测量平差复习题及答案

合集下载

测量平差超级试卷含答案汇总

测量平差超级试卷含答案汇总

1 / 18一、填空题(每空1分,共20分) 1、测量平差就是在 多余观测 基础上,依据 一定的 原则,对观测值进行合理的调整,即分别给以适当的 改正数 ,使矛盾消除,从而得到一组最可靠的结果,并进行 精度评估 。

2、条件平差中,条件方程式的选取要求满足 、 。

3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= ,1k p =,2k p = 。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按条件平差进行求解时,条件方程式个数为 ,法方程式个数为 。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。

6、间接平差中误差方程的个数等于2 / 18________________,所选参数的个数等于_______________。

7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。

二、选择题(每题2分,共20分)1、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合. D)观测时的天气状况与观测点地理状况诸因素的综合答:_____2、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于?(A)1/4 (B)23 / 181/2(D )4答:__3、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L1的方差σL 12等于:(A)0.4 (B)2.5(C)3 (D)253答:____4、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

最新《测量平差》重要试卷及答案

最新《测量平差》重要试卷及答案

《误差理论与测量平差》试卷(D )卷考试时间:100分钟考试方式:闭卷题号-一- -二二二四五六总分得分阅卷人、填空题(共20分,每空2 分)1、观测误差产生的原因为:仪器、外界环境、观测者2、已知一水准网如下图,其中A、B为已知点,观测了8段高差,若设E点高程的平差值与BE之间高差的平差值为未知参数)?1>刃2,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为_4 _________ ,多余观测个数为_4 ________ ,一般条件方程个数为5 ______ ,限制条件方程个数为_ 1 __________3、取一长度为d的直线之丈量结果的权为1,则长度为D的直线之丈量结果的权为d/D _______ ,若长度为D的直线丈量了n次,则其算术平均值的权为_______ nd/D ______ 。

24、已知某点(X、Y)的协方差阵如下,其相关系数p XY=0.6________ ,其点位方差为CT 1.25 mm9.25 0.30D XX =030 1.00?二、设对某量分别进行等精度了 n 、m 次独立观测,分别得到观测值L i , (\ = 1,2- n),L i , (i =1,2,…m),权为 P i = p ,试求:1)n 次观测的加权平均值 Xn = 的权p n[p]解:因为p i=px -用]X n1 Pl_1 pl_2pL n[p]np=-L 1L nn—1 1 …1 r (L 1 L 2 …Ln Tn根据协因数传播定律,则 X n 的权p n :■v1 1 J——=—(1 1 …1 )* % +*1 1 a 1 P m mm ■'mp兀」订丿贝U : p n 二 np2)m 次观测的加权平均值 x m = 的权p m[p]X m =[PL]—PL I PL2 pL m[p] mp1L i L2 L mm」1 1 1 * L i L2 L m Tm根据协因数传播定律,则X m的权p m:1 1 ,111——=—(1 1…1)*+* __ I-P m m m■mp< ZP」11丿则:P m 二mp3)加权平均值x二叭P m X m的权p xP n + P mP n P m n p*X n mp*X mnp mp根据协因数传播定律,则X的权Y XnI(2 分)(2 分)贝U: p X = (n • m) p (1 分)三、已知某平面控制网中待定点坐标平差参数?的协因数为Q X? *1.5 1in +m2其单位为(dm/s),并求得<?o =二2 ",试用两种方法求E、F o(15分)若选择/ ABC平差值为未知参数X ,用附有参数的条件平差法列岀其平差值条件方程式。

(完整word版)测量平差经典试卷含答案

(完整word版)测量平差经典试卷含答案

一、填空题(每空2分,共20分)1、最优估计量应具有的性质为 、 和 最优估计量主要针对观测值中仅含 误差而言。

2、间接平差中,未知参数的选取要求满足 、 。

3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= , 1k p = ,2k p = 。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按间接平差进行求解时,误差方程式个数为 ,法方程式个数为 。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。

6、条件平差中条件方程的个数等于________________,所选参数的个数等于_______________。

7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。

二、计算题(每题2分,共20分)1、条件平差的法方程等价于:A 、0=+W K Q KB 、0=+W Q K WC 、0=+W P K WD 、0=+W P K K答:______2、水准测量中,10km 观测高差值权为8,则5km 高差之权为:A 、2B 、4C 、8D 、16答:______3、已知⎥⎦⎤⎢⎣⎡=∆3112P ,则2L p 为:A 、2B 、3C 、25D 、35答:______4、间接平差中,L Q ˆ为:A 、TA AN 1- B 、A N A T1-C 、T A AN P11--- D 、A N A P T 11---答:______5、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合 C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合. D)观测时的天气状况与观测点地理状况诸因素的综合答:______ 6、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于?(A)1/4 (B)2 (C)1/2 (D)4 答:_____ 7、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A)0.4 (B)2.5 (C)3 (D)253答:____ 8、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

测量平差经典试卷含答案

测量平差经典试卷含答案

一、填空题(每空2分,共20分)1、最优估计量应具有的性质为 、 和 最优估计量主要针对观测值中仅含 误差而言。

2、间接平差中,未知参数的选取要求满足 、 。

3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= , 1k p = ,2k p = 。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按间接平差进行求解时,误差方程式个数为 ,法方程式个数为 。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。

6、条件平差中条件方程的个数等于________________,所选参数的个数等于_______________。

7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。

二、计算题(每题2分,共20分)1、条件平差的法方程等价于:A 、0=+W K Q KB 、0=+W Q K WC 、0=+W P K WD 、0=+W P K K答:______2、水准测量中,10km 观测高差值权为8,则5km 高差之权为:A 、2B 、4C 、8D 、16答:______3、已知⎥⎦⎤⎢⎣⎡=∆3112P ,则2L p 为:A 、2B 、3C 、25D 、35答:______4、间接平差中,L Q ˆ为:A 、TA AN 1- B 、A N A T1-C 、T A AN P11--- D 、A N A P T 11---答:______5、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合 C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合. D)观测时的天气状况与观测点地理状况诸因素的综合答:______ 6、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于(A)1/4 (B)2 (C)1/2 (D)4 答:_____ 7、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A) (B) (C)3 (D)253答:____ 8、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

测量平差-中国地质大学-北京-复习资料01

测量平差-中国地质大学-北京-复习资料01

一、填空题 (共20分,每空 2 分)1、如下图,其中A 、B 、C 为已知点,观测了5个角,若设L 1、L 5观测值的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为ABCDEL 1L 2L 3L 4L 52、测量是所称的观测条件包括 、观测者、3、已知某段距离进行了同精度的往返测量(L 1、L 2),其中误差cm 221==σσ,往返测的平均值的中误差为 ,若单位权中误差cm 40=σ,往返测的平均值的权为4、已知某观测值X 、Y 的协因数阵如下,其极大值方向为 ,若单位权中误差为±2mm ,极小值F 为 mm 。

