测量平差练习题及参考答案

合集下载

测量平差课后习题答案 张书毕

测量平差课后习题答案 张书毕
2
4
.解答:
第 1 页/共 44 页
《测量平差》参考答案 Ch1---Ch4
2 1 0 P LL 1 3 1 0 1 2 Q P LL Q Q
LL LL
I
P LL 5 1 0 0 8 2 1 0 1 0 0 1 E 1 3 1 0 1 0 0 1 0 4 0 1 2 0 0 1 0 0 1 1 8 1 4 1 2 1 4 1 4 1 2 1 4 1 8 1 4 5 8
cos L2 sin L1 sin(L1 L2 ) dL dL2 1 cos2(L1 L2 ) cos2(L1 L2 )
所以 S (
cos L2 sin L1 sin(L1 L2 ) 2 2 )2 12 ( ) 2 cos (L1 L2 ) cos2(L1 L2 )
《测量平差》参考答案 Ch1---Ch4
D XL =E X E X L E L T E AL AE L L E L T AE ( L E L )( L E ( L) )
104 m 2
T2 (
Y Y X Y 2 2 )2 )2 X Y = 5.4 X ( Y 2 2 2 2 X Y X Y (X 2 Y 2 )2
1010 m 2
S ST X 9.4 108 m2
1 2 2
ˆ 所以一测回的角度中误差
第 7 页/共 44 页
《测量平差》参考答案 Ch1---Ch4
12
.解答:
解 设路线总长 S 公里,按照测量学上的附合路线计算步骤,则路线闭合差

测量平差超级经典试卷含答案

测量平差超级经典试卷含答案

一、填空题(每空 1 分,共 20 分)1、测量平差就是在多余观测基础上,依据一定的原则,对观测值进行合理的调整,即分别给以适当的改正数,使矛盾消除,从而得到一组最可靠的结果,并进行精度评估。

2、条件平差中,条件方程式的选取要求满足、。

3已知条件平差的法方程为{ EMBEDEquation.3| 42k140 ,则=,23k22=, =,=。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按条件平差进行求解时,条件方程式个数为,法方程式个数为。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选 6 个独立参数按具有参数的条件平差进行求解,则函数模型个数为,联系数法方程式的个数为;若在 22 个独立参数的基础上,又选了 4 个非独立参数按具有条件的参数平差进行求解,则函数模型个数为,联系数法方程式的个数为。

6、间接平差中误差方程的个数等于________________, 所选参数的个数等于_______________。

7、已知真误差向量及其权阵,则单位权中误差公式为,当权阵为此公式变为中误差公式。

二、选择题(每题2分,共20分)1、观测条件是指:A)产生观测误差的几个主要因素: 仪器, 观测者 , 外界条件等的综合B)测量时的几个基本操作 : 仪器的对中 , 整平 , 照准 , 度盘配置 , 读数等要素的综合C)测量时的外界环境 : 温度 , 湿度 , 气压 , 大气折光⋯⋯等因素的综合 .D)观测时的天气状况与观测点地理状况诸因素的综合答:_____2、已知观测向量的协方差阵为, 若有观测值函数Y1=2L1, Y2=L1+L2,则等于?(A)1/4(B)2《测量平差基础》期末试卷本卷共 4页第2页3、已知观测向量的权阵, 单位权方差 ,则观测值的方差等于:((A)0.4D(B)2.5(C)3(D)答:____)4 、已知测角网如下图, 观测了各4三角形的内角 , 判断下列结果 , 选出正确答案。

(整理)测量平差考试题

(整理)测量平差考试题

1. 若令 ⎥⎥⎦⎤⎢⎢⎣⎡=⨯⨯1211Y X Z ,其中 ⎥⎦⎤⎢⎣⎡=21Y Y Y ,已知权阵Z P 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=211120102Z P ,试求权阵X P ,Y P 及权1Y P ,2Y P 。

需要掌握的要点:向量的协方差阵D 、协因数阵Q 、权阵P 之间的关系和它们里面元素的含义。

解:由于1-=Z ZZ P Q ,所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=12/12/12/14/34/12/14/14/3ZZQ ,通过该式子可以看出,[]4/3=XXQ ,⎥⎦⎤⎢⎣⎡=12/12/14/3YY Q ,则3/41==-XX Q P X ,⎥⎦⎤⎢⎣⎡--==-2/31121YY Q P Y 且3/41=Y P ,12=Y P2. 设已知点A、B 之间的附合水准路线长80km ,令每公里观测高差的权等于1,试求平差后线路中点C 点高程的权。

