人教课标六下抽屉原理例3摸球(抽取)游戏

合集下载

人教课标六下抽屉原理例3摸球(抽取)游戏课件

人教课标六下抽屉原理例3摸球(抽取)游戏课件

盒子里有红袜子和黑袜子各6只。要 想摸出的袜子一定能配成一双,最 少要摸出几只?
物体:?只袜子 抽屉:2种颜色
至少数:2
(2-1)×2+1=3(只)
盒子里有红袜子和黑袜子各6只。如 果要摸出颜色不同的2只,最少要摸 出几只?
物体:?只袜子 抽屉:每种颜色6只
至少数:2
(2-1)×6+1=7(只)
猜一猜: 1、一次摸出2个球,有几种情况? 观察出现的情况,结果是(可能 ) 摸出2个同色的球。(选择“可能” 或“一定”填空)
猜一猜: 2、一次摸出3个ห้องสมุดไป่ตู้,有几种情况? 观察出现的情况,结果是(一定 ) 摸出2个同色的球。(选择“可能” 或“一定”填空)
请观察,摸出球的个数与 颜色种数有什么关系?
摸出球的个数比颜色种数多1。
能不能用抽屉原理来解决?
例3:盒子里有同样大小的红球和 蓝球各4个。要想摸出的球一定有2 个同色的,最少要摸出几个球?
想一想: 1、在这道题中,什么是“物体”? 什么是“抽屉”?什么是“至少 数 ”? 2、从题目可物知体,问题相当于求抽屉 原理中的( )?怎样求?
例3:盒子里有同样大小的红球和 蓝球各4个。要想摸出的球一定有 2 个同色的,最少要摸出几个球?
物体:?个球 至少数:2
抽屉:每种颜色 2-1=1
4个球
想( )÷4=1……1
(2-1)×4+1=5(个)
练习:把红、黄、蓝、绿四种颜色的球 各10个放到一个袋子里。最少取多少个 球,可以保证取到4个颜色不同的球?
物体:?个球 抽屉:每种颜色10个小球
至少数:5
(5-1)×4+1=17(个)
知道抽屉数和至少数求物体时 物体=(至少数-1) ×抽屉+1 也可以从最不利的情况考虑

人教课标六下鸽巢问题例3

人教课标六下鸽巢问题例3
物体:15个球
抽屉:4个箱子
15÷4=3……3 3+1=4(个)
3、把红、黄两种颜色的球各6 个放到一个袋子里,任意取出5 个,至少有(3)个同色。
物体:5个球 抽屉:2种颜色 5÷2=2……1 2+1=3(个)
4、把红、黄、白三种颜色的球 各5个放到一个袋子里,任意取 出8个,至少有(3)个同色。
要分的份数 其中一个多1
箱子里有5种不同品牌的果 冻各20粒,要想保证摸到同 品牌的果冻4粒,最少要摸 出多少粒果冻?
4-1=3
想( )÷5=3……1 3×5+1=16(个)
1、盒子里有同样大小的黑球和白球各6个。要想摸出的 球一定有2个同色的,最少要摸出几个球?
1×2+1=3(个)
2、把红、黄、蓝、三种颜色的球各5个放到一个袋子 里。最少取多少个球,可以保证取到两个颜色相同的 球?
(4只)
3副同色呢?
4副同色呢?你能找到什么规律吗?
一副扑克牌去掉大小王
1、任意拿出几张才能保证至少有3张
同花色的?(3-1)×4+1=9(张)
2、任意拿出几张才能保证4种花色都
有? (4-1)×13+1=40(张)
3、任意拿出几张才能保证有3张点数
相同的(? 3-1)×13+1=27(张)
4、任意拿出几张才能保证有2对不同
猜一猜: 2、一次摸出3个球,有几种情况? 观察出现的情况,结果是(一定 ) 摸出2个同色的球。(选择“可能” 或“一定”填空)
有两种颜色,摸3个 球,就能保证有两个
球同色.
只要摸出的球比它们的 颜色种数多1,就能保证 有两个球同色.
请观察,摸出球的个数与 颜色种数有什么关系?

