2019-2020学年天津市南开区高一上期末数学测试卷((含答案))
2024-2025学年高一上学期期中模拟考试数学试题(天津专用,测试范围:人教A版2019)含解析

2024-2025学年高一数学上学期期中模拟卷(天津)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教A版2019必修第一册第一章~第三章5.难度系数:0.6。
第Ⅰ卷一、单项选择题:本题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.B .()21x f x x-=【解析】由题意得:根据图像可得:函数为偶函数,当时,∵y=当时,易得:当时,易得第Ⅱ卷二、填空题:本题共6小题,每小题5分,共30分.7+在[]()1,1m m >上的最大值为,解得:133x =-,22x =,x 7+在[],21m m -上的最大值为,解得:3332m -≤≤.)1>上最大值()2A f m m ==-()()210f m f m A =->=>,3⎤⎥,故答案为:333,⎡⎤-⎢⎥.16.(14分)17.(15分)已知函数()()221R f x x mx m m =+-+∈.(1)若2m =,求函数()f x 在区间[]2,1-上的最大和最小值;(2)解不等式()21f x x <+.【解析】(1)解:当2m =时,可得()223f x x x =+-,则函数()y f x =表示开口向上的抛物线,且对称轴为1x =-,所以函数()y f x =在[]2,1--上单调递减,在[1,1]-上单调递增,所以,当1x =-时,函数()f x 取得最小值,最小值为()14f -=-,又因为()()23,10f f -=-=,所以函数的最大值为0,综上可得,函数()y f x =的最大值为0,最小值为4-.(7分)(2)解:由不等式()21f x x <+,即22121x mx m x +-+<+,即不等式2(2)2(0)(2)x m x m x m x +--=-<+,当2m =-时,不等式即为2(2)0x -<,此时不等式的解集为空集;当2m -<时,即2m >-时,不等式的解集为2m x -<<;当2m ->时,即2m <-时,不等式的解集为2x m <<-,综上可得:当2m =-时,不等式的解集为空集;当2m >-时,不等式的解集为(),2m -;当2m <-时,不等式的解集为()2,m -.(15分)18.(15分)19.(15分)某公司决定在公司仓库外借助一侧原有墙体,建造一间墙高为3米,底面积为24平方米,且背面靠墙的长方体形状的应急室,由于此应急室后背靠墙,无需建造费用,因此甲工程队给出的报价为:应急室正面墙体每平方米的报价400元,侧面墙体每平方米的报价均为300元,屋顶和地面及其他报价共20.(16分)10,。
2019-2020学年人教A版天津市部分区高一上学期期末数学试卷及答案 (解析版)

2019-2020学年高一上学期期末数学试卷一、选择题1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5} B.{3,6} C.{2,5,6} D.{2,3,5,6,8} 2.下列函数中既是奇函数,又在R上单调递增的是()A.B.y=sin x C.y=x3D.y=lnx3.函数f(x)=lnx+x﹣3的零点所在区间为()A.(4,5)B.(1,2)C.(2,3)D.(3,4)4.在平面直角坐标系中,若角α以x轴的非负半轴为始边,且终边过点,则sinα的值为()A.B.C.D.5.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.c>b>a B.b>c>a C.a>b>c D.b>a>c6.为了得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象上所有的点()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位7.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若,则不等式f(2x﹣1)<0的解集为()A.B.C.D.8.若α、β都是锐角,且sinα=,cos(α+β)=﹣,则sinβ的值是()A.B.C.D.9.下列命题正确的是()A.命题“∃x∈R,使得2x<x2”的否定是“∃x∈R,使得2x≥x2”B.若a>b,c<0,则C.若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则k≤2D.“x>3”是“x2﹣5x+6>0”的充分不必要条件10.已知函数在区间上单调递增,且存在唯一使得f(x0)=1,则ω的取值范围为()A.B.C.D.二、填空题11.幂函数f(x)的图象经过(2,4),则f(3)=.12.函数的定义域为.13.已知lga+lg(2b)=1,则a+b的最小值是.14.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100ml 血液中酒精含量达到20〜79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,那么他至少要经过t小时后才可以驾驶机动车.则整数t的值为(参考数据:lg2≈0.30,lg3≈0.48)三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤. 15.设集合A={x|x2﹣x﹣6>0},B={x|﹣4<3x﹣7<8}.(1)求A∪B,A∩B;(2)已知集合C={x|a<x<2a+1},若C⊆B,求实数a的取值范围.16.已知函数.(1)在给出的直角坐标系中,画出y=f(x)的大致图象;(2)根据图象写出f(x)的单调区间;(3)根据图象写出不等式f(x)>0的解集.17.已知sinα=,α∈(,π),cosβ=,β∈(0,).(1)求cos(α﹣β)的值;(2)求tan(2β+)的值.18.已知函数.(1)判断f(x)的单调性,并用函数单调性的定义证明;(2)判断f(x)的奇偶性,并说明理由.19.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值;(3)若关于x的不等式mf(x)+3m≥f(x)在R上恒成立,求实数m的取值范围.参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.第I卷(选择题共40分)1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5} B.{3,6} C.{2,5,6} D.{2,3,5,6,8} 【分析】由全集U及B,求出B的补集,找出A与B补集的交集即可;解:∵全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},∴∁U B={2,5,8},则A∩∁U B={2,5}.故选:A.2.下列函数中既是奇函数,又在R上单调递增的是()A.B.y=sin x C.y=x3D.y=lnx【分析】分别判断函数的奇偶性和单调性即可.解:A.f(x)是奇函数,在定义域(﹣∞,0)∪(0,+∞)上不单调,不满足条件.B.f(x)是奇函数,则R上不是单调函数,不满足条件.C.f(x)是奇函数,在R上是增函数,满足条件.D.函数的定义域为(0,+∞),为非奇非偶函数,不满足条件.故选:C.3.函数f(x)=lnx+x﹣3的零点所在区间为()A.(4,5)B.(1,2)C.(2,3)D.(3,4)【分析】根据对数函数单调性和函数单调性的运算法则,可得f(x)=lnx+x﹣3在(0,+∞)上是增函数,再通过计算f(1)、f(2)、f(3)的值,发现f(2)•f(3)<0,即可得到零点所在区间.解:∵f(x)=lnx+x﹣3在(0,+∞)上是增函数f(1)=﹣2<0,f(2)=ln2﹣1<0,f(3)=ln3>0∴f(2)•f(3)<0,根据零点存在性定理,可得函数f(x)=lnx+x﹣3的零点所在区间为(2,3)故选:C.4.在平面直角坐标系中,若角α以x轴的非负半轴为始边,且终边过点,则sinα的值为()A.B.C.D.【分析】利用三角函数定义直接求解.解:在平面直角坐标系中,角α以x轴的非负半轴为始边,且终边过点,∴,r==1,∴sinα==.故选:D.5.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.c>b>a B.b>c>a C.a>b>c D.b>a>c【分析】利用指数与对数函数的单调性即可得出.解:∵a=log20.3<0,b=20.3>1,0<c=0.30.2<1,∴b>c>a.故选:B.6.为了得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象上所有的点()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【分析】由函数y=A sin(ωx+φ)的图象变换规律,可得结论.解:∵y=sin(2x﹣)=sin[2(x﹣)],∴将函数y=sin2x的图象上所有的点向右平移个单位,即可得到函数y=sin(2x﹣)的图象.故选:C.7.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若,则不等式f(2x﹣1)<0的解集为()A.B.C.D.【分析】根据函数的奇偶性和单调性的性质将不等式进行转化求解即可.解:∵f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,∴若,则不等式f(2x﹣1)<0等价为f(|2x﹣1|)<f(),即|2x﹣1|<,即﹣<2x﹣1<,得<x<,即不等式的解集为(,),故选:A.8.若α、β都是锐角,且sinα=,cos(α+β)=﹣,则sinβ的值是()A.B.C.D.【分析】利用同角三角函数间的关系式的应用,可求得sin(α+β)与cosα的值,再利用两角差的正弦函数,可求得sinβ=sin[(α+β)﹣α]的值.解:∵cos(α+β)=﹣,α、β都是锐角,∴sin(α+β)==;又sinα=,∴cosα==,∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=×﹣(﹣)×=.故选:A.9.下列命题正确的是()A.命题“∃x∈R,使得2x<x2”的否定是“∃x∈R,使得2x≥x2”B.若a>b,c<0,则C.若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则k≤2D.“x>3”是“x2﹣5x+6>0”的充分不必要条件【分析】A由命题的否命题,既要对条件否定,也要对结论否定,注意否定形式,可判断;B由条件,注意举反例,即可判断;C由二次函数的图象,即可判断;D先求出不等式x2﹣5x+6>0的解集,再由充分必要条件的定义,即可判断.解:对于A,命题“∃x∈R,使得2x<x2”的否定是“∀x∈R,使得2x≥x2”,故A错误;对于B,由条件知,比如a=2,b=﹣3,c=﹣1,则=﹣<=,故B错误;对于C,若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则≤1或≥4,故k≤2或k≥8,故C错误;对于D,x2﹣5x+6>0的解集为{x|x<2或x>3},故“x>3”是“x2﹣5x+6>0”的充分不必要条件,正确.故选:D.10.已知函数在区间上单调递增,且存在唯一使得f(x0)=1,则ω的取值范围为()A.B.C.D.【分析】由函数f(x)在[﹣,]上单调递增求出0<ω≤,再由存在唯一使得f(x0)=1求出≤ω<3;由此求得ω的取值范围.解:由于函数f(x)=sin(ωx+)(ω>0)在[﹣,]上单调递增;x∈[﹣,],ωx+∈[﹣ω+,ω+],﹣≤﹣ω+且ω+≤,解得ω≤且ω≤,所以0<ω≤;又存在唯一使得f(x0)=1,即x∈[0,]时,ωx+∈[,ω+];所以≤ω+<,解得≤ω<3;综上知,ω的取值范围是[,].故选:B.二、填空题:本大题共4小题,每小题4分,共20分.11.幂函数f(x)的图象经过(2,4),则f(3)=9 .【分析】设幂函数f(x)=x a,由幂函数f(x)的图象经过(2,4),解得f(x)的解析式,由此能求出f(3).解:设幂函数f(x)=x a,∵幂函数f(x)的图象经过(2,4),∴2a=4,解得a=2,∴f(x)=x2,∴f(3)=32=9.故答案为:9.12.