⎪⎪⎭⎫⎝⎛--=0.15.05.00.2XXQ 二、已知某观测值X 、Y 的协因数阵如下,求X 、Y 的相关系数ρ。

(10分)⎪⎪⎭⎫ ⎝⎛--=25.015.015.036.0XXQ 三、设有一函数2535+=x T ,6712+=y F 其中:⎩⎨⎧+++=+++=n n nn L L L y L L L x βββααα 22112211 αi =A 、βi =B (i =1,2,…,n )是无误差的常数,L i 的权为p i =1,p ij =0(i ≠j )。

(15分) 1)求函数T 、F 的权; 2)求协因数阵TF Ty Q Q 、。

四、如图所示水准网,A 、B 、C 三点为已知高程点, D 、E 为未知点,各观测高差及路线长度如下表所列。

(20分)用间接平差法计算未知点D 、E 的高程平差值及其中误差;ACBDh 1h 2h 3h 4h 5E h 6高差观测值/m 对应线路长度/km已知点高程/mh 1= -1.348 h 2= 0.691 h 3= 1.265 h 4= -0.662 h 5= -0.088 h 5= 0.7631 1 1 1 1 1H A =23.000 H B =23.564 C B =23.663五、如下图所示,A ,B 点为已知高程点,试按条件平差法求证在单一附合水准路线中,平差后高程最弱点在水准路线中央。

误差理论与测量平差基础期末复习试题含答案

误差理论与测量平差基础期末复习试题含答案

误差理论与测量平差基础期末复习试题含答案误差理论与测量平差基础(B) 一、填空题(每空1分,共30分)1. 测量平差就是在基础上,依据原则,对观测值进行合理的调整,即分别给以适当的,使矛盾消除,从而得到一组最可靠的结果,并进行。

2. 测量误差的定义为,按其性质可分为、和。

3. 衡量估计量优劣的标准有、、。

9km,5mm4. 在A、B两点间进行水准测量,路线长度为,每千米单程观测高差的中误差等于,则A、B两点间单程观测高差的中误差等于,往返高差中数的中误差等于,往返高差不符值的限差为。

5. 设为独立等精度偶然误差,为每个误差的均方差,则误差和的限差为,(i,1,2,?,n),,,,i。

(取2倍中误差为限差) [,],6. 若有一组观测值的函数、,设,则二L,?,Lx,aL,?,aLx,bL,?,bLQ,I1n111nn211nnL者的相关系数= ,若再设,则行列式= 。

Q,b,2a(i,1,?,n)xxXii12x3,1,,,,17. 设,,,,,则,X,,,,2Σ,z,x,x,,z,x0Xz21212,,,,1x,122,,,,,, ,。

,,zzz122T8. = 。

tr[E(ΔPΔ)]1,nn,nn,111SS9. 设观测值为,观测值的函数为,欲使的权倒数为,则的权倒数, 。

f,lgSfppfS,,ˆˆv,sinx,2cosx,L10. 设非线性误差方程,参数近似值,观测值,x,60, x,45L,2512510205线性化之后的误差方程为。

11. 平差的数学模型可分为模型和模型,前者描述观测值之间、观测值与参数之间以及参数之间数学期望的关系,后者描述的则是观测值的精度特性。

ˆ,V,AδX,l,n,tn,1n,1t,1T12. 由二次型的数学期望= 可以证明,具有条件的参数平差模型中,E(XAX),ˆBδXW0,,X,t,1r,1r,t,T= 。

E(VPV),,15cm9cm4513. 已知某点的点位中误差等于,点位误差椭圆的短半轴为,短轴的方向角为,则误差椭圆的长半轴等于,长轴的方向角等于。

测量平差复习题答案

测量平差复习题答案

测量平差复习题答案一、单项选择题1. 在测量平差中,观测值的改正数与观测值的符号相反,说明该观测值是()。

A. 正误差B. 负误差C. 系统误差D. 偶然误差答案:B2. 测量平差中,观测值的中误差是指()。

A. 观测值的标准差B. 观测值的均值C. 观测值的偏差D. 观测值的最大误差答案:A3. 测量平差中,单位权中误差的计算公式为()。

A. σ0 = √(Σσ²) / nB. σ0 = Σσ² / nC. σ0 = √(Σσ²) / ΣnD. σ0= Σσ² / Σn答案:A二、多项选择题1. 测量平差中,下列哪些因素会影响观测值的精度()。

A. 观测者的技能水平B. 观测仪器的精度C. 观测环境D. 观测时间答案:ABCD2. 在测量平差中,下列哪些方法可以提高观测精度()。

A. 增加观测次数B. 采用高精度仪器C. 改进观测方法D. 延长观测时间答案:ABC三、填空题1. 测量平差中,观测值的中误差是用来衡量观测值的______。

答案:精度2. 测量平差中,单位权中误差是用来衡量观测值的______。

答案:精度3. 在测量平差中,观测值的改正数是用来______观测值的系统误差。

答案:消除四、简答题1. 简述测量平差中,观测值的中误差与观测值的精度之间的关系。

答案:观测值的中误差是观测值精度的一种度量,中误差越小,说明观测值的精度越高。

2. 测量平差中,如何通过观测值的改正数来判断观测值的误差性质?答案:观测值的改正数与观测值的符号相反,说明该观测值是负误差;如果改正数与观测值的符号相同,则说明该观测值是正误差。

五、计算题1. 已知一组观测值的方差分别为2、3、4,计算该组观测值的单位权中误差。

答案:σ0 = √(2+3+4) / 3 = √9 / 3 = √32. 假设在一次测量中,观测者得到了一组观测值,其改正数分别为-0.1、0.2、-0.3,计算该组观测值的平均改正数。

测量平差习题集答案

测量平差习题集答案

测量平差习题集答案测量平差习题集答案在测量工作中,平差是一项非常重要的环节。

它通过对测量数据进行处理和分析,消除误差,得到更加准确的测量结果。

为了帮助大家更好地理解和掌握平差的方法和技巧,下面将为大家提供一些测量平差习题集的答案。

1. 题目:某测量队在进行水平控制网的测量时,测得A、B两点的水平角为α1=90°30'20",α2=269°29'40",A、B两点的距离为1000米。

已知A点的坐标为(1000, 1000),求B点的坐标。

解答:根据水平角的定义,可以得到以下关系式:α1 = α2 + 180°即90°30'20" = 269°29'40" + 180°化简得90°30'20" = 449°29'40"由于角度超过360°,需要将其转化为小于360°的形式,可以通过减去360°来实现,即:90°30'20" - 360° = 89°29'40"所以,B点的水平角为89°29'40"。

