平行四边形专题复习PPT课件

合集下载

平行四边形复习课 优课教学课件

平行四边形复习课 优课教学课件

A x D 2x
E
3X
3x
B
C
B
C
如图,Rt△OAB的两条直角边在坐标轴上,已知
点A(0,2),点B(3,0),则以点O,A,B为其
中三个顶点的平行四边形的第四个顶点C的坐标
为 。 _________________
y
(-3,2)
3
2A
(3,2 )
O
B
7
-4 -3 -2 -1
12 34 x
-1
1
-2
证法2: 连接BD,交AC于点O ,连接DE,BF
∵四边形ABCD是平行四边形
BC=AD
∴BO=OD, AO=CO
∠1=∠2 CE=AF ∴ △BCE≌△DAF ∴BE=DF, ∠3=∠4 ∴BE∥DF
又∵AF=CE
∴AE=CF
∴EO=FO
∴四边形BEDF是平行四边形
∴ BE=DF, BE∥DF
课堂小结
5矩形、菱形、正方形都具有的性质是( B)
A、对角线相等
B、对角线互相平分
C、对角线互相垂直 D、四条边都相等
6.已知矩形的一条对角线与一边的夹角是40°,
则两条对角线所成的锐角的度数( D )
A、50° B、60° C、70° D、80°
7、 已知菱形ABCD的周长为20cm。∠A: ∠ABC=1:2 ,则对角线BD的长等于 _____5_____cm。
四边形知识结构(定义)图
两组对边平行
角90° 个 一
矩形
一 组 邻 边 相 等
四边 形
平行四边
一角为直角且一组邻边相等

正方形
一 组 邻 边 相 等
菱形

人教版八年级数学下册《平行四边形的性质》平行四边形PPT优质教学课件

人教版八年级数学下册《平行四边形的性质》平行四边形PPT优质教学课件

10 ●O
∴AC= AB2−BC2= 102−82=6
∵OA=OC,∴OA=12AC=3
B
C
∴S ABCD= BC×AC=8×6=48.
随堂检测
1.如图,在▱ABCD中,对角线AC、BD相交于点O,若 AC=14,BD=8,AB=10,则△OAB的周长为 21 .
2.如图,平行四边形ABCD中,AD=5cm,AB⊥BD, 点O是两条对角线的交点,OD=2cm,则AB= 3 cm.
叫做这两条平行线之间的距离.
如图,直线a∥b,A是直线a上的任意
A
a
一点,AB ⊥b ,B是垂足,线段AB的
b
长就是a、b之间的距离.
B
随堂检测
1.如图,在 ABCD中,
A
D
A:基础知识:
B
C
若∠A=130°,则∠B=_5_0_°___ 、∠C=_1_3_0_°__ 、∠D=__5_0_°__.
B:变式训练: (1)若∠A+ ∠C= 200°,则∠A=__1_0_0_°_ 、∠B=__8_0_°__; (2)若∠A:∠B= 5:4,则∠C=__1_0_0_°_ 、∠D=___8_0_°_.
随堂检测
C:拓展延伸:
A
D
如图,在 ABCD中,
B
C
(1)∠A:∠B : ∠C : ∠D的度数可能是( B )
A. 1 : 2 : 3 : 4
B.3 : 2 : 3 : 2
C.2 : 3 : 3 : 2
D.2 : 2 : 3 : 3
(2)连接AC, 若∠D=60°, ∠DAC=40°,则 ∠B=_6_0_°_,
一条直线的距离相等.
已知:如图,EF∥MN,A,D是直线

人教版八年级数学下册期末复习课件:平行四边形 (共47张PPT)

人教版八年级数学下册期末复习课件:平行四边形 (共47张PPT)

