人教版七年级上册数学公开课优秀教案《一元一次方程》教学设计与反思

合集下载

初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇初中七年级上册数学《解一元一次方程》教案优质篇一一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。

符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。

同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。

学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。

二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。

为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。

教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。

本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。

教学方法是“引导分类归纳”。

本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。

人教版数学七年级初一上册 一元一次方程的概念 名师教学教案 教学设计反思 (3)

人教版数学七年级初一上册 一元一次方程的概念 名师教学教案 教学设计反思 (3)

《一元一次方程》敎學设计
1.在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突.
恰当的问题情境激发學生探索的欲望,同时让學生体会到数學来源于生活,又服务于生活的实用性.
启发:选择的目的是节省费用,费用又是由哪些因素决定的?學生讨论得出结论: 2.列代数式
费用=灯的售价+电费
电费=0.5×灯的功率(千瓦)×照明时间(时)
在此基础上,用t表示照明时间(小时).要求學生列出代数式表示这两种灯的费用.节能灯的费用(元):60+0.5×0.011t.
白炽灯的费用(元):3+0.5×0.06t.
分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础.
3.特值试探具体感知
學生分组计算:
t=1000、2000、2500、3000时,这两种灯具的使用费用,填入下表:
(1)某数比它大4倍小3;
(2)某数的1/3与15的差的3倍等于2;
(3)比某数的5倍大2 的数是17;
(4)某数的3/4与它的1/2的和为5.。

《一元一次方程》教案 人教数学七年级上册

《一元一次方程》教案 人教数学七年级上册

第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程一、教学目标【知识与技能】1.了解什么是方程,什么是一元一次方程;2.通过“列算式”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;【过程与方法】初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;【情感态度与价值观】经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,增强用数学的意识,激发学习数学的热情。

二、课型新授课三、课时1课时四、教学重难点【教学重点】1.了解什么是方程、一元一次方程;2.分析实际问题中的数量关系,利用其中的相等关系列出方程。

【教学难点】分析实际问题中的数量关系,利用其中的相等关系列出方程。

五、课前准备教师:课件、直尺、客车模型等。

学生:三角尺、练习本、圆珠笔或钢笔、铅笔。

六、教学过程 (一)导入新课一起来思考下面的问题?教师问1:汽车匀速行驶途径王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。

王家庄到翠湖的路程有多远?(出示课件2-3)学生回答:15−13×(13-10)+50教师问2:如果设王家庄到翠湖的路程为x 千米,你会用方程方法解决这个实际问题吗?(出示课件4)师生共同解答如下:设王家庄到翠湖的路程为x 千米,由题意得:x−5013−10=x+7015−10 (二)探索新知1.师生互动,探究一元一次方程的定义教师问3:在小学,我们已经见过像 2x=50,3x+1=4,5x-7=8 这样简单的方程,还有前面列出的式子:x−5013−10=x+7015−10,即x−503=x+705(出示课件6)又如: 6x-11=12,x+1=2x-5,x 2 –8x+2=0,|x+5| =2请同学们给方程下个定义.学生回答:含有未知数的等式叫做方程.教师出示问题:一辆快车和一辆慢车同时从A地出发沿同一公路同方向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是60 km/h,快车比慢车早1 h 经过B地,A,B两地间的路程是多少?(出示课件7)教师问4:上述问题中涉及到了哪些量?(出示课件8)师生共同讨论后解答如下:已知条件:路程:AB之间的路程.速度:快车70 km/h,慢车60 km/h.快车每小时比慢车多走10km.时间:快车比慢车早1h经过B地.相同的时间,快车比慢车多走60km.快车走了6h.教师问5:请同学们想一想,如何列算式呢?学生回答:算式:60 ÷(70-60)×70=420(km).教师问6:如果将AB之间的路程用x表示,用含x的式子表示下列时间关系:(出示课件9)(1)快车行完AB全程所用时间:(2)慢车行完AB全程所用时间:(3)两车所用的时间关系为:快车比慢车早到1h, 即:()- ()=1学生回答:(1)x70h ;(2)x60h ;(3)慢车用时-快车用时=1 教师问7:如何列方程解答呢?学生讨论后:设AB 之间的路程为x 千米,由题意得:x60-x70=1教师问8:如果用y 表示快车行完AB 的总时间,你能从快车与慢车的路程关系中找到等量关系,从而列出方程吗?(出示课件10)学生讨论后回答:等量关系: 快车y 小时路程=慢车(y+1)小时路程.方程: 70 y =60(y+1).教师问9:如果用z 表示慢车行完AB 的总时间,你能找到等量关系列出方程吗?(出示课件11)学生回答:等量关系:慢车z 小时路程=快车提前1小时走的路程.方程:70(z-1)=60z. 总结点拨:(出示课件12) 比较:列算式和列方程.列算式:列出的算式表示解题的计算过程, 只能用已知数.对于较复杂的问题,列算式比较困难.列方程:方程是根据题中的等量关系列出的等式. 既可用已知数,又可用未知数,解决问题比较方便.教师出示问题:(出示课件13) 观察下列方程,它们有什么共同点? x60-x70=1,70 y =60(y+1),70(z-1)=60z. 教师问10:每个方程中,各含有几个未知数? 学生回答:1个.教师问11:说一说每个方程中未知数的次数是几次?. 学生回答:一次.教师问12:等号两边的式子有什么共同点? 学生回答:都是整式.教师问13:向上边的方程叫做一元一次方程,请同学们想一想一元一次方程的定义,并且口述一下.学生回答:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。

2024一元一次方程教案人教版数学七年级上册教案

2024一元一次方程教案人教版数学七年级上册教案

2024一元一次方程教案人教版数学七年级上册教案一、教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。

2.能够运用一元一次方程解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

二、教学重难点重点:一元一次方程的解法。

难点:实际问题中的一元一次方程的应用。

三、教学准备1.教学课件2.实物投影仪3.小组讨论材料四、教学过程(一)导入新课1.情景引入:同学们,你们在生活中有没有遇到过这样的问题,比如:一个物品的价格是多少?一个物品的重量是多少?这些问题都可以通过一元一次方程来解决。

