ⊂,G B ⋂=∅,不妨设A 有界, mG <+∞,则若A B ⋃可测,则****(())(())()c mG m G A B m G A B m A m G A =⋂⋃+⋂⋃=+- )。
实变函数论课后答案
λ∈∧
λ∈∧
λ∈∧
综上所述有 ∪ ( Aλ ∪ Bλ ) = ( ∪ Aλ ) ∪ ( ∪ Bλ ) .
λ∈∧
λ∈∧
λ∈∧
定理
6
中第二式 ( ∩
λ∈∧
Aλ )c
=
∪
λ∈∧
Aλc
.
证 : ∀x ∈ ( ∩ Aλ )c , 则 x ∉ ∩ Aλ , 故 存 在 λ ' ∈ ∧
λ∈∧
λ∈∧
, x ∉ Aλ' 所 以
( ) x0
∞∞ ∞
∈∩ ∪ ∩
k =1 m=1 i=m
E
⎡⎢⎣ x;
fi
x
≤
a
+
1 k
⎤ ⎥⎦
.
所以E
⎡⎣ x;
f
(x)
≤
a⎤⎦
⊂
∞∞ ∞
∩∪∩
k =1 m=1 i=m
理 9.
证明:定理 4 中的(3):若 Aλ ⊂ Bλ ( λ ∈ ∧ ),则 ∩ Aλ ⊂ ∩ Bλ .
λ∈∧
λ∈∧
证:若 x ∈ ∩ Aλ ,则对任意的 λ ∈ ∧ ,有 x ∈ Aλ ,所以 Aλ ⊂ Bλ( ∀ λ ∈ ∧ ) λ∈∧
成立
知 x ∈ Aλ ⊂ Bλ ,故 x ∈ ∩ Bλ ,这说明 ∩ Aλ ⊂ ∩ Bλ .
(因为 ∃n, 使 1 n
≤
f
( x0 ) − a )
所以
x0
∈
∞
∪E
n=1
⎡ ⎢⎣
x;
f
(
x)
≥
a
+
1⎤ n ⎥⎦
.
从而有
E
周民强《实变函数》解答 第四章 lebesgue积分
fE
m(E0) = 0,
E = E0 ∪ E1 ∪ E2,
1 ´ µ ~ [f(x)]1/kdx = [f(x)]1/kdx + [f(x)]1/kdx,
E
E1
E2
E1
[f (x)]1/k ≤ f (x), Lebesgue
1 1 G H | } ¾ ¸ ~ | } ~ lim [f(x)]1/kdx =
678
E
E
lim fk(x)dx = lim fk(x)dx.
k→∞ E
E k→∞
j k B l m n 1 o p w q r 1 G H s t p w q Ek = {x : fk(x) > fk+1(x)}
r u v w r 1 o t u x y x y z 1E{ r s | } ~ W )
m(E2) = 0,
E f (x)dx = E1 f (x)dx +
m(E) = m(E1) + m(E2) = 0.
Ek ⊂ E, m(E\Ek) < 1/k(k = 1, 2, · · ·),,
` a 1 6 7 8 a ' f W f(x) E
lim f (x)dx
k→∞ Ek
9A@CBEg FIh E˜1
678
lim fk(x) = f (x), lim gk(x) = g(x),
k→∞
k→∞
lim
k→∞
gk(x)dx =
E
g(x)dx < ∞,
E
lim
k→∞
fk(x)dx =
E
f (x)dx.
二,实变函数与泛函分析课后习题答案book版1
有限,故mE[| fi| = +∞] = 0(i = 1, · · · , N). 而
∪∞ E[| fi| = +∞] = E[| fi| > k]
k=1
(1.11)
且
E[| fi| > k] ⊇ E[| fi| > k + 1].(i = 1, · · · , N)
(1.12)
从而,
lim mE[| fi| > k] = mE[| fi| = +∞] = 0.
证明: f (x)不可测.若0 ∈ E,则E[ f ≥ 0] = E不可测.若0 E,则E[ f > 0] = E不可 测.综上,f (x)为不可测函数.
当x ∈ [0, 1]时,| f (x)| = x是连续函数,所以| f (x)|在[0, 1]上是可测的.
习题 1.1.4 设 fn(x)(n = 1, · · · , )是E上a.e.有限的可测函数列,而{ fn} a.e.收敛于有 限函数 f,则对于任意的ϵ > 0, 存在常数c与可测集E0 ⊂ E, m(E − E0) < ϵ,使在E0上 对一切n有| f (x)| ≤ c.这里mE < ∞.
fn(x) → f (x) a.e.于E(n → ∞).
(1.4)
从而由叶戈洛夫定理,对δ
=
mE 4
>
0, ∃Eδ
⊂
E,使得
(i)m(E
−
Eδ)
<
δ
=
mE 4
,
即mEδ
>
3 mE;
4
(1.5)
第一章 可测函数
3
(ii)在Eδ上一致收敛于 f (x).