函数的定义域为(﹣1,4).【分析】由分母中根式内部的代数式大于0且对数式的真数大于0联立不等式组求解.解:由,得﹣1<x<4.∴函数的定义域为(﹣1,4).故答案为:(﹣1,4).13.已知lga+lg(2b)=1,则a+b的最小值是2.【分析】利用对数运算性质可得ab,再利用基本不等式的性质即可得出.解:∵lga+lg(2b)=1,∴2ab=10,即ab=5.a,b>0.则a+b≥2=2,当且仅当a=b=时取等号.因此:a+b的最小值是2.故答案为:2.14.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100ml 血液中酒精含量达到20〜79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,那么他至少要经过t小时后才可以驾驶机动车.则整数t的值为 5 (参考数据:lg2≈0.30,lg3≈0.48)【分析】100ml血液中酒精含量达到60ml,由题意得则60(1﹣20%)t<20由此利用对数的性质能求出整数t的值.解:某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,则100ml血液中酒精含量达到60ml,在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,他至少要经过t小时后才可以驾驶机动车.则60(1﹣20%)t<20,∴0.8t<,∴t>=﹣=﹣=≈=4.8.∴整数t的值为5.故答案为:5.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤. 15.设集合A={x|x2﹣x﹣6>0},B={x|﹣4<3x﹣7<8}.(1)求A∪B,A∩B;(2)已知集合C={x|a<x<2a+1},若C⊆B,求实数a的取值范围.【分析】(1)求出集合A,B,由此能求出A∪B,A∩B.(2)当C=∅时,a≥2a+1,a≤﹣1,当C≠∅时,,由此能求出实数a的取值范围.解:(1)∵集合A={x|x2﹣x﹣6>0}={x|x>3或x<﹣2},B={x|﹣4<3x﹣7<8}={x|1<x<5},∴A∪B={x|x<﹣2或x>1},A∩B={x|3<x<5}.(2)∵集合C={x|a<x<2a+1},C⊆B,∴当C=∅时,a≥2a+1,a≤﹣1,当C≠∅时,,解得1≤a≤2,综上,实数a的取值范围是(﹣∞,﹣1]∪[1,2].16.已知函数.(1)在给出的直角坐标系中,画出y=f(x)的大致图象;(2)根据图象写出f(x)的单调区间;(3)根据图象写出不等式f(x)>0的解集.【分析】根据各段函数的解析式作图即可解:(1)如图,(2)由图可知f(x)的单调递增区间为(﹣∞,﹣2),(0,1);单调递减区间为(﹣2,0),(1,+∞);(3)由图可知f(x)>0时,x∈(﹣4,﹣1).17.已知sinα=,α∈(,π),cosβ=,β∈(0,).(1)求cos(α﹣β)的值;(2)求tan(2β+)的值.【分析】(1)由题意利用同角三角函数的基本关系,两角差的余弦公式,求得结果.(2)由题意利用同角三角函数的基本关系,两角和的正切公式,求得结果.解:(1)∵已知sinα=,α∈(,π),∴cosα=﹣=﹣.∵cosβ=,β∈(0,),∴sinβ==,∵cos(α﹣β)=cosαcosβ+sinαsinβ=﹣•+•==﹣.(2)由以上可得tanβ==2,∴tan2β===﹣,tan(2β+)===﹣.18.已知函数.(1)判断f(x)的单调性,并用函数单调性的定义证明;(2)判断f(x)的奇偶性,并说明理由.【分析】(1)根据函数单调性的定义进行证明即可;(2)根据函数奇偶性的定义进行证明即可.解:(1)函数的定义域为R,设x1<x2,则f(x1)﹣f(x2)=﹣﹣+=﹣==,∵x1<x2,∴<,则﹣<0,即f(x1)﹣f(x2)<0,则f(x1)<f(x2),即函数f(x)为增函数.(2)f(x)==,则f(﹣x)===﹣f(x),即f(x)是奇函数.19.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值;(3)若关于x的不等式mf(x)+3m≥f(x)在R上恒成立,求实数m的取值范围.【分析】(1)根据f(x)=sin(2x﹣)可求最小正周期;(2)利用x∈以及正弦函数单调区间即可求出最大最小值;(3)令t=sin(2x﹣),将不等式化成m≥=1﹣对∀t∈[﹣1,1]恒成立,即可求出m取值范围.解:f(x)=sin2x﹣cos2x=2sin(2x﹣),(1)T==π,即f(x)的最小正周期为π;(2)当x∈时,则2x﹣∈[﹣,π],sin(2x﹣)∈[﹣,1],所以f(x)∈[﹣,2],即f(x)最大值为2,最小值为﹣;(3)mf(x)+3m≥f(x)即2m sin(2x﹣)+3m≥2sin(2x﹣),令t=f(x)=sin(2x﹣),则t∈[﹣1,1],所以2t+3∈[1,5]根据题意得2mt+3m≥2t对∀t∈[﹣1,1]恒成立,即有m≥=1﹣对∀t∈[﹣1,1]恒成立,因为1﹣最大为1﹣=,所以m≥.。
2023-2024学年全国高中高一上数学人教A版(2019)期末试卷(含解析)

2023-2024学年全国高一上数学期末试卷考试总分:141 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 设集合,是自然数集,则( )A.B.C.D.2. 已知均为正实数,则“”是“”的 A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件3. 已知是第二象限角,若,则=( )A.B.C.D.4. 下列命题中,真命题是( )A ={x|−2≤x <3}N A ∩N ={−2,−1,0,1,2}{0,1,2,3}{0,1,2}{1,2}()αsin(−α)=−π213sin α−22–√3−131322–√3∀x ∈R ln ≥02A.,B.,C.,D.,5. 为了得到函数的图像,可将函数的图像( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度6. 在一次数学实验中,某同学运用图形计算器采集到如表一组数据:在四个函数模型(,为待定系数)中,最能反映,函数关系的是( )A.=B.=C.=D.=7. 不等式有且只有一个整数解,则的取值范围是( )A.B.C.D.8.根据表格中的数据,可以断定:方程的一个根所在的区间是( )∀x ∈R ln ≥0x 2∀x ∈R −1≤≤11sin x ∃∈R x 0≤1e x 0∃∈R x 0cos =2x 0y =cos 2x y =sin(2x −)π6π6π3π6π3x 123458y 0.51.52.082.52.823.5a b x y y a +bxy a +b xy a +xlog b y a+x ln x ++(a −2)x ≤2a x 2a [−1,+∞)(−∞,−4−4ln 2)∪[−1,+∞)(−∞,−3−3ln 3)∪[−1,+∞)(−4−4ln 2,−3−3ln 3)∪[−1,+∞)−x −2=0e x x −10123A.B.C.D.二、 多选题 (本题共计 3 小题 ,每题 5 分 ,共计15分 )9. 下列四个等式其中正确的是( )A.B.C.D.10. 某公司经营四种产业,为应对市场变化,在三年前进行产业结构调整,优化后的产业结构使公司总利润不断增长,今年总利润比三年前增加一倍.调整前后的各产业利润与总利润的占比如下图所示:则下列结论中正确的有A.调整后房地产业的利润有所下降B.调整后医疗器械的利润增长量最大C.调整后生物制药的利润增长率最高D.调整后金融产业的利润占比最低11. 在同一直角坐标系中,与的图象如图,则下列关系不正确的是( )e x0.371 2.727.3920.09x +212345(1,2)(0,1)(2,3)(−1,0)=1tan 22.5∘1−tan 222.5∘tan +tan +tan tan =25∘35∘3–√25∘35∘3–√−=cos 2π8sin 2π82–√2−=41sin 10∘3–√cos 10∘f (x)=kx +b g(x)=x log bA.B.C.D.时,卷II (非选择题)三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )12. 求值:________.13. 已知扇形的圆心角的弧度数为,其弧长也是,则该扇形的面积为________.14. 函数,的单调递减区间是________.15. 函数的最小值为________.四、 解答题 (本题共计 6 小题 ,每题 11 分 ,共计66分 )16. 已知集合=,=.(1)若=,求、;(2)若=,求实数的取值范围.17. 已知(,且为常数).(Ⅰ)求的单调区间;(Ⅱ)若在区间内,存在,且时,使不等式成立,求的取值范围.18. 已知函数=.k <0,0<b <1k >0,b >1f ()g(1)>0(x >0)1xx >1f (x)−g(x)>0lo 15−lo 25=g 312g 322y =sin(−x)π6x ∈[0,]3π2f (x)=2x −x +1−−−−−√A {x |−2<x <7}B {x |a ≤x ≤3a −2}a 4A ∪B (A)∩B ∁R A ∪B A a f(x)=1+ln xax a ≠0a f(x)(1,+∞),x 1x 2≠x 1x 2|f()−f()|x 1x 2≥k|ln −ln |x 1x 2k f(x)(1)求函数的最小正周期,以及在,]上的单调性.(2)已知,,分别为三角形的内角对应的三边长,为锐角,=,=,且恰是函数在,]上的最大值,求和.19. 年,随着中国第一款手机投入市场,技术已经进入高速发展阶段.已知某手机生产厂家通过数据分析,得到如下规律:每生产手机万台,其成本为,其中固定成本为万元,并且每生产万台的生产成本为万元(总成本=固定成本+生产成本),销售收入万元满足,(1)将利润表示为产量万台的函数;(2)当产量为何值时,公司所获利润最大?最大利润为多少万元?20. 在面积为定值的扇形中,半径是多少时扇形的周长最小? 21. 设,函数;(1)求的值,使得为奇函数;(2)若对任意成立,求的取值范围.f(x)f(x)[0a b c ABC A a 1c f(A)f(x)[0A b 20195G 5G 5G x(0≤x ≤10)G(x)80011000R(x)R(x)={ −400+4200x,0≤x ≤5x 22000x −3800,5<x ≤10f(x)x x S a ∈R f(x)=+a 2x +12x a f(x)f(x)a +22x ∈R a参考答案与试题解析2023-2024学年全国高一上数学期末试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】交集及其运算【解析】此题暂无解析【解答】解:因为集合,是自然数集,所以.故选.2.【答案】C【考点】由基本不等式证明不等关系【解析】代入特殊值,判断不是充分条件,再根据基本不等式判断必要条件.【解答】取,则,但,所以由推不出;若,则,当且仅当时取等号,所以由能推出,所以“”是“的必要不充分条件.故选:.3.A ={x|−2≤x <3}N A ∩N ={0,1,2}C a =100,b =2=<2ab a +b 200102ab =200>16≤2ab a +bab ≤16ab ≤16≤=≤2ab a +b ab 2ab −−√ab −−√2a =b =4ab ≤16≤2ab a +b ≤2ab a +b ab ≤16C【答案】D【考点】同角三角函数间的基本关系运用诱导公式化简求值【解析】直接利用诱导公式以及同角三角函数基本关系式转化求解即可.【解答】是第二象限角,若可得,所以.4.【答案】C【考点】命题的真假判断与应用全称命题与特称命题【解析】根据含有量词的命题的判断方法即可得到结论.【解答】解:,当时,,故错误;,当时,无意义,故错误;,当时,显然成立,故正确;,,故错误.故选.5.【答案】D【考点】αsin(−α)=−π213cos α=−13sin α==1−co αs 2−−−−−−−−√22–√3A x =12ln <0x 2A B x =01sin x B C =0x 0≤1e x 0C D cos ∈[−1,1]x 0D C函数y=Asin (ωx+φ)的图象变换【解析】利用诱导公式将函数名化相同,根据三角函数图象平移变换规律可得答案.【解答】解:∵,∴将函数的图象向左平移个单位可得.故选.6.【答案】C【考点】根据实际问题选择函数类型【解析】由表格中的数据作出散点图,结合图象得答案.