接下来,根据已知的A点坐标和AB距离,可以利用正弦定理来求解B点的坐标。

设B点的坐标为(x, y),则有:(x - 1000)^2 + (y - 1000)^2 = 1000^2根据正弦定理,可以得到以下关系式:sin(89°29'40") = (x - 1000) / 1000化简得:(x - 1000) = 1000 * sin(89°29'40")解得:x ≈ 1999.999同理,可得:y ≈ 1000.000所以,B点的坐标为(1999.999, 1000.000)。

测量平差经典试卷含答案

测量平差经典试卷含答案

1一、填空题(每空2分,共20分)1、最优估计量应具有的性质为 、 和 最优估计量主要针对观测值中仅含 误差而言。

2、间接平差中,未知参数的选取要求满足 、 。

3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= , 1k p = ,2k p = 。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按间接平差进行求解时,误差方程式个数为 ,法方程式个数为 。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。

6、条件平差中条件方程的个数等于________________,所选参数的个数等于_______________。

7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为此公式变为中误差公式。

二、计算题(每题2分,共20分)1、条件平差的法方程等价于:A 、0=+W K Q KB 、0=+W Q K WC 、0=+W P K WD 、0=+W P K K答:______2、水准测量中,10km 观测高差值权为8,则5km 高差之权为:A 、2B 、4C 、8D 、16答:______ 3、已知⎥⎦⎤⎢⎣⎡=∆3112P ,则2L p 为:A 、2B 、3C 、25D 、35 答:______4、间接平差中,L Q ˆ为:A 、TA AN 1- B 、A N A T1-C 、T A AN P11--- D 、A N A P T 11---答:______5、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合 C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合.D)观测时的天气状况与观测点地理状况诸因素的综合 答:______ 6、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于(A)1/4 (B)2 (C)1/2 (D)4 答:_____7、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A) (B) (C)3 (D)253答:____ 8、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

测量平差习题参考答案

测量平差习题参考答案

第一章 习题参考答案 1题.略2题.解 (1)222194σσ+(2)2221212219)3(σσL L L +-(3) 222212211212212211211")(cos )sin(sin ")(cos )sin(sin )cos(cos σρσρ⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫ ⎝⎛++++L L L L L L L L L L L L L 3题. 解TT TLL XY LL YL LL XL B A AD D BAD D AD D ===,,4题.解 设路线总长S 公里,按照测量学上的附合路线计算步骤,则路线闭合差B A h H h h H f -++=21由于是路线中点,故()B A h H h h H f v v -++-===21212121 则线路中点高程()()B A B A B A A A H H h h H H h h H h h H h H v h H H ++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=++-=-++-+=-+=2121212121212121ˆ212121111中点设每公里高差观测中误差为0σ,则021)2/(σσσs h h ==按误差传播定律)(16,10425)52/(41)52/(41)2/(41)2/(414141212100212122220202222ˆ21121km S S s s s s h h h h H ≤≤=⋅⨯+⋅⨯=⨯+⨯=+=⎪⎪⎪⎪⎭⎫⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=σσσσσσσ中点5.解 设每个测回的中误差为0σ,需要再增加n 个测回,则)2(2028.0,28.020)1(2042.0,42.0200000+±=±=+±=±=n n σσσσ由上式可解出n.即252023202028.042.020222=-⎪⎭⎫ ⎝⎛⨯=-⨯=n 再增加25个测回6题.解[][][][][][][][][]][][][,100010001...,...)...(2121211212122111⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎣⎡⎥⎦⎤==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎢⎣⎡⎥⎦⎤=+++==p p p p p p p p p P p P p P p Q L L L P p P p P p L p L p L p x n n n p xx n n n n p p pL x][][][][][][p p p p p p p p p p p p p p p nnn⋅⋅++⋅⋅+⋅⋅=1 (1)12221117题。

测量平差复习资料

测量平差复习资料

测量平差复习资料一、证明题
1、Z与W的协方差
(1)
2、告诉条件平差公式告诉(1)条件平差的公式;推论出Q VV 及Q LL
(2)间接平差
3、水准测量(1)按测站
(2)按路线
二、推导题
(1)
(2)
填空题
1、u = 0 条件平差;u = t 间接平差;u<t 附有参数的条件平差;u>t 附有限制条件的间接平差(注:t为必要观测,u为参数的个数)
2、正态分布参数μ、σ,μ确定了曲线中心位置,σ越小f(x)值越大曲线越陡峭。

3网中只有一个已知高程点称为自由网,其必要观测为网中水准点的总数减一。

符合水准网,网中已知高程点大于等于2个,其必要观测为网中待测水准点的个数。

(p69)
3、测量误差的种类主要平定那种误差
粗差、系统误差、偶然误差(主要平定的误差)
4、精度(p15)精确度(p19)
5、偶然误差的特性:有界性聚中性对称性、抵偿性
6、协方差p27
计算题
P67(例5-1) p99(例6-1) p109(例6-4)。

测量平差备考复习资料

测量平差备考复习资料

一、 正误判断(正确“T ”,错误“F ”每题1分,共10 分)。

1.已知两段距离的长度及中误差分别为128.286m ±4.5cm 与218.268m ±4.5cm ,则其真误差与精度均相同( )。

2.如果X 与Y 的协方差0xy σ=,则其不相关( )。

3.水准测量中,按公式i icp s =(i s 为水准路线长)来定权,要求每公里高差精度相同( )。

4.可用误差椭圆来确定待定点与待定点之间的某些精度指标( )。

5.在某一平差问题中,观测数为n ,必要观测数为t ,参数个数u <t 且不独立,则该平差问题可采用附有参数的条件平差的函数模型。

( )。

6.由于同一平差问题采用不同的平差方法得到的结果不同,因此为了得到最佳平差结果,必须谨慎选择平差方法( )。

7.根据公式()222220cos sin 0360E F θσθθθ=+≤≤得到的曲线就是误差椭圆( )。

8.对于特定的平面控制网,如果按间接平差法解算,则误差方程的个数是一定的( )。

9.对于同一个观测值来说,若选定一定权常数0σ,则权愈小,其方差愈小,其精度愈高( )。

10.设观测值向量,1n L 彼此不独立,其权为()1,2,,i P i n =,12(,,,)n Z f L L L =,则有22211221111Z n nf f f P L P L P L P ⎛⎫⎛⎫⎛⎫∂∂∂=+++ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭( )。

二、填空题(每空2分,共24分)。

1、设对某三角网进行同精度观测,得三角形角度闭合差分别为:3秒,-3秒,2秒,4秒,-2秒,-1秒,0秒,-4秒,3秒,-2秒,则测角中误差为 秒。

2、某平差问题函数模型)(I Q =为⎪⎪⎩⎪⎪⎨⎧=-=--=+-+=--0ˆ03060515443121x v v v v v v v v ,则该函数模型为 平差方法的模型;=n ,=t ,=r ,=c ,=u 。

测量平差练习题及参考答案

测量平差练习题及参考答案

计算题1、如图,图中已知A 、B 两点坐标,C 、D 、E 为待定点,观测了所有内角,试用条件平差的方法列出全部条件方程并线性化。

解:观测值个数 n =12,待定点个数t =3,多余观测个数r =n -2t =6① 图形条件4个:)180(0)180(0)180(0)180(0121110121110987987654654321321-++-==-++-++-==-++-++-==-++-++-==-++L L L w w v v v L L L w w v v v L L L w w v v v L L L w w v v v d d c c b b a a② 圆周条件1个:)360(0963963-++-==-++L L L w w v v v e e③ 极条件1个:ρ''--==----++)sin sin sin sin sin sin 1(0cot cot cot cot cot cot 852741774411885522L L L L L L w w v L v L v L v L v L v L f f3、如图所示水准网,A 、B 、C 三点为已知高程点, D 、E 为未知点,各观测高差及路线长度如下表所列。

用间接平差法计算未知点D 、E 的高程平差值及其中误差;ACBDh 1h 2h 3h 4h 5Eh 6高差观测值/m 对应线路长度/km已知点高程/mh 1= -1.348 h 2= 0.691 h 3= 1.265 h 4= -0.662 h 5= -0.088 h 5= 0.763 1 1 1 1 1 1H A =23.000 H B =23.564 C B =23.6633、解:1)本题n=6,t=2,r=n-t=4;选D 、E 平差值高程为未知参数21ˆˆX X 、 则平差值方程为:1615142322211ˆˆˆˆˆˆˆˆˆˆˆˆˆX H hH X h H X h H X h H X h X X h AA BAB -=-=-=-=-=-=则改正数方程式为:6165154143232221211ˆˆˆˆˆˆˆl xv l xv l x v l xv l x v l x xv --=-=-=-=-=--=取参数近似值 255.24907.2220221011=+==++=h H X h h H X B B 、令C=1,则观测值的权阵:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=10111101P ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=010*********B ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------=+-=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=7551000)()()()()()()(016015014023022020110654321X H h H X h H X h H X h H X h X X h d BX h l l l l l l l C A B A B组法方程0ˆ=-W xN ,并解法方程: ⎪⎪⎭⎫ ⎝⎛--==3114PB B N T⎪⎪⎭⎫ ⎝⎛-==107Pl B W T⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==-311074113111ˆ1W N x求D 、E 平差值:m x X X H m x X X H D C 258.24ˆˆˆ906.22ˆˆˆ20221011=+===+==2)求改正数:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=-=664734ˆl xB v 则单位权中误差为:mm r pv v T 36.64162ˆ0±=±=±=σ则平差后D 、E 高程的协因数阵为:⎪⎪⎭⎫⎝⎛==-41131111ˆˆNQ X X根据协因数与方差的关系,则平差后D 、E 高程的中误差为:mmmm Q mm mm Q E D 84.311229ˆˆ32.322669ˆˆ220110±=±==±=±==σσσσ4、如图,在三角形ABC 中,同精度观测了三个内角:4000601'''︒=L ,5000702'''︒=L ,7000503''''︒=L ,按间接平差法列出误差方程式。

测量平差复习题答案

测量平差复习题答案

测量平差复习题答案一、选择题1. 平差的目的是什么?A. 确定测量数据的准确度B. 消除测量误差C. 计算未知点的坐标D. 以上都是2. 测量平差中,观测值的权值与什么有关?A. 观测值的精度B. 观测条件C. 测量仪器的精度D. 观测者的经验3. 测量误差的来源主要包括哪些?A. 仪器误差B. 人为误差C. 环境误差D. 所有以上4. 测量平差中,最小二乘法的基本原理是什么?A. 误差平方和最小B. 误差绝对值和最小C. 误差乘积最小D. 误差平均值最小5. 测量平差中,如何确定观测值的权?A. 根据观测者的经验和直觉B. 根据观测值的精度C. 根据测量仪器的精度D. 根据观测条件二、填空题6. 平差过程中,测量误差的改正数通常用________表示。

7. 测量平差中,权的概念是指________。

8. 测量误差的类型包括系统误差和________。

9. 最小二乘法中,观测值的权值通常与________成反比。

10. 测量平差中,常用的权函数有________和________。

三、简答题11. 简述测量平差中,最小二乘法的计算步骤。

12. 说明测量平差中,如何确定观测值的权值。

13. 描述测量平差中,误差传播的概念及其重要性。

四、计算题14. 假设有一组观测数据,其观测值为:x1=100.2mm, x2=100.3mm, x3=100.1mm。

已知观测误差的标准差为σ=0.1mm,试计算这组数据的平均值及其标准误差。

五、论述题15. 论述测量平差在工程测量中的重要性及其应用。

【答案】1. D2. A3. D4. A5. B6. 改正数7. 观测值的相对重要性8. 随机误差9. 观测误差的方差10. 倒数权函数,倒数平方权函数11. 略(根据最小二乘法的基本原理和计算步骤回答)12. 略(根据观测值的精度和误差方差来确定权值)13. 略(描述误差传播的概念,以及在测量平差中的重要性)14. 平均值 = (100.2 + 100.3 + 100.1) / 3 = 100.2mm;标准误差= σ / √3 = 0.1 / √3 mm15. 略(根据测量平差在工程测量中的重要性和应用进行论述)【结束语】测量平差是确保测量结果准确性的重要手段,通过本复习题的练习,希望能够帮助大家更好地理解和掌握测量平差的基本理论、方法和应用。