论的个数是
()
• A.2
• B.3
• C.4
• D.5
7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥
AB 于点 E,PF⊥AC 于点 F,M 为 EF 中点,则 AM 的最小值为
(D )
A.54
B.45
C.53
D.65
8.如图,ABCD 是正方形,E、F 分别是 DC 和 CB 的延长
∠CBF,∴BF平分∠ABC.
• (3)解:△BEF是等腰三角形.理由如下:过 点F作FG⊥BE于点G.∵AD∥BC,FG⊥BE,
BE⊥AD,∴FG∥AD∥BC.∵F为CD的中点,
∴EG=BG,∴EF=BF,∴△BEF是等腰三
• ★集训2 特殊平行四边形的性质与判定的相 关计算与证明
• 7.已知四边形ABCD中,对角线AC与BD相A 交于点O,AD∥BC,下列判断中错误的是 ()
D.4 个
(B )
• 二、填空题(每小题5分,共20分)
• 9.已知一个菱形的两条对角线的长分别为 5210和24,则这个菱形的周长为______.
• 10.【湖北武汉中考】以正方形ABCD的边 A30D°或作15等0°边△ADE,则∠BEC的度数是 _______________.
• 11.如图,矩形ABCD的对角2线0 BD的中点为 O,过点O作OE⊥BC于点E,连接OA,已知 AB=5,BC=12,则四边形ABEO的周长为 ______.
• 4.如图,在□ABCD中,E、F分别是AB、
DC边上的点,AF与DE相交于点P,BF与CE 相41交于点Q.若S△APD=16 cm2,S△BQC=25 cm2,则图中阴影部分的面积为______cm2.

平行四边形的性质复习课件ppt

平行四边形的性质复习课件ppt

分成面积相等的两部分
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1、 通过本节课的学习,你有什么收获? 2、 平行四边形的性质共有哪些?
边 角 对角线
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
如图,把两张完全相同的平行四边形纸片叠
合在一起,在它们的中心O 钉一个图钉,将一个
平行四边形绕O旋转180°,你发现了什么?
A
B
O
D
C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
结论
●1. ABCD绕它的中心O旋转180°后与自身重合,这 时我们说 ABCD是 中心对称图形,点O叫对称中心。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
猜一猜 你能证明
根据刚才的旋转,你知道平行四边形的对 它吗?
由于年迈体弱,他决定把这块土地分给他的四个孩
子,他是这样分的:
老大
老二
老四
老三
当四个孩子看到时,争论不休,都认为自己的地 少,同学们,你认为老人这样分合理吗?为什么?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

平行四边形定义及性质最全ppt课件

平行四边形定义及性质最全ppt课件
一、 平行四边形的概念:
D
C
A
B
1.定义:有两组对边分别平行的四边形叫平 行四边形
2.表示方法:“ ”,如平行四边ABCD记作:
ABCD; 读作:平行四边形ABCD
4.有关名称: 对边、邻边 对角、邻角
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
例2 如图1 ABCD中AB=5,BC=9,BE,CF分别平 分∠ABC, ∠BCD,则DE=_____,4 AF=_____4, EF=__1___
注意:
1.一组对边平行,另一组对边不平行的 四边形不是平行四边形。
2.用“ ”表示平行四边形时,字母 的排列要按一定的顺序,可以顺时针可 以逆时针。
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
证明相关性质
已知:如图,在 ABCD中
求证:AB=CD,BC=DA, ∠A=∠C,∠B=∠D.
B
A
D
1
3
4
2
C
证明: 连接AC 在 ABCD中, ∵ AD∥BC、AB∥CD
∴∠1=∠2,∠3=∠4
∵AC=AC ∴ ABC≌ CDA ∴AD=BC,AB=CD,∠B=∠D
又∵∠1=∠2,∠3 =∠4 ∴ ∠1+∠3= ∠2 +∠4 即∠BAD=∠BCD

《平行四边形》期末复习 —初中数学课件PPT

《平行四边形》期末复习 —初中数学课件PPT
∴△ODE≌△FCE(AAS). (2)∵△ODE≌△FCE,∴OD=FC. ∵CF∥BD,∴四边形ODFC是平行四边形. 在矩形ABCD中,OC=OD,∴ ODFC是菱形.
6.如图M-55-10,四边形ABCD是正方形,E,F分别是DC和CB的 延长线上的点,且DE=BF,连接AE,AF,EF. (1)求证:△ADE≌△ABF; (2)若BC=8,DE=3,求△AEF的面积.
21.如图M-55-22,在矩形ABCD中(AD>AB),点E是BC上
一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不
一定正确的是
( B)
A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD-DF
22.如图M-55-23,在△ABC中,CD⊥AB于
点D,BE⊥AC于点E,F为BC的中点,DE=5,
(1)证明:∵四边形ABCD是矩形, ∴AD∥BC,AD=BC. ∵E,F分别是AD,BC的中点, ∴AE= AD,CF= BC. ∴AE=CF. ∴四边形AFCE是平行四边形.
综合提升
20.如图M-55-21,在菱形ABCD中,对角线AC,BD相交于点O, BD=6,AC=8,直线OE⊥AB交CD于点F,则AE的长为( D ) A.4 B.4.8 C.2.4 D.3.2
14.如图M-55-16,在△ABC中,已知AB=8, ∠C=90°,∠A=30°,DE是中位线,则DE 的长为____2____.
15. 已知菱形ABCD的面积为24cm2,若对角线AC=6cm,则这个 菱形的边长为____5______cm. 16. 如图M-55-17,矩形ABCD的对角线AC=8 cm,∠AOD=120°, 则AB的长为_____4_____cm.