【解答】由表格中数据作出散点图:由图可知,是关于的增函数,且递增的比较缓慢,7.【答案】D【考点】函数的零点与方程根的关系【解析】由题意可得,,由题意可得函数的图象在的图象下方,有且只有一个横坐标为整数的点,讨论,,,可得方程的解为和,可得的不等式,解不等式即可得到所求范围.y =cos 2x =sin(2x +)=sin[2(x +)−]π2π3π6y =sin(2x −)π6π3D y x x ln x ≤−+(2−a)x +2a x 2x >0y =x ln x y =−+(2−a)x +2a x 2a <2a =2a >213a【解答】不等式,即为,,由题意可得函数的图象在的图象下方,有且只有一个横坐标为整数的点,由函数的图象恒过点,又过,当时,横坐标为的点满足题意,可得,解得;当,两图象无交点;当时,横坐标为的点满足题意,可得:,且,解得,则的范围是,8.【答案】A【考点】函数的零点与方程根的关系【解析】此题暂无解析【解答】解:令,由表知,,∴方程的一个根所在的区间为.故选.二、 多选题 (本题共计 3 小题 ,每题 5 分 ,共计15分 )9.【答案】B,C,D【考点】二倍角的三角函数两角和与差的三角函数三角函数的恒等变换及化简求值【解析】x ln x ++(a −2)x ≤2a x 2x ln x ≤−+(2−a)x +2a x 2x >0y =x ln x y =−+(2−a)x +2a x 2y =−+(2−a)x +2a x 2(2,0)(−a,0)a <21ln 1≤−1+(2−a)+2a a ≥−1a =2a >234ln 4>−+4(2−a)+2a 423ln 3<−+3(2−a)+2a 32−4−4ln 2<a <−3−3ln 3a (−4−4ln 2,−3−3ln 3)∪[−1,+∞)f(x)=−x −2e x f(1)=2.72−3<0f(2)=7.39−4>0−x −2=0e x (1,2)A利用三角恒等变换逐项判断即可.【解答】解:,,故,故错误;,,故,故正确;,,故正确;,,故正确.故选.10.【答案】B,C,D【考点】命题的真假判断与应用【解析】此题暂无解析【解答】略11.【答案】A,B,C【考点】对数函数的图象与性质一次函数的性质与图象【解析】由的图象可得故不正确,再由故不正确,则答案可求.【解答】解:由直线方程可知,,故不正确;而,故不正确;A =tan tan 22.5∘1−tan 222.5∘1245∘=12=tan 22.5∘1−tan 222.5∘12B tan 60∘=tan(+)==25∘35∘tan +tan 25∘35∘1−tan tan 25∘35∘3–√tan +tan +tan tan =25∘35∘3–√25∘35∘3–√C −=cos =cos 2π8sin 2π8π42–√2D −=1sin 10∘3–√cos 10∘cos −sin 10∘3–√10∘sin cos 10∘10∘===42cos(+)60∘10∘sin 1220∘2sin 20∘sin 1220∘BCD f (x)k >0,0<b <1A ,B g(1)=0C k >0,0<b <1A ,B g(1)=0C f(x)>g(x)由图象可知,当时,,,故正确.故选.三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )12.【答案】【考点】对数的运算性质【解析】直接利用对数的运算性质即可求解.【解答】==.13.【答案】【考点】扇形面积公式【解析】利用扇形的面积计算公式、弧长公式即可得出.【解答】由弧长公式可得=,解得=.∴扇形的面积=.14.【答案】【考点】正弦函数的单调性x >1f(x)>g(x)f (x)−g(x)>0D ABC 1lo 15−lo 25=15−5g 312g 3log 3log 33log 31122r r 1S =lr =×2×112121[0,π]23【解析】函数,将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递减区间;即可求的单调递减区间.【解答】由函数,令,得:,∵,当=时,可得单调递减区间为.15.【答案】【考点】函数的最值及其几何意义【解析】此题暂无解析【解答】解:令,则,利用换元法可将函数的解析式换元为: .结合二次函数的性质可知当 时函数取得最小值.故答案为:.四、 解答题 (本题共计 6 小题 ,每题 11 分 ,共计66分 )16.【答案】=时,集合==,===,所以=;又=,所以=;y =sin(−x)=−sin(x −)π6π6x ∈[0,]3π2y =sin(−x)=−sin(x −)π6π6−+2kπ≤x −≤+2kππ2π6π2k ∈Z −+2kπ≤x ≤+2kππ32π3x ∈[0,]3π2k 0[0,π]23−178t =,t >0x +1−−−−−√x =−1t 2g(t)=2(−1)−t =2−t −2(t >0)t 2t 2t =14g()=−−2=−141814178−178a 4A {x |−2<x <2}(−2B {x |a ≤x ≤3a −3}{x |4≤x ≤10}[4,10]A ∪B (−2,10]A ∁R (−∞,−2]∪[7A ∩B ∁R [8,10]A ∪B A B ⊆A由=,得,①当=时,;②时,应满足,解得,即;综上知,实数的取值范围是.【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】此题暂无解答17.【答案】解:(Ⅰ)(,且为常数),.①若当时,;当时,.即时,函数单调递增区间为,单调递减区间为.②若当时,;当时,.即时,函数单调递增区间为,单调递减区间为.(Ⅱ)解:由(Ⅰ)知,取,则在区间上单调递减,不妨设,则,∴不等式可化为,即,令,则在区间上存在单调递减区间,又有解,即,有解,令,则,由得,当时,,单调递增;当时,,单调递减.,故.A ∪B A B ⊆A B ∅a >3a −2B ≠∅4≤a <3a a <3∵f(x)=1+ln x ax a ≠0a ∴(x)=f ′−a ln x (ax)2=−ln x ax 2a >0,0<x <1(x)>0f ′x >1(x)<0f ′a >0f(x)(0,1)(1,+∞)a <0,0<x <1(x)<0f ′x >1(x)>0f ′a <0f(x)(1,+∞)(0,1)a =1f(x)=1+ln x x (1,+∞)>>1x 2x 1f()>f()x 1x 2|f()−f()|≥k|ln −ln |x 1x 2x 1x 2f()−f()≥k(ln −ln )x 1x 2x 2x 1f()+k ln ≥f()+k ln x 1x 1x 2x 2F(x)=f(x)+k ln x F(x)(1,+∞)(x)=(x)F ′f ′+=k x −ln x x 2+=k x −ln x +kx x 2<0kx <ln x(x >1)∴k <ln x x G(x)=ln x x (x)=G ′1−ln x x 2(x)=0G ′x =e x ∈(1,e)(x)>0G ′G(x)x ∈(e,+∞)(x)<0G ′G(x)∴G(x =G(e))max =1e k <1e【考点】函数奇偶性的性质与判断不等式的证明利用导数研究函数的单调性【解析】本题考查函数的性质、导数的应用、不等式的证明.【解答】解:(Ⅰ)(,且为常数),.①若当时,;当时,.即时,函数单调递增区间为,单调递减区间为.②若当时,;当时,.即时,函数单调递增区间为,单调递减区间为.(Ⅱ)解:由(Ⅰ)知,取,则在区间上单调递减,不妨设,则,∴不等式可化为,即,令,则在区间上存在单调递减区间,又有解,即,有解,令,则,由得,当时,,单调递增;当时,,单调递减.,故.18.【答案】由题意可得:==+=),所以函数的周期为==,∵f(x)=1+ln x ax a ≠0a ∴(x)=f ′−a ln x (ax)2=−ln x ax 2a >0,0<x <1(x)>0f ′x >1(x)<0f ′a >0f(x)(0,1)(1,+∞)a <0,0<x <1(x)<0f ′x >1(x)>0f ′a <0f(x)(1,+∞)(0,1)a =1f(x)=1+ln x x (1,+∞)>>1x 2x 1f()>f()x 1x 2|f()−f()|≥k|ln −ln |x 1x 2x 1x 2f()−f()≥k(ln −ln )x 1x 2x 2x 1f()+k ln ≥f()+k ln x 1x 1x 2x 2F(x)=f(x)+k ln x F(x)(1,+∞)(x)=(x)F ′f ′+=k x −ln x x 2+=k x −ln x +kx x 2<0kx <ln x(x >1)∴k <ln x x G(x)=ln x x (x)=G ′1−ln x x 2(x)=0G ′x =e x ∈(1,e)(x)>0G ′G(x)x ∈(e,+∞)(x)<0G ′G(x)∴G(x =G(e))max =1e k <1e f(x)x+cos 2sin x cos x+sin 2x+sin(2x++3f(x)T π令,解得,,因为,],则令=可得,],故函数在区间,]上单调递增]上单调递减;由(1)知:=),又恰是函数在,]上的最大值,所以=,解得=,则在三角形中,由余弦定理可得:=,即=,解得=或,故=,=或.【考点】三角函数的周期性三角函数中的恒等变换应用【解析】此题暂无解析【解答】此题暂无解答19.【答案】=,∴=.当时,=,故当=时,取得最大值;当时,=为增函数,故当=时,取得最大值=.综上,当产量为万台时,公司利润最大,最大利润为万元.【考点】根据实际问题选择函数类型【解析】7kπ−≤2x+k k ∈Z x ∈[0k 0x ∈[0f(x)[0f(x)sin(2x++2f(A)f(x)[02A+A ABC a 2+−2bc cos A b 4c 252+8−2b×b 2b 17A b 13G(x)1000x +800f(x)R(x)−G(x)={ −400+3200x −800,0≤x ≤5x 21000x −4600,5<x ≤100≤x ≤5f(x)−400(x −4+5600)2x 4f(x)56005<x ≤10f(x)1000x −4600x 10f(x)1000×10−4600540045600f(x)R(x)−G(x)(1)根据=得出解析式;(2)分段求出函数的最大值,从而得出利润的最大值.【解答】=,∴=.当时,=,故当=时,取得最大值;当时,=为增函数,故当=时,取得最大值=.综上,当产量为万台时,公司利润最大,最大利润为万元.20.【答案】设扇形的圆心角为,半径为,则扇形的面积为,解得;又扇形的周长为==,当且仅当,即时扇形的周长最小.【考点】扇形面积公式【解析】设出扇形的半径与圆心角,由此表示出扇形的面积,再利用基本不等式求出扇形周长的最小值;【解答】设扇形的圆心角为,半径为,则扇形的面积为,解得;又扇形的周长为==,当且仅当,即时扇形的周长最小.21.【答案】由的定义域为,且为奇函数,可得=,即有,解得=.则,,则=满足题意;f(x)R(x)−G(x)G(x)1000x +800f(x)R(x)−G(x)={ −400+3200x −800,0≤x ≤5x 21000x −4600,5<x ≤100≤x ≤5f(x)−400(x −4+5600)2x 4f(x)56005<x ≤10f(x)1000x −4600x 10f(x)1000×10−4600540045600θr S =θ12r 2θ=2S r 2P 2r +θr 2(r +)≥4⋅=4S r r ⋅S r −−−−√S −−√r =S rr =S −−√θr S =θ12r 2θ=2S r 2P 2r +θr 2(r +)≥4⋅=4S r r ⋅S r −−−−√S −−√r =S r r =S −−√f(x)R f(x)f(0)0=01+a 2a −1f(x)=−12x +12x f(−x)===−f(x)−12−x +12−x 1−2x1+2xa −1(x)a +2对任意成立,即为恒成立,等价为,即有,当=时,恒成立;当时,,由,可得,解得;当时,不恒成立.综上可得,的取值范围是.【考点】函数奇偶性的性质与判断函数恒成立问题【解析】(1)由在上为奇函数,可得=,解方程可得的值,检验即可;(2)由题意可得即为恒成立,等价为,即有,讨论=,,,由参数分离,求得右边的范围,运用恒成立思想即可得到的范围.【解答】由的定义域为,且为奇函数,可得=,即有,解得=.则,,则=满足题意;对任意成立,即为恒成立,等价为,即有,当=时,恒成立;当时,,由,可得,解得;当时,不恒成立.综上可得,的取值范围是.f(x)a +22x ∈R +a 2x+12x a +22a −1+12xa 22(a −1)<a(+1)2x a 0−1<0a >0+12(a −1)a 2x +1>12x ≤12(a −1)a0<a ≤2a <0+12(a −1)a 2x a [0,2]f(x)R f(0)0a +a 2x +12x a +22a −1+12x a 22(a −1)<a(+1)2xa 0a >0a <0a f(x)R f(x)f(0)0=01+a 2a −1f(x)=−12x +12x f(−x)===−f(x)−12−x +12−x 1−2x1+2x a −1f(x)a +22x ∈R +a 2x +12x a +22a −1+12xa 22(a −1)<a(+1)2x a 0−1<0a >0+12(a −1)a 2x +1>12x ≤12(a −1)a 0<a ≤2a <0+12(a −1)a 2x a [0,2]。