人教版六年级下册数学《抽取游戏》教案

人教版六年级下册数学《抽取游戏》教案

人教版六年级下册数学《抽取游戏》教案
教学内容:
抽取游戏
教学目的:
1.使先生能了解抽取效果中的一些基本原理,并能处置有关复杂的效果。

2.体会数学与日常生活的联络,了解数学的价值,增强运用数学的看法。

教学重点:
抽取效果。

教学难点:
了解抽取效果的基本原理。

教学进程:
一、教学例3
盒子里有异样大小的红球和蓝球各4个。

要想摸出的球一定有2个同色的,最少要摸出几个球?
1.猜一猜。

让先生想一想,猜一猜至少要摸出几个球。

2.实验活动。

〔1〕一次摸出2个球,有几种状况?
结果:有能够摸出2个同色的球。

〔2〕一次摸3个球,有几种状况?
结果:一定能摸出2个同色的球。

3.发现规律。

启示:摸出球的个数与颜色种数有什么关系?
先生不难发现:只需摸出的球比它们的颜色种数多1,就能保证有两个球同色。

二、做一做
第1题。

〔1〕独立思索,判别正误。

〔2〕同窗交流,说明理由。

第2题。

〔1〕说一说至少取几个,你怎样知道呢?
〔2〕假设取4个,能保证取到两个颜色相反的球吗?为什么?
三、稳固练习
完成课文练习十二第1、3题。

数学人教版六年级下册抽屉原理摸球问题

数学人教版六年级下册抽屉原理摸球问题

2.摸球活动,进行验正猜测。
两种颜色 摸两个球 摸三个球 能保证两个球同色吗?
3.通过验证,你发现摸球个数与 颜色种数有什么关系?
有两种颜色,摸3个 球,就能保证有两个 球同色.
2 + 1 = 3(个)
只要摸出的球比它们的 颜色种数多1,就能保证 有两个球同色.
摸球个数 = 颜色种数 + 1
智慧城堡
至少数 = 商+ 1
11÷3 =3‥‥‥2 3 + 1 = 4(本)
今天我们学习 摸球问题
例3、盒子里有同样大小的红球和蓝球各4个。要 想摸出的球一定有2个同色的,最少要摸出几个球?
学路建议 1.猜一猜,至少要摸几个球? 2.摸球活动,进行验正猜测。
3.通过验证,你发现摸球个数与 颜色种数有什么关系?
加油啊!
把红、黄、蓝、白四种颜色的球各10个 放到一个袋子里。至少取多少个球,可 以保证取到两个颜色相同的球?
4 + 1 = 5(个)
拓展:52张扑克牌,从中至少摸出多少 张就能保证其中至少有2张是同一花色 的牌.
4+1=5(张)
摸球问题
小结:
摸球个数 = 颜色种数 + 1
深望指导
2017年6月
摸两个球摸三个球有两种颜色摸3个球就能保证有两个只要摸出的球比它们的颜色种数多1就能保证智慧城堡加油啊
九年义务教育人教版六年级数学下册
Байду номын сангаас
抽屉原理
广通小学 杨以光
回想:怎样计算至少数?
练习:把11本书放进3个抽屉里, 总有一个抽屉至少放进几本书?
第一步怎样计算? 用书的本数÷抽屉个数,算出商和余数 第二步怎样计算? 商 + 1

人教版六年级下册数学《抽取游戏》教案

人教版六年级下册数学《抽取游戏》教案

人教版六年级下册数学《抽取游戏》教案
教学内容:
抽取游戏
教学目标:
1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重点:
抽取问题。