2.提问:同学们,你们知道什么是一元一次方程吗?(二)探究新知1.讲解一元一次方程的定义(1)引导学生观察一元一次方程的一般形式:ax+b=0(a、b是常数,a≠0)。

(2)讲解一元一次方程的解法:将方程两边同时加上或减去一个常数,使得方程的左边变为未知数的系数,右边变为常数。

2.讲解一元一次方程的解法(1)教师示范:解方程2x6=0。

(2)引导学生模仿:解方程3x+4=7。

(3)学生独立完成:解方程5x9=2。

3.小组讨论:如何将实际问题转化为方程?(1)引导学生观察实际问题,找出未知数和等量关系。

(2)小组讨论,给出解决方案。

4.练习:解下列方程(1)2x5=3(2)3x+4=11(3)4x7=5(4)5x+2=0(2)教师点评,强调注意事项。

(三)巩固提高1.小组讨论:如何运用一元一次方程解决实际问题?2.学生展示:展示解题过程,讲解思路。

3.练习:解决实际问题(1)一个物品的价格是50元,如果降价x元后,售价为45元,求x的值。

(2)一个水果摊上的苹果每斤5元,小明买了3斤,花费了y元,求y的值。

(3)一个长方形的长是宽的2倍,如果宽为x厘米,求长方形的长。

(四)课堂小结五、课后作业1.解下列方程(1)3x4=7(2)4x+5=9(3)5x3=2(4)2x+7=02.解决实际问题(1)一辆汽车行驶了x小时,平均速度为60千米/小时,求行驶的距离。

初中数学教学课例《一元一次方程》教学设计及总结反思

初中数学教学课例《一元一次方程》教学设计及总结反思

后与同学交流做这类题需要注意的地方,或者是还存在
的疑问,以加深对一元二次方程的理解.
(五)布置作业.
A 组:课本第 4 页复习巩固 1、2、3
B 组:综合运用 4、5、6、7
【设计意图】考虑到学生在知识、技能、能力等方
面的发展都不尽相同,因此,我分层次布置作业,以便
同时兼顾到学有困难和学有余力的学生.
对一元二次方程的理解.让学生回答方程的元与次,一 是让他们体会统一成一般形式的必要性,为概念的形成 做铺垫,分解教学的难点;二是让他们明确教学的主线, 从被动学习走向主动学习.
问题 4.这些方程是什么方程? 师生活动:观察本课得出的一些方程,思考它们的 共性,同学们尝试给出一元二次方程的定义,并且概括 出一元二次方程的一般形式. (1)一元二次方程的概念: 等号两边都是整式,只含有一个未知数(一元),并 且未知数的最高次数是 2(二次)的方程叫做一元二次 方程. 一元二次方程的一般形式是.其中是二次项,a 是 二次项系数;是一次项,b 是一次项系数;c 是常数项. 问题 5.在一元二次方程的一般形式中,为什么规 定 a 不等于 0? 【设计意图】让学生自己给出定义就是对过去所学 一元一次方程的定义的类比和对比,概括一般形式是对 一元二次方程另一个角度的理解,是对数学符号语言的 应用能力的提升.另外就是一定要注意到 a 不等于 0 这个条件. 问题 6.请你说出一个一元二次方程,和一个不是
中力求体现“问题情景---数学模型-----概念归纳” 择与设计
的模式.但是由于学生将实践问题转化为数学方程的能
力有限,所以,本节知识的主要学习方法是:动手与观 察,思考与交流,归纳与总结.加强新旧知识之间的联 系,培养自己分析问题、解决问题的能力,从而获得学 习数学的方法.同时学生在现实的生活情景中,经历数 学建模,经过自主探索和合作交流的学习过程,产生积 极的情感体验,进而创造性地解决问题,有效发挥学生 的思维能力.此外,本节课是一元二次方程的概念课, 是通过丰富的实例,让学生建立一元二次方程,并通过 观察归纳出一元二次方程的概念.

人教版七年级数学上册3.1.1一元一次方程(教案)

人教版七年级数学上册3.1.1一元一次方程(教案)
3.一元一次方程的应用:通过实际例题,让学生学会将实际问题转化为方程求解,培养学生的数学应用能力。
本节课将结合教材内容,注重培养学生的运算能力和解决实际问题的能力。
二、核心素养目标
1.培养学生的逻辑推理能力:通过一元一次方程的学习,使学生能够理解和运用数学符号,进行逻辑推理,掌握方程的求解过程,提高数学思维能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次方程的基本概念。一元一次方程是指只含有一个未知数,并且未知数的最高次数为一次的方程。它是解决许多实际问题的有力工具,尤其在计算和推理中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。假设小华买了3本书和2支笔,共花费35元。如果每本书的价格为x元,每支笔的价格为5元,我们可以建立方程3x + 2×5 = 35来求解每本书的价格。
1.强化对移项和合并同类项的讲解和练习,让学生熟练掌握这一解法技巧。
2.提高小组讨论的效率,给出更具体的讨论主题和明确的分工,培养学生的团队协作能力。
3.关注课堂上表现被动、信心不足的学生,多给予鼓励和指导,帮助他们提高自信心。
4.及时检查学生对知识点的掌握情况,针对发现的问题进行有针对性的辅导。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
我还注意到,在小组讨论时,有些小组的讨论效率不高,可能是因为组内分工不明确或者讨论主题不够具体。为了提高讨论效果,我计划在下次的教学中,给出更明确的讨论指导,帮助学生更有效地开展讨论。

七年级数学《一元一次方程》教案【4篇】

七年级数学《一元一次方程》教案【4篇】

七年级数学《一元一次方程》教案【4篇】七年级数学《一元一次方程》教案篇一2.自主探索、合作交流:先由学生独立思考求解,再小组合作交流,师生共同评价分析。

方法1:解:方程两边都加上2,得5x-2+2=8+2也就是5x=8+2合并同类项,得5x=10所以,x=23.理性归纳、得出结论(让学生通过观察、归纳,独立发现移项法则。