【期末冲刺】2019—2020学年高一年级下学期期末冲刺满分训练卷——第十一章 立体几何初步(解析版)

2019—2020学年高一年级下学期期末冲刺满分训练卷第十章 立体几何初步 期末单元测试卷(范围:新教材人教B 版 必修四 考试时间:90分钟 满分:150分)一、选择题(本题共12道小题,每小题5分,共60分)1.以下命题(其中a 、b 表示直线,α表示平面)中,正确的命题是( )A. 若//a b ,b α⊂,则//a αB. 若//a α,//b α,则//a bC. 若//a b ,b α⊥,则a α⊥D. 若//a α,b α⊂,则//a b答案及解析:1.C【分析】根据线线、线面有关定理对选项逐一分析,由此确定正确选项.【详解】对于A 选项,直线a 可能含于平面α,所以A 选项错误.对于B 选项,,a b 可能异面,所以B 选项错误.对于C 选项,由于//a b ,b α⊥,所以a α⊥,所以C 选项正确.对于D 选项,,a b 可能异面,所以D 选项错误.故选:C【点睛】本小题主要考查空间线线、线面位置关系的判断,属于基础题.2.下列命题正确的是( )A. 有两个面平行,其余各面都是四边形的几何体叫棱柱。
B. 有两个面平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。
C. 绕直角三角形的一边旋转所形成的几何体叫圆锥。
D. 用一个面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。
答案及解析:2.B【分析】根据课本中的相关概念依次判断选项即可.【详解】对于A 选项,几何体可以是棱台,满足有两个面平行,其余各面都是四边形,故选项不正确;对于B ,根据课本中棱柱的概念得到是正确的;对于C ,当绕直角三角形的斜边旋转时构成的几何体不是圆锥,故不正确;对于D ,用平行于底面的平面截圆锥得到的剩余的几何体是棱台,故不正确.故答案为:B.【点睛】这个题目考查了几何体的基本概念,属于基础题.3.在正方体ABCD - A 1B 1C 1D 1中,动点E 在棱BB 1上,动点F 在线段A 1C 1上,O 为底面ABCD 的中心,若1,BE x A F y ==,则四面体O-AEF 的体积( )A. 与x ,y 都有关B. 与x ,y 都无关C. 与x 有关,与y 无关D. 与y 有关,与x 无关答案及解析:3.B【分析】 根据等体积法以及锥体体积公式判断选择.【详解】因为V O -AEF =V E -OAF ,所以,考察△AOF 的面积和点E 到平面AOF 的距离的值,因为BB 1∥平面ACC 1A 1,所以,点E 到平面AOE 的距离为定值,又AO ∥A 1C 1,所以,OA 为定值,点F 到直线AO 的距离也为定值,即△AOF 的面积是定值,所以,四面体O-AEF 的体积与x ,y 都无关,选B 。
西城区2019-2020学年度第一学期期末高一数学试题及答案(WORD版)

北京市西城区2019—2020学年度第一学期期末试卷 高一数学 第1页(共11页)北京市西城区2019—2020学年度第一学期期末试卷高一数学 2020.1本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题 共50分)一、选择题共10小题,每小题5分,共50分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|2,}A x x k k ==∈Z ,{|33}B x x =-<<,那么A B =I ( ) (A ){1,1}- (B ){2,0}- (C ){2,0,2}-(D ){2,1,0,1}--(2)方程组220,2x y x y +=⎧⎨+=⎩的解集是( )(A ){(1,1),(1,1)}-- (B ){(1,1),(1,1)}-- (C ){(2,2),(2,2)}-- (D ){(2,2),(2,2)}-- (3)函数11y x =+-的定义域是( ) (A )[0,1) (B )(1,)+∞ (C )(0,1)(1,)+∞U(D )[0,1)(1,)+∞U(4)下列四个函数中,在(0,)+∞上单调递减的是( ) (A )1y x =+(B )21y x =-(C )2x y =(D )12log y x =(5)设2log 0.4a =,20.4b =,0.42c =,则,,a b c 的大小关系为( ) (A )a b c << (B )a c b <<(C )b a c <<(D )b c a <<(6)若0a b >>,0c d <<,则一定有( ) (A )ac bd < (B )ac bd >(C )ad bc <(D )ad bc >北京市西城区2019—2020学年度第一学期期末试卷 高一数学 第2页(共11页)(7)设,a b ∈∈R R .则“a b >”是“||||a b >”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(8)某种药物的含量在病人血液中以每小时20%的比例递减.现医生为某病人注射了 2000mg 该药物,那么x 小时后病人血液中这种药物的含量为( ) (A )2000(10.2)mg x - (B )2000(10.2)mg x - (C )2000(10.2)mg x - (D )20000.2mg x ⋅(9)如图,向量a b -等于( )(A )123e e - (B )123e e - (C )123e e -+ (D )123e e -+(10)某部影片的盈利额(即影片的票房收入与固定成本之差)记为y ,观影人数记为 x ,其函数图像如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y 与x 的函数图像.给出下列四种说法:① 图(2)对应的方案是:提高票价,并提高成本; ② 图(2)对应的方案是:保持票价不变,并降低成本; ③ 图(3)对应的方案是:提高票价,并保持成本不变; ④ 图(3)对应的方案是:提高票价,并降低成本. 其中,正确的说法是( ) (A )①③ (B )①④(C )②③(D )②④北京市西城区2019—2020学年度第一学期期末试卷 高一数学 第3页(共11页)第二部分(非选择题 共100分)二、填空题共6小题,每小题4分,共24分。
2019-2020年西城区高一上册期末数学试题(有答案)

北京市西城区高一(上)期末数学试卷A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)如果θ是第三象限的角,那么()A.sinθ>0 B.cosθ>0 C.tanθ>0 D.以上都不对2.(4分)若向量=(1,﹣2),=(,4)满足⊥,则实数等于()A.8 B.﹣8 C.2 D.﹣23.(4分)若角α的终边经过点(﹣4,3),则tanα=()A.B. C.D.4.(4分)函数是()A.奇函数,且在区间上单调递增B.奇函数,且在区间上单调递减C.偶函数,且在区间上单调递增D.偶函数,且在区间上单调递减5.(4分)函数f()=sin﹣cos的图象()A.关于直线对称 B.关于直线对称C.关于直线对称 D.关于直线对称6.(4分)如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()A.B.C.2 D.7.(4分)定义在R上,且最小正周期为π的函数是()A.y=sin|| B.y=cos|| C.y=|sin| D.y=|cos2|8.(4分)设向量,的模分别为2和3,且夹角为60°,则|+|等于()A.B.13 C.D.199.(4分)函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A.B.C.D.10.(4分)如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为,弓形PNO的面积S=f(),那么f ()的图象是()A.B.C.D.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.(4分)若向量=(﹣1,2)与向量=(,4)平行,则实数= .12.(4分)若θ为第四象限的角,且,则cosθ=;sin2θ=.13.(4分)将函数y=cos2的图象向左平移个单位,所得图象对应的函数表达式为.14.(4分)若,均为单位向量,且与的夹角为120°,则﹣与的夹角等于.15.(4分)已知,则cos(﹣y)= .16.(4分)已知函数f()=sin(ω+φ)(ω>0,φ∈(0,π))满足,给出以下四个结论:①ω=3;②ω≠6,∈N*;③φ可能等于;④符合条件的ω有无数个,且均为整数.其中所有正确的结论序号是.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17.(12分)已知φ∈(0,π),且.(Ⅰ)求tan2φ的值;(Ⅱ)求的值.18.(12分)已知函数.(1)求函数f()的单调增区间;(2)若直线y=a与函数f()的图象无公共点,求实数a的取值范围.19.(12分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设,,则得到函数y=f().(Ⅰ)求f(1)的值;(Ⅱ)对于任意a∈(0,+∞),求函数f()的最大值.B卷[学期综合]本卷满分:50分.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.20.(4分)设全集U=R,集合A={|<0},B={|||>1},则A∩(∁B)= .U21.(4分)已知函数若f(a)=2,则实数a= .22.(4分)定义在R上的函数f ()是奇函数,且f()在(0,+∞)是增函数,f(3)=0,则不等式f()>0的解集为.23.(4分)函数的值域为.(其中表示不大于的最大整数,例如[3.15]=3,[0.7]=0.)24.(4分)在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长(单位:m)的取值范围是.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 25.(10分)已知函数.(Ⅰ)若,求a的值;(Ⅱ)判断函数f()的奇偶性,并证明你的结论.26.(10分)已知函数f()=3,g()=|+a|﹣3,其中a∈R.(Ⅰ)若函数h()=f[g()]的图象关于直线=2对称,求a的值;(Ⅱ)给出函数y=g[f()]的零点个数,并说明理由.27.(10分)设函数f()的定义域为R,如果存在函数g(),使得f()≥g()对于一切实数都成立,那么称g()为函数f()的一个承托函数.已知函数f()=a2+b+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f()的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=为函数f()的一个承托函数,且f()为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.北京市西城区高一(上)期末数学试卷参考答案与试题解析A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)如果θ是第三象限的角,那么()A.sinθ>0 B.cosθ>0 C.ta nθ>0 D.以上都不对【解答】解:如果θ是第三象限的角,则sinθ<0,cosθ<0,tanθ>0,故选:C.2.(4分)若向量=(1,﹣2),=(,4)满足⊥,则实数等于()A.8 B.