实变函数第四章习题解答
第四章习题参考解答1.设)(x f 是E 上的可积函数,如果对于E 上的任意可测子集A ,有0)(=⎰dx x f A,试证:)(x f ,].[.E e a证明:因为}1)(|{}0)(|{1kx f x E x f x E k ≥=≠∞= ,而N k ∈∀,}1)(|{kx f x E ≥}1)(|{}1)(|{kx f x E k x f x E -≤≥= .由已知,=+=-≤≥≥⎰⎰⎰kx f x E kx f x E kx f x E dx x f dx x f dx x f 1)(|{1)(|{1|)(|{)()()(000=+.又因为0}1)(|{11)(0}1)(|{}1)(|{≥≥=≥=≥≥⎰⎰kx f x mE kdx kdx x f kx f x E kx f x E ,0}1)(|{1)1()(0}1)(|{}1)(|{≤-≤-=-≤=≥≥⎰⎰kx f x mE kdx kdx x f kx f x E kx f x E所以,0}1)(|{}1)(|{=-≤=≥kx f x mE kx f x mE .故,0}1)(|{}1)(|{}1|)(|{=-≤+≥=≥kx f x mE kx f x mE kx f xmE ,从而0}1|)(|{}1|)(|{[}0)(|{111==≥≤≥=≠∑∑∞=∞=∞=k k k kx f x mE kx f xE m x f x mE .即,0)(=x f ,].[.E e a .2.设f ,g 都是E 上的非负可测函数,并且对任意常数a ,都有})(|{})(|{a x g x mE a x f x mE ≥=≥,试证:)()(x g x f =,从而,=⎰dx x f E)(dx x g E⎰)(.证明:我们证f ,g 是同一个简单函数序列∞=1){m m ψ的极限函数.Nm ∈∀及12,,1,0-=mm k,令}21)(2|{,mmk m k x f k x E E +≤≤=,并且})(|{2,m x f x E E m m m ≥=.则k m E ,是互不相交的可测集,并且k m m k E E m,21== ,定义简单函数 ∑==mkm m k Emm x kx 2)(2)(,χψ.下面证明:)()(lim x f x m m =∞→ψ,E x ∈.E x ∈∀0,若+∞=)(0x f ,则N m ∈∀,m m m E x 2,0∈,所以)()(0∞→∞→=m m x m ψ,即)()(lim 00x f x m n =∞→ψ;若+∞<)(0x f ,则可取正整数)(00x f m >,0m m ≥∀时,}21)(2|{})(0|{1210mmm k k x f k x E m x f x E x m+<≤=<≤∈-= .故,存在)120(-≤≤mm k k ,}21)(2|{0mmk x f k x E x +<≤∈.即,mmk x f k 21)(20+<≤,mm k E mm k x kx mkm 2)(2)(2,==∑=χψ.所以,0212212)()()(|)()(|00000→=-+<-=-=-mmmmm m k k k x f x x f x x f ψψ,从而, )()(lim 00x f x m n =∞→ψ.同理,N m ∈∀,定义简单函数列∑==mkm m k Emm x kx 2)(2)(*,χψ,其中:}21)(2|{*,mmk m k x g k x E E +<≤=,12,,1,0-=mm k .})(|{*,m x g x E E k m ≥=.同上一样可证明:)()(lim 0x g x m n =∞→ψ,E x ∈.因为R a '∈∀,有})(|{})(|{a x g x mE a x f x mE ≥=≥.故R a '∈∀, })(|{b x f a x mE <≤})(|{b x g a x mE <≤=.从而,)120(-≤≤∀mm k k ,有km mmmmk m mEk x g k x mE k x f k x mE mE ,*,}21)(2|{}21)(2|{=+<≤=+<≤=mmm m m m mEm x g x mE m x f x mE mE2,*2,})(|{})(|{=≥=≥=.即,N m ∈∀,=)(x m ψ)(x m ϕ.因此)()(lim )(lim )(x g x x x f m m m m ===∞→∞→ϕψ.3.若⎪⎩⎪⎨⎧=为有理数,当为无理数,当x x x xx f 31)(,计算⎰1,0[)(dx x f .解:设x x E |]1,0[{0∈=为有理数},01]1,0[E E -=,则+=⎰⎰1)()(]1,0[E dx x f dx x f⎰]1,0[)(dx x f ⎰⎰⎰+==111E EE dx xdx xdx x=+==⎰⎰⎰1111E E E dx xdx xdx x2]2[11101]1,0[====⎰⎰x dx xdx x.4.设21,,E E 是]1,0[中n 个可测集,若]1,0[内每一点至少属于n 个集中的q个集,证明:21,,E E 中至少有一个测度不小于nq .证:令∑==ni E x x f i1)()(χ,其中i E χ为i E 上的特征函数]1,0[∈∀x ,有q x x f ni E i≥=∑=1)()(χ,所以q qdxdx x f =≥⎰⎰]1,0]1,0[)(.∑∑⎰∑∑⎰⎰⎰========≤ni ni iE ni E ni E mEdx x dx x dx x f q ii11111,0]1,0[]1,0[)()()(χχ.