)比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于5x-2=85x=8+2即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。

教学建议:关于移项法则,不应只强调记忆,更应强调理解。

学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。

方法2;解:移项,得5x=8+2合并同类项,得5x=10方程两边都除以5,得x=24.运用反思、拓展创新[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。

[例2]解方程:教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。

②在移项时,学生常会犯一些错误,如移项忘记变号等。

这时,教士不要急于求成,而要引导学生反思自己的解题过程。

必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。

5.小结回顾:学生谈本节课的收获与体会。

师强调:移项法则。

七年级数学《一元一次方程》教案篇二教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。

初中数学初一数学上册《一元一次方程》教案、教学设计

初中数学初一数学上册《一元一次方程》教案、教学设计
1.关注学生对基本概念的理解,如未知数、常数项、系数等,确保学生能够正确把握一元一次方程的基本要素。合并同类项等方法,逐步掌握方程的求解过程。
3.结合学生的生活实际,设计具有趣味性、挑战性的教学活动,激发学生的学习兴趣,提高学生的参与度。
4.针对不同学生的学习需求,提供个性化的辅导和指导,帮助学生克服学习难点,提高学习效果。
四、教学内容与过程
(一)导入新课
1.创设情境:以一个与学生生活密切相关的实际问题为例,如“小明的年龄问题”,引导学生思考如何用数学方法解决这个问题。
-小明今年比妈妈小28岁,4年后,小明比妈妈小多少岁?
-通过讨论,引导学生发现,这个问题可以通过列方程来解决。
2.提出问题:根据小明年龄问题的讨论,引导学生思考,什么是方程?一元一次方程的定义是什么?
初中数学初一数学上册《一元一次方程》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一元一次方程的定义,了解方程中的未知数、常数项、系数等基本概念。
2.学会使用等式性质、移项、合并同类项等方法解一元一次方程,掌握求解过程。
3.能够根据实际问题列出相应的一元一次方程,并运用所学的解法求解。
4.掌握一元一次方程的解的判定方法,了解方程有唯一解、无解和多解的情况。
五、作业布置
为了巩固本节课所学的一元一次方程知识,培养学生的应用意识和问题解决能力,特布置以下作业:
1.基础练习题:完成课本第23页的练习题1、2、3,旨在让学生熟练掌握一元一次方程的求解方法。
2.提高题:根据以下实际问题,列出相应的一元一次方程并求解。
-问题1:小华今年12岁,他的哥哥比他大6岁,请问5年后,小华的哥哥是多少岁?
(三)情感态度与价值观
1.培养学生对待数学问题的积极态度,增强学习数学的自信心,克服对一元一次方程的恐惧感。

一元一次方程教学设计与教学反思[共5篇][修改版]

一元一次方程教学设计与教学反思[共5篇][修改版]

第一篇:一元一次方程教学设计与教学反思人教版七年级数学上册第三章《一元一次方程》教学设计呈贡区第一中学邹秀存一、教学分析(一)教学内容分析1.方程是代数学的核心,是刻画现实世界的一个有效的数学模型,而一元一次方程是最简单的代数方程,也是所有代数方程的基础。

2. 用一元一次方程解决实际问题是初中阶段应用数学知识解决实际问题的开端,也是增强学生学数学、用数学的重要题材;教材渗透的符号化、模型化思想及类比、化归、归纳等数学思想方法,都是学生今后学习和工作中必备的数学修养和素质。

3. 通过本节课,使学生了解一元一次方程及其相关概念,认识到从算术到方程是数学的进步,并体会方程的意义,同时在“观察分析-抽象表示-符号变换-解释体验”的过程中,感受数学的科学价值和人文价值;体会从实际问题到方程中蕴含的模型化思想,提高分析问题和解决问题的能力。

“从算术到方程”是本章第一节内容,是从算术模型到方程模型的首次尝试跨越,对后续学习有着重要的意义。

(二)教学对象分析该内容属于2012年审定人教版义务教育教科书七年级上册第三章的内容。

1.学生在小学阶段已对简单方程有所认识,也会用方程表示简单情境中的数量关系,但多数学生说不出方程的本质。

2.学生已会用算术模型和方程模型解决简单的实际问题,但学生说不出算术算式与代数方程的区别与联系,感受不到方程是更简便、更有力的数学工具,从算术方法到代数方程是数学的进步。

3.学生尽管已会模仿解决一些简单的实际问题,但学生缺乏多角度思考的习惯,也没有交流、合作、质疑的意识,不会用数学方式去思考。

大部分学生思维比较活跃,敢想也敢说。

二、教学目标(一)通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;(二)初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;(三)培养学生获取信息,分析问题,处理问题的能力。

三、教学重点、难点均是从实际问题中寻找相等关系。

四、教学过程(一)问题解决,体会方程播放2010年南非世界杯宣传曲。

最新部编版人教初中数学七年级上册《第3章(一元一次方程)全章教学设计及教学反思》精品教案

最新部编版人教初中数学七年级上册《第3章(一元一次方程)全章教学设计及教学反思》精品教案

最新精品部编版人教初中七年级数学上册第3章《一元一次方程》优秀教学设计(全章完整版含教学反思)前言:该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。

实用性强。

高质量的教学设计(教案)是高效课堂的前提和保障。

(最新精品教学设计)第三章一元一次方程课题: 3.1.1一元一次方程(1)教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3、培养学生获取信息,分析问题,处理问题的能力。

教学难点均是从实际问题中寻找相等关系。

知识重点教学过程(师生活动)设计理念情境引入教师提出教科收第66页的问题,并用多媒体直观演示,同进出现下图:问题1:从上图中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。

)教师可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:用多媒体演示的目的是使学生能直观地理解“匀速”的含义,为后面寻相等关系做准备。