平行四边形和梯形整理和复习课ppt课件

平行四边形和梯形整理和复习课ppt课件
火眼金睛辨对错:
同一平面内
1.不相交的两条直线叫做平行线。 (×) 2.两条平行线之间的距离处处相等。 (√ ) 3.等腰梯形、平行四边形都是对称图形。(×) 4.长方形的对边互相平行,邻边互相垂直。(√ ) 5.一个平行四边形中所有的高都相等。(×) 6.一个平行四边形只有一条高。 (×) 7.两个形状、大小完全一样的三角形可以拼成
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
第二关:合理选择
延长梯形的上底和下底,它们 ( ① )
①永不相交 ②垂直 ③相交
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
A



B
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
我会画:
2、下申街村准备修一条通往西环路 的水泥路,怎样修路最近呢?
下申街
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能



平行四边形 长方形
正方形
梯形 四边形
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
练习大比拼
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能

《平行四边形的性质》PPT课件(第1课时)

《平行四边形的性质》PPT课件(第1课时)

(来自教材)
知3-练
证明:在▱ABCD中,因为AB∥CD,所以∠FBE=∠DCE. 因为E为BC的中点,所以BE=CE. FBE=DCE, 在△FBE和△DCE中,BE=CE , BEF=CED, 所以△FBE≌△DCE.所以BF=CD. 又因为AB=CD,所以BF=AB,即点B为AF的中 点.
(来自教材)
知3-讲
导引:根据BM平分∠ABC和AB∥CD可以判定△BCM 是等腰三角形,从而得到BC=MC=2,再结合 ▱ABCD的周长是14得到CD的长,进而得到DM的 长.具体过程如下: ∵在▱ABCD中,AB∥CD,BM是∠ABC的平分 线,∴∠CBM=∠ABM=∠CMB.∴BC=MC=2. 又∵▱ABCD的周长是14,∴AB=CD=5.∴DM= 3.
2. 数学表达式:如图, ∵四边形ABCD是平行四边形, ∴AB∥CD,AD∥BC, AB=CD,AD=BC.
(来自《点拨》)
知3-讲
例3 [中考·玉林]如图,在▱ABCD中,BM是∠ABC
的平分线,交CD于点M,且MC=2,▱ABCD的
周长是14,则DM等于( C )
A.1
B.2
C.3
D.4
(来自《点拨》)
(来自《点拨》)
总结
知3-讲
当题目中平行线和角平分线同时出现时,极有可 能出现等腰三角形,如本题中由AB∥CD和BM平分 ∠ABC就得到△BCM是等腰三角形;在平行四边形 的边的计算中,“平行四边形相邻两边之和等于平行 四边形的周长的一半”会经常用到.
(来自《点拨》)
知3-练
1 在▱ ABCD 中,已知AB=3,AD=2,求▱ ABCD的
第二十二章 四边形
平行四边形的性质
第1课时

平行四边形ppt课件

平行四边形ppt课件

性质
总结词
平行四边形具有一些独特的性质 。
详细描述
平行四边形有一些重要的性质, 包括对角线互相平分、对角相等 、对边相等和邻角互补。这些性 质在解决几何问题时非常有用。
分类
总结词
平行四边形可以根据不同的标准进行分类。
详细描述
根据不同的分类标准,平行四边形可以分为不同的类型。例如,根据角度的大小 ,可以分为锐角、直角和钝角平行四边形;根据边的长度,可以分为等腰和不等 腰平行四边形。不同类型的平行四边形具有不同的性质和特点。
05练习题和答案源自基础练习题0102
03
04
基础练习题1
请描述平行四边形的定义和性 质。
基础练习题2
请列举平行四边形的几个应用 实例。
基础练习题3
请判断以下哪些图形是平行四 边形,哪些不是,并说明理由