教学难点:
理解抽取问题的基本原理。

教学过程:
一、教学例3
盒子里有同样大小的红球和蓝球各4个。

要想摸出的球一定有2个同色的,最少要摸出几个球?
1.猜一猜。

让学生想一想,猜一猜至少要摸出几个球。

2.实验活动。

(1)一次摸出2个球,有几种情况?
结果:有可能摸出2个同色的球。

(2)一次摸3个球,有几种情况?
结果:一定能摸出2个同色的球。

3.发现规律。

启发:摸出球的个数与颜色种数有什么关系?
学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

二、做一做
第1题。

(1)独立思考,判断正误。

(2)同学交流,说明理由。

第2题。

(1)说一说至少取几个,你怎么知道呢?
(2)如果取4个,能保证取到两个颜色相同的球吗?为什么?
三、巩固练习
完成课文练习十二第1、3题。

抽屉原理例3摸球上课

抽屉原理例3摸球上课
2、一次摸出3个球,有几种情况?
结果是(一定 )摸出2个同色的球。
3、摸出球的个数与颜色种数有什么关系?
摸出球的个数比颜色种数多1。
4、
抽屉: 颜色的种类 物体: 最少要摸的球的个数 至少数: 同色的个数
例3:盒子里有同样大小的红球和 蓝球各4个。要想摸出的球一定有 2 个同色的,最少要摸出几个球? 物体:?个球 抽屉:2种颜色 至少数:2
物体:?个球 至少数:3
3-1=2 想( )÷2=2……1 (3-1)×2+1=5(个)
抽屉:2种颜色
练习:把红、黄、蓝三种颜色的球各10 个放到一个袋子里。最少取多少个球, 可以保证取到4个颜色相同的球?
物体:?个球 抽屉:3种颜色
至少数:4
(4-1)×3+1=10(个)
知道抽屉数和至少数求物体时 物体=(至少数-1) ×抽屉+1 也可以从最不利的情况考虑
结果是( )摸出2个同色的球。(选择“可能”或“一定”填空) 3、要保证摸出的球中有两个同色的,最少摸几个?摸出的球的个数 与颜色的种类有什么关系? 4、用抽屉原理来解释这个问题:什么是“抽屉”?什么是“物体”? 什么是“至少数 ”?
1、一次摸出2个球,有几种情况? 结果是( 可能)摸出2个同色的球
至少数:4个
3、把红、黄、白三种颜色的球各5 个放到一个袋子里,任意取出8个, 3 )个同色。 至少有( 物体:8个球 抽屉:3种颜色 8÷3=2……2 2+1=3(个)
例3:盒子里有同样大小的红球和蓝球各4个。要 想摸出的球一定有2个同色的,最少要摸出几个 球?
自学提示:
1、任意摸出两个球,会出现哪几种情况?请列举出来。 结果是( )摸出2个同色的球。(选择“可能”或“一定”填空) 2、一次摸出3个球,会出现有几种情况?请列举出来。

liu六下抽屉原理例3摸球(抽取)游戏PPT课件[1]

liu六下抽屉原理例3摸球(抽取)游戏PPT课件[1]

3+1
1、盒子里有同样大小的黑球和白球各6个。要想摸出的 球一定有2个同色的,最少要摸出几个球? 1×2+1=3(个) 2、把红、黄、蓝、三种颜色的球各5个放到一个袋子 里。最少取多少个球,可以保证取到两个颜色相同的 球? 1×3+1=4(个) 3、把红、蓝、黄三种颜色的小棒各10根混在一起。如 果让你闭上眼睛,每次最少拿出几根才能保证一定有2 根同色的小棒? 1×3+1=4(个)
一副扑克牌去掉大小王
1、任意拿出几张才能保证至少有3张 同花色的? 2×4+1=9
2、任意拿出几张才能保证4种花色都 有? 四种花色要40张,因为每种花色都有13张牌,如果前面全抽到3种花色就
有39张,再随便抽一张就可以保证有4种花色了.
3、任意拿出几张才能保证有3张点数相 同的?抽屉原理,手气最差原则
抽屉:2种1……1 (2-1)×2+1=3(个)
练习:把红、黄、蓝、三种颜色 的球各10个放到一个袋子里。最 少取多少个球,可以保证取到两 个颜色相同的球?
物体:?个球 抽屉:3种颜色 至少数:2
(2-1)×3+1=4(个)
例3:盒子里有同样大小的红球和 蓝球各4个。要想摸出的球一定有 3 2 个同色的,最少要摸出几个球?
任意给出3个不同的自然数,其中一 定有两个数之和是偶数,为什么 ?
3个不同的自然数,只有下面几种情况: 三个奇数,那么任意两个之和一定是 偶数 三个偶数,也是一样的 两个奇 数,一个偶数,两个奇数之和就是偶 数了 两个偶数,一个奇数,两个偶 数之和就是偶数了
有3个不同的自然数,至少可以找到 两个数,它们的和是偶数,为什么?
篮子里有苹果、梨、桃 子和桔子,如果每个小 朋友都从中任意拿两个 水果,问至少有多少个 小朋友才能保证至少有 两个小朋友拿的水果完