培养学生读图的能力和思维的广阔性。

这样既可以复习小学的算术方法,又为后面与方程的比较打下伏笔。

提出问题:引出课题:3.1.1 一元一次方程(2)。

一元一次方程优秀教学反思【优秀8篇】

一元一次方程优秀教学反思【优秀8篇】

一元一次方程优秀教学反思【优秀8篇】《一元一次方程》教学反思1一、4点说明1、单元中的地位及重难点;本节课是人教版七年级上册第三章第四节《实际问题与一元一次方程》的第二课时——销售中的盈亏问题的探究。

通过本节课的学习对学生的要求是:能够找出实际问题中的已知数和未知数,分析他们之间的关系,找出问题中的等量关系,体会建立数学模型的思想。

通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的过程,感受数学的应用价值,提高分析问题、解决问题的能力。

本节课是有理数、整式加减之后,以及在第三章2,3小节已经讨论过由实际问题建立一元一次方程和解决一元一次方的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题。

本节课选择了具有一定综合性的问题(“销售中的盈亏问题”),设置了探究点,引导学生利用方程为工具进行具有一定深度的思考,具有承上启下作用,把全章所强调的以方程为工具把实际问题模型化的思想提到新的高度。

一方面通过更加贴近实际生活的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,激发学生学习数学的兴趣,使学生在分析问题和解决问题的能力、创新精神和实践意识在更高层次上得到提高,为以后几节列方程解生活中的实际问题埋下伏笔。

基于教材分析,我确定本节课的教学重难点是:建立实际问题的模型,让学生知道销售中的盈亏的算法。

通过探究活动,加强数学建模思想,培养运用一元一次方程分析和解决实际问题的能力。

2、教学思想;运用建模思想来指导七年级学生学习,在很大程度上是要在学生认知过程中建立起一种符号化的具有数学结构特征的“模型”载体,通过这样具有“模型”功能载体,帮助学生实现数学抽象,为后续学习提供强有力的基础支持。

3、育人思想;通过对盈亏问题的探索,让学生体验数学来源于生活,又服务于生活,从而激发学生学好数学的热情,培养学生严谨的学习态度和与刻苦钻研的顽强毅力。

数学《一元一次方程》教学反思范文(精选5篇)

数学《一元一次方程》教学反思范文(精选5篇)

数学《一元一次方程》教学反思范文(精选5篇)数学《一元一次方程》教学反思范文(精选5篇)作为一位到岗不久的教师,我们要有一流的课堂教学能力,通过教学反思可以有效提升自己的教学能力,那么应当如何写教学反思呢?以下是小编为大家整理的数学《一元一次方程》教学反思范文(精选5篇),欢迎大家分享。

数学《一元一次方程》教学反思1七年级数学上册第三章《一元一次方程》,是在第二章整式的加减和小学学过的方程的基础上而展开的,第一节内容从算式到方程,重在让学生体验用方程的思想解决实际问题,了解基本概念,认识一元一次方程,会列出简单问题的方程。

《课程标准》对本节课的要求是通过具体实例归纳出方程及一元一次方程的概念,根据相等关系列出方程。

让学生归纳和总结的过程中,初步建立数学模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验。

在进行本节课的教学中,我利用导学案引领学生通过自学教材、解决问题,从而掌握知识内容。

首先设计了猜年龄游戏,激发学生的浓厚兴趣,引出方程的概念,再利用简单的实际问题,让学生列出小学学过的方程。

接下来自学方程、一元一次方程、解方程、方程的解、检验方程的解等概念和方法。

学生利用已有的知识和经验能够完成。

对于个别问题可通过合作讨论处理。

变式训练环节则针对自学题目强化练习。

教师再补充强调,让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想。

体验数学与生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生的热情。

在本节课的教学中,还有以下几点需要改进:(1)引入情境没有充分利用。

猜年龄游戏提高了学生的兴趣,仅仅作为引出式子,使用的不够,可以深化成用未知数来解决实际问题,并教会学生去应用,效果会更好。

相信学生一定希望自己学会猜年龄的方法,和其中的数学道理。

(2)对列方程的方法指导还不够。

考虑到本节只是引出方程,没有将分析问题中的数量关系,列出方程作为重点进行训练,使得部分基础稍差的学生没有很好接受。

人教版数学七年级上册3.1.1《一元一次方程》教学设计1

人教版数学七年级上册3.1.1《一元一次方程》教学设计1

人教版数学七年级上册3.1.1《一元一次方程》教学设计1一. 教材分析人教版数学七年级上册3.1.1《一元一次方程》是学生在小学阶段学习数学后,首次接触方程的学习。

这一节内容主要介绍一元一次方程的定义、解法及其应用。

教材通过生活实例引入方程的概念,使学生感受到方程在实际生活中的重要作用,激发学生的学习兴趣。

同时,教材通过循序渐进的引导,让学生自主探索、发现、总结一元一次方程的解法,培养学生的动手操作能力和抽象思维能力。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于方程这一概念,他们可能在生活中有所接触,但并未系统学习。

因此,在教学过程中,教师需要从学生的实际出发,通过生动的生活实例引入方程的概念,让学生感受到方程的魅力。

同时,教师还需关注学生的个体差异,针对不同程度的学生进行有针对性教学,使他们在原有基础上得到提高。

三. 教学目标1.知识与技能:使学生了解一元一次方程的概念,掌握一元一次方程的解法,能运用一元一次方程解决实际问题。

2.过程与方法:通过自主探索、合作交流,培养学生发现、提出、解决问题的能力,提高学生的动手操作能力和抽象思维能力。

3.情感态度与价值观:激发学生学习方程的兴趣,培养学生勇于挑战、自主学习的品质,感受数学在生活中的重要作用。

四. 教学重难点1.重点:一元一次方程的概念、解法及其应用。

2.难点:一元一次方程的解法,能运用一元一次方程解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入方程的概念,让学生感受到方程在实际生活中的重要作用。