测量平差复习题及答案

测量平差复习题及答案

测量平差复习题及答案一、综合题1.已知两段距离(de)长度及中误差分别为cm m 5.4465.300±及cm m 5.4894.660±,试说明这两段距离(de)真误差是否相等他们(de)精度是否相等答:它们(de)真误差不一定相等;相对精度不相等,后者高于前者.2.已知观测值向量⎪⎪⎭⎫ ⎝⎛=2121L L L (de)权阵为⎥⎥⎦⎤⎢⎢⎣⎡=32313132LL P ,现有函数21L L X +=,13L Y =,求观测值(de)权1L P ,2L P ,观测值(de)协因数阵XY Q .答:12/3L P =;22/3L P =;3XY Q =3.在下图所示三角网中,A .B 为已知点,41~P P 为待定点,已知32P P 边(de)边长和方位角分别为0S 和0α,今测得角度1421,,,L L L 和边长21,S S ,若按条件平差法对该网进行平差:(1)共有多少个条件方程各类条件方程各有多少个(2)试列出除图形条件和方位角条件外(de)其它条件方程(非线性条件方程不要求线性化)答:(1)14216,6,10n t r =+=== ,所以图形条件:4个;极条件:2个;边长条件:2个;基线条件:1个;方位角条件:1个 (2)四边形14ABPP (de)极条件(以1P 为极): 34131241314ˆˆˆˆsin()sin sin 1ˆˆˆˆsin sin sin()L L L L L L L L +⋅⋅=+ 四边形1234PP P P (de)极条件(以4P 为极): 10116891167ˆˆˆˆsin()sin sin 1ˆˆˆˆsin sin sin()L L L L L L L L +⋅⋅=+ 边长条件(1ˆAB S S - ):123434ˆˆˆˆˆˆsin()sin()AB S S L L L L L =+++ 边长条件(12ˆˆS S - ):1121314867ˆˆˆsin ˆˆˆˆˆsin()sin sin()S L S L L L L L ⋅=++ 基线条件(0AB S S - ):02101191011ˆˆˆˆˆsin()sin()S S L L L L L =+++4.A .B .C 三点在同一直线上,测出了AB .BC 及AC(de)距离,得到4个独立观测值,m L 010.2001=,m L 050.3002=,m L 070.3003=,m L 090.5004=,若令100米量距(de)权为单位权,试按条件平差法确定A .C 之间各段距离(de)平差值Lˆ.答:ˆ[200.0147,300.0635,300.0635,500.0782]T L=5.在某航测像片上,有一块矩形稻田.为了确定该稻田(de)面积,现用卡规量测了该矩形(de)长为cm L 501=,方差为22136.0cm =σ,宽为cm L 302=,方差为22236.0cm =σ,又用求积仪量测了该矩形(de)面积231535cm L =,方差为42336cm =σ,若设该矩形(de)长为参数1ˆX ,宽为参数2ˆX ,按间接平差法平差:(1)试求出该长方形(de)面积平差值;(2)面积平差值(de)中误差.答:(1)令0111ˆX X x =+,0222ˆX X x =+,011X L =,022X L =,误差方程式为: 1122312ˆˆ305035v xv xv v v ===+-令:10013050B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,0035L ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,单位权方差为2036σ=,则法方程为:T TB PBX B PL=,可得:120.30.5x X x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,则0111ˆ50.3X X x =+=,0222ˆ30.5X X x =+= 所以面积平差值为2312ˆˆˆ50.3*30.51534L X X cm ===(2)2200.35T V PVcm rσ== ()12112212ˆˆˆˆˆˆˆˆˆdXdS X dX X dX X X dX ⎛⎫=+= ⎪ ⎪⎝⎭,所以ˆˆ98.94SS Q =则2ˆ 3.4814S cm σσ==±6.如图水准网中,A 为已知点,高程为10.000A H m =,观测高差及路线长度为:m h 563.21=,km S 11=;m h 326.12-=,km S 12=;m h 885.33-=,km S 23=;m h 883.34-=,km S 24=;若设参数12334ˆˆˆˆˆˆˆTTBX X X X H h h ⎡⎤⎡⎤==⎣⎦⎣⎦,定权时C= 2 km ,试列出:(1)、误差方程和限制条件; (2)、法方程式.答:(1)误差方程为:112231243ˆˆˆˆ4ˆv xv x v x x v x=⎧⎪=⎪⎨=++⎪⎪=⎩ 限制条件为:13ˆˆ20xx --= (2)法方程为:1234ˆ31004ˆ130140ˆ00110ˆ01102x x xx-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 7.设对某量进行了两组观测,得到观测值(de)真误差如下: 第一组:3,-3,2,4,-2,-1,0,-4,3,-2 第二组:0,-1,-7,2,1,-1,8,0,-3,1 试回答如下问题:(1)两组值(de)平均误差1ˆθ、2ˆθ和中误差1ˆσ、2ˆσ(2)这两组观测值(de)精度,哪一组精度高,为什么答:(1)1ˆθ=,2ˆθ=;1ˆσ=,2ˆσ=(2)两组观测值(de)平均误差相同,而中误差不同,由于中误差对大(de)误差反应敏感,故通常采用中误差作为衡量精度(de)指标,本题中1ˆσ<2ˆσ,故第一组观测值精度高.8.设对丈量10km(de)距离同精度丈量10次,令其平均值(de)权为5,现以同样等级(de)精度丈量(de)距离.问丈量此距离一次(de)权是多少.(问答题,10分)答:一次观测值(de)权倒数1025N C P === ,所以每次丈量10km 距离(de)权为:100.5P =长度为i S 距离(de)权为:1i i C P S = ,则112.510,2.510C C P P == ,所以15C = 故12.522.5C P == 9.下列各式中(de)()1,2,3i L i =均为等精度独立观测值,其中误差为σ,试求下列函数(de)中误差:(1)()12312X L L L =++;(2)321L L L Y =答:(1)x σ= (2)3x σ=10.在图一所示测角网中,A 、B 、C 为待定点,同精度观测了1L 、2L 、3L 和4L 共四个角度观测值.设平差后BAC ∠为参数Xˆ. (1)试指出采用何种平差模型; (2)写出函数模型和法方程.答:采用附有参数(de)条件平差模型;平差方程为:123ˆˆˆ1800L L L ++-= 34ˆˆ3600L L +-= 1ˆˆ0L X -= 则条件方程为:12313421300ˆ0v v v w v v w v x w +++=⎧⎪++=⎨⎪-+=⎩ ,其中闭合差方程为1123234031w L L L w L L w L X ⎧=++⎪=+⎨⎪=-⎩,建立法方程为: 1122333110120001011ˆ0100k w k w k w x⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪+= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 11.有水准网如下图,网中A .B 为已知水准点,高程m H A 013.12+=.m H B 013.10+=可视为无误差,C .D 为待定点,共观测了四个高差,高差观测值及相应水准路线(de)距离为:km S 21=,m h 004.11-=,km S 12=,m h 516.12+=,km S 23=,m h 512.23+=,km S 5.14=,m h 520.14+=.试用条件平差法求C 和D 两点高程(de)平差值.答:4,2n t == ,所以2r = ,条件方程如下:12324ˆˆˆ0ˆˆ0A Bh h h H H h h ⎧+-+-=⎪⎨-=⎪⎩ 以ˆi i ih h v =+ 代入上式,可得上述方程(de)最终形式为: 123411100001014v v v v ⎛⎫⎪-⎛⎫⎛⎫ ⎪-= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎪ ⎪⎝⎭ ,以1km 观测高差为单位权观测,则法方程为: 1212502.540k k k k +=⎧⎨+-=⎩ ,解得120.35, 1.74k k =-= 进而求得()0.74 1.40.7 2.6TV mm =--观测值(de)平差值为:1234ˆˆˆˆ1.0047, 1.5174, 2.5127, 1.5174L m L m L m L m =-=== 则C 、D 两点(de)平差高程为:11.0083,12.5257C D H m H m ==12.设在三角形ABC 中,观测三内角321,,L L L ,将闭合差平均分配后得到(de)各角之值为014489ˆ,025050ˆ,030140ˆ321'''='''='''= L L L ,如下图.它们(de)协方差阵为⎪⎪⎪⎭⎫⎝⎛------=633363336LLD ,已知边长m S 000.15000=(无误差),试求ba S S ,(de)长度和它们(de)协方差SS D .答:013023ˆˆˆˆsin /sin 967.679,sin /sin 1150.573a b S S L L m S S L L m ==== 对函数式取自然对数,并微分得:331213231323ˆˆˆˆcos cos cos cos ˆˆˆˆ,ˆˆˆˆsin sin sin sin a b a b dS L dS L L L dL dL dL dL S S L L L L ====即1132233ˆˆˆ0ˆˆˆ0ˆa a a b b b dLdS S ctgL S ctgL dS dL dS S ctgL S ctgL dL ⎛⎫ ⎪⎛⎫-⎛⎫== ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪⎝⎭则23263311460114604 1.860.7713630962096250.77 1.32(20610)33645SS D cm --⎛⎫⎛⎫--⎛⎫⎛⎫ ⎪⎪=--⨯= ⎪ ⎪ ⎪⎪--⨯⎝⎭⎝⎭⎪⎪----⎝⎭⎝⎭。