人教课标六下《抽屉原理—抽取》游戏PPT课件

人教课标六下《抽屉原理—抽取》游戏PPT课件
抽屉原理 ——抽取游戏
1、把15个球放进4 个箱子里,至少有
( 4 )个球要放
进同一个箱子里。
15÷4=3……3 3+1=4(个)
2、六(1)班有54位
同学,至少有( 5 )
人是同一个月过生日 的。
54÷12=4……6
4+1=5(人)
3、把红、黄两种颜 色的球各6个放到一 个袋子里,任意取出
5个,至少有(3)个
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
① 根据课堂提问抓住老师的思路。老师在讲课过程中往往会提出一些问题,有的要求回答,有的则是自问自答。一般来说,老师在课堂上提出的问 题都是学习中的关键,若能抓住老师提出的问题深入思考,就可以抓住老师的思路。
同色。5÷2=2……1
2+1=3(人)
4、把红、黄、白三 种颜色的球各5个放 到一个袋子里,任意 取出8个,至少有( )
个3同色。
8÷3=2……2 2+1=3(个)
例3:盒子里有同样大 小的红球和蓝球各4个。 要想摸出的球一定有2 个同色的,最少要摸出 几个球?
活动(一)摸球游戏及要求:
1、一次摸出2个球,有几种情
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/9/15
最新中小学教学课件
16
谢谢欣赏!
2019/9/15
最新中小学教学课件
17
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。

人教版六年级下册数学《抽取游戏》教案

人教版六年级下册数学《抽取游戏》教案

人教版六年级下册数学《抽取游戏》教案
人教版六年级下册数学《抽取游戏》教案
教学内容:
抽取游戏
教学目标:
1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重点:
抽取问题。