基础练习题4
请计算平行四边形的面积和周 长。
进阶练习题
进阶练习题1
请证明平行四边形的对 角线互相平分。
平行四边形结构在桥梁和建筑 物的设计中可以提供更好的支 撑和稳定性。
平行四边形在光学中也有应用, 如在透镜和反射镜的设计中。
数学教育应用
在数学教育中,平行四边形是几 何学的基本概念之一,用于学习
几何定理和性质。
通过平行四边形的性质和定理, 学生可以深入理解空间几何的基
本原理。
平行四边形在解决数学问题中也 有广泛应用,如代数方程、解析 几何和微积分等领域的解题技巧。
推论法
总结词
通过其他几何定理推导出平行四边形。
详细描述
有些几何定理可以推导出四边形是平行四边形,例如,如果一个四边形的对角线互相平分,则它是平行四边形。 此外,还有其他的推论方法可以用来判定平行四边形。

平行四边形的定义及性质ppt课件

平行四边形的定义及性质ppt课件
§18.1平行四边形的定义及性质 (一)
学习目标: 1、掌握平行四边形的定义及对边相等、 对角相等的性质; 2、会证明平行四边形的性质1、2。
1
2
思考:什么样的四边形是平行四边形?
3
对边 相对的两条边 对角 相对的两个角
邻角 相邻的两个角 对角线 平行四边形不相邻的两个顶点连成 的线段
4
合作交流 解读探究
作业:
P75的练习第1题、
P80的习题18.1第1、3题 20
21
形性
质1
(关 对边相等
于边)
∵四边形ABCD是平行 四边形
∴ AB=DC ,AD=BC
10
平行四边形的性质
A
D
B
C
文字叙述
符号语言
平行 四边
对角相等
∵四边形ABCD是平行四边形 ∴ ∠A=∠C ,∠B=∠D
形性
质2
∵四边形ABCD是平行四边形
(关 于角)
邻角互补
∴ ∠A +∠ B =180° ∠A +∠D =180 °
∠C +∠ D=180°
∠C+∠ B =180° 11
小试牛刀:
如图:在 ABCD中,根据已知
你能得到哪些结论?为什么?
A 32cm D
124°
56°
30cm
30cm
56°
124°
B 32cm C
12
例1 如图,在 ABCD中,已知∠A=40°, 求其他各个内角的度数。
解:
∵四边形ABCD是平行四边形, 且∠A=40°(已知)
3cm,那么周长是10cm. ( ∨ ) (5)在平行四边形ABCD中,如果∠A=35°,

《平行四边形的认识》PPT课件

《平行四边形的认识》PPT课件


思考
平行四边形有几个底?能画几条高呢?

有4个底。
底 高高

可以画无数条高。

对边之间的高互相平行且相等。
课堂练习
1 下面哪些图形是平行四边形?画出每个平行 四边形的高。
平行四边形 平行四边形
平行四边形
2 照下面这样画两组平行线,涂色部分是平行四 边形吗?为什么?
你想这样画平 行四边形吗? 试一试。
人教版四年级数学上册
第五单元 平行四边形和梯形
平行四边形的认识
情景导入
探究新知
5 我们认识过平行四边形,你能说出在哪些 地方见过平行四边形吗?
上面各图中都有平行四边形。
小组合作
平行四边形的边有什么特点。
平行四边形的 对边互相平行。 对边也相等。
平行四边形的两组对边分别平行并且相等。
4
3
1
2
∠1=65° ∠3=65° ∠2=115° ∠4=115°
∠1=∠3 ∠2=∠4
平行四边形的两组对角相等。
思考
什么是平行四边形?
两组对边分别平 行的四边形,叫 作平行四边形。
注意
认识平行四边形的底和高
从平行四边形一条边上
的一点向对边引一条垂线,
这点和垂足之间的线段叫作

平行四边形的高。垂足所在
的边叫作平行四边形的底。
平行四边形可以画无数条高。
课后作业
1.教材第67页练习十一第2题; 2.从课时练中选取。
(√ )
பைடு நூலகம்
2.数一数,有( 18 )个平行四边形。
12 3 4 56
1+6+7+2+2=18