思路:该题可以有三种解法(测量学的单附合水准路线平差、条件平差、间接平差)。

千万记住:求什么量的权就一定要把给量的函数表达式子正确地写出来。

即1ˆˆh H H A C +=,或X H Cˆˆ= 方法一:(测量学的单附合水准路线平差) (1) 线路闭合差B A h H h h H f -++=21)(21)2121()(212121)(2121ˆ2121211111B A B A B A A h A A C H H h h H H h h H h h H h H f h H v h H H ++⎥⎦⎤⎢⎣⎡⋅-=++-=-++-+=-+=++=(2) 按照协因数传播定律:202/12/1400040)2121(2/12/1)2121(22122111ˆˆ=⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡-=h h h h h h h h H H Q Q Q Q Q CC(3) 则 20/1/1ˆˆˆ==C C C H H H Q P方法二:(条件平差法)思路:因为C 点高程平差值是观测值平差值的函数。

测量平差经典试卷含答案

测量平差经典试卷含答案

一、填空题(每空2分,共20分)1、最优估计量应具有的性质为 、 和 最优估计量主要针对观测值中仅含 误差而言。

2、间接平差中,未知参数的选取要求满足 、 。

3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= , 1k p = ,2k p = 。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按间接平差进行求解时,误差方程式个数为 ,法方程式个数为 。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。

6、条件平差中条件方程的个数等于________________,所选参数的个数等于_______________。

7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。

二、计算题(每题2分,共20分)1、条件平差的法方程等价于:A 、0=+W K Q KB 、0=+W Q K WC 、0=+W P K WD 、0=+W P K K答:______2、水准测量中,10km 观测高差值权为8,则5km 高差之权为:A 、2B 、4C 、8D 、16答:______3、已知⎥⎦⎤⎢⎣⎡=∆3112P ,则2L p 为:A 、2B 、3C 、25D 、35答:______4、间接平差中,L Q ˆ为:A 、TA AN 1- B 、A N A T1-C 、T A AN P11--- D 、A N A P T 11---答:______5、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合 C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合. D)观测时的天气状况与观测点地理状况诸因素的综合答:______ 6、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于(A)1/4 (B)2 (C)1/2 (D)4 答:_____ 7、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A) (B) (C)3 (D)253答:____ 8、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

误差理论与测量平差试题+答案

误差理论与测量平差试题+答案

《误差理论与测量平差》(1)1.正误判断。

正确“T”,错误“F”。

(30分)2.在测角中正倒镜观测是为了消除偶然误差()。

3.在水准测量中估读尾数不准确产生的误差是系统误差()。

4.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

5.观测值与最佳估值之差为真误差()。

6.系统误差可用平差的方法进行减弱或消除()。

7.权一定与中误差的平方成反比()。

8.间接平差与条件平差一定可以相互转换()。

9.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

10.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

11.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

12.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

13.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

14.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

15.定权时σ0可任意给定,它仅起比例常数的作用()。

16.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

17.用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。

则:1.这两段距离的中误差()。

2.这两段距离的误差的最大限差()。

3.它们的精度()。

4.它们的相对精度()。

18. 选择填空。

只选择一个正确答案(25分)。

1.取一长为d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。

a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。

测量平差超级经典试卷含答案汇总

测量平差超级经典试卷含答案汇总

一、填空题(每空1分,共20分) 1、测量平差就是在 多余观测 基础上,依据 一定的 原则,对观测值进行合理的调整,即分别给以适当的 改正数 ,使矛盾消除,从而得到一组最可靠的结果,并进行 精度评估 。

2、条件平差中,条件方程式的选取要求满足 、 。

3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PVVT= ,μ= ,1k p = ,2k p = 。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按条件平差进行求解时,条件方程式个数为 ,法方程式个数为 。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。

6、间接平差中误差方程的个数等于________________,所选参数的个数等于_______________。

7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。

二、选择题(每题2分,共20分)1、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合.D)观测时的天气状况与观测点地理状况诸因素的综合答:_____2、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于? (A)1/4(B)21/2(D)4答:__3、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A)0.4 (B)2.5(C)3 (D)253答:____4、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

测量平差超级经典试卷含答案汇总

测量平差超级经典试卷含答案汇总

.一、填空题(每空1分,共20分) 1、测量平差就是在 多余观测 基础上,依据 一定的 原则,对观测值进行合理的调整,即分别给以适当的 改正数 ,使矛盾消除,从而得到一组最可靠的结果,并进行 精度评估 。

2、条件平差中,条件方程式的选取要求满足 、 。

3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= ,1k p = ,2k p = 。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按条件平差进行求解时,条件方程式个数为 ,法方程式个数为 。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。

6、间接平差中误差方程的个数等于.________________,所选参数的个数等于_______________。

7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。

二、选择题(每题2分,共20分)1、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合. D)观测时的天气状况与观测点地理状况诸因素的综合答:_____2、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于?(A)1/4 (B)2.)1/2(D)4答:_3、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A)0.4 (B)2.5(C)3 (D)253答:____4、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