误差理论与测量平差期末试卷及答案(1)

误差理论与测量平差期末试卷及答案(1)

《误差理论与测量平差》期末试卷(1)班级____________学号____________________姓名____________题号一二三四五六总分成绩一、填空题(每题3分,共计30分)1.观测误差的来源主要有测量仪器、观测者、外界环境三个方面。

2.根据观测误差对观测结果的影响性质,可将观测误差分为系统误差、偶然误差和粗差。

3.在测量平差中,常用的衡量精度的指标主要有中误差、相对误差和限差。

4.在1:1000的地形图上,量得a、b 两点间的距离d=40.6mm,量测中误差为d σ=0.2mm,则该两点间的实际距离中误差为200mm 。

5.在测量中权为1的观测值称为单位权观测值,与之对应的中误差称为单位权中误差。

6.间接平差中,未知参数X 的选取要求满足相互独立和参数个数等于必要观测个数。

7.在条件平差中,已知观测总量n=7,其中t=3,r=4,则条件方程的个数为4。

8.已知观测值L 的方差D LL =4,单位权中误差为2,则该观测值的权为P L =1。

9.不论在条件平差还是间接平差中,单位权中误差的计算公式都为0ˆσ=t n PV V T -=0σ。

10.若某待定点P 两个相互垂直方向上的坐标方差为2x σ、2y σ,则该点的点位中误差P σ=22y x P σσσ+=。

二、简答题:(每题5分,共25分)1、什么叫测量误差?产生测量误差的原因有哪些?答:(1)对某量进行多次观测,所得的各次观测结果都存在差异,通常将每次测量所得的观测值与该量的真值之间的差值称为测量误差,即测量误差=真值-观测值。

(2)产生测量误差的原因主要有:观测仪器,观测者和外界环境。

2、系统误差、偶然误差各自的特性?并举例说明。

答:系统误差指在相同的观测条件下作一系列的观测时,大小和符号表现出系统性,或按一定规律变化,或者为某一常数的误差,其具有累积性,如水准尺的刻画不准确、水准仪的视准轴误差、温度对钢尺量距的误差、尺长误差等;偶然误差指在相同的观测条件下作一系列的观测时,从单个误差看,该列误差的大小和符号表现出偶然性,无规律,但就大量误差的总体而言,具有一定的统计规律,主要表现为有界性、对称性,单峰性和抵偿性,如对中整平误差、照准目标误差、读数时估读误差等。

测量平差复习题

测量平差复习题

《测量平差》复习题第一章:绪论1、什么是观测量的真值任何观测量,客观上总存在一个能反映其真正大小的数值,这个数值称为观测量的真值。

2、什么是观测误差观测量的真值与观测值的差称为观测误差。

3、什么是观测条件仪器误差、观测者和外界环境的综合影响称为观测条件。

4、根据误差对观测结果的影响,观测误差可分为哪几类根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。

5、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。

6、观测条件与观测质量之间的关系是什么观测条件好,观测质量就高,观测条件差,观测质量就低。

7、怎样消除或削弱系统误差的影响一是在观测过程中采取一定的措施;二是在观测结果中加入改正数。

8、测量平差的任务是什么⑴求观测值的最或是值(平差值);⑵评定观测值及平差值的精度。

第二章:误差理论与平差原则1、描述偶然误差分布常用的三种方法是什么⑴列表法;⑵绘图法;⑶密度函数法。

2、偶然误差具有哪些统计特性(1) 有界性:在一定的观测条件下,误差的绝对值不会超过一定的限值。

(2) 聚中性:绝对值较小的误差比绝对值较大的误差出现的概率要大。

(3) 对称性:绝对值相等的正负误差出现的概率相等。

(4) 抵偿性:偶然误差的数学期望或偶然误差的算术平均值的极限值为0。

3、由偶然误差特性引出的两个测量依据是什么⑴制定测量限差的依据;⑵判断系统误差(粗差)的依据。

4、什么叫精度精度指的是误差分布的密集或离散的程度。

5、观测量的精度指标有哪些(1) 方差与中误差;(2) 极限误差;(3) 相对误差。

6、极限误差是怎样定义的在一定条件下,偶然误差不会超过一个界值,这个界值就是极限误差。

通常取三倍中误差为极限误差。

当观测要求较严时,也可取两倍中误差为极限误差。

7、误差传播律是用来解决什么问题的误差传播律是用来求观测值函数的中误差。

8、应用误差传播律的实际步骤是什么(1) 根据具体测量问题,分析写出函数表达式;(2) 根据函数表达式写出真误差关系式;(3) 将真误差关系式转换成中误差关系式。