2.自主探索法:引导学生自主探索、发现、总结一元一次方程的解法。

3.合作交流法:鼓励学生相互讨论、合作,共同解决问题。

4.实践操作法:让学生动手操作,提高学生的实践能力。

六. 教学准备1.教材、PPT、黑板、粉笔等教学用具。

2.相关的生活实例和练习题。

七. 教学过程1.导入(5分钟)通过一个简单的生活实例,如“小明买书”的问题,引导学生认识到方程在实际生活中的重要作用,激发学生的学习兴趣。

人教版数学七年级初一上册 一元一次方程 名师教学教案 教学设计反思 (3)

人教版数学七年级初一上册 一元一次方程 名师教学教案 教学设计反思 (3)

《解一元一次方程——合并同类项》敎师:常鼎堃敎學步骤敎师活动學生活动时间分配设计意图一、复习回顾二、创设情景,导入新课(一)、复习回顾1、什么是一元一次方程?2、什么是同类项?①、3②、-3ab 与2ab③、与 53、什么是合并同类项?①、4y+5y②、b-2 b(二)、创设情景1、某校前年购买计算机x台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍,去年购买的计算机的数1、一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。

2、如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项。

2、合并同类项就是利用乘法分配律,同类项的系数相加,所得的结果作为系数,字母和指数不变。

合并同类项实际上就是乘法分配律的逆向运用。

①、4y+5y即(4+5)y=9y②、b-2 b即() b= bx+2x+ 4x5分钟一、通过对旧知识的复习引入新课,让學生明白新旧知识之间的联系,为后续的學习打下坚实的基础。

二、合作探究,共同总结。

通量是________;今年购买的计算机的数量是________;三年总共购买的数量是_________. (2)某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍, 前年这个學校购买了多少台计算机?解:设前年购买计算机x 台,那么,去年购买的计算机的数量是________;今年购买的计算机的数量是________;根据关系:三年共购买计算机140台(关系式: 前年购买量+去年购买量+今年购买量=140台),列得方程:_____________________ _______.并得________________. 系数化为1得______________.答:__________________ ____.2、例1:解方程①、2x-x=6-8 = (1+2+4)x解:设前年购买计算机x台x+2x+ 4x=140(1+2+4)x=1407x=140X=140÷7X=20學生自主探究、合作交流得出:①、合并同类项的内容是把方程中含有未知数的项与常数项分别合并,使方程变得简单,更接近X=a的形式。

解一元一次方程人教版数学七年级上册教案

解一元一次方程人教版数学七年级上册教案

解一元一次方程人教版数学七年级上册教案一、教学目标1.知识与技能目标:使学生掌握一元一次方程的定义,理解一元一次方程的解法,能够熟练地解一元一次方程。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生解决问题的能力,提高学生的逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生独立思考、合作探究的精神。

二、教学重点与难点1.教学重点:一元一次方程的定义及解法。

2.教学难点:一元一次方程的移项和系数化为1的方法。

三、教学过程1.导入新课师:同学们,我们之前学过不等式,那么大家知道方程吗?方程与不等式有什么区别和联系呢?生:方程是表示两个表达式相等的式子,不等式是表示两个表达式不相等的式子。

师:很好,那今天我们就来学习一种特殊的方程——一元一次方程。

2.学习一元一次方程的定义师:请同学们看教材第39页,一元一次方程的定义是什么?生:一元一次方程是只含有一个未知数,且未知数的次数为1的方程。

师:非常正确。

那么请同学们思考一下,一元一次方程的一般形式是什么?生:一元一次方程的一般形式是ax+b=0,其中a、b是常数,且a ≠0。

3.学习一元一次方程的解法师:我们来看一下如何解一元一次方程。

我们要把方程写成一般形式ax+b=0。

然后,我们通过移项和系数化为1的方法来求解。

师:请同学们看教材第40页例1,我们一起分析一下这个方程的解法。

生:将方程2x+3=5写成一般形式2x=5-3,然后通过系数化为1,得到x=1。

师:很好,那现在请同学们自己尝试解一下方程3x-4=7。

生:将方程写成一般形式3x=7+4,然后系数化为1,得到x=3。

4.巩固练习师:同学们,我们已经学习了一元一次方程的定义和解法,现在我们来巩固一下。

3x+2=5;2x^2+3=5;5x-3=2x+1。

2x-3=5;3x+4=2x-1。

师:通过本节课的学习,我们掌握了一元一次方程的定义和解法。

那么,同学们认为解一元一次方程的关键是什么?生:关键是把方程写成一般形式,然后通过移项和系数化为1的方法来求解。

人教版七年级数学上册3.1.1《一元一次方程》教学设计

人教版七年级数学上册3.1.1《一元一次方程》教学设计

人教版七年级数学上册3.1.1《一元一次方程》教学设计一. 教材分析《一元一次方程》是人教版七年级数学上册第三章第一节的内容,本节课的主要内容是让学生了解一元一次方程的概念,学会解一元一次方程。

通过本节课的学习,让学生能够运用数学知识解决实际问题,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了整数、分数、小数的基本运算,对代数概念有一定的了解。

但学生对一元一次方程的概念和解方程的方法还不够熟悉。

因此,在教学过程中,教师需要结合学生的实际情况,用生动有趣的生活实例引入方程的概念,引导学生通过观察、思考、探索,掌握解方程的方法。

三. 教学目标1.知识与技能目标:让学生了解一元一次方程的概念,学会解一元一次方程。

2.过程与方法目标:通过观察、思考、探索,培养学生发现和提出问题、解决问题的能力。

3.情感态度与价值观目标:让学生体验数学与生活的紧密联系,培养学生学习数学的兴趣。

四. 教学重难点1.重点:一元一次方程的概念和解一元一次方程的方法。

2.难点:对一元一次方程的理解和应用。

五. 教学方法采用情境教学法、启发式教学法、小组合作学习法等,激发学生的学习兴趣,调动学生的积极性,引导学生主动参与课堂讨论,培养学生的动手操作能力和思维能力。

六. 教学准备1.准备一些与生活相关的一元一次方程实例,用于导入和新课。

2.准备黑板、粉笔等教学工具。

3.准备练习题和拓展题,用于巩固和拓展知识。

七. 教学过程1.导入(5分钟)利用生活实例引入方程的概念,如“小明买了一本书,原价是10元,打八折后花了8元,问这本书原价是多少?”让学生观察这个实例,引导学生发现这是一个方程,从而引出一元一次方程的概念。