测量平差题目及答案

测量平差题目及答案

《误差理论与测量平差基础》课程试卷A2010-06-27 11:30:49 来源:《误差理论与测量平差基础》课程网站浏览:4次武汉大学测绘学院2007-2008学年度第二学期期末考试《误差理论与测量平差基础》课程试卷A出题者课程小组审核人班级学号姓名成绩一、填空题(本题共20个空格,每个空格1.5分,共30分)1、引起观测误差的主要原因有(1)、(2)、(3)三个方面的因素,我们称这些因素为(4)。

2、根据对观测结果的影响性质,观测误差分为(5)、(6)、(7)三类,观测误差通过由于(8)引起的闭合差反映出来。

3、观测值的精度是指观测误差分布的(9)。

若已知正态分布的观测误差落在区间的概率为95.5%,则误差的方差为(10),中误差为(11)。

4、观测值的权的定义式为(12)。

若两条水准路线的长度为、,对应的权为2、1,则单位权观测高差为(13)。

5、某平差问题的必要观测数为,多余观测数为,独立的参数个数为。

若,则平差的函数模型为(14)。

若(15),则平差的函数模型为附有参数的条件平差。

6、观测值的权阵为,的方差为3,则的方差为(16)、的权为(17)。

7、某点的方差阵为,则的点位方差为(18)、误差曲线的最大值为(19)、误差椭圆的短半轴的方位角为(20)。

二、简答题(本题共2小题,每题5分,共10分)1、简述观测值的精度与精确度含义及指标。

在什么情况下二者相同?2、如图1所示,A、B、C、D为已知点,由A、C分别观测位于直线AC上的点。

观测边长、及角度、。

问此问题的多余观测数等于几?若采用条件平差法计算,试列出条件方程式(非线性方程不必线性化)。

图1三、(10分)其它条件如上题(简答题中第2小题)。

设方位角,观测边长,中误差均为,角度、的观测中误差为。

求平差后点横坐标的方差(取)。

四、(10分)采用间接平差法对某水准网进行平差,得到误差方程及权阵(取)(1)试画出该水准网的图形。

(2)若已知误差方程常数项,求每公里观测高差的中误差。

测量平差习题集答案

测量平差习题集答案

测量平差习题集答案测量平差习题集答案在测量工作中,平差是一项非常重要的环节。

它通过对测量数据进行处理和分析,消除误差,得到更加准确的测量结果。

为了帮助大家更好地理解和掌握平差的方法和技巧,下面将为大家提供一些测量平差习题集的答案。

1. 题目:某测量队在进行水平控制网的测量时,测得A、B两点的水平角为α1=90°30'20",α2=269°29'40",A、B两点的距离为1000米。

已知A点的坐标为(1000, 1000),求B点的坐标。

解答:根据水平角的定义,可以得到以下关系式:α1 = α2 + 180°即90°30'20" = 269°29'40" + 180°化简得90°30'20" = 449°29'40"由于角度超过360°,需要将其转化为小于360°的形式,可以通过减去360°来实现,即:90°30'20" - 360° = 89°29'40"所以,B点的水平角为89°29'40"。

接下来,根据已知的A点坐标和AB距离,可以利用正弦定理来求解B点的坐标。

设B点的坐标为(x, y),则有:(x - 1000)^2 + (y - 1000)^2 = 1000^2根据正弦定理,可以得到以下关系式:sin(89°29'40") = (x - 1000) / 1000化简得:(x - 1000) = 1000 * sin(89°29'40")解得:x ≈ 1999.999同理,可得:y ≈ 1000.000所以,B点的坐标为(1999.999, 1000.000)。

测量平差经典试卷含答案

测量平差经典试卷含答案

1一、填空题(每空2分,共20分)1、最优估计量应具有的性质为 、 和 最优估计量主要针对观测值中仅含 误差而言。

2、间接平差中,未知参数的选取要求满足 、 。

3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= , 1k p = ,2k p = 。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按间接平差进行求解时,误差方程式个数为 ,法方程式个数为 。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。

6、条件平差中条件方程的个数等于________________,所选参数的个数等于_______________。

7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为此公式变为中误差公式。

二、计算题(每题2分,共20分)1、条件平差的法方程等价于:A 、0=+W K Q KB 、0=+W Q K WC 、0=+W P K WD 、0=+W P K K答:______2、水准测量中,10km 观测高差值权为8,则5km 高差之权为:A 、2B 、4C 、8D 、16答:______ 3、已知⎥⎦⎤⎢⎣⎡=∆3112P ,则2L p 为:A 、2B 、3C 、25D 、35 答:______4、间接平差中,L Q ˆ为:A 、TA AN 1- B 、A N A T1-C 、T A AN P11--- D 、A N A P T 11---答:______5、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合 C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合.D)观测时的天气状况与观测点地理状况诸因素的综合 答:______ 6、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于(A)1/4 (B)2 (C)1/2 (D)4 答:_____7、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A) (B) (C)3 (D)253答:____ 8、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