﹣8 C.2 D.﹣2【解答】解:根据题意,若向量、满足⊥,必有•=0,又由=(1,﹣2),=(,4),则有•=1×+(﹣2)×4=0,解可得=8;故选:A.3.(4分)若角α的终边经过点(﹣4,3),则tanα=()A.B. C.D.【解答】解:由定义若角α的终边经过点(﹣4,3),∴tanα=﹣,故选:D.4.(4分)函数是()A.奇函数,且在区间上单调递增B.奇函数,且在区间上单调递减C.偶函数,且在区间上单调递增D.偶函数,且在区间上单调递减【解答】解:函数=cos,是偶函数,且在区间上单调递减,故选D.5.(4分)函数f()=sin﹣cos的图象()A.关于直线对称 B.关于直线对称C.关于直线对称 D.关于直线对称【解答】解:函数y=sin﹣cos=sin(﹣),∴﹣=π+,∈,得到=π+,∈,则函数的图象关于直线=﹣对称.故选:B.6.(4分)如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()A.B.C.2 D.【解答】解:∵BD=2DC,∴=+=+=+(﹣)=+,∵,∴λ=,μ=,∴=,故选:A7.(4分)定义在R上,且最小正周期为π的函数是()A.y=sin|| B.y=cos|| C.y=|sin| D.y=|cos2|【解答】解:对于A:y=sin||不是周期函数,对于B,y=cos||的最小正周期为2π,对于C,y=|sin|最小正周期为π,对于D,y=|cos2|最小正周期为,故选:C8.(4分)设向量,的模分别为2和3,且夹角为60°,则|+|等于()A.B.13 C.D.19【解答】解:∵向量,的模分别为2和3,且夹角为60°,∴=||•||cos60°=2×3×=3,∴|+|2=||2+||2+2=4+9+2×3=19,∴|+|=,故选:C.9.(4分)函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A.B.C.D.【解答】解:如图根据函数的图象可得:函数的周期为(6﹣2)×4=16,又∵ω>0,∴ω==,当=2时取最大值,即2sin(2×+φ)=2,可得:2×+φ=2π+,∈,∴φ=2π+,∈,∵0<φ<π,∴φ=,故选:B.10.(4分)如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为,弓形PNO的面积S=f(),那么f ()的图象是()A.B.C.D.【解答】解:由题意得S=f ()=﹣f′()=≥0当=0和=2π时,f′()=0,取得极值.则函数S=f ()在[0,2π]上为增函数,当=0和=2π时,取得极值.结合选项,A正确.故选A.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.(4分)若向量=(﹣1,2)与向量=(,4)平行,则实数= ﹣2 .【解答】解:因为向量=(﹣1,2)与向量=(,4)平行,所以,所以﹣1=λ,2=λ4,解得:λ=,=﹣2.故答案为﹣2.12.(4分)若θ为第四象限的角,且,则cosθ=;sin2θ=﹣.【解答】解:∵θ为第四象限的角,且,∴cosθ==,sin2θ=2sinθcosθ=2×(﹣)×=﹣.故答案为:,﹣.13.(4分)将函数y=cos2的图象向左平移个单位,所得图象对应的函数表达式为y=﹣sin2 .【解答】解:将函数y=cos2的图象向左平移个单位,所得图象对应的解析式为y=cos2(+)=cos(2+)=﹣sin2.故答案为:y=﹣sin2.14.(4分)若,均为单位向量,且与的夹角为120°,则﹣与的夹角等于150°.【解答】解:∵,均为单位向量,且与的夹角为120°,∴(﹣)•=﹣||2=1×1×(﹣)﹣1=﹣,|﹣|2=||2﹣2+||2=1﹣2×1×1×(﹣)+1=3,∴|﹣|=,设﹣与的夹角为θ,则cosθ===﹣,∵0°≤θ≤180°,∴θ=150°,故答案为:150°15.(4分)已知,则cos(﹣y)= ﹣.【解答】解:∵sin+siny=,①cos+cosy=,②①2+②2得:2+2sinsiny+2coscosy=,∴cos(﹣y)=sinsiny+coscosy=﹣,故答案为:﹣.16.(4分)已知函数f()=sin(ω+φ)(ω>0,φ∈(0,π))满足,给出以下四个结论:①ω=3;②ω≠6,∈N*;③φ可能等于;④符合条件的ω有无数个,且均为整数.其中所有正确的结论序号是①③.【解答】解:函数f()=sin(ω+φ)(ω>0,φ∈(0,π))满足,∴ω()=nπ,∴ω=n(n∈),∴①ω=3正确;②ω≠6,∈N*,不正确;③φ可能等于,正确;④符合条件的ω有无数个,且均为整数,不正确.故答案为①③.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.(12分)已知φ∈(0,π),且.(Ⅰ)求tan2φ的值;(Ⅱ)求的值.【解答】解:(Ⅰ)∵φ∈(0,π),且=,可得:tanφ=﹣2,∴tan2φ==.(Ⅱ)===﹣.18.(12分)已知函数.(1)求函数f()的单调增区间;(2)若直线y=a与函数f()的图象无公共点,求实数a的取值范围.【解答】解:(1)函数=cos(cos+sin)=+sin2=cos(2﹣)+,由2π﹣π≤2﹣≤2π,∈,解得π﹣≤≤π+,∈,即f()的增区间为[π﹣,π+],∈;(2)由(1)可得当2﹣=2π,即=π+,∈时,f()取得最大值;当2﹣=2π+π,即=π+,∈时,f()取得最小值﹣.由直线y=a与函数f()的图象无公共点,可得a的范围是a>或a<﹣.19.(12分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设,,则得到函数y=f().(Ⅰ)求f(1)的值;(Ⅱ)对于任意a∈(0,+∞),求函数f()的最大值.【解答】解:(1)如图所示,建立直角坐标系.∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),∴B(0,0),A(﹣2,0),D(﹣1,a),C(0,a).∵=,(0≤≤1).∴=+=(﹣2,0)+(1,a)=(﹣2,a),∴=﹣=(0,a)﹣(﹣2,a)=(2﹣,a﹣a)∴y=f()=•=(2﹣,﹣a)•(2﹣,a﹣a)=(2﹣)2﹣a(a﹣a)=(a2+1)2﹣(4+a2)+4.∴f(1)=a2+1﹣(4+a2)+4=1(Ⅱ)由y=f()=(a2+1)2﹣(4+a2)+4.可知:对称轴=.当0<a≤时,1<,∴函数f()在[0,1]单调递减,因此当=0时,函数f()取得最大值4.当a>时,0<0<1,函数f()在[0,)单调递减,在(,1]上单调递增.又f(0)=4,f(1)=1,∴f()ma=f(0)=4.综上所述函数f()的最大值为4B卷[学期综合]本卷满分:50分.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.B)= {|﹣1≤<0} .20.(4分)设全集U=R,集合A={|<0},B={|||>1},则A∩(∁U【解答】解:全集U=R,集合A={|<0},B={|||>1}={|<﹣1或>1},则∁B={|﹣1≤≤1},UB)={|﹣1≤<0}.A∩(∁U故答案为:{|﹣1≤<0}.21.(4分)已知函数若f(a)=2,则实数a= e2.【解答】解:∵函数,f(a)=2,∴当a<0时,f(a)=a﹣2=2,解得a=,不成立;当a>0时,f(a)=lna=2,解得a=e2.∴实数a=e2.故答案为:e2.22.(4分)定义在R上的函数f ()是奇函数,且f()在(0,+∞)是增函数,f(3)=0,则不等式f()>0的解集为(﹣3,0)∪(3,+∞).【解答】解:∵f()在R上是奇函数,且f()在(0,+∞)上是增函数,∴f()在(﹣∞,0)上也是增函数,由f(﹣3)=0,得﹣f(3)=0,即f(3)=0,由f(﹣0)=﹣f(0),得f(0)=0,作出f()的草图,如图所示:∴f()>0的解集为:(﹣3,0)∪(3,+∞),故答案为:(﹣3,0)∪(3,+∞).23.(4分)函数的值域为{0,1} .(其中表示不大于的最大整数,例如[3.15]=3,[0.7]=0.)【解答】解:设m表示整数.①当=2m时,[]=[m+0.5]=m,[]=[m]=m.∴此时恒有y=0.②当=2m+1时,[]=[m+1]=m+1,[]=[m+0.5]=m.∴此时恒有y=1.③当2m<<2m+1时,2m+1<+1<2m+2∴m<<m+0.5m+0.5<<m+1∴[]=m,[]=m∴此时恒有y=0④当2m+1<<2m+2时,2m+2<+1<2m+3∴m+0.5<<m+1m+1<<m+1.5∴此时[]=m,[]=m+1∴此时恒有y=1.综上可知,y∈{0,1}.故答案为{0,1}.24.(4分)在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长(单位:m)的取值范围是[10,20] .【解答】解:设矩形的另一边长为ym,由相似三角形的性质可得:=,解得y=30﹣,(0<<30)∴矩形的面积S=(30﹣),∵矩形花园的面积不小于200m2,∴(30﹣)≥200,化为(﹣10)(﹣20)≤0,解得10≤≤20.满足0<<30.故其边长(单位m)的取值范围是[10,20].故答案为:[10,20].二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 25.(10分)已知函数.(Ⅰ)若,求a的值;(Ⅱ)判断函数f()的奇偶性,并证明你的结论.【解答】解:(Ⅰ)∵函数.,∴=,∴=2,解得:a=﹣3;(Ⅱ)函数f()为奇函数,理由如下:函数f()的定义域(﹣∞,﹣1)∪(1,+∞)关于原点对称,且f(﹣)+f()=+=0,即f(﹣)=﹣f(),故函数f()为奇函数.26.(10分)已知函数f()=3,g()=|+a|﹣3,其中a∈R.(Ⅰ)若函数h()=f[g()]的图象关于直线=2对称,求a的值;(Ⅱ)给出函数y=g[f()]的零点个数,并说明理由.【解答】解:(Ⅰ)函数h()=f[g()]=3|+a|﹣3的图象关于直线=2对称,则h(4﹣)=h()⇒|+a|=|4﹣+a|恒成立⇒a=﹣2;(Ⅱ)函数y=g[f()]=|3+a|﹣3的零点个数,就是函数G()=|3+a|与y=3的交点,①当0≤a<3时,G()=|3+a|=3+a与y=3的交点只有一个,即函数y=g[f()]的零点个数为1个(如图1);②当a≥3时,G()=|3+a|=3+a与y=3没有交点,即函数y=g[f()]的零点个数为0个(如图1);③﹣3≤a<0时,G()=|3+a|与y=3的交点只有1个(如图2);④当a<﹣3时,G()=|3+a|与y=3的交点有2个(如图2);27.(10分)设函数f()的定义域为R,如果存在函数g(),使得f()≥g()对于一切实数都成立,那么称g()为函数f()的一个承托函数.已知函数f()=a2+b+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f()的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=为函数f()的一个承托函数,且f()为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.【解答】解:(1)函数f()=a2+b+c的图象经过点(﹣1,0),可得a﹣b+c=0,又a=1,b=2,则f()=2+2+1,由新定义可得g()=为函数f()的一个承托函数;(2)假设存在常数a,b,c,使得y=为函数f()的一个承托函数,且f()为函数的一个承托函数.即有≤a2+b+c≤2+恒成立,令=1可得1≤a+b+c≤1,即为a+b+c=1,即1﹣b=a+c,又a2+(b﹣1)+c≥0恒成立,可得a>0,且(b﹣1)2﹣4ac≤0,即为(a+c)2﹣4ac≤0,即有a=c;又(a﹣)2+b+c﹣≤0恒成立,可得a<,且b2﹣4(a﹣)(c﹣)≤0,即有(1﹣2a)2﹣4(a﹣)2≤0恒成立.故存在常数a,b,c,且0<a=c<,b=1﹣2a,可取a=c=,b=.满足题意.。
天津市滨海新区2019-2020学年度第一学期期末检测试卷九年级数学(含答案)