如果每个nq mE i <,则∑∑===⋅=>ni ni i q nq n nq mE 11.这与∑=≤ni imEq 1矛盾.从而,)1(n i i ≤≤∃使得nq mE i ≥.5.设f ,g 都是E 上的可积函数,试证明:22gf +也是E 上可积函数.证明:(1)先证:设)(x f 与)(x F 都是E 上的可测函数且)()(0x F x f ≤≤ ].[.E e a ,若)(x F 在E 可积,则)(x f 在E 可积.事实上,N m l ∈∀,,因为)()(0x F x f ≤≤ ].[.E e a ,故l l x F x f )}({)}({0≤≤,即+∞<≤≤≤⎰⎰⎰EE ll E ldx x f dx x F dx x F dx x f mm)()}({)}({)}({,其中:m m S E E =,}||||{∞<=x xS m .从而∞=⎰1})}({{l l E dx x F m是单调递增有上界⎰Edx x F )(的数列,故:⎰⎰⎰≤=∞→EE ll E dx x F dx x f dx x f mm)()}({lim)(.又因为⎰∞=mE m dx x f 1})({单调递增有上界,所以⎰∞→mE l dx x f )(lim存在,并且⎰⎰⎰+∞<≤=∞→EE ll Edx x F dx x f dx x f m)()}({lim)(,即⎰∞→∞→mE ll m dx x f )}({limlim+∞<≤⎰dx x f E)(.所以)(x f 在E 可积.(2)再证:22gf+在E 上可积.事实上,因为f ,g 在E 上可积,所以||f 与||g 在E 上可积,从而||f +||g 在E 上可积. 又因为||||22g f gf+≤+,由(1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章习题参考解答1.设)(x f 是E 上的可积函数,如果对于E 上的任意可测子集A ,有0)(=⎰dx x f A ,试证:)(x f ,].[.E e a证明:因为}1)(|{}0)(|{1k x f x E x f x E k ≥=≠∞= ,而N k ∈∀,}1)(|{kx f x E ≥}1)(|{}1)(|{kx f x E k x f x E -≤≥= .由已知,=+=-≤≥≥⎰⎰⎰kx f x E kx f x E kx f x E dx x f dx x f dx x f 1)(|{1)(|{1|)(|{)()()(000=+.又因为0}1)(|{11)(0}1)(|{}1)(|{≥≥=≥=≥≥⎰⎰kx f x mE k dx k dx x f kx f x E kx f x E , 0}1)(|{1)1()(0}1)(|{}1)(|{≤-≤-=-≤=≥≥⎰⎰k x f x mE k dx k dx x f kx f x E kx f x E所以,0}1)(|{}1)(|{=-≤=≥k x f x mE k x f x mE .故,0}1)(|{}1)(|{}1|)(|{=-≤+≥=≥kx f x mE k x f x mE k x f x mE ,从而00}1|)(|{}1|)(|{[}0)(|{111==≥≤≥=≠∑∑∞=∞=∞=k k k k x f x mE k x f x E m x f x mE .即,0)(=x f ,].[.E e a .2.设f ,g 都是E 上的非负可测函数,并且对任意常数a ,都有})(|{})(|{a x g x mE a x f x mE ≥=≥,试证:)()(x g x f =,从而,=⎰dx x f E )(dx x g E⎰)(.证明:我们证f,g 是同一个简单函数序列∞=1){m m ψ的极限函数.N m ∈∀及12,,1,0-=m m k ,令}21)(2|{,mm k m k x f k x E E +≤≤=,并且 })(|{2,m x f x E E m m m ≥=.则k m E ,是互不相交的可测集,并且k m m k E E m ,21== ,定义简单函数∑==mk m m k E m m x kx 20)(2)(,χψ. 下面证明:)()(lim x f x m m =∞→ψ,E x ∈.E x ∈∀0,若+∞=)(0x f ,则N m ∈∀,m m m E x 2,0∈,所以)()(0∞→∞→=m m x m ψ,即)()(lim 00x f x m n =∞→ψ;若+∞<)(0x f ,则可取正整数)(00x f m >,0m m ≥∀时,}21)(2|{})(0|{1210mm m k k x f k x E m x f x E x m +<≤=<≤∈-= .故,存在)120(-≤≤mm k k , }21)(2|{0m m k x f k x E x +<≤∈.即,m m k x f k 21)(20+<≤,m m k E m m kx k x mk m 2)(2)(20,==∑=χψ.所以,0212212)()()(|)()(|00000→=-+<-=-=-mm m m m m k k k x f x x f x x f ψψ,从而, )()(lim 00x f x m n =∞→ψ.同理,N m ∈∀,定义简单函数列∑==mkm m k E m m x kx 20)(2)(*,χψ,其中:}21)(2|{*,mm k m k x g k x E E +<≤=,12,,1,0-=m m k .})(|{*,m x g x E E k m ≥=.同上一样可证明:)()(lim 0x g x m n =∞→ψ,E x ∈.