误差理论和测量平差试卷及答案6套 试题+答案

误差理论和测量平差试卷及答案6套  试题+答案

《误差理论与测量平差》课程自测题(1)一、正误判断。

正确“T”,错误“F”。

(30分)1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

二、用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。

则:1.这两段距离的中误差()。

2.这两段距离的误差的最大限差()。

3.它们的精度()。

4.它们的相对精度()。

三、选择填空。

只选择一个正确答案(25分)。

1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。

a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。

测量平差习题参考答案

测量平差习题参考答案

第一章 习题参考答案 1题.略2题.解 (1)222194σσ+(2)2221212219)3(σσL L L +-(3) 222212211212212211211")(cos )sin(sin ")(cos )sin(sin )cos(cos σρσρ⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫ ⎝⎛++++L L L L L L L L L L L L L 3题. 解TT TLL XY LL YL LL XL B A AD D BAD D AD D ===,,4题.解 设路线总长S 公里,按照测量学上的附合路线计算步骤,则路线闭合差B A h H h h H f -++=21由于是路线中点,故()B A h H h h H f v v -++-===21212121 则线路中点高程()()B A B A B A A A H H h h H H h h H h h H h H v h H H ++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=++-=-++-+=-+=2121212121212121ˆ212121111中点设每公里高差观测中误差为0σ,则021)2/(σσσs h h ==按误差传播定律)(16,10425)52/(41)52/(41)2/(41)2/(414141212100212122220202222ˆ21121km S S s s s s h h h h H ≤≤=⋅⨯+⋅⨯=⨯+⨯=+=⎪⎪⎪⎪⎭⎫⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=σσσσσσσ中点5.解 设每个测回的中误差为0σ,需要再增加n 个测回,则)2(2028.0,28.020)1(2042.0,42.0200000+±=±=+±=±=n n σσσσ由上式可解出n.即252023202028.042.020222=-⎪⎭⎫ ⎝⎛⨯=-⨯=n 再增加25个测回6题.解[][][][][][][][][]][][][,100010001...,...)...(2121211212122111⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎣⎡⎥⎦⎤==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎢⎣⎡⎥⎦⎤=+++==p p p p p p p p p P p P p P p Q L L L P p P p P p L p L p L p x n n n p xx n n n n p p pL x][][][][][][p p p p p p p p p p p p p p p nnn⋅⋅++⋅⋅+⋅⋅=1 (1)12221117题。

测量平差习题集

测量平差习题集

第二部分自测题第一章自测题一、判断题(每题2分,共20分)1、通过平差可以消除误差,从而消除观测值之间的矛盾。

()2、观测值i L 与其偶然真误差i 必定等精度。

()3、测量条件相同,观测值的精度相同,它们的中误差、真误差也相同。

()4、或然误差为最或然值与观测值之差。

()5、若X 、Y 向量的维数相同,则YX XY Q Q 。

()6、最小二乘原理要求观测值必须服从正态分布。

()7、若真误差向量的数学期望为0,即0)(E ,则表示观测值中仅含偶然误差。

()8、单位权中误差变化,但权比及中误差均不变。

()9、权或权倒数可以有单位。

()10、相关观测值权逆阵Q 的对角线元素ii Q 与权阵P 的对角线元素ii P 之间的关系为1ii ii P Q 。

()二、填空题(每空0.5分,共20分)1、测量平差就是在基础上,依据原则,对观测值进行合理的调整,即分别给以适当的,使矛盾消除,从而得到一组最可靠的结果,并进行。

2、测量条件包括、、和,由于测量条件的不可能绝对理想,使得一切测量结果必然含有。

3、测量误差定义为,按其性质可分为、和。

经典测量平差主要研究的是误差。

4、偶然误差服从分布,它的概率特性为、和。

仅含偶然误差的观测值线性函数服从分布。

5、最优估计量应具有的性质为、和。

若模型为线性模型,则所得最优估计量称为,最优估计量主要针对观测值中仅含误差而言。

要证明某估计量为最优估计量,只需证明其满足性和性即可。

6、限差是的最大误差限,它的概率依据是,测量上常用于制定的误差限。

7、若已知观测值向量L 或其偶然真误差向量的协方差阵为,则L 或的权阵定义为L P =P =,由于验前精度难以精确求得,实用中定权公式有、、,特别是对独立等精度观测向量L 而言,其权阵可简单取为L P =。