天津市滨海新区2019-2020学年度第一学期期末检测试卷九年级数学一.选择题(共12小题)1.下列图形中,是中心对称图形的是()A.B.C.D.2.抛物线22(1)3y x=--+的顶点坐标是()A.(1,3)B.(1,3)-C.(1,3)--D.(1,3)-3.某个事件发生的概率是12,这意味着()A.在一次试验中没有发生,下次肯定发生B.在一次事件中已经发生,下次肯定不发生C.每次试验中事件发生的可能性是50%D.在两次重复试验中该事件必有一次发生4.已知ABC DEF∆∆且对应中线之比为9:16,则ABC∆与DEF∆的周长之比为() A.4:3B.3:4C.16:9D.9:165.如图,在66⨯的正方形网格中,连结两格点A,B,点C、D是线段AB与网格线的交点,则::BC CD DA 为()A .3:4:5B .1:3:2C .1:4:2D .3:6:56.如图,90AOB ∠=︒,30B ∠=︒,将AOB ∆绕点O 顺时针旋转角度得到△A OB '',旋转角α为.若点A '落在AB 上,则旋转角α的大小是( )A .30︒B .45︒C .60︒D .90︒7.在半径为12的O 中,150︒的圆心角所对的弧长等于( ) A .10πB .12πC .24πD .5π8.若抛物线2(1)y x =+先向下平移2个单位长度,再向左平移1个单位长度,则所得到的新抛物线的解析式是( )A .2(2)2y x =++B .22y x =-C .22y x =+D .2(2)2y x =+-9.若点1(1,)y -,2(2,)y ,3(3,)y 在反比例函数5y x=-的图象上,则1y ,2y ,3y 的大小关系是( ) A .123y y y >> B .231y y y >> C .312y y y >> D .132y y y >>10.如图,O 的直径AB 垂直于弦CD ,垂足为E ,22.5A ∠=︒,4OC =,CD 的长为( )A .B .4C .8D .11.如图,边长为1的正方形ABCD 绕点A 逆时针旋转得到正方形111AB C D ,使边1AB 恰好落在对角线AC 上,边11B C 与CD 交于点O ,则四边形1AB OD 的面积是( )A .34B .716C 1 D12.二次函数2(0)y ax bx c a =++≠的图象如图所示,1c <-,其对称轴为直线1x =-,与x 轴的交点为1(x ,0)、2(x ,0),其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④2(1)a b am bm m ->+≠-;其中,正确的结论个数是()A .1个B .2个C .3个D .4个二.填空题(共6小题)13.将二次函数245y x x =-+化为2()y a x h k =-+的形式,则y = .14.已知反比例函数(ky k x=为常数,0)k ≠的图象经过点(2,2)P ,当12x <<时,则y 的取值范围是 .15.如图,ABCD 中,点E 是AD 边的中点,BE 交对角线AC 于点F ,若2AF =,则对角线AC 长为 .16.如图,PQR ∆是O 的内接正三角形,四边形ABCD 是O 的内接正方形,//BC QR ,则BOQ ∠= .17.如图,将直角ABC ∆绕点C 顺时针旋转90︒至△A B C ''的位置,已知10AB =,6BC =,M 是A B ''的中点,则AM = .18.如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A ,B ,C 均在格点上,D 为AC 边上一点.(Ⅰ)线段AC的长度等于;(Ⅰ)在如图所示的网格中,AM是ABC∆的角平分线,在AM上求一点P使CP+DP的值最小,请用无刻度的直尺,画出AM和点P,并简要说明点AM和点P的位置是如何找到的(不要求证明).三.解答题(共7小题)19.(本题8分)已知图中的曲线是反比例函数5(my mx-=为常数)图象的一支.(1)这个反比例函数图象的另一支在第几象限?常数m的取值范围是什么?(2)若该函数的图象与正比例函数2y x=的图象在第一象限内的交点为A,过A点作x轴的垂线,垂足为B,当OAB∆的面积为4时,求点A的坐标及反比例函数的关系式.20.(本题8分)一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,2,3,4,小明先从布袋中随机摸出一个乒乓球,不放回去,再从剩下的3个球中随机摸出第二个乒乓球.(1)求小明第一次摸出的乒乓球所标数字是偶数的概率;(2)请用树状图或列表的方法求两次摸出的乒乓球球面上数字的积为偶数的概率.21.(本题10分)如图,四边形ABCD中//AB CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:CDF BGF∽;∆∆(2)当点F是BC的中点时,过F作//AB=,4EF CD交AD于点E,若6EF=,求BG的长.22.(本题10分)如图,在ABC∆中,90BC=.以BC为直径的O交AC于D,E是AB的AB=,6ABC∠=︒,8中点,连接ED并延长交BC的延长线于点F.(1)求证:DE是O的切线;(2)求DB的长.23.(本题10分)商城某种商品平均每天可销售20件,每件盈利30元,为庆元旦,决定进行促销活动,经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设该商品每件降价x 元,请解答下列问题 (1)用含x 的代数式表示: ①降价后每售一件盈利 元; ②降价后平均每天售出 件;(2)在此次促销活动中,商城若要获得最大盈利,每件商品应降价多少元?获得最大盈利多少元?24.(本题10分)已知ABC ∆中,AB AC =,D 、E 是BC 边上的点,将ABD ∆绕点A 旋转,得到ACD ∆',连结D E '. (1)如图1,当120BAC ∠=︒,60DAE ∠=︒时,求D AE ∠'的度数; (2)如图2,当DE D E ='时,求证:12DAE ∠=BAC ∠. (3)如图3,在(2)的结论下,当90BAC ∠=︒,BD 与DE 满足怎样的数量关系时,△D EC '是等腰直角三角形?(直接写出结论,不必说明理由)25.(本题10分)如图,在平面直角坐标系中,抛物线23y ax bx =++与x 轴交于(4,0)A -、(1,0)B -两点,与y 轴交于 点C ,点D 是第三象限的抛物线上一动点. (1)求抛物线的解析式;(2)设点D 的横坐标为m ,ACD ∆的面积为S ,求出S 与m 的函数关系式,并写出m 的取值范围; (3)若点P 是抛物线对称轴上一点,是否存在点P 使得90APC ∠=︒?若存在,请直接写出点P 的坐标;若不存在,请说明理由.滨海新区2019-2020学年度第一学期期末检测试卷九年级数学参考答案一.选择题(共12小题)二.填空题(共5小题)13.2(2)1x -+ 14.24y <<15.6 16.15°17 18. 5;如图取个点E ,连接AE 交BC 于M ,取个点F ,连接DF 交AM 于点P ,点P 即为所求.三.解答题(共7小题)19.(本题8分)解:(1)这个反比例函数图象的另一支在第三象限,这个反比例函数的图象分布在第一、第三象限,50m ∴->,解得5m >,即这个反比例函数图象的另一支在第三象限,常数m 的取值范围是5m >.(2)如图,由第一象限内的点A 在正比例函数2y x =的图象上,设点A 的坐标为0(x ,02)x 0(0)x >,则点B 的坐标为0(x ,0),4OAB S ∆=,∴001242x x =,解得02x =(负值舍去),∴点A 的坐标为(2,4), 又点A 在反比例函数5m y x -=的图象上,542m -∴=,即58m -=, ∴反比例函数的关系式为8y x =. 20.(本题8分)解:(1)第一次摸球共有四种结果,分别为:1,2,3,4 其中偶数有两种, 所以P (为偶数)2142==. (2)根据题意画树形图如下:由以上可知共有12种可能结果分别为:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4), (3,1),(3,2),(3,4),(4,1),(4,2),(4,3);在以上12种可能结果中,两个数字之积为偶数的只有10种, 所以P (积为偶数)105126==. 21.(本题10分)(1)证明:四边形ABCD ,//AB CD ,CDF G ∴∠=∠,DCF GBF ∠=∠,CDF BGF ∴∆∆∽. (2)解:由(1)CDF BGF ∆∆∽,又F 是BC 的中点,BF FC =,CDF BGF ∴∆≅∆,DF GF ∴=,CD BG =, ////AB DC EF ,F 为BC 中点,E ∴为AD 中点,EF ∴是DAG ∆的中位线,2EF AG AB BG ∴==+.22462BG EF AB ∴=-=⨯-=,2BG ∴=.22.(本题10分)(1)证明:连接BD ,DO , BC 是O 的直径,90ADB ∴∠=︒.90CDB ∴∠=︒又E 为AB 的中点,DE EB EA ∴==,EDB EBD ∴∠=∠. OD OB =,ODB OBD ∴∠=∠.90ABC ∠=︒,90EDB OBD ∴∠+∠=︒.即OD DE ⊥.DE ∴是O 的切线.(2)解:在Rt ABC ∆中,8AB =,6BC =,10AC ∴=, 1122ABC S AB BC AC BD ∆=⋅=,245AB BC BD AC ⋅∴==. 23(本题10分)解:根据题意,得①每件降价x 元后每售一件盈利(30)x -元;②降价后平均每天售出(202)x +件;(2)设获得最大利润y 元,根据题意,得22(30)(202)2406002(10)800y x x x x x =-+=-++=--+. ∴当10x =时,y 有最大值为800.答:每件商品应降价10元,获得最大盈利为800元.24.(本题10分)(1)解:ABD ∆绕点A 旋转得到ACD ∆',AD AD ∴=',CAD BAD ∠'=∠,120BAC ∠=︒,60DAE ∠=︒,D AE CAD CAE ∴∠'=∠'+∠BAD CAE =∠+∠BAC DAE =∠-∠ 12060=︒-︒60=︒,=60D AE DAE ∴∠'=∠,(2)证明:在ADE ∆和△AD E '中,AD AD AE AE DE D E ='⎧⎪=⎨⎪='⎩,ADE ∴∆≅△()AD E SSS ',DAE D AE ∴∠=∠', BAD CAE CAD CAE D AE DAE ∴∠+∠=∠'+∠=∠'=∠,12DAE BAC ∴∠=∠; (3)解:90BAC ∠=︒,AB AC =,45B ACB ACD ∴∠=∠=∠'=︒, 454590D CE ∴∠'=︒+︒=︒,△D EC '是等腰直角三角形,D E ∴'=',由(2)DE D E =',ABD ∆绕点A 旋转得到ACD ∆',BD C D ∴=',DE ∴.25.(本题10分)解:(1)将(4,0)A -、(,0)B l -代入23y ax bx =++得1643030a b a b -+=⎧⎨-+=⎩,解得34154a b ⎧=⎪⎪⎨⎪=⎪⎩.故抛物线的函数解析式为2315344y x x =++; (2)令0x =,则3y =,(0,3)C ∴,设直线AC 的解析式为y mx n =+,代入(4,0)A -、(0,3)C 得403m n n -+=⎧⎨=⎩,解得343m n ⎧=⎪⎨⎪=⎩AC ∴的解析式为334y x =+; 过D 作//DE y 轴,交AC 于点E ,设2315(,3)44D m m m ++,(E m ,33)(41)4m m +-<<-, 则233153(3)444DE m m m =+-++,2334DE m m ∴=--, 222133342(3)6(2)62422S DE m m m m m ∴=⨯=--=--=-++(41)m -<<-, (3)存在点P 使得90APC ∠=︒,以AC 为直径作圆交抛物线的对称轴于P ,(4,0)A -、(0,3)C ,AC ∴的中点O 的坐标为3(2,)2-,5AC ==, 522AC OP ∴==, 抛物线23y ax bx =++与x 轴交于(4,0)A -、(,0)B l -两点,∴对称轴41522x --==-, 设5(2P -,)y ,22()2AC OP ∴=,222535(2)()()222y -++-=,解得32y =P ∴的坐标为5(2-或5(2-.。
2019-2020学年天津市南开区南开中学高一期中数学试题(解析版)