2.呈现(15分钟)让学生观察和分析一些一元一次方程的实例,引导学生发现一元一次方程的特点,总结出一元一次方程的定义。

如:2x + 3 = 7,x - 5 = 2等。

3.操练(15分钟)让学生解一些简单的一元一次方程,如2x + 3 = 7,x - 5 = 2等。

人教版七年级上册数学公开课优秀教案《一元一次方程》教学设计与反思

人教版七年级上册数学公开课优秀教案《一元一次方程》教学设计与反思

人教版七年级上册数学公开课优秀教案《一元一次方程》教学设计与反思人教版七年级上册数学公开课优秀教案《一元一次方程》教学设计与反思人教版七年级上册数学公开课优秀教案《一元一次方程》教学设计与反思3.1 从算式到方程3.1.1 一元一次方程1.通过现实生活中的例子,体会方程的意义,领悟一元一次方程的概念,并会进行简单的辨别;(重点)2.初步学会找实际问题中的等量关系,设出未知数,列出方程.(重点,难点)一、情境导入问题:一辆客车和一辆卡车同时从A地出发沿同一公路同一方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A,B两地间的路程是多少?1.若用算术方法解决应怎样列算式?2.如果设A,B两地相距xkm,那么客车从A地到B地的行驶时间为________,货车从A地到B地的行驶时间为________.3.客车与货车行驶时间的关系是____________.4.根据上述关系,可列方程为____________.5.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?二、合作探究探究点一:方程的概念判断下列各式是不是方程;若不是,请说明理由.(1)4×5=3×7-1; (2)2x+5y=3;(3)9-4x>0; (4)x-32=13; (5)2x+3.解析:根据方程的定义对各小题进行逐一分析即可.解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.方法总结:本题考查的是方程的概念,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.探究点二:一元一次方程的概念【类型一】一元一次方程的辨别下列方程中是一元一次方程的有( )A.x+3=y+2B.1-3(1-2x)=-2(5-3x)C.x-1=1xD.y3-2=2y-7解析:A.含有两个未知数,不是一元一次方程,错误;B.化简后含有未知数项可以消去,不是方程,错误;C.分母中含有字母,不是一元一次方程,错误;D.符合一元一次方程的定义,正确.故选D.方法总结:判断一元一次方程需满足三个条件:(1)只含有一个未知数;(2)未知数的次数是1;(3)是整式方程.【类型二】利用一元一次方程的概念求字母次数的值方程(m+1)x|m|+1=0是关于x的一元一次方程,则( )A.m=±1 B.m=1C.m=-1D.m≠-1解析:由一元一次方程的概念,一元一次方程必须满足未知数的次数为1且系数不等于0,所以|m|=1m+1≠0,解得m=1.故选B.方法总结:解决此类问题要明确:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1且系数不为0,则这个方程是一元一次方程.据此可求方程中相关字母的值.探究点三:方程的解下列方程中,解为x=2的方程是( )A.3x-2=3B.-x+6=2xC.4-2(x-1)=1D.12x+1=0解析:A.当x=2时,左边=3×2-2=4≠右边,错误;B.当x =2时,左边=-2+6=4,右边=2×2=4,左边=右边,即x=2是该方程的解,正确;C.当x=2时,左边=4-2×(2-1)=2≠右边,错误;D.当x=2时,左边=12×2+1=2≠右边,错误.故选B.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.探究点四:列方程某文具店一支铅笔的售价为 1.2元,一支圆珠笔的售价为2元.该店在“6?1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( ) A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,据此列出方程为1.2×0.8x+2×0.9(60-x)=87.故选B.方法总结:解题的关键是正确理解题意,设出未知数,找到题目当中的等量关系,列方程.三、板书设计1.方程的定义2.一元一次方程:只含有一个未知数(元),未知数的次数都是1的整式方程叫做一元一次方程.3.列方程解决实际问题的步骤:①设未知数(用字母)②找等量关系(表示出相关的量)③列出方程本课首先用实际问题引入课题,然后运用算术的方法给出解答.在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论.通过本节的教学让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.使学生体会到数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决;从而激发学生学习数学的热情.1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步.2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念.3.理解一元一次方程、方程的解等概念.4.掌握检验某个值是不是方程的解的方法.教学重难点:寻找相等关系,列出方程.教学过程:一、情境引入提出课本P78的问题,可用多媒体演示题目描述的行驶情境.1.理解题意:客车比卡车早1小时经过B地,从这句话中可知客车、卡车行驶的路程和时间分别有什么关系?2.能否列算式求出A、B两地之间的路程,要求能够解释列出的算式表示的实际意义.3.提出问题,如果用字母x表示A、B两地的路程,根据题意会得到一个什么样的式子?二、学习新知1.引导学生把题中的数量用表格形式反映题意:路程(km) 速度(km/h) 时间(h)卡车 x 60客车 x 702.学生回顾方程的概念,探讨、列出方程,并说出列得方程的依据.3.讨论列出方程表示的意义,并对比算术方法,体会列方程解决问题与列算式解决问题的优越性.4.反思:这个问题中除了A、B两地的路程是一个未知量,还有没有其它的量是未知的?如果还有其它的量是未知的,能否用字母(或未知数y)表示这个未知量,列出与前面不同的方程呢?学生分组讨论.5.将题中的已知量和未知量用表格列出:路程(km) 速度(km/h) 时间(h)卡车 60 y客车 70 y-16.探讨:①列出关于y的方程;②解释这个方程表示的实际意义(或列出这个方程的依据);③如何求题目问题:A、B之间的路程.7.总结以上列出两个含不同未知数x、y的方程的方法:①以路程为未知数,则根据两车行驶时间的关系列方程.②以行驶时间为未知数,则从两车行驶路程的关系列方程.8.比较列算式和列方程两种方法的特点:阅读课本P79.9.举一反三:分别列算式和设未知数列方程解决下列问题:(1)某数与它的的和是8,求这个数;(2)班上有女生32人,比男生多,求男生人数;(3)公园购回一批风景树,其中桂花树占总数的,樟树比桂花树的棵数多,杉树比前两种树木的棵数和还多12棵,求这批树木总共多少棵?三、初步应用1.例1:课本P79例1.例2(补充):根据下列条件,列出关于x的方程:(1)x与18的和等于54;(2)27与x的差的一半等于x的4倍.列出方程后教师说明:“4x”表示4与x的积,当乘数中有字母时,通常省略乘号“×”,并把数字乘数写在字母乘数的前面.2.练习(补充)(1)列式表示:①比a小9的数; ② x的2倍与3的和;③ 5与y的差的一半; ④ a与b的7倍的和.(2)根据下列条件,列出关于x的方程:①12与x的差等于x的2倍;②x的三分之一与5的和等于6.二、自主尝试1.尝试:让学生尝试解答课本P79的例1.2.交流:在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.3.教师在学生回答的基础上作补充讲解,并强调1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.4.讨论:问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?问题2:在第(3)题中,你还能设其它的未知数为x吗?5.建立概念(1)概念的建立:在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的次数都是1,这样的方程叫做一元一次方程.“一元”:一个未知数;“一次”:未知数的指数是一次.判断下列方程是不是一元一次方程:①23-x=-7; ②2a-b=3;③ y+3=6y-9; ④ 0.32m-(3+0.02m) =0.7.(2)引导学生归纳:从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示: 实际问题一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.三、课时小结对于本节课的学习,你有什么收获?四、课堂作业1.x=3是下列哪个方程的解( )A. 3x-1-9=0B. x=10-4xC. x(x-2)=3D. 2x-7=122.方程=6的解是( )A. -3 B -C. 12D. -123.已知x-5与2x-4的值互为相反数,列出关于x的方程.4.某班开展为贫困山区学校捐书活动,捐的书比平均每人捐3本多21本,比平均每人捐4本少27本,求这个班共有多少名学生?如果设这个班有x名学生,请列出关于 x的方程.。