因为R a '∈∀,有})(|{})(|{a x g x mE a x f x mE ≥=≥.故R a '∈∀,})(|{b x f a x mE <≤})(|{b x g a x mE <≤=.从而,)120(-≤≤∀mm k k ,有k m m m m m k m mE k x g k x mE k x f k x mE mE ,*,}21)(2|{}21)(2|{=+<≤=+<≤=m m m m m m mE m x g x mE m x f x mE mE 2,*2,})(|{})(|{=≥=≥=.即,N m ∈∀,=)(x m ψ)(x m ϕ.因此)()(lim )(lim )(x g x x x f m m m m ===∞→∞→ϕψ.3.若⎪⎩⎪⎨⎧=为有理数,当为无理数,当x x x x x f 31)(,计算⎰1,0[)(dx x f .解:设x x E |]1,0[{0∈=为有理数},01]1,0[E E -=,则+=⎰⎰1)()(]1,0[E dx x f dx x f⎰]1,0[)(dx x f ⎰⎰⎰+==111E EE dx xdx xdx x=+==⎰⎰⎰1111E E E dx xdx xdx x2]2[11101]1,0[====⎰⎰x dx xdx x.4.设21,,E E 是]1,0[中n 个可测集,若]1,0[内每一点至少属于n 个集中的q个集,证明:21,,E E 中至少有一个测度不小于nq.证:令∑==ni E x x f i1)()(χ,其中i E χ为i E 上的特征函数]1,0[∈∀x ,有q x x f ni E i≥=∑=1)()(χ,所以q qdx dx x f =≥⎰⎰]1,0]1,0[)(.∑∑⎰∑∑⎰⎰⎰========≤n i ni i E n i E ni E mE dx x dx x dx x f q i i 11111,0]1,0[]1,0[)()()(χχ.如果每个n qmE i <,则∑∑===⋅=>n i n i i q n q n n q mE 11.这与∑=≤ni i mE q 1矛盾.从而,)1(n i i ≤≤∃使得nqmE i ≥. 5.设f ,g 都是E 上的可积函数,试证明:22g f+也是E 上可积函数.证明:(1)先证:设)(x f 与)(x F 都是E 上的可测函数且)()(0x F x f ≤≤ ].[.E e a ,若)(x F 在E 可积,则)(x f 在E 可积.事实上,N m l ∈∀,,因为)()(0x F x f ≤≤ ].[.E e a ,故l l x F x f )}({)}({0≤≤,即+∞<≤≤≤⎰⎰⎰EE llE ldx x f dx x F dx x F dx x f mm)()}({)}({)}({,其中:m mS E E=,}||||{∞<=x x S m .从而∞=⎰1})}({{l l E dx x F m是单调递增有上界⎰Edx x F )(的数列,故:⎰⎰⎰≤=∞→EE ll E dx x F dx x f dx x f mm)()}({lim )(.又因为⎰∞=mE m dx x f 1})({单调递增有上界,所以⎰∞→mE l dx x f )(lim存在,并且⎰⎰⎰+∞<≤=∞→EE ll Edx x F dx x f dx x f m)()}({lim )(,即⎰∞→∞→mE ll m dx x f )}({lim lim+∞<≤⎰dx x f E)(.所以)(x f 在E 可积.(2)再证:22g f+在E 上可积.事实上,因为f ,g 在E 上可积,所以||f 与||g 在E 上可积,从而||f +||g 在E 上可积. 又因为||||22g f g f+≤+,由(1)。
22g f +在E 上可积.6.设+∞<mE ,)(x f 是E 上的非负可测函数,∞+<⎰Edx x f )(,})(|{k x f x E E k >=,试证明:0lim =⋅∞→dx mE k k l .证明:N k ∈∀,因为+∞<≤≤≤⎰⎰EE k dx x f dx x f kmE k)()(0,所以)(0)(10∞→→≤≤⎰k dx x f k mE Ek ,故0lim =∞→k l mE . 又因为⎰+∞<Edx x f )(,由积分的绝对连续性(即,P103,定理4).0>∀ε,0>∃δ,使得对于任何可测集E A ⊂,δ<mA ,恒有⎰Adx x f |)(|⎰<=Adx x f ε)(.对于0>δ,由0lim =∞→k k mE ,得,存在N k ∈0,0k k ≥∀时,δ<k mE ,有ε<≤⋅≤⎰dx x f mE k kE k )(0,从而0lim =⋅∞→k k mE k .7.设E 为可测集,且+∞<mE ,)(x f 为E 上的非负可测函数,}1)(|{+<≤=∧k x f k x E E k ,试证: )(x f 在E 上可积当且仅当级数∧∞=∑k k E km 1收敛.证:)(⇒设}1)(|{+<≤=∧k x f k x E E k ,N k ∈,因为)(x f 在E 可积,故∑∑⎰∑⎰⎰∞=∞=∞=⋅=≥=111)(k k k E k E EmE k dx k f dx x f kk.即,级数∑∞=∧⋅1k k E m k 收敛.)(⇐N k ∈∀,因为}1)(|{+<≤=k x f k x E E k ,k E k k E mE kmE mE k dx k dx x f kk+=+=+≤⎰⎰)1()1()(,又dx x x f dx x f m kE EE )()()(χ⎰⎰= 又dx x x f x f m kE EE )()()(χ⎰⎰=.