8、已知真误差向量1n 及其权阵P ,则单位权中误差公式为,当权阵P 为此公式变为中误差公式。

式中,1n 可以为同一观测量的真误差,也可以为观测量的真误差。

测量平差练习题及参考答案

测量平差练习题及参考答案

.计算题1、如图,图中已知 A、B 两点坐标,C、D、E 为待定点,观测了所有角,试用条件平差的方法列出全部条件方程并线性化。

解:观测值个数n=12,待定点个数 t=3,多余观测个数 r=n-2t=6①图形条件4 个:v 1 v2v3wav 4 v5v6wbv 7 v8v9wcv 10 v11v12wd②圆周条件1 个:v 3 v6v9we③极条件1 个:wawbwc(L1L2L3180)(L4L5L6180)(L7L8L9180)wd(L10L11L12180)we(L3L6L9360)cotL2v2cotL5v5cotL8v8cotL1v1cotL4v4cotL7v7wfwf(1)3、如图所示水准网,A、B 、C 三点为已知高程点,D、E 为未知点,各观测高差及路线长度如下表所列。

用间接平差法计算未知点 D、E 的高程平差值及其中误差;..3、解: 1)本题 n=6,t=2,r=n-t=4;选 D 、E 平差值高程为未知参数 X ˆ 、X ˆ 则平差值方程为: X ˆ X ˆ1 1 2X ˆ H2 2 BX ˆ H3 2 AX ˆ H4 1 BX ˆ H5 1 AHX ˆ 6 A 1高差观测值/m h 1= -1.348 h 2= 0.691 h 3= 1.265 h 4= -0.662 h 5= -0.088 h = 0.763对应线路长度/km1 11 1 1 1已知点高程/mH A =23.000H =23.56Bh 2h 4h 1h 6h 3h 5AE C1 2则改正数方程式为:v l1 12 1v l2 2 2v l3 2 3v l4 1 4v l5 1 5v l6 1 6取参数近似值X0 H h h 22.907、 X0 H h 24.2551 B 12 2 B 21..令 C=111 0 01 1,则观测值的权阵: 011 11 1 111l0 0 1 0h 1 (X 10 h 2 (X 20h 3 (X 20h 4 (X 1h (X 0h 6(H CX 20) 0 H B ) 0 H A ) 10H A ) 5X 10 )7组法方程 N W 0 ,并解法方程:4 N B T PB11 3 N 1W 11 1求 D 、E 平差值:13 1 74 10 7W B T Pl13H ˆCX ˆ1X 10 122.906m H ˆDX ˆ2 X 20224.258m2)求改正数:B P 6.36mm 4 ˆ 162 0 10 5 1H B ) 5h (BX 0 d) l 1l 2l 3 l 4 l 5l437v B l466则单位权中误差为:v T pvr则平差后D、E 高程的协因数阵为:QXˆXˆN113111 1 4..根据协因数与方差的关系,则平差后 D 、E 高程的中误差为: 9 66mm 3.32mm229 22mm 3.84mm114、如图, 在三角形 ABC 中, 同精度观测了三个角: L 1 600004 ,L 2 700005 ,L 3 500007 ,按间接平差法列出误差方程式。

误差理论测量平差基础试题四及答案

误差理论测量平差基础试题四及答案

误差理论测量平差基础 试题四及答案一、填空题(30分)1、丈量一个圆半径的长为3米,其中误差为±10毫米,则其圆周长的中误差为________________。

2、在平坦地区相同观测条件下测得两段观测高差及水准路线的长分别为:h 1=10.125米,s 1=3.8公里,h 2=-8.375米,s 2=4.5公里,那么h 1的精度比h 2的精度______,h 2的权比h 1的权______。

3、间接平差中误差方程的个数等于________________,所选参数的个数等于_______________。

4、控制网中,某点P 的真位置与其平差后得到的点位之距离称为P 点的___。

5、如下图,其中A 、B 、C 为已知点,观测了5个角,若设L 1、L 5观测值的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法进行平差时,必要观测个数为,多余观测个数为,一般条件方程个数为,限制条件方程个数为ABCDEL 1L 2L 3L 4L 56、测量是所称的观测条件包括、观测者、7、已知某段距离进行了同精度的往返测量(L 1、L 2),其中误差cm 221==σσ,往返测的平均值的中误差为,若单位权中误差cm40=σ,往返测的平均值的权为8、已知某观测值X 、Y 的协因数阵如下,其极大值方向为,若单位权中误差为±2mm ,极小值F 为mm 。