天津市南开区南开中学高一期中数学试题一、单选题1.已知R 是实数集,集合{}3|12,|02A x x B x x ⎧⎫=<<=<<⎨⎬⎩⎭,则阴影部分表示的集合是( )A .[]0,1B .(0,1]C .[0,1)D .(0,1)【答案】B【解析】阴影部分对应的集合为R C A ∩B ,利用集合的基本运算即可得到结论. 【详解】由题可知阴影部分对应的集合为R C A ∩B , ∵R C A ={x |x 1≤或x 2≥}, B ={x |0<x 32<},∴R C A ∩B ={x |0<x 1≤}=(0,1], 故选B . 【点睛】本题主要考查集合的基本运算,利用集合关系确定阴影部分的集合是解决本题的关键.2.命题“存在0x R ∈,020x ≤”的否定是( ) A .不存在0x R ∈,020x > B .存在0x R ∈,020x ≥ C .对任意的x ∈R ,020x ≤ D .对任意的x ∈R ,020x >【答案】D【解析】利用特称命题的否定是全称命题写出结果即可.Q 特称命题的否定是全称命题.∴命题“存在0x R ∈,020x ≤”的否定是:“对任意的x ∈R ,020x >”.故选:D. 【点睛】本题主要考查命题的否定,注意量词的变化,基本知识的考查,属于容易题.3.若函数()f x 是偶函数,且在[0,2]上是增函数,在[2)+∞,上是减函数,则( ) A .(2)(3)(4)f f f --<< B .(3)(2)(4)f f f --<< C .(4)(3)(2)f f f --<< D .(3)(4)(2)f f f --<<【答案】C【解析】根据函数奇偶性和单调性的性质进行转化判断即可. 【详解】解:∵f (x )是偶函数,且函数f (x )在[2,+∞)上是减函数, ∴f (4)<f (3)<f (2), 即f (﹣4)<f (3)<f (﹣2), 故选:C . 【点睛】本题主要考查函数值的大小比较,结合函数奇偶性和单调性的性质进行转化是解决本题的关键.4.设{}1,1,2,3a ∈-,则使函数a y x =的值域为R 且为奇函数的所有a 值为( ) A .1,3 B .1-,1 C .1-,3 D .1-,1,3【答案】A【解析】根据幂函数的性质,分别判断幂函数的值域和奇偶性是否满足条件即可. 【详解】当1a =-时,11y xx-==,为奇函数,但值域为{}0x x ≠,不满足条件. 当1a =时,y x =,为奇函数,值域为R ,满足条件.当2a =时,2y x =为偶函数,值域为{}0x x ≥,不满足条件.当3a =时,3y x =为奇函数,值域为R ,满足条件. 故选:A.本题主要考查幂函数的图象和性质,属于容易题. 5.设函数()f x 满足1()11xf x x-=++,则()f x 的表达式为( ) A .2211x x -+ B .221x + C .21x + D .11x x-+ 【答案】C【解析】试题分析:设11x t x -=+,则11t x t -=+,所以12()111t f t t t-=+=++,所以2()1f x x=+,故选C . 【考点】求函数解析式.6.若不等式20ax bx c ++>的解集是()4,1-,则不等式()()2130b x a x c -+++>的解为( ) A .413,⎛-⎫⎪⎝⎭B .(),3,41-∞+⎪∞⎛⎫⎝⎭U C .()1,4-D .()()–21,∞-+∞U ,【答案】A【解析】根据不等式20ax bx c ++>的解集求出b 、a 和c 的关系,再化简不等式2(1)(3)0b x a x c -+++>,从而求出所求不等式的解集.【详解】根据题意,若不等式20ax bx c ++>的解集是()4,1-, 则4-与1是方程20ax bx c ++=的根,且0a <,则有()()4141b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得3b a =﹐4c a =-﹐且0a <;∴不等式()()2130b x a x c -+++>化为:()()231340x x -++-<,整理得2340x x +-<﹐即()()3410x x +-<﹐ 解可得413x -<<, 即不等式()()2130b x a x c -+++>的解为4,13⎛⎫-⎪⎝⎭; 故选:A. 【点睛】本题考查一元二次不等式的解法,关键是掌握一元二次不等式的解集与相应的一元二次方程的实数根的关系和根与系数的关系,属于中档题.7.已知函数f (x )的定义域为(﹣1,1),则函数()()22x g x f f x ⎛⎫=+- ⎪⎝⎭的定义域为( ) A .(0,2) B .(1,2)C .(2,3)D .(﹣1,1)【答案】B【解析】由题意可得112121x x ⎧-<<⎪⎨⎪-<-<⎩,由此求得x 的范围,即为所求. 【详解】由题意,函数()f x 的定义域为()1,1-,则对于函数()()22x g x f f x ⎛⎫=+-⎪⎝⎭, 应有112121x x ⎧-<<⎪⎨⎪-<-<⎩,解得12x <<,故()g x 的定义域为()1,2. 故选:B. 【点睛】本题主要考查函数的定义域的定义,求函数的定义域,属于基础题. 8.已知,,则是的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】根据不等式的关系,结合充分条件和必要条件的定义,进行判断,即可得到答案. 【详解】由题意,若,则,则,所以,则成立,当时,满足,但不一定成立,所以是的充分不必要条件,故选A.【点睛】本题主要考查了充分条件和必要条件的判定问题,其中解答中结合不等式的关系和不等式的性质求解是解答的关键,着重考查了推理与论证能力,属于基础题.9.设()(),0121,1x x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A .2 B .4C .6D .8【答案】C【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式,代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.10.定义在R 上的偶函数()f x 满足:对任意的()()1212,,0x x x x ∈-∞≠,有()()21210f x f x x x -<-,且()20f =,则不等式()()205f x f x x+-<解集是( )A .()(),22-∞-+∞UB .()(),20,2-∞-UC .()()2,02-+∞UD .()()2,00,2-U【答案】B【解析】由题意可知偶函数()f x 在(),0-∞上是减函数,故在(0,)+∞上是增函数,且(2)(2)0f f =-=,原不等式可化为()305f x x<,即()f x 与x 异号,结合零点及单调性即可求解. 【详解】因为对任意的()()1212,,0x x x x ∈-∞≠,有()()21210f x f x x x -<-,所以偶函数()f x 在(),0-∞上是减函数, 因为()f x 图象关于y 轴对称, 所以()f x 在(0,)+∞上是增函数, 且(2)(2)0f f =-=, 因为()f x 是偶函数,所以原不等式可化为()305f x x<,即()f x 与x 异号, 所以不等式的解为{|2x x <-或02}x <<,故选B. 【点睛】本题主要考查了偶函数的性质,偶函数的单调区间,不等式求解,属于中档题.二、多选题11.已知实数a 、b ,判断下列不等式中哪些一定是正确的( )A .2a b+≥ B .12a a+≥C .||2a b b a+≥D .()()2222a ba b +≥+【答案】CD【解析】当0a <,0b <时,2a b +0a <,时,12a a+…不成立;由||||||a b b ab a a b+=+利用基本不等式即可判断;由2222222()()2()0a b a b a b ab a b +-+=+-=-…,可判断.【详解】当0a <,0b <时,2a b+≥不成立; 当0a <时,12a a+≥不成立;2a b b ab a a b+=+≥Q; ()()()222222220a b a b a b ab a b +-+=+-=-≥Q ,故()()2222a b a b +≥+,故选:CD. 【点睛】本题主要考查了基本不等式的应用条件的判断,属于中档题. 12.下列判断中哪些是不正确的( )A .()(1f x x =-是偶函数B .()()()2200x x x f x x x x ⎧+<⎪=⎨-+>⎪⎩是奇函数C .()f x =D .()f x =是非奇非偶函数【答案】AD【解析】根据奇函数和偶函数的定义,判断每个选项函数的奇偶性即可. 【详解】A.()f x 的定义域为(]1,1-,定义域不关于原点对称,()f x ∴不是偶函数,∴该判断错误;B.设0x >,0x -<,则()()()22f x x x x x f x -=-=--+=-,同理设0x <,也有()()f x f x -=-成立,()f x ∴是奇函数,∴该判断正确;C.解230x -=得,x =,()f x ∴的定义域关于原点对称,且()0f x =,()f x ∴是偶函数,∴该判断正确;D.解210330x x ⎧-≥⎪⎨+-≠⎪⎩得,10x -≤<,或01x <≤,()33f x x x∴==+-,()=()f x f x --Q()f x ∴是奇函数,∴该判断错误.故选:AD. 【点睛】本题考查了奇函数、偶函数的定义及判断,考查了推理和计算能力,属于中档题.三、填空题13.函数y x =________. 【答案】12. 【解析】由根式内部的代数式大于等于0求得函数定义域,再由函数在定义域内单调递增求解. 【详解】由120x -≥,得12x ≤.∴函数y x =-12,⎛-∞⎤ ⎥⎝⎦,Q 函数y x =在12,⎛-∞⎤ ⎥⎝⎦上为增函数,函数y =在12,⎛-∞⎤ ⎥⎝⎦上为增函数,∴函数y x =-12,⎛-∞⎤ ⎥⎝⎦上为增函数,∴当12x =时,函数y x =12.故答案为:12.【点睛】本题考查函数的值域及其求法,训练了利用函数的单调性求函数的值域,属于中档题. 14.已知函数()f x 满足()1221,0f x f x x x ⎛⎫-=-≠ ⎪⎝⎭,则()f x 的解析式为________【答案】()24133f x x x=--+ 【解析】由已知可得f (1x )-2f (x )21x =-,联立两式消去f (1x),解方程组可得.【详解】∵()1221,f x f x x ⎛⎫-=- ⎪⎝⎭∴f (1x )-2f (x )21x=-, 联立两式消去f (1x ),可得f (x )=24133x x--+ 故答案为f (x )=24133x x--+ 【点睛】本题考查函数解析式的求解,考查整体换元,属于基础题.15.已知()2y f x x =+是奇函数,且()13f =,若()()2g x f x =+,则()1g -=________.【答案】–3.【解析】由已知可知,22()()f x x f x x -+=--,然后结合f (1)3=,可求(1)f -,然后代入即可求解(1)g -. 【详解】()2y f x x =+Q 是奇函数, ()()22f x x f x x ∴-+=--,()()22x f x f x -+=-∴, ()13f =Q , ()15f ∴-=-, ()()2g x f x =+,则()()1123g f -=-+=-. 故答案为:–3 【点睛】本题主要考查了利用函数的奇偶性求解函数值,解题的关键是奇函数定义的灵活应用,属于容易题.16.已知函数()224f x x kx =--在区间[]2,4-上具有单调性,则k 的取值范围是________.【答案】(][),816,-∞-+∞U .【解析】函数2()24f x x kx =--对称轴为:4kx =,函数()f x 在区间[2-,4]上有单调性,由44k (24)-…,解得k 即可.【详解】Q 函数()224f x x kx =--对称轴4kx =, 又Q 函数()f x 在区间[]2,4-上有单调性, 44k ∴≤或24k -≥, 16k ∴≥或8k ≤-,故答案为:(][),816,-∞-+∞U . 【点睛】此题主要考查二次函数的图象及其性质,利用对称轴在区间上移动得出,()f x 在其区间上具有单调性的条件,属于容易题.17.已知()()2240()40x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若()2(2)f a f a ->,则实数a 的取值范围是____________. 【答案】(2,1)-【解析】判断函数()f x 的单调性,利用单调性()2(2)f a f a ->转化为自变量的不等式,即可求解. 【详解】()f x 在区间(,0],(0,)-∞+∞都是增函数,并且在0x =处函数连续,所以()f x 在R 上是增函数,()2(2)f a f a ->等价于222,20a a a a >+-<-,解得21a -<<. 