平行四边形及其性质课件

平行四边形及其性质课件

04 平行四边形的面积计算
面积公式推导
底乘高
通过将平行四边形的一条底边与对应 的高相乘,可以得出面积。这是平行 四边形面积计算的基本公式。
转化思想
将平行四边形转化为矩形或三角形, 利用已知的矩形或三角形面积公式推 导出平行四边形的面积公式。
面积计算方法
01
02
03
直接计算
根据平行四边形的底和高 ,直接使用面积公式进行 计算。
理等。
代数方程
在代数方程中,平行四边形也常 被用于解决各种问题,如解线性
方程组、求矩阵的逆等。
微积分
在微积分中,平行四边形可用于 计算面积和体积,如在计算曲边 梯形和曲顶柱体的面积和体积时 ,可以利用平行四边形的性质进
行简化计算。
THANKS FOR WATCHING
感谢您的观看
平行四边形及其性质课件
目录
• 平行四边形的基本概念 • 平行四边形的性质 • 平行四边形的判定方法 • 平行四边形的面积计算 • 平行四边形的应用举例
01 平行四边形的基本概念
定义与分类
定义
两组对边分别平行的四边形叫做 平行四边形。
分类
根据对边是否相等或平行,平行 四边形可分为两组对边相等且平 行和一组对边平行且相等的两种 类型。
VS
证明
假设四边形ABCD中,AB平行于CD且BC 平行于AD。由于AB平行于CD且BC平行 于AD,所以∠ABC+∠BCD=180°且 ∠ADC+∠BCD=180°。因此, ∠ABC=∠ADC。由于AB平行于CD且BC 平行于AD,根据平行线的性质,BC是AB 和CD的中线。因此,四边形ABCD是平 行四边形。
对角线互相平分
定义

北师大版八年级数学下册 第六章 平行四边形 复习课件(共24张PPT)

北师大版八年级数学下册 第六章 平行四边形 复习课件(共24张PPT)

14.用六个全等的正三角形拼成如图所示的图形,请找出
其中所有的平行四边形,并选择其中之一加一证明。
解: 四边形ABOF,BCOA,CDOB,DEOC,
EFOD,AFOE是平行四边形,共6个
证明:∵△AOB和△AOF都是等边三角形 ∴AB=OB=OA,OA=OF=AF ∴AB=OF,OB=AF ∴四边形ABOF是平行四边形
又∵AE=EC ∴△ADE≌△EFC ∴DE=FC ∴DE∥BF,DE=BF=FC
13.如图,AD=DB,AE=EC,FG//AB,AG//BC,线段DE,BF,FC之间有 怎样的位置关系和数量关系?请证明你的结论。
∵AB∥FG ∴四边形BDEF是平行四边形 ∴DE=BF ∴DE∥BF,DE=BF=FC
11.已知:如图,在平行四边形ABCD中,∠ABC的平分线
交AD于点E,∠BCD的平分线交AD于点F,交BE于点G,
求证:AF=DE.
解:AE=DF.
证明:
∵四边形ABCD是平行四边形 ∴AB=CD,AD∥BC, ∴∠AEB=∠EBC, ∵BE平分∠ABC, ∴∠ABE=∠CBE,
∴∠ABE=∠AEB, ∴AB=AE,同理可得:DF=CD, ∴AE=DF, 即AF+EF=DE+EF, ∴AF=DE
BD的中点,连结EF.若EF=3,则CD的长为( D )
A.2
B.3 C.4 D.6
8
6. 在 四边 形 ABCD中 ∠ A=30 ° ,∠ B=150 ° , ∠ C=30°, AB=2,则DC= 2 ; 7.如图,□ABCD中,已知AB=4cm,BC=9cm,∠B=30°, 则□ABCD得面积=18 ;
解:(1)∵△CDE为等边三角形, ∴DE=DC=EC,∠D=∠DEC=∠ECD=60°, ∵四边形ABCD是平行四边形, ∴AD∥BC, AB=CD=3 ∴∠BCB’=∠DEC=60°

中考数学《特殊平行四边形》专题复习课件(共32张PPT)

中考数学《特殊平行四边形》专题复习课件(共32张PPT)
ACEF是菱形?请回答并证明你的结论. (3)四边ACEF有可能是正方形吗?请证明
你的结论。
7.如图,OABC是一张放在平面直角坐标系中的 矩形纸片,O为原点,点A在x轴上,点C在y 轴上,OA=10,OC=6。
(1)如图①,在OA上选取一点G,将△COG 沿CG翻折,使点O落在BC边上,设为E, 求折痕CG所在直线的解析式。
谢谢观赏
You made my day!
我们,还在路上……
⑵当x为何值时,⊿PBC的周长最 小,并求出此时y的值
❖1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 ❖2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 ❖3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 ❖4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
一、四边形的分类及转化
两组对边平行 平行四边形
任意四边形
一组对边平行
梯形
另一组对边不平行
矩形
菱 形
正方形
等腰梯形
直角梯形
二、几种特殊四边形的性质:
项目 四边形
对边

对角线
对称性
对角相等
平行且相等
平行四边形
邻角互补
四个角
矩形 平行且相等 都是直角
平行
对角相等

《平行四边形》PPT课件共(25张PPT)

《平行四边形》PPT课件共(25张PPT)

观察下面的图形是平行四边形吗?