测量平差 答案

测量平差 答案

南京师范大学模拟试卷课程误差理论与测量平差基础一、填空题(20分)1. 某平差问题有以下函数模型(Q=I)(11分) 1L ∧=1x ∧2L ∧=1x ∧-2x ∧3L ∧=-1x ∧+3x ∧4L ∧=-3x ∧+A 5L ∧=-2x ∧-B 1x ∧+3x ∧+C=0试问:(1)以上函数模型为何种平差方法的模型?(3分)答:附有限制条件的间接平差。

(2)本题中,n= ,t= ,c= ,u= ,s= 。

(5分) 答:n=5,t=2,c=5,u=3,s=1 (3)将上述方程写成矩阵形式。

(3分)答:5,1L ∧=100110101001010⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥-⎣⎦3,1x ∧+000A B ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦()1013,1x ∧+C=02. 衡量精度的指标有方差和中误差、平均误差、或然误差、 、 。

(4分)答:极限误差 相对中误差3. 测定A 、B 两点间高差,共布设了16个测站,各测站观测高差是同精度独立观测值,其方差均值为2σ站=1m 2m ,则AB 两点间高差的中误差为ABh σ= 。

(5分) 答:ABh σ=4mm 。

二、证明题在间接平差中,参数1n X ∧与1n V 改正数是否相关?试证明之。

(10分)证明:X ∧=0x +x ∧BB N x ∧-TB Pl=0x ∧=1BBN -T B Pl又l=L-oLx ∧=1BBN -T B Pl -1BB N -T B P o L V=B x ∧-l=B 1BBN -TB Pl -B 1BB N -TB P oL -L+oL = (B 1BBN -TB P-E)L- B 1BB N -TB P oL +oL 令 LL Q =Qx vQ ∧=1BB N -TB PQ 1(-E)T T BB BN B P -=1BBN -T B ( P 1BB N -TB P -E) =1BBN -TB P 1BB N -TB P-E 1BB N -TB =1BBN -TB -1BB N -TB =0 ∴1n X ∧与1n V 不相关。

测量平差期末考试题及答案

测量平差期末考试题及答案

测量平差期末考试题及答案一、选择题(每题2分,共20分)1. 平差的基本目的是()。

A. 确定测量数据的准确度B. 确定测量误差的来源C. 消除测量误差D. 优化测量数据的分布答案:C2. 测量误差的来源主要包括()。

A. 测量仪器的误差B. 测量方法的误差C. 测量环境的误差D. 以上都是答案:D3. 测量平差中,权的概念是指()。

A. 测量数据的可靠性B. 测量数据的准确性C. 测量数据的重要性D. 测量数据的稳定性答案:A4. 测量平差中,最小二乘法的基本原理是()。

A. 使得测量误差的绝对值之和最小B. 使得测量误差的平方和最小C. 使得测量误差的平均值最小D. 使得测量误差的方差最小答案:B5. 在测量平差中,观测值的改正数是指()。

A. 观测值与真值之差B. 观测值与平均值之差C. 观测值与预测值之差D. 观测值与估计值之差答案:A...(此处省略其他选择题)二、填空题(每空2分,共20分)1. 平差的基本任务是_________测量误差,以获得_________的测量结果。

答案:消除或减小;准确可靠2. 测量误差可以分为系统误差和_________误差。

答案:随机3. 权的倒数称为_________。

答案:权的倒数4. 最小二乘法是一种常用的平差方法,其核心思想是使观测值的_________达到最小。

答案:残差平方和5. 测量平差中,观测值的改正数是指观测值与_________之差。

答案:平差值...(此处省略其他填空题)三、简答题(每题10分,共30分)1. 简述最小二乘法在测量平差中的应用。

答案:最小二乘法在测量平差中是一种常用的数据处理方法,它通过最小化观测值的残差平方和来寻找最佳估计值。

在应用时,首先需要建立观测方程,然后通过求解线性方程组来得到未知参数的估计值。

这种方法在处理多个观测数据时,能够合理地分配误差,使得所有观测数据的误差总和最小,从而得到更加准确的测量结果。

2. 解释什么是权,它在测量平差中的作用是什么。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测量平差复习题及答案一、综合题1.已知两段距离的长度及中误差分别为cmm5.4465.300±及cmm5.4894.660±,试说明这两段距离的真误差是否相等他们的精度是否相等答:它们的真误差不一定相等;相对精度不相等,后者高于前者。

`2.已知观测值向量⎪⎪⎭⎫⎝⎛=2121LLL的权阵为⎥⎥⎦⎤⎢⎢⎣⎡=32313132LLP,现有函数21LLX+=,13LY=,求观测值的权1LP,2LP,观测值的协因数阵XYQ。

答:12/3LP=;22/3LP=;3XYQ=3.在下图所示三角网中,A.B为已知点,41~PP为待定点,已知32PP边的边长和方位角分别为0S和0α,今测得角度1421,,,LLL 和边长21,SS,若按条件平差法对该网进行平差:、(1)共有多少个条件方程各类条件方程各有多少个(2)试列出除图形条件和方位角条件外的其它条件方程(非线性条件方程不要求线性化)答:(1)14216,6,10n t r=+===,所以图形条件:4个;极条件:2个;边长条件:2个;基线条件:1个;方位角条件:1个(2)四边形14ABPP的极条件(以1P为极):~34131241314ˆˆˆˆsin()sin sin1ˆˆˆˆsin sin sin()L L L LL L L L+⋅⋅=+四边形1234PP P P的极条件(以4P为极):10116891167ˆˆˆˆsin()sin sin 1ˆˆˆˆsin sin sin()L L L L L L L L +⋅⋅=+ 边长条件(1ˆAB S S - ):123434ˆˆˆˆˆˆsin()sin()AB S S L L L L L =+++ 边长条件(12ˆˆS S - ):1121314867ˆˆˆsin ˆˆˆˆˆsin()sin sin()S L S L L L L L ⋅=++ ]基线条件(0AB S S - ):02101191011ˆˆˆˆˆsin()sin()S S L L L L L =+++4.A .B .C 三点在同一直线上,测出了AB .BC 及AC 的距离,得到4个独立观测值,m L 010.2001=,m L 050.3002=,m L 070.3003=,m L 090.5004=,若令100米量距的权为单位权,试按条件平差法确定A .C 之间各段距离的平差值Lˆ。