9、在测量中会出现以下几种情况,使测量结果产生误差,判断产生的误差属于哪一类,视准轴与水准轴不平行,仪器下沉 ,估读数据不准确 ,水准尺下沉 。

二、判断题(10分)1、在水准测量中,由于水准尺下沉,则产生系统误差,符号为“+”。

答:____2、极限误差是中误差的极限值。

答:____3、在条件平差中,条件方程的个数等于多余观测数。

答:____4、改正数条件方程与误差方程之间可相互转换。

答:____5、权阵中的对角线元素,代表所对应的观测值得权。

测量平差A及答案

测量平差A及答案

二、解:5.025.0*36.015.0)*(*)*(*0020-=-====yy xx xy yy xx xyyx xy Q Q Q Q Q Q σσσσσσρ三、解:(1)L 向量的权阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001 p则L 的协因数阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛==-1000100011p Q LL()2531115253555253555253)(*52535212122112211+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=++++=++++=++++=+=n n n n n n L L L A AL AL AL L L L L L L x T αααααα()6711112671222671222671)(*26712212122112211+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=++++=++++=++++=+=n n n n n n L L L B BL BL BL L L L L L L y F ββββββ依协因数传播定律 则函数T 的权倒数为:()()225)1115(**11151nA A Q A Q p T LL TT T===则:2251nA p T =则函数F 的权倒数为:()()24)1112(**11121nB B Q B Q p T LL FF F===则:241nB p F =(2)()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+++=+++=n n n n L L L B BL BL BL L L L y 21212211111βββ依协因数传播定律()()nABB Q A Q T LL Ty 5)111(**1115==()()nAB B Q A Q T LL TF 10)1112(**1115==四、解:1)本题n=6,t=2,r=n-t=4;选D 、E 平差值高程为未知参数21ˆˆX X 、 则平差值方程为:1615142322211ˆˆˆˆˆˆˆˆˆˆˆˆˆX H h H XhH X h H X h H X h X X h A A BA B -=-=-=-=-=-=则改正数方程式为:6165154143232221211ˆˆˆˆˆˆˆl xv l xv l xv l x v l xv l x xv --=-=-=-=-=--=取参数近似值 255.24907.2220221011=+==++=h H X h h H X B B 、 令C=1,则观测值的权阵:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=10111101P⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=010*********B⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------=+-=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=7551000)()()()()()()(016015014023022020110654321X H h H X h H X h H X h H X h X X h d BX h l l l l l l l C A B A B组法方程0ˆ=-W xN ,并解法方程: ⎪⎪⎭⎫ ⎝⎛--==3114PB B N T ⎪⎪⎭⎫ ⎝⎛-==107Pl B W T⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==-311074113111ˆ1W N x求D 、E 平差值:mx X X H m x X X H D C 258.24ˆˆˆ906.22ˆˆˆ20221011=+===+== 2)求改正数:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-=664734ˆl x B v 则单位权中误差为:mm r pv v T 36.64162ˆ0±=±=±=σ则平差后D 、E 高程的协因数阵为:⎪⎪⎭⎫ ⎝⎛==-41131111ˆˆNQ X X根据协因数与方差的关系,则平差后D 、E 高程的中误差为:mmmm Q mm mm Q E D 84.311229ˆˆ32.322669ˆˆ220110±=±==±=±==σσσσ五、证明:设水准路线全长为S ,h 1水准路线长度为T ,则h 2水准路线长度为S-T ; 设每公里中误差为单位权中误差,则h 1的权为1/T ,h 2的权为1/(S-T);则其权阵为:⎪⎪⎭⎫ ⎝⎛-=)/(10/1T S T P平差值条件方程式为:0ˆˆ21=+h h 则 A=( 1 1 )S A AP N T ==-1由平差值协因数阵:LL T LL LL L L AQ N A Q Q Q 1ˆˆ--=则高差平差值的协因数阵为:⎪⎪⎭⎫⎝⎛---=-=-1111)(1ˆˆS T S T AQ NA Q Q Q LL T LL LL L L则平差后P 点的高程为:()⎪⎪⎭⎫ ⎝⎛+=+=211ˆˆ01ˆh h H h H H AA P 则平差后P 点的权倒数(协因数)为ST S T f AQ N A fQ f fQ Q T LL T LL T LL P )(1-=-=- 求最弱点位,即为求最大方差,由方差与协因数之间的关系可知,也就是求最大协因数(权倒数),上式对T 求导令其等零,则02=-STS T=S/2 则在水准路线中央的点位的方差最大,也就是最弱点位,命题得证。

测量平差 答案

测量平差 答案

南京师范大学模拟试卷课程误差理论与测量平差基础一、填空题(20分)1. 某平差问题有以下函数模型(Q=I)(11分) 1L ∧=1x ∧2L ∧=1x ∧-2x ∧3L ∧=-1x ∧+3x ∧4L ∧=-3x ∧+A 5L ∧=-2x ∧-B 1x ∧+3x ∧+C=0试问:(1)以上函数模型为何种平差方法的模型?(3分)答:附有限制条件的间接平差。