因为∑∞==1)()()(k E x x f x f k χ,所以=⎰dx x f E)(∑∑⎰∑⎰∑⎰⎰∞=∞=∞=∞=+≤===1112,991)()()()()()(()(k k k k E k E EL TH P k E EEmE kmE dx x f x x f dxx x f x f kk k χχ基本定理+∞<+=+=∑∑∑∞=∞=∞=k k k k k k k mE kmE mE kmE 111.从而,)(x f 在E 上可积.8.设f 是R '上的可积函数,证明:⎰=-+→],[00|)()(|limb a k dx x f b x f .证明:(1)先证:0>∀ε,存在时直线R '上的连续函数)(x ϕ,使得⎰<-+→],[0|)()(|limb a k dx x f b x f ε.对于N n ∈∀,记:⎪⎩⎪⎨⎧-<->≤=N x f N N x f N Nx f x f x f n )(,)(,|)(|,)()]([ ],[b a E x =∈.则:⎪⎩⎪⎨⎧-<+>-≤=-Nx f N x f N x f N x f N x f x f x f n )(,)()(,)(|)(|,0)]([)(. 则=-⎰dx x f x f b a n |)]([)(|],[dx x f x f N f E n|)]([)(|)|(|⎰>- +dx x f x f N f E n|)]([)(|)|(|⎰≤- =dx x f x f N f E n|)]([)(|)|(|⎰>-dx N x f N f E |)(|)|(|⎰>+≤dx x f N f E |)(|)|(|⎰>≤.因为)(x f 在],[b a 是lebesgue 可积的,故0>∀ε,0>∃δ,使E A ⊂,δ<mA 时,恒有Adx x f Aε<⎰|)(|,又因为∞=1|)}(|{n f E 是单调的集列,并且)|(|)|(|1+∞==>∞=f E n f E n .从而,=>=>∞→∞→)]|(|lim [)|(|lim n f E m n f mE n n0)|(|=+∞=f mE .所以,对于0>δ,N ∈∃N ,使得4|)(|)|(|ε<⎰>dx x f N f E .对于N x f )]([,取04>=Nεη,由连续扩张定理(第10页,定理3),存在闭集],[b a F ⊂及R '上的连续函数)(x ϕ,使得 (i )F F N x x f |)(|)]([ϕ= (ii )NF E m 4)(ε<-(iii) N x ≤|)(|ϕ 则242)(2||)|]([|][||][],[εεϕϕϕ=⋅<-⋅≤+≤-=-⎰⎰⎰--NN F E m N dx f dx f dx f FE N FE N b a N ,从而≤-+-≤-⎰⎰dx x f dx x f x f dx x x f b a NNb a |)(][||)]([)(||)()(],[],[ϕϕεεεϕ=+⋅≤-+≤⎰⎰>242|)(][||)(|2],[)|(|dx x f dx x f b a N N f E .(2)再证:0|)()(lim],[0=-+⎰→dx x f b x f b a h0>∀ε,由(1)知,存在R '上的连续函数)(x ϕ使得3|)()(]1,1[εϕ<-⎰+-dx x x f b a ,因为)(x ϕ在]1,1[+-b a 上一致连续,所以)1(0<>∃δδ使得],[b a x ∈∀,)1(||<<δh 时,恒有)(3|)()(|a b x h x -<-+εϕϕ,dx h x h x f dx x f h x f b a b a |)()(|)()(],[],[⎰⎰+-+≤-+ϕ+dx x h x b a |)()(|],[⎰-+ϕϕ+dx x f x b a |)()(|],[⎰-ϕ.因为],[b a x ∈时,)1|:|<<∀δh h ,有]1,1[+-∈+b a h x ,故dx h x h x f b a |)()(|],[⎰+-+ϕ3|)()(|]1,1[εϕ<-≤⎰+-dx x x f b a .所以≤-+⎰dx x f h x f b a |)()(|],[+-⎰+-dx x x f b a |)()(|]1,1[ϕdx x x f dx x h x b a b a |)()(||)()(|],[],[⎰⎰-+-+ϕϕϕεεεε=++<333.故0|)()(|lim],[0=-+⎰→dx x f h x f b a h .9.设f 是E 上的非负可积函数,c 是任意常数,满足⎰≤≤Edx x f c )(0,试证:存在E E ⊂1,使得c dx x f E =⎰1)(.证明:设常数c ,合于⎰≤≤Edx x f c )(0,当⎰=Edx x f c )(时,存在E E=1,使得c dx x f E =⎰1)(,不妨设⎰≤≤Edx x f c )(0.先证:⎰-=Et t dx x f t F ],[)()(在),0[+∞上连续,),0[0+∞∈∀t,0t t >∀,因为⎰⎰⎰⎰+=-=-≤----Et t Et t Et t Et t dx x f dx x f dx x f dx x f t F t F ],[],[],[],[00000)()()()()()(0,由积分的绝对连续性(P85,定理4),0>∃δ,E A ⊂∀,δ<mA ,有2)(|)(|ε<=⎰⎰AAdx x f dx x f .