不是

不是
不是 不是
不是

1.

练习五


(2、3、5 )是长方形,( 2 )是正方 形,( 123456)是平行四边形.
说一说你是怎ቤተ መጻሕፍቲ ባይዱ辨认长方形和正方形 的.
补充习题
1.从下面各图中找出所有正方形、长方形和 ⑩《行路难》中运用典故,借此表明自己对从政还有所期待的诗句:闲来垂钓碧溪上,忽复乘舟梦日边。
前面我们已经学了生命的珍贵与独特,每个人都是独一无二的,我们都应该为自己的生命喝彩,用心的呵护生命,并且努力地让自己的生命绽放出精彩的光芒。有人说,生命如此
宝贵,守住生命,我们才能感受四季的冷暖变化,体验生活的千姿百态,追求人生幸福的种种可能。
(一)《北冥有鱼》
⑩《行路难》中运用典故,借此表明自己对从政还有所期待的诗句:闲来垂钓碧溪上,忽复乘舟梦日边。
平行四边形。 明月几时有? 把酒问青天。 不知天上宫阙, 今夕是何年。
【主旨】这首咏月怀亲词运用形象的描绘和 浪漫主义的想象,紧紧围绕中秋之月展开描写、抒情和议论。上片极写词人在“天上”“人间”的徘徊、矛盾,下片对月怀人,心情由郁结到
心胸开阔,把自己对兄弟的感情升华到探索人生的乐观与不幸的哲理高度。表达了词人乐观旷达的人生态度和对生活的美好祝愿以及无限热爱情。
人思念家乡和亲人情感的自然流露。 颈联承上启下,自然过渡。诗人由望月怀乡自然引出对弟弟的思念,绵绵愁思中夹杂着对生离死别的焦虑和不安,语气分外沉痛,写是伤心折
肠,令人不忍卒读,同时也概括了安史之乱中人民饱经忧患丧乱的普遍遭遇。
(1)认识维护身体健康的重要意义。
( 1)个正方形

认识平行四边形ppt课件

认识平行四边形ppt课件
认识平行四边形
目 录
• 平行四边形的定义 • 平行四边形的性质 • 平行四边形的判定 • 平行四边形的面积和周长 • 平行四边形的应用 • 总结与回顾
01
平行四边形的定义
定义
01
平行四边形是由两组相对边平行 组成的四边形。
02
它是一种特殊的四边形,在几何 学中具有重要地位。
特点
01
02
03
对边平行
面积计算方法
先确定平行四边形的底和 高,然后使用面积公式进 行计算。
注意事项
在计算面积时,要确保底 和高的长度是有效的,即 底不能为0,高不能为负数 。
周长计算
周长公式
平行四边形的周长等于四条边的 长度之和,用数学公式表示为 $P = text{边1} + text{边2} + text{
边3} + text{边4}$。
平行四边形的对边平行, 这是平行四边形的基本性 质。
对角相等
平行四边形的对角相等, 即相邻的两个角的角度和 为180度。
对角线互相平分
平行四边形的对角线互相 平分,这是平行四边形的 一个重要性质。
分类
按照角度分类
根据平行四边形内角的大小,可 以分为锐角、直角、钝角和平角 平行四边形。
按照边长分类
根据平行四边形的边长比例,可 以分为等腰、不等腰和矩形等不 同类型的平行四边形。
02
平行四边形的性质
对角线性质
对角线互相平分
平行四边形的对角线互相平分,将平 行四边形分成两个面积相等的三角形 。
对角线性质的应用
利用对角线互相平分的性质,可以证 明平行四边形的相关性质,如平行四 边形的相对两角相等。
对边性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