(2)本题中,n= ,t= ,c= ,u= ,s= 。

(5分) 答:n=5,t=2,c=5,u=3,s=1 (3)将上述方程写成矩阵形式。

(3分)答:5,1L ∧=100110101001010⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥-⎣⎦3,1x ∧+000A B ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦()1013,1x ∧+C=02. 衡量精度的指标有方差和中误差、平均误差、或然误差、 、 。

(4分)答:极限误差 相对中误差3. 测定A 、B 两点间高差,共布设了16个测站,各测站观测高差是同精度独立观测值,其方差均值为2σ站=1m 2m ,则AB 两点间高差的中误差为ABh σ= 。

(5分) 答:ABh σ=4mm 。

二、证明题在间接平差中,参数1n X ∧与1n V 改正数是否相关?试证明之。

(10分)证明:X ∧=0x +x ∧BB N x ∧-TB Pl=0x ∧=1BBN -T B Pl又l=L-oLx ∧=1BBN -T B Pl -1BB N -T B P o L V=B x ∧-l=B 1BBN -TB Pl -B 1BB N -TB P oL -L+oL = (B 1BBN -TB P-E)L- B 1BB N -TB P oL +oL 令 LL Q =Qx vQ ∧=1BB N -TB PQ 1(-E)T T BB BN B P -=1BBN -T B ( P 1BB N -TB P -E) =1BBN -TB P 1BB N -TB P-E 1BB N -TB =1BBN -TB -1BB N -TB =0 ∴1n X ∧与1n V 不相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算题
1、如图,图中已知A 、B 两点坐标,C 、D 、E 为待定点,观测了所有内角,试用条件平差的方法列出全部条件方程并线性化。

解:观测值个数 n =12,待定点个数t =3,多余观测个数r =n -2t =6
① 图形条件4个:
)180(0
)180(0
)180(0
)180(0
121110121110987987654654321321-++-==-++-++-==-++-++-==-++-++-==-++L L L w w v v v L L L w w v v v L L L w w v v v L L L w w v v v d d c c b b a a ② 圆周条件1个:
)360(0963963-++-==-++L L L w w v v v e e ③ 极条件1个:
ρ''--==----++)sin sin sin sin sin sin 1(0
cot cot cot cot cot cot 8
52741774411885522L L L L L L w w v L v L v L v L v L v L f f
3、如图所示水准网,A 、B 、C 三点为已知高程点, D 、E 为未知点,各观测高差及路线长度如下表所列。

用间接平差法计算未知点D 、E 的高程平差值及其中误差;
C
3、解:1)本题n=6,t=2,r=n-t=4; 选D 、E 平差值高程为未知参数2
1ˆˆX X 、 则平差值方程为:
1
615142322211ˆˆˆˆˆˆˆˆˆˆˆˆˆX H h H X h H X h H X h H X h X X h A A
B A B -=-=-=-=-=-=
则改正数方程式为:
6165154143232221211ˆˆˆˆˆˆˆl x
v l x
v l x
v l x v l x
v l x x
v --=-=-=-=-=--= 取参数近似值 255.24907.2220221011=+==++=h H X h h H X B B 、
令C=1,则观测值的权阵:
⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛=10111101P ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=010*********B ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------=+-=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=7551000)()()()()()()(016
015014023022020110654321X H h H X h H X h H X h H X h X X h d BX h l l l l l l l C A B A B
组法方程0ˆ=-W x
N ,并解法方程: ⎪⎪⎭⎫ ⎝⎛--==3114PB B N T
⎪⎪⎭⎫ ⎝⎛-==107Pl B W T ⎪⎪⎭
⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==-311074113111ˆ1W N x 求D 、E 平差值:
m x X X H m x X X H D C 258.24ˆˆˆ906.22ˆˆˆ2
0221011=+===+== 2)求改正数:
⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛----=-=664734ˆl x B v 则单位权中误差为:
mm r pv v T 36.64
162ˆ0±=±=±=σ 则平差后D 、E 高程的协因数阵为:
⎪⎪⎭
⎫ ⎝⎛==-41131111ˆˆN Q X X
根据协因数与方差的关系,则平差后D 、E 高程的中误差为:
mm
mm
Q mm mm Q E D 84.311
229ˆˆ32.322669ˆˆ220110±=±==±=±==σσ
σσ
4、如图,在三角形ABC 中,同精度观测了三个内角:4000601'''︒=L ,5000702'''︒=L ,7000503''''︒=L ,按间接平差法列出误差方程式。

解:必要观测数t =2,选取1L 、2L 的平差值为未知数1ˆX 、2ˆX ,并令101L X =、20
2L X =,则
2
22022111011ˆˆx L x X X x L x X X δδδδ+=+=+=+= 16ˆˆ180ˆˆˆˆ180ˆˆ213213222211112133222111---=+--==-==-=--=+=+=+x x L X X v x L X v x L X v X X v L X v L X v L δδδδ
5、如图为一大地四边形,试判断各类条件数目并列出改正数条件方程式。