故,δ<-≤∀00:t t t ,因δ<-≤-00)),([t t E t t m ,δ<-≤00)],((t t E t t m ,故εεε=+=+=-≤⎰⎰--22)()()()(0],[],[000Ety t Et t dx x f dx x f t F t F .所以,)()(lim 00t F t F t t =+→.同理,对于),0[0+∞∈∀t ,用上述完全类似方法可得)()(lim 00t F t F t t =-→.故,)(t F 在 ),0[+∞上连续.又因为c dx x f dx x f EEt t t >=⎰⎰-+∞→)()(lim],[ (根据P89的定义4).所以00>∃t,使得c dx x f t F Et t >=⎰- ],[0)()(.故)()0(0tF c F <<,由)(t F 在闭区间],0[0t 上的介值定理(连续函数的介值定理),),0(01t t ∈∃,使得E E t t E ⊂-= ],[111,有c t F dx x f dx x f Et t E ===⎰⎰-)()()(1],[01.10.设g 是E 上的可测函数,P 是大于1的数,2是P 的共轭输,即111=+qp .如果对任意)(E L f P ∈,都有)(E L fg '∈,试证)(E L g q∈.11,试证:(i )1)1(1lim),0(1=+⎰+∞∞→dt tktkk k .(ii) dx x e dx x n x x n k ⎰⎰+∞-+∞-∞→=-),0(),0(1)1(limαα.证明:(i )2≥∀k 时,(寻找控制函数) 当)10(≤<t t 时:tttttktt f kkk k 4111)1(1)(2111≤=≤≤+=;当1>t 时:2211)11(2)(!2)1(11)(1)1(1)(tk kt k k k t k t t kt t f kkkk k -≤+-+⋅+=≤+=224)211(2t t =-≤.令⎪⎪⎩⎪⎪⎨⎧+∞≤<≤<=t tt tt F 1,410,4)(2,从而),0(+∞∈∀t ,)()(t F t f k ≤,且)(t F 在),0(+∞是-R 可积的,故)(t F 在),0(+∞是-L 可积的.又因为t t kk tt kk kk k k k e etkt t k tt f -∞→∞→∞→∞→==⋅+=+=11lim])1[(1lim)1(1lim)(lim 11.由lebesgue 控制收敛定理,⎰⎰⎰∞∞→∞∞→∞∞→==+),0(),0(),0(1)(lim )(lim)1(1limdt t f dt t f dt t kt k k k k kk k ⎰∞-=),0(dt e t10==⎰+∞-dt e t .(ii)N n ∈∀,定义⎪⎩⎪⎨⎧+∞∈∈-=-),(,0],0(,)1()(1n x n x x nx x f n n α,并且1)(--=αx e x F x ,),0(+∞∈x .),0(+∞∈∀x ,有)()1(lim )(lim 11x F x e x nxx f x n n n n ==-=---∞→∞→αα.下面证明:N n ∈∀,)()(1x f x f n n +≤.事实上,),0(+∞∈∀x ,令t t x t G )1()(-=,),1[+∞∈t ,取)1ln()(ln txt t G -=,则 x t x t x t x tx t txt G t G -+-=-+-=')1ln(11)1ln()()(2.又记x t xt x t h -+-=')1ln()(,又因 222)()()(11)(x t x x t t x x t x t x tx t h ---=---='0)()()(222<--=---=x t t x x t t tx x t x .所以, xt xt x t G t G t h -+-='=)1ln()()()(关于t 单调递减,且0)(lim =∞→t h t .故),1[+∞∈∀t ,有0)(>t h ,即0)()()(>⋅='t h t G t G .故)(t G 在),1[+∞单调增加,从而, N n ∈∀)1()11()1()(1+=+-<-=+n G n x n x n G n n .所以)()11()1()(1111x f x n x x n x x f n n n n +-+-=+-<-=αα.因此N n ∈∀,1)()(|)(|--=≤=αx e x F x f x f x n n ,),0(+∞∈x ..因为1)(--=αxe x F x 在),0(+∞上可积,由lebesgue 控制收敛定理,⎰⎰⎰+∞--+∞∞→-∞→===-),0(1),0(),0(1)(lim )1(limdx x e dx x f dx x n x x n n n n n αα.12.设+∞<mE ,试证明:在E 上0⇒k f 当且仅当0||1||lim=+⎰∞→dx f f Ek k k .证明:)(⇒0>∀σ,N k ∈∀,因为)1|(|]||1||[σσσ-≥=≥+k k k f E f f E .因为0⇒k f (在E 上),所以, 0)1|(|lim )||1||{lim =-≥=≥+∞→∞→σσσk k k k k f mE f f mE .故在E 上,0||1||⇒+k k f f .又因为,N k ∈∀,1||1||≤+k k f f 且+∞<mE ,由lebesgue 有界收敛定理,有00||1||lim==+⎰⎰∞→E E k k k dx dx f f .)(⇐对于0>∀σ,因≤+=≥+≤⎰≥Ef E k k dx f mE )|(|1)|(|10σσσσσσ⎰≥+Ef E k k k dx f f )|(|||1||σ)(0∞→→k .