, ∠C=
.
第2题图
.
4
3.如图,在平行四边形ABCD中,对角线AC、BD相
交于点O,若AC+BD=36,AB=10,则△AOB的周
长为
.
第3题图
.
5
4.如图,四边形ABCD的对角线相交于点O,若 AB//CD,请你添加一个条件____________,使 得四边形ABCD为平行四边形.
A
D
O
B
专题复习
两组对边分别平行
四边形
平行四边形
矩形 菱形
正方形
惠民县淄角镇中学 张相国
.
1
专题复习 平行四边形
.
2
题组再现,巩固基础
1.如图,在平行四边形ABCD中,AD=8cm,
AB=6cm,DE平分∠ADC交BC于点E,则
BE=

第1题图
.
3
2.已知:平行四边形ABCD中,∠A=100°,
则∠B=
.
4.如图,四边形ABCD的对角线相交于点O,若AB//CD,请你添加一个条件 ____________,使得四边形ABCD为平行四边形.
A
D
O
B
.
C 7
平行四边形
1.平行四边形的定义 两组对边分别_____平__行______的四边形叫平行四边形.
2.平行四边形的性质 (1)两组对边分别_平__行____,即AB__∥___CD, AD__∥____BC.
.
16
3.已知,如图,在平行四边形ABCD中,E是CD的 中点,F是AE的中点,FC与BE相交于G, 求证:GF=GC.
H
.
17
畅谈收获,反思提高
.
18
.
8
3.平行四边形的判定
两组对边 边
分__别__平__行__的__四__边__形__是__平__行__四__边__形. _分__别__相__等__的__四__边__形__是__平__行__四__边_形.
一组对边: __平__行__且__相__等__的__四__边__形__是__平__行__四__边__形.
A ①② B ①④ C ③④ D ②③
.
1慎将一块平行四边形玻 璃打碎成如图所示的四块,为了能在商店配到一块 与原来相同的平行四边形玻璃,他带了两块玻璃, 其编号应该是( )
A ①② B ①④ C ③④ D ②③
.
13
变练演编,深化提高
1.(2016绍兴中考)小敏不慎将一块平行四边形玻 璃打碎成如图所示的四块,为了能在商店配到一块 与原来相同的平行四边形玻璃,他带了两块玻璃, 其编号应该是( )
OD的中点.请判断四边形EFGH的形状?并说明为 什么.
o
.
10
例2:如图,在平行四边形ABCD中,对角线AC、 BD相交于点O,过点O的直线分别交BC和AD于点 E和F,若平行四边形ABCD的面积为18,求图中 阴影部分的面积。
.
11
变练演编,深化提高
1.(2016绍兴中考)小敏不慎将一块平行四边形玻 璃打碎成如图所示的四块,为了能在商店配到一块 与原来相同的平行四边形玻璃,他带了两块玻璃, 其编号应该是( )
C
.
6
1.如图,在平行四边形ABCD中,AD=8cm,AB=6cm,DE平分∠ADC交BC于
点E,则BE=

2.已知:平行四边形ABCD中,∠A=100°,则∠B=
, ∠C=
.
第1题图
第2题图
第3题图
3.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若AC+BD=36,
AB=10,则△AOB的周长为
角: __两__组__对__角__分__别__相__等__的__四__边__形__是__平__行__四__边__形__. 对角线:对__角__线__互__相__平__分__的__四__边__形__是__平__行__四__边__形__. _
.
9
典型例题,示范讲解
例1.如图,在平行四边形ABCD中,对角线AC、BD 相交于点O,且E、F、G、H分别是OA、OB、OC、
(2)两组对边分别_相__等____,即 AB__=___CD, AD___=___BC.
A
D
O
(3).两组对角分别_相__等____,即
B
C
∠ABC__=__∠ADC, ∠BAD__=__∠BCD;
(4)对角线互相_平__分___,即OA__=___OC,OB__=___OD.
(5)平行四边形是__中__心____对称图形。
A ①② B ①④ C ③④ D ②③
.
14
变练演编,深化提高
1.(2016绍兴中考)小敏不慎将一块平行四边形玻 璃打碎成如图所示的四块,为了能在商店配到一块 与原来相同的平行四边形玻璃,他带了两块玻璃, 其编号应该是( )
A ①② B ①④ C ③④ D ②③
.
15
2.(2010年滨州中考17题.)如图,平行四边 形ABCD中,∠ABC=60°,E、F分别在CD、BC的 延长线上,AE//BD,EF⊥BC,DF=2,则EF的长 为____________.
相关文档
最新文档