答:ˆ[200.0147,300.0635,300.0635,500.0782]T L= (5.在某航测像片上,有一块矩形稻田。

为了确定该稻田的面积,现用卡规量测了该矩形的长为cm L 501=,方差为22136.0cm =σ,宽为cm L 302=,方差为22236.0cm =σ,又用求积仪量测了该矩形的面积231535cm L =,方差为42336cm =σ,若设该矩形的长为参数1ˆX ,宽为参数2ˆX ,按间接平差法平差:(1)试求出该长方形的面积平差值;(2)面积平差值的中误差。

答:(1)令0111ˆX X x =+,0222ˆX X x =+,011X L =,022X L =,误差方程式为: 1122312ˆˆ305035v xv xv v v ===+->令:10013050B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,0035L ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,单位权方差为2036σ=,则法方程为:T TB PBX B PL =,可得:120.30.5x X x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,则0111ˆ50.3X X x =+=,0222ˆ30.5X X x =+= 所以面积平差值为2312ˆˆˆ50.3*30.51534L X X cm ===(2)2200.35T V PVcm rσ== ()12112212ˆˆˆˆˆˆˆˆˆdX dS X dX X dX X X dX ⎛⎫=+= ⎪ ⎪⎝⎭,所以ˆˆ98.94SS Q = 则2ˆˆˆ0 3.4814S SS Q cm σσ==±…6.如图水准网中,A 为已知点,高程为10.000A H m=,观测高差及路线长度为:m h 563.21=,km S 11=;m h 326.12-=,km S 12=;m h 885.33-=,km S 23=;m h 883.34-=,km S 24=;若设参数12334ˆˆˆˆˆˆˆTTBX X X X H h h ⎡⎤⎡⎤==⎣⎦⎣⎦,定权时C= 2 km ,试列出: (1)、误差方程和限制条件; (2)、法方程式。

%答:(1)误差方程为:112231243ˆˆˆˆ4ˆv xv x v x x v x=⎧⎪=⎪⎨=++⎪⎪=⎩ 限制条件为:13ˆˆ20xx --=(2)法方程为:1234ˆ31004ˆ130140ˆ00110ˆ01102x x xx-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ ,7.设对某量进行了两组观测,得到观测值的真误差如下:第一组:3,-3,2,4,-2,-1,0,-4,3,-2 第二组:0,-1,-7,2,1,-1,8,0,-3,1 试回答如下问题:(1)两组值的平均误差1ˆθ、2ˆθ和中误差1ˆσ、2ˆσ;(2)这两组观测值的精度,哪一组精度高,为什么 答:(1)1ˆθ=,2ˆθ=;1ˆσ=,2ˆσ=(2)两组观测值的平均误差相同,而中误差不同,由于中误差对大的误差反应敏感,故通常采用中误差作为衡量精度的指标,本题中1ˆσ<2ˆσ,故第一组观测值精度高。

8.设对丈量10km 的距离同精度丈量10次,令其平均值的权为5,现以同样等级的精度丈量的距离。

问丈量此距离一次的权是多少。

(问答题,10分) ^答:一次观测值的权倒数1025N C P === ,所以每次丈量10km 距离的权为:100.5P = 长度为i S 距离的权为:1i i C P S = ,则112.510,2.510C C P P == ,所以15C = 故12.522.5C P == 9.下列各式中的()1,2,3i L i =均为等精度独立观测值,其中误差为σ,试求下列函数的中误差:(1)()12312X L L L =++;@(2)321L L L Y =答:(1)x σ= (2)3x σ=10.在图一所示测角网中,A、B、C为待定点,同精度观测了1L、2L、3L和4L共四个角度观测值。

设平差后BAC∠为参数Xˆ。

(1)试指出采用何种平差模型;(2)写出函数模型和法方程。

:答:采用附有参数的条件平差模型;平差方程为:123ˆˆˆ1800L L L++-=34ˆˆ3600L L+-=1ˆˆ0L X-={则条件方程为:123134213ˆ0v v v wv v wv x w+++=⎧⎪++=⎨⎪-+=⎩,其中闭合差方程为112323431w L L Lw L Lw L X⎧=++⎪=+⎨⎪=-⎩,建立法方程为:112233311012001011ˆ00100k wk wk wx⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪ ⎪⎪+=⎪ ⎪⎪-⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭11.有水准网如下图,网中A.B为已知水准点,高程mHA013.12+=.mHB013.10+=可视为无误差,C.D为待定点,共观测了四个高差,高差观测值及相应水准路线的距离为:kmS21=,mh004.11-=,kmS12=,mh516.12+=,kmS23=,mh512.23+=,kmS5.14=,mh520.14+=。

试用条件平差法求C和D两点高程的平差值。

答:4,2n t == ,所以2r = ,条件方程如下:12324ˆˆˆ0ˆˆ0A Bh h h H H h h ⎧+-+-=⎪⎨-=⎪⎩ 以ˆi i ih h v =+ 代入上式,可得上述方程的最终形式为: 123411100001014v v v v ⎛⎫⎪-⎛⎫⎛⎫ ⎪-= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎪ ⎪⎝⎭ ,以1km 观测高差为单位权观测,则法方程为: 1212502.540k k k k +=⎧⎨+-=⎩ ,解得120.35, 1.74k k =-= 进而求得()0.74 1.40.7 2.6TV mm =--观测值的平差值为:1234ˆˆˆˆ1.0047, 1.5174, 2.5127, 1.5174L m L m L m L m =-=== 则C 、D 两点的平差高程为:11.0083,12.5257C D H m H m ==12.设在三角形ABC 中,观测三内角321,,LL L ,将闭合差平均分配后得到的各角之值为014489ˆ,025050ˆ,030140ˆ321'''='''='''= L L L ,如下图。

它们的协方差阵为⎪⎪⎪⎭⎫⎝⎛------=633363336LLD ,已知边长m S 000.15000=(无误差),试求b a S S ,的长度和它们的协方差SSD 。

答:013023ˆˆˆˆsin /sin 967.679,sin /sin 1150.573a b S S L L m S S L L m ==== 对函数式取自然对数,并微分得:331213231323ˆˆˆˆcos cos cos cos ˆˆˆˆ,ˆˆˆˆsin sin sin sin a b a b dS L dS L L L dL dL dL dL S S L L L L ==== 即1132233ˆˆˆ0ˆˆˆ0ˆa a a b b b dLdS S ctgL S ctgL dS dL dS S ctgL S ctgL dL ⎛⎫ ⎪⎛⎫-⎛⎫== ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪⎝⎭则23263311460114604 1.860.7713630962096250.77 1.32(20610)33645SS D cm --⎛⎫⎛⎫--⎛⎫⎛⎫ ⎪⎪=--⨯= ⎪ ⎪ ⎪⎪--⨯⎝⎭⎝⎭⎪⎪----⎝⎭⎝⎭。

相关文档
最新文档