教学难点:
理解抽取问题的基本原理。

教学过程:
一、教学例3
盒子里有同样大小的红球和蓝球各4个。

要想摸出的球一定有2个同色的,最少要摸出几个球?
1.猜一猜。

让学生想一想,猜一猜至少要摸出几个球。

2.实验活动。

(1)一次摸出2个球,有几种情况?
结果:有可能摸出2个同色的球。

(2)一次摸3个球,有几种情况?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习:把红、黄、蓝三种颜色的球各10 个放到一个袋子里。最少取多少个球, 可以保证取到4个颜色相同的球?
物体:?个球 抽屉:3种颜色 至少数:4
(4-1)×3+1=10(个)
2020/9/11
例3:盒子里有同样大小的红球和蓝 球各4个。要想摸出的球一定有 2 个不同色的,最少要摸出几个球?
4+1=5
2020/9/11
盒子里有红袜子和黑袜子各6只。要 想摸出的袜子一定能配成颜色相同 的两双,最少要摸出几只?
颜色相同:四只必须都是一个颜色。 盒子里有红袜子和黑袜子各6只。要 想摸出的袜子一定能配成同色的两 双,最少要摸出几只? 同色:每双是同一个颜色。
2020/9/11
一个布袋中装有大小相同但颜色不同 的手套若干只。已知手套的颜色有黑、 白、灰三种。问最少要取出多少只手 套才能保证有2副手套是同色的? 3副同色呢? 4副同色呢?你能找到什么规律吗?
2020/9/11
4、盒子里有同样大小的红球和蓝球各4个。要想摸出的 球一定有 2 个不同色的,最少要摸出几个球?
4+1=5(个) 5、把红、蓝、黄三种颜色的小棒各10根混在一起。如 果让你闭上眼睛,每次最少拿出几根才能保证一定有3 根同色的小棒?
(3-1)×2+1=7(个) 6、箱子里有5种不同品牌的果冻各20粒,要想保证摸到 同品牌的果冻4粒,最少要摸出多少粒果冻?
2020/9/11
1、盒子里有同样大小的黑球和白球各6个。要想摸出的 球一定有2个同色的,最少要摸出几个球?
1×2+1=3(个) 2、把红、黄、蓝、三种颜色的球各5个放到一个袋子 里。最少取多少个球,可以保证取到两个颜色相同的 球? 1×3+1=4(个)
3、把红、蓝、黄三种颜色的小棒各10根混在一起。如 果让你闭上眼睛,每次最少拿出几根才能保证一定有2 根同色的小棒? 1×3+1=4(个)
请观察,摸出球的个数与 颜色种数有什么关系?
摸出球的个数比颜色种数多1。
能不能用抽屉原理来解决?
2020/9/11
例3:盒子里有同样大小的红球和 蓝球各4个。要想摸出的球一定有2 个同色的,最少要摸出几个球?
想一想: 1、在这道题中,什么是“物体”? 什么是“抽屉”?什么是“至少 数 ”? 2、从题目可物知体,问题相当于求抽屉 原理中的( )?怎样求?
至少:只有一个文具盒有 4 枝,
其余都是(4-1)枝
3+1
3
3
3×(4-1)+1=10(枝) 求总数=抽屉×(至少-1)+1
Байду номын сангаас
要分的份数 其中一个多1
2020/9/11
谈一谈:本节课你有啥收获?
没有大胆的的猜想,就没有 伟大的发明和发现。 —— 牛顿
2020/9/11
2020/9/11
有两种颜色,摸3个 球,就能保证有两个
球同色.
2020/9/11
只要摸出的球比它们的 颜色种数多1,就能保证 有两个球同色.
2020/9/11
猜一猜: 2、一次摸出3个球,有几种情况? 观察出现的情况,结果是(一定 ) 摸出2个同色的球。(选择“可能” 或“一定”填空)
2020/9/11
物体:15个球 抽屉:4个箱子 15÷4=3……3 3+1=4(个)
2020/9/11
3、把红、黄两种颜色的球各6 个放到一个袋子里,任意取出5 个,至少有(3)个同色。
物体:5个球 抽屉:2种颜色 5÷2=2……1 2+1=3(个)
2020/9/11
4、把红、黄、白三种颜色的球 各5个放到一个袋子里,任意取 出8个,至少有(3)个同色。
2020/9/11
盒子里有同样大小的红球和蓝球各4个。要想摸出 的球一定有2个同色的,最少要摸出几个球?
2020/9/11
例3:盒子里有同样大小的红球和 蓝球各4个。要想摸出的球一定有2 个同色的,最少要摸出几个球? 先猜一猜会有什么情况?
2020/9/11
猜一猜: 1、一次摸出2个球,有几种情况? 观察出现的情况,结果是(可能 ) 摸出2个同色的球。(选择“可能” 或“一定”填空)
抽屉原理 ——摸球游戏
2020/9/11
计算绝招
物体数÷抽屉数
至少数=商数+1
整除时 至少数=商数
2020/9/11
1、六(6)班有57位同学,至少 有( 5 )人是同一个月过生日的。
物体:57位同学 抽屉:12个月 57÷12=4……9 4+1=5(人)
2020/9/11