解:观测值个数n =8,待定点个数t =2,多余观测个数42=-=t n r
3个图形条件,1个极条件。

ρ'
'--==--+-+-+--+++-==-+++-+++-==-+++-+++-==-+++)sin sin sin sin sin sin sin sin 1(0cot cot cot cot cot cot cot cot )180(0)
180(0
)180(0
7
53186428877665544332211876587656543654343214321L L L L L L L L w w v L v L v L v L v L v L v L v L L L L L w w v v v v L L L L w w v v v v L L L L w w v v v v d d c c b b a a
6、如下图所示,为未知P 点误差曲线(图中细线)图和误差椭圆图(图中粗线),A 、B 为已知点。

1)试在误差曲线上作出平差后P A 边的中误差,并说明;
2)试在误差椭圆上作出平差后P A 方位角的中误差,并说明;
3)若点P 点位误差的极大值E =5mm ,极小值F =2mm ,且︒=52F ϕ,试计算方位角为102º的PB 边的中误差。

解:1)在误差曲线上作出平差后P A 边的中误差;
连接PA 并与误差曲线交点a ,则Pa 长度为平差后P A 边的中误差
Pa PA =σˆ
2)在误差椭圆上作出平差后P A 方位角的中误差;
作垂直与PA 方向的垂线Pc ,作垂直与Pc 方向的垂线cb ,且与误差椭圆相切,垂足为c 点,则Pc 长度为平差后P A 边的横向误差PA u σˆ
则平差后P A 方位角的中误差:
ρρσσα''=''≈PA
PA u S Pc S PA PA ˆˆ 3)因为︒=52F ϕ
则:︒=142E ϕ
则:︒-=︒-︒=-=ψ40142102E ϕα
所以:
323
.16)40(sin *4)40(cos *25sin cos ˆˆ22222222=︒-+︒-=ψ
+ψ==ψF E σσϕ
方位角为102º的PB 边的中误差:mm 04.4ˆˆ±==ψσσ
ϕ 证明题
如下图所示,A ,B 点为已知高程点,试按条件平差法求证在单一附合水准路线中,平差后高程最弱点在水准路线中央。

A
证明:设水准路线全长为S ,h 1水准路线长度为T ,则h 2水准路线长度为S-T ; 设每公里中误差为单位权中误差,则
h 1的权为1/T ,h 2的权为1/(S-T);则其权阵为:
⎪⎪⎭
⎫ ⎝⎛-=)/(100/1T S T P 平差值条件方程式为:
HA+0ˆˆ2
1=-+HB h h 则 A=( 1 1 )
S A AP N T ==-1
由平差值协因数阵:LL T LL LL L L AQ N A Q Q Q 1ˆˆ--=
则高差平差值的协因数阵为:
⎪⎪⎭
⎫ ⎝⎛---=-=-1111)(1ˆˆS T S T AQ N A Q Q Q LL T LL
LL L L
则平差后P 点的高程为: ()⎪⎪⎭
⎫ ⎝⎛+=+=211ˆˆ01ˆh h H h H H A A P 则平差后P 点的权倒数(协因数)为
S
T S T f AQ N A fQ f fQ Q T LL T LL T LL P )(1-=-=- 求最弱点位,即为求最大方差,由方差与协因数之间的关系可知,也就是求最大协因数(权倒数),上式对T 求导令其等零,则
02=-S
T S T=S/2 则在水准路线中央的点位的方差最大,也就是最弱点位,命题得证。

·已知某观测值X 、Y 的协因数阵如下,求X 、Y 的相关系数ρ。

(10分)
⎪⎪⎭
⎫ ⎝⎛--=25.015.015.036.0XX Q 5
.025
.0*36.015.0)*(*)*(*0020-=-==
=
=yy xx xy yy xx xy y
x xy Q Q Q Q Q Q σσσσσσρ
2017复试真题(例题典型图形突破)
测量平差(书上例题)
1.设在三角形ABC中,观测三个内角L1、L2、L3,将闭合差平均分配后得到各角之值为:P35
L1=40°10′30″、L2=50°05′20″、L3=89°44′10″求它们的协方差阵为?
2.如图,测的三个边长,若用条件平差,求解?若用间接平差。

求解?P126
GPS真题
1. 7个点,2个已知,5个未知,利用GPS测量,设计边连接观测方案---n个同步环,n个异步环,n个共线
2.给一个GPS网,列条件方程,间接平差,列观测方程?
工程测量真题
1.极坐标放样点,2个已知点,放样未知点,放样步骤、要素
2.工程控制坐标转换,推导过程---施工坐标与测量坐标。

相关文档
最新文档