故,0)|(|lim 10≤≥-≤∞→δσσk k f mE .从而0)|(|lim =≥∞→δk k f mE .即0⇒k f . §4.2 lebesgue 积分极限定理一.Levi 定理(非负可测函数序列的积分与极限可交换性) 二.lebesgue 控制收敛定理.定理4(定理的绝对连续性定理)若f 在E 上可积,则0>∀ε,0>∃δ,E A ⊂∀:δ<mE ,有ε<⎰||Afdx .证明:因为f 可积,所以||f 可积(只需证:0>∀ε,ε<⎰||Afdx )0>∀ε,+∞<=⎰⎰∞→EE m dx f dx f m||||lim.N m ∈∃,=-≤⎰⎰mE Edx f dx f ||||04||||ε<-⎰⎰mE Edx f dx f .又因为⎰⎰=∞→mmE E el dx f dx f |||}{|lim.所以N e >∃,使4]|}{||[||}{|||0ε<-=-≤⎰⎰⎰dx f dx f dx f dx f e E E e E mmm.`要找0>∃δ,使E A ⊂∀,δ<mA ,有=+=⎰⎰⎰-mm E A E E A Adx f dx f dx f ||||||)(⎰⎰⎰+-+-mmm E A e E A e E E A dx f dx f f dx f |}{|]|}{||[|||)(=++<⎰mE A edx 44εε)(2m E A m e ⋅+εεεε=⋅+≤ee 22.定理5(lebesgue 控制收敛定理)设(i ))(x f m , ,2,1=m 是E 上可测函数序列.(ii) 存在非负可积函数)(x F 使得N m ∈∀,)(|)(|x F x f m ≤ ].[.E e a .(iii) f f m ⇒ 0(>∀ε,0}|)()(|{lim =≥-∞→εx f x f x mE m l .则f 在E 上可积,并且⎰⎰=∞→EEm l fdx dx x f )(lim .基础知识复习lebesgue Th (P60,定理4) Riesz Th (P61,定理5))()(x f x f m → ⇒].[.E e a f f Em ⇒ ⇒存在子列)()(:}{x f x f f i i m m → ].[.E e alebesgue 控制收敛定理的证明:因为f f Em ⇒,由Riesz Th ,存在子列f f i m → ].[.E e a .因此,f 在E 上可测.又因为N i ∈∀,F f i m ≤||.].[.E e a ,所以F f ≤|| ].[.E e a ,故||f 在E 上可积,从而,故f 在E 上可积,下证:⎰⎰=∞→E Emm dx x f x f)()(lim.(1)先证:+∞<mE 时,有⎰⎰=∞→EEmm dx x f x f)()(lim.0>∀ε,N m ∈∀,记})1(2|)()(|{+≥-=mE x f x f x E E m m ε.则=-≤-⎰⎰⎰Em EEm dx f f fdx dx f ||||⎰⎰-+--Em E E m dx f f dx f f m||||⎰⎰⎰+++≤-EE m E E dx f dx f dx mE mm||||)1(2ε⎰⎰+<+-+≤mmE E m Fdx Fdx E E m mE 222)()1(2εε.因为)(x F 在E 上可积,由积分的绝对连续性,0>∃δ,使E A ⊂∀,δ<mA ,有⎰<AFdx 4ε.又因为0})1(2|)()(|{lim lim =+≥-=∞→∞→mE x f x f x mE mE m m m m ε,所以N m ∈∃0,0m m ≥∀时,有δ<m mE .故⎰<mE Fdx 4ε.从而εεε=⋅+<-⎰⎰422||EEm fdx dx f .即,⎰⎰=∞→EEmm fdx dx flim.(2)再证:+∞=mE 时,也有⎰⎰=∞→EEmm fdx dx flim.0>∀ε,因为⎰⎰=∞→EE m dx xF Fdx m)(lim,所以N M ∈∃,有4||ε<=-⎰⎰⎰-mmE E EE Fdx Fdx Fdx .则≤-+-≤-=-⎰⎰⎰⎰⎰-|)(||)(||)(|||mmE m E E mEm EEmdx f f dx f fdx f f fdx dx f|)(|||)||(|⎰⎰-++-mmE m E E mdx f f dx f f|)(||2⎰⎰-+≤-mmE mE E dx f fFdx|)(|2⎰-+<mE m dx f f ε.因为⎰⎰=∞→mmE E mm fdx dx flim(由1的证明),所以N m ∈∃0,0m m ≥∀有2|)(|ε<-⎰mE m dx f f .即,εεε=+<-⎰⎰22||Eem fdx dx f .从而,.lim⎰⎰=∞→Eemm fdx dx f推论(lebesgue 有界收敛定理).设 (i )+∞<mE(ii )N m ∈∀,k x f m ≤|)(|(常数)].[.E e a 且)(x f m 在E 上可测 (iii )f x f Em ⇒)(则)(x f 在E 上可积,且⎰⎰=∞→EEmm dx x f dx f)(lim.定理6. )(x f 在],[b a 上-R 可积⇔)(x f 在],[b a 上的间断点集是一个零测集.三.vital 定理.定义1.设E 是可测集,F 是E 上的一簇可积函数,称F 是E 上的积分等度绝对连续函数簇,如果0>∀ε,0>∃δ,δ<⊂∀mA E A :,F ∈∀f ,恒有ε<⎰||Afdx .基本性质:设E 是可测集,F 是E 上的一簇可积函数,则F 在E 上是积分等度绝对连续的0>∀⇔ε,0>∃δ,δ<⊂∀mA E A :,F ∈∀f ,恒有ε<⎰||Afdx .