七年级数学公布课一元一次方程教学设计与反思

七年级数学公布课一元一次方程教学设计与反思

七年级数学公布课《一元一次方程》教学设计与反思教材分析本节课的教学目标是从知识与技术、进程与方式、情感与态度三个方面,依照《全日制义务教育数学课程标准》中关于“一元一次方程概念”的教学要求,结合学生的实际情形确信的.学生在小学时已经能较为熟练的运用算术方式解决问题,列出的算式只能用已知数;而方程是依照问题中的等量关系列出的等式,其中既含有已知数,又含有效字母表示的未知数.通过比较,让学生感受到方程作为刻画现实世界有效模型的意义,明确列方程的关键确实是依照题意找到“相等关系”,能用方程来描述和刻画事物间的相等关系.通过对实际问题的研究,学生能够初步熟悉到日常生活中的许多问题能够用数学方式解决,体验到实际问题“数学化”的进程.学情分析1.通过设置“距离的问题”这一情境来温习方程的概念,以激发学生的好奇心和主动参与学习的欲望.通过比较算术方式和方程方式的区别,初步体验从算术到方程是数学的进步.2.设置的例题与练习给学生提供了丰硕多彩的、切近学生生活实际的问题情境,以鼓舞和培育学生应用数学知识解决实际问题的意识,并鼓舞学生从不同的角度分析问题,依照不同的设法,列出不同的方程.在学习数学知识的同时,还渗透了对学生的人文教育.3.通过师生一起小结,发挥学生的主体作用,有利于学生巩固所学知识,培育学生归纳、归纳的能力.作业安排是为了让学生更进一步落实课堂教学目标,选做题是为了知足不同层次学生的需求,为学有余力的学生提供进展空间.4.要紧采纳了启发式教学的教学方式,以生活中的实际问题为例来创设情境,引导学生去分析试探和归纳总结,进而达到对知识的“发觉”和同意的目的.成心识地给学生制造一个欣赏数学、探讨数学的平台, 渗透给学生由实际问题抽象为方程模型这一进程中蕴涵的符号化、模型化的思想.教学目标1.通过观看,归纳一元一次方程的概念.2.依照方程解的概念,会估算出简单的一元一次方程的解.3.体会字母表示数的益处、画示用意有利于分析问题、找相等关系是列方程的重要一步、从算式到方程是数的一大进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级上册数学公开课优秀教案《一元一次方程》教学设计与反思人教版七年级上册数学公开课优秀教案《一元一次方程》教学设计与反思3.1 从算式到方程3.1.1 一元一次方程1.通过现实生活中的例子,体会方程的意义,领悟一元一次方程的概念,并会进行简单的辨别;(重点)2.初步学会找实际问题中的等量关系,设出未知数,列出方程.(重点,难点)一、情境导入问题:一辆客车和一辆卡车同时从A地出发沿同一公路同一方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A,B两地间的路程是多少?1.若用算术方法解决应怎样列算式?2.如果设A,B两地相距xkm,那么客车从A地到B地的行驶时间为________,货车从A地到B地的行驶时间为________.3.客车与货车行驶时间的关系是____________.4.根据上述关系,可列方程为____________.5.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?二、合作探究探究点一:方程的概念判断下列各式是不是方程;若不是,请说明理由.(1)4×5=3×7-1; (2)2x+5y=3;(3)9-4x>0; (4)x-32=13; (5)2x+3.解析:根据方程的定义对各小题进行逐一分析即可.解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.方法总结:本题考查的是方程的概念,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.探究点二:一元一次方程的概念【类型一】一元一次方程的辨别下列方程中是一元一次方程的有( )A.x+3=y+2B.1-3(1-2x)=-2(5-3x)C.x-1=1xD.y3-2=2y-7解析:A.含有两个未知数,不是一元一次方程,错误;B.化简后含有未知数项可以消去,不是方程,错误;C.分母中含有字母,不是一元一次方程,错误;D.符合一元一次方程的定义,正确.故选D.方法总结:判断一元一次方程需满足三个条件:(1)只含有一个未知数;(2)未知数的次数是1;(3)是整式方程.【类型二】利用一元一次方程的概念求字母次数的值方程(m+1)x|m|+1=0是关于x的一元一次方程,则( )A.m=±1 B.m=1C.m=-1D.m≠-1解析:由一元一次方程的概念,一元一次方程必须满足未知数的次数为1且系数不等于0,所以|m|=1m+1≠0,解得m=1.故选B.方法总结:解决此类问题要明确:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1且系数不为0,则这个方程是一元一次方程.据此可求方程中相关字母的值.探究点三:方程的解下列方程中,解为x=2的方程是( )A.3x-2=3B.-x+6=2xC.4-2(x-1)=1D.12x+1=0解析:A.当x=2时,左边=3×2-2=4≠右边,错误;B.当x =2时,左边=-2+6=4,右边=2×2=4,左边=右边,即x=2是该方程的解,正确;C.当x=2时,左边=4-2×(2-1)=2≠右边,错误;D.当x=2时,左边=12×2+1=2≠右边,错误.故选B.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.探究点四:列方程某文具店一支铅笔的售价为 1.2元,一支圆珠笔的售价为2元.