2、把15个球放进4个箱子里, 至少有( 4 )个球要放进同 一个箱子里。
物体:?个球 抽屉:3种颜色 至少数:2
(2-1)×3+1=4(个)
2020/9/11
例3:盒子里有同样大小的红球和 蓝球各4个。要想摸出的球一定有 32 个同色的,最少要摸出几个球?
物体:?个球 至少数:3
抽屉:2种颜色 3-1=2 想( )÷2=2……1 (3-1)×2+1=5(个)
2020/9/11
(4-1)×5+1=16(个)
2020/9/11
知道抽屉数和至少数求物体时 物体=(至少数-1) ×抽屉+1 也可以从最不利的情况考虑
2020/9/11
还可以用“极端思想”的想法 来想:用最不利的摸法先摸出了两 个不同颜色的球,再无论摸出一个 什么颜色的球都能保证一定有两个 球是同色的(2+1=3)。
盒子里有红袜子和黑袜子各6只。要 想摸出的袜子一定能配成一双,最 少要摸出几只?
物体:?只袜子 抽屉:2种颜色 至少数:2
(2-1)×2+1=3(只)
2020/9/11
盒子里有红袜子和黑袜子各6只。如 果要摸出颜色不同的2只,最少要摸 出几只?
物体:?只袜子 抽屉:每种颜色6只 至少数:2
(2-1)×6+1=7(只)
2020/9/11
巩固练习
1、第72页“做一做”1.
因为一年最多有366天,如果把这366天看做366 个抽屉,把370个学生放进366个抽屉,人数大于 抽屉数,因此总有一个抽屉里至少有两个人,即 他们的生日是同一天。如果把12个月看作12个抽 屉,把49个学生放进12个抽屉,49除以12得4余 1,因此,总有一个抽屉里至少有5(4+1)个人, 也就是他们的生日在同一个月。
物体:8个球 抽屉:3种颜色 8÷3=2……2 2+1=3(个)
2020/9/11
一副扑克牌(除去大小王)52张中有四种 花色,从中随意抽5张牌,无论怎么抽,为 什么至少总有两张牌是同一花色的?
四种花色
抽牌
2020/9/11
5÷4=1……1 1+1=2(张)
物体数
3、一副扑克牌,拿走两个王。 至少抽出多少张,才能保证至少 有两张牌花色相同?
2020/9/11
一副扑克牌去掉大小王 1、任意拿出几张才能保证至少有3张 同花色的? 2、任意拿出几张才能保证4种花色都 有? 3、任意拿出几张才能保证有2张点数 相同的?
2020/9/11
4、加上大小王任意拿出几张才能保证 至少有3张同花色的? 5、加上大小王任意拿出几张才能保证 至少有3张不同花色的?
2020/9/11
有黄白红三种小球若干个,每次从箱中 摸出2个小球,至少摸多少次才能保证取 到两个颜色相同的球?
2020/9/11
1、52张扑克牌,从中至少摸出多少张就能保证 其中至少有两张同点数?如果不除去大、小王 呢? 13×1+1=14(张) 2、一付扑克牌共有52张(除去大王、小王), 至少从中取多少张牌,才能保证其中必有2种花 色. 13×1+1=14(张) 3、一副扑克牌,拿走两个王。至少抽出多少 张,才能保证至少有两张牌花色相同?
2020/9/11
把红、黄、蓝、白四种颜色的球各10个 放到一个袋子里。至少取多少个球,可
以保证取到两个颜色相同的球?
2020/9/11
一副扑克牌有四种花色,从中随意抽 牌,问:最少要抽出多少张牌,才能保证有 两张牌是同一花色的?
4种花 抽牌
4个抽屉
1×4+1+2=7(张)
2020/9/11
52张扑克牌,从中至少摸出多少张就能 保证其中至少有一张是2.
2020/9/11
例3:盒子里有同样大小的红球和 蓝球各4个。要想摸出的球一定有 2 个同色的,最少要摸出几个球?
物体:?个球 至少数:2
抽屉:2种颜色 2-1=1
想( )÷2=1……1 (2-1)×2+1=3(个)
2020/9/11
练习:把红、黄、蓝、三种颜色的球各 10个放到一个袋子里。最少取多少个球, 可以保证取到两个颜色相同的球?
2020/9/11
2、第72页“做一做”2. 把红、黄、蓝、白四种颜色的球各
10个放到一个袋子里。至少取多少个球, 可以保证取到两个颜色相同的球?
极端思想:用最不利的取法,先取出了红、黄、
蓝、白四种颜色的球各一个,然后无论取出一种 什么颜色的球都能保证取到了两个颜色相同的球。 (4+1=5)
抽屉原理:把四种颜色看作四个抽屉,最少数是2, 即物体数=抽屉数×(至少数-1)+1 也就202是0/9/11颜色数加一,即4+1=5
4×1+1=5(张) 4、一副扑克牌,拿走两个王。至少抽出多少张, 才能保证有4张牌是同一花色的?
4×3+1=13(张)
2020/9/11
小结:知道抽屉数和至少数求 物体时 物体=(至少数-1) ×抽屉+1 也可以从最不利的情况考虑
2020/9/11
例:把一些铅笔放进3个文具盒中,保证其中一个文 具盒至少有4枝铅笔,原来至少有多少枝铅笔?
相关文档
最新文档