证明:)(⇒0>∀ε,因为F 在E 上是积分等度绝对连续,所以0>∃δ,δ<⊂∀mA E A :,F ∈∀f ,有ε<⎰||Afdx .记}0)(|{≥=+x f x E A A ,}0)(|{<=-x f x E A A ,则δ<+mA 且δ<-mA .所以,εεε=+<+≤-=+=⎰⎰⎰⎰⎰⎰⎰-+-+-+22|||||||||A A A A A A Afdx fdx fdx fdx dx f dx f dx f .)(⇐直接的.定理7.(vital 定理).设 (i )+∞<mE .(ii )∞=1)}({n n x f 是E 上积分等度绝对连续函数簇. (iii )f x f E m ⇒)(.则)(x f 在E 上可积,且⎰⎰∞→=Enn Edx fdx f lim .证明:先证:f 在E 上可积.(找一个可积函数)(x F ,使得)(|)(|x F x f ≤ ].[.E e a(1)先证:N ∈∀i ,N ∈∃i N ,使得i N n m ≥>∀,恒有⎰≤-Ein m dx x f x f 21|)()(|. 事实上,N ∈∀i ,取221+=i ε,由∞=1}{n n f 在E 上积分等度绝对连续性,0>∃i δ)21(ii ≤δ使得i E A ⊂∀,i mA δ<时,N ∈∀n ,⎰+≤Ai n dx x f 221|)(|.记})1(21|)()(|{)(2+>-=+mE x f x f x E i E i n n })1(21|)()(|{)(1+>-=+mE x f x f x E i E i m n nm ,则)()()(i E i E i E m n nm ⊂.因为f f n ⇒,所以0)(lim =∞→i mE n n .所以对于0>i δ,N ∈∃i N ,i N n ≥∀,恒有2)(in i mE δ<,则i N n m ≥>∀时,i iim n nm i mE i mE i mE δδδ=+<+≤22)()()(.所以≤-+-≤-⎰⎰⎰-)()(|)()(||)()(||)()(|i E n m i E E n m En m nm nm dx x f x f dx x f x f dx x f x f11)(2)()()(2121)1(21|||||)()(|++-+⋅+++≤+≤-⎰⎰⎰⎰i i i E E m i E n i E m i E E n m nm nm nm nm dx mE dx f dx f dx x f x f ii i nm i i E E m mE 212121)(()1(21111+<++-++++.即(1)为真.又因为f f n ⇒,由Riesz 定理,)({x f n 有子列)({x f i n 使)({lim )(x f x f i n i ∞→=, ].[.E e a .不失一般性,N ∈∀i ,设i i N n ≥,于是,∑∞=+-=+1)()()(()(11i n n n x f x f x fx f i i ].[.E e a .令∑∞=+-=+1)()()(()(11i n n n x f x f x fx F i i .(2)再证:)(|)(|x F x f ≤ ].[.E e a 且⎰+∞<EFdx .事实上,|)()()((||)(|111∑∞=+-=+i n n n x f x f x f x f i i |)(||()(||111∑∞=+-≤+i n n n x f x f x f i i )(x F = ].[.E e a由lebesgue 基本定理(第82页,定理2),有dx x f dx x f x fFdx i En En n Ei i |)(||()(||111∑⎰⎰⎰∞=+-≤++∞<+≤⎰∑∞=dx x f En i i|)(|2111.从而)(x F 在E 可积,又由)(|)(|x F x f ≤ ].[.E e a .f 在E 上可积. 最后证:⎰⎰=∞→EEn n fdx dx f lim.0>∀ε,因为f 在E 上可积,由积分的绝对连续性,0>∃δ,E A ⊂∀:δ<mA ,有3||ε<⎰Adx f .取充分大的自然数0i 使},3min{210δε<i ,则0i N n ≥∀时,有δδ<<<+1000212)(i in i mE ,从而,dx fdx f fdx f dx x f i E ni E E nEEn n n ⎰⎰⎰⎰+-≤--)()(00|||||)(|dx f i E n ⎰+)(0||321)(()1(212020ε++-+≤++i n i i E E m mE 321212200ε++≤++i i 333εεε++=ε=.找一个可积函数)(x F 使得)(|)(|x F x f ≤].[.E e a .因为f f n ⇒,由Riesz 定理,存在子列:f f i n →].[.E e a .于是∑∞=+-=+1)()()(()(11i n n n x f x f x fx f i i ].[.E e a .则≤)(x f|)(||)()(|111∑∞=+-+i n n n x f x f x fi i ].[.E e a .记|)(||)()(|)(111∑∞=+-=+i n n n x f x f x fx F i i .则∑⎰⎰∞=+-=+1|)()(|1i En n Edx x f x f Fdx i idx x fEn i⎰|)(|.若N ∈∀i ,iEn n dx x f x f i i 21|)()(|1<-⎰+ ,则+∞<⎰dx F E,即)(x F 可积. ⇒ )(x f 在E 可积.。