该店在“6•1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,据此列出方程为1.2×0.8x+2×0.9(60-x)=87.故选B.方法总结:解题的关键是正确理解题意,设出未知数,找到题目当中的等量关系,列方程.三、板书设计1.方程的定义2.一元一次方程:只含有一个未知数(元),未知数的次数都是1的整式方程叫做一元一次方程.3.列方程解决实际问题的步骤:①设未知数(用字母)②找等量关系(表示出相关的量)③列出方程本课首先用实际问题引入课题,然后运用算术的方法给出解答.在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论.通过本节的教学让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.使学生体会到数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决;从而激发学生学习数学的热情.1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步.2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念.3.理解一元一次方程、方程的解等概念.4.掌握检验某个值是不是方程的解的方法.教学重难点:寻找相等关系,列出方程.教学过程:一、情境引入提出课本P78的问题,可用多媒体演示题目描述的行驶情境.1.理解题意:客车比卡车早1小时经过B地,从这句话中可知客车、卡车行驶的路程和时间分别有什么关系?2.能否列算式求出A、B两地之间的路程,要求能够解释列出的算式表示的实际意义.3.提出问题,如果用字母x表示A、B两地的路程,根据题意会得到一个什么样的式子?二、学习新知1.引导学生把题中的数量用表格形式反映题意:路程(km) 速度(km/h) 时间(h)卡车 x 60客车 x 702.学生回顾方程的概念,探讨、列出方程,并说出列得方程的依据.3.讨论列出方程表示的意义,并对比算术方法,体会列方程解决问题与列算式解决问题的优越性.4.反思:这个问题中除了A、B两地的路程是一个未知量,还有没有其它的量是未知的?如果还有其它的量是未知的,能否用字母(或未知数y)表示这个未知量,列出与前面不同的方程呢?学生分组讨论.5.将题中的已知量和未知量用表格列出:路程(km) 速度(km/h) 时间(h)卡车 60 y客车 70 y-16.探讨:①列出关于y的方程;②解释这个方程表示的实际意义(或列出这个方程的依据);③如何求题目问题:A、B之间的路程.7.总结以上列出两个含不同未知数x、y的方程的方法:①以路程为未知数,则根据两车行驶时间的关系列方程.②以行驶时间为未知数,则从两车行驶路程的关系列方程.8.比较列算式和列方程两种方法的特点:阅读课本P79.9.举一反三:分别列算式和设未知数列方程解决下列问题:(1)某数与它的的和是8,求这个数;(2)班上有女生32人,比男生多,求男生人数;(3)公园购回一批风景树,其中桂花树占总数的,樟树比桂花树的棵数多,杉树比前两种树木的棵数和还多12棵,求这批树木总共多少棵?三、初步应用1.例1:课本P79例1.例2(补充):根据下列条件,列出关于x的方程:(1)x与18的和等于54;(2)27与x的差的一半等于x的4倍.列出方程后教师说明:“4x”表示4与x的积,当乘数中有字母时,通常省略乘号“×”,并把数字乘数写在字母乘数的前面.2.练习(补充)(1)列式表示:①比a小9的数; ② x的2倍与3的和;③ 5与y的差的一半; ④ a与b的7倍的和.(2)根据下列条件,列出关于x的方程:①12与x的差等于x的2倍;②x的三分之一与5的和等于6.二、自主尝试1.尝试:让学生尝试解答课本P79的例1.2.交流:在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.3.教师在学生回答的基础上作补充讲解,并强调1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.4.讨论:问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?问题2:在第(3)题中,你还能设其它的未知数为x吗?5.建立概念(1)概念的建立:在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的次数都是1,这样的方程叫做一元一次方程.“一元”:一个未知数;“一次”:未知数的指数是一次.判断下列方程是不是一元一次方程:①23-x=-7; ②2a-b=3;③ y+3=6y-9; ④ 0.32m-(3+0.02m) =0.7.(2)引导学生归纳:从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:实际问题一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.三、课时小结对于本节课的学习,你有什么收获?四、课堂作业1.x=3是下列哪个方程的解( )A. 3x-1-9=0B. x=10-4xC. x(x-2)=3D. 2x-7=122.方程=6的解是( )A. -3 B -C. 12D. -123.已知x-5与2x-4的值互为相反数,列出关于x的方程.4.某班开展为贫困山区学校捐书活动,捐的书比平均每人捐3本多21本,比平均每人捐4本少27本,求这个班共有多少名学生?如果设这个班有x名学生,请列出关于 x的方程.。

相关文档
最新文档