故答案为:(2,1)- 【点睛】本题考查函数的单调性,并利用单调性解不等式,属于中档题. 18.设0,0,25x y x y >>+=______.【答案】【解析】把分子展开化为26xy +,再利用基本不等式求最值. 【详解】=Q0,0,25,0,x y x y xy >>+=>∴Q≥= 当且仅当3xy =,即3,1x y ==时成立,故所求的最小值为 【点睛】使用基本不等式求最值时一定要验证等号是否能够成立.四、解答题19.已知全集U =R ,集合2{|3180}A x x x =--≥,5{|0}14x B x x +=≤-. (1)求()U C B A ⋂.(2)若集合{|21}C x a x a =<<+,且B C C =I ,求实数a 的取值范围. 【答案】(1)(){|14U C B A x x ⋂=≥或5}x <-(2)52a ≥-【解析】试题分析:(1)解不等式求得A,B 及U C B ,根据交集的定义求解;(2)将问题转化为C B ⊆求解,分C =∅和C ≠∅两种情况进行讨论.试题解析 :(1)由题意得{|3A x x =≤-或6}x ≥,{|514}B x x =-≤<, ∴{|5U B x x =<-ð或14}≥,∴(){|14U C B A x x ⋂=≥或5}x <-. (2)∵B C C ⋂= ∴C B ⊆,①当C =∅时,则有21a a ≥+,解得1a ≥.②当C ≠∅时,则有2111425a a a a <+⎧⎪+≤⎨⎪≥-⎩,解得512a -≤<.综上可得52a ≥-. 实数a 的取值范围为5[)2-+∞,. 20.已知幂函数()af x x =的图象经过点(.(1)求幂函数()f x 的解析式;(2)试求满足()()13f a f a +>-的实数a 的取值范围. 【答案】(1)())0f x x =≥;(2)(]1,3.【解析】(1)把点的坐标代入函数解析式求出a 的值,即可写出()f x 的解析式;(2)根据()f x 在定义域上的单调性,把不等式(1)(3)f a f a +>-化为关于a 的不等式组,求出解集即可. 【详解】(1)幂函数()af x x =的图象经过点(,2a ∴=解得12a =, ∴幂函数())120x x f x ==≥;(2)由(1)知()f x 在定义域[)0,+∞上单调递增, 则不等式()()13f a f a +>-可化为103013a a a a +≥⎧⎪-≥⎨⎪+>-⎩解得13a <?,∴实数a 的取值范围是(]1,3.【点睛】本题考查了幂函数的定义与应用问题,属于容易题. 21.已知函数()211x f x x -=+. (Ⅰ)证明:函数()f x 在区间()0,+∞上是增函数; (Ⅱ)求函数()f x 在区间[]1,17上的最大值和最小值.【答案】(Ⅰ)见解析;(Ⅱ)见解析【解析】(Ⅰ)先分离常数得出()321f x x =-+,然后根据增函数的定义,设任意的120x x >>,然后作差,通分,得出()()()()()121212311x x f x f x x x --=++,只需证明()()12f x f x >即可得出()f x 在()0,+∞上是增函数;(Ⅱ)根据()f x 在()0,+∞上是增函数,即可得出()f x 在区间[]1,17上的最大值为()17f ,最小值为()1f ,从而求出()17f ,()1f 即可.【详解】解:(Ⅰ)证明:()213211x f x x x -==-++; 设120x x >>,则:()()()()()121221123331111x x f x f x x x x x --=-=++++; 120x x >>Q ;120x x ∴->,110x +>,210x +>;()()()12123011x x x x -∴>++;()()12f x f x ∴>;()f x ∴在区间()0,+∞上是增函数;(Ⅱ())f x Q 在()0,+∞上是增函数;()f x ∴在区间[]1,17上的最小值为()112f =,最大值为()11176f =. 【点睛】考查分离常数法的运用,反比例函数的单调性,增函数的定义,根据增函数的定义证明一个函数是增函数的方法,根据函数单调性求函数在闭区间上的最值的方法. 22.已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,()22f x x x =--.(1)求函数()()f x x R ∈的解析式;(2)写出函数()()f x x R ∈的增区间(不需要证明);(3)若函数()()[]()2212g x f x ax x =-+∈,求函数()g x 的最小值.【答案】(1)()222,02,0x x x f x x x x ⎧--≤=⎨->⎩;(2)函数()f x 的增区间:(),1-∞-,()1+∞,,减区间:()1,1-,;(3)当1a ≥时,()min 24g x a =-,当0a ≤时,()min 12g x a =-,当01a <<时,2()min 21g x a a =--+.【解析】(1)根据奇函数定义和当0x …时,2()2f x x x =--,并写出函数在0x >时的解析式;(2)由(1)解析式得出函数的单调区间;(3)通过分类讨论研究二次函数在区间上的最小值,得到本题结论. 【详解】(1)Q 函数()f x 是定义在R 上的奇函数,∴当0x >时,此时0x -<,()()f x f x ∴=--,又Q 当0x ≤时,()22f x x x =--,()()()()22][22f f x x x x x x =--=----=-∴-,∴函数()()f x x R ∈的解析式为:()222,02,0x x x f x x x x ⎧--≤=⎨->⎩.(2)函数()f x 的增区间:(),1-∞-,()1,+∞﹒ 减区间:()1,1-.(3)函数()()()[]()22222222221,2g x f x ax x x ax x a x x =-+=--+=-++∈,二次函数对称轴为:1x a =+,当21a ≤+时,即1a ≥时,()()min 224g x g a ==-, 当11a ≥+时,即0a ≤时,()()min 112g x g a ==-,当112a <+<时,即01a <<时,2()min (1)21g x g a a a =+=--+ 综上,当1a ≥时,()min 24g x a =-, 当0a ≤时,()min 12g x a =-, 当01a <<时,2()min 21g x a a =--+ 【点睛】本题考查了函数的奇偶性、函数解析式、二次函数在区间上的最值,本题难度不大,属于中档题.23.函数f(x)的定义域为D ={x|x≠0},且满足对任意x 1,x 2∈D ,有f(x 1·x 2)=f(x 1)+f(x 2). (1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x -1)<2,且f(x)在(0,+∞)上是增函数,求x 的取值范围.【答案】(1)0;(2)见解析;(3)()(15,1)1,17⋃-【解析】试题分析:(1)抽象函数求具体指,用赋值法;(2)根据定义求证函数的奇偶性找f (-x )和f (x )的关系;(3)先利用f (4×4)=f (4)+f (4)=2得到f (x -1)<2⇔f (|x -1|)<f (16).再根据单调性列出不等式求解即可.(1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2), ∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数. (3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1. ∴x 的取值范围是{x |-15<x <17且x ≠1}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市南开区高一(上)期末测试数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(3分)设集合U={n|n∈N*且n≤9},A={2,5},B={1,2,4,5},则∁U(A∪B)中元素个数为()A.4 B.5 C.6 D.72.(3分)与α=+2kπ(k∈Z)终边相同的角是()A.345°B.375°C.﹣πD.π3.(3分)sin80°cos70°+sin10°sin70°=()A.﹣B.﹣C.D.4.(3分)下列函数中是奇函数的是()A.y=x+sinx B.y=|x|﹣cosx C.y=xsinx D.y=|x|cosx5.(3分)已知cosθ>0,tan(θ+)=,则θ在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)函数f(x)=log2x+x﹣4的零点在区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)7.(3分)若偶函数f(x)在[0,+∞)上单调递减,设a=f(1),b=f(log0.53),c=f(log23﹣1),则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b8.(3分)如图,正方形ABCD边长为1,从某时刻起,将线段AB,BC,CD,DA分别绕点A,B,C,D顺时针旋转相同角度α(0<α<),若旋转后的四条线段所围成的封闭图形面积为,则α=()A.或B.或C.或D.或9.(3分)函数f(x)=Asin(ωx+φ)的单调递减区间为[kπ﹣,kπ+](k∈Z),则下列说法错误的是()A.函数f(﹣x)的最小正周期为πB.函数f(﹣x)图象的对称轴方程为x=+(k∈Z)C.函数f(﹣x)图象的对称中心为(+,0)(k∈Z)D.函数f(﹣x)的单调递减区间为[kπ+,kπ+](k∈Z)10.(3分)设函数f(x)=,则下列说法正确的是()①若a≤0,则f(f(a))=﹣a;②若f(f(a))=﹣a,则a≤0;③若a≥1,则f(f(a))=;④若f(f(a))=,则a≥1.A.①③B.②④C.①②③D.①③④二、填空题:本大题共5小题,每小题4分,共20分).11.(4分)函数f(x)=的定义域为.12.(4分)函数f(x)=2cos2x•tanx+cos2x的最小正周期为;最大值为.13.(4分)如果将函数f(x)=sin2x图象向左平移φ(φ>0)个单位,函数g(x)=cos(2x ﹣)图象向右平移φ个长度单位后,二者能够完全重合,则φ的最小值为.14.(4分)如图所示,已知A,B是单位圆上两点且|AB|=,设AB与x轴正半轴交于点C,α=∠AOC,β=∠OCB,则sinαsinβ+cosαcosβ= .15.(4分)设函数f(x)=,若关于x的方程f(x)﹣a=0有三个不等实根x1,x2,x3,且x1+x2+x3=﹣,则a= .三、解答题:本大题共5小题,共50分.解答写出文字说明、证明过程或演算过程.16.(8分)已知集合A={x|2x﹣6≤2﹣2x≤1},B={x|x∈A∩N},C={x|a≤x≤a+1}.(Ⅰ)写出集合B的所有子集;(Ⅱ)若A∩C=C,求实数a的取值范围.17.(10分)已知函数f(x)=cos(x﹣)﹣sin(x﹣).(Ⅰ)判断函数f(x)的奇偶性,并给出证明;(Ⅱ)若θ为第一象限角,且f(θ+)=,求cos(2θ+)的值.18.(10分)设函数f(x)为R上的奇函数,已知当x>0时,f(x)=﹣(x+1)2.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(m2+2m)+f(m)>0,求m的取值范围.19.(10分)设某等腰三角形的底角为α,顶角为β,且cosβ=.(Ⅰ)求sinα的值;(Ⅱ)若函数f(x)=tanx在[﹣,α]上的值域与函数g(x)=2sin(2x﹣)在[0,m]上的值域相同,求m的取值范围.20.(12分)函数f(x)=4sinωx•cos(ωx+)+1(ω>0),其图象上有两点A(s,t),B(s+2π,t),其中﹣2<t<2,线段AB与函数图象有五个交点.(Ⅰ)求ω的值;(Ⅱ)若函数f(x)在[x1,x2]和[x3,x4]上单调递增,在[x2,x3]上单调递减,且满足等式x4﹣x3=x2﹣x1=(x3﹣x2),求x1、x4所有可能取值.天津市南开区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.(A∪B)中元素个1.(3分)设集合U={n|n∈N*且n≤9},A={2,5},B={1,2,4,5},则∁U数为()A.4 B.5 C.6 D.7【解答】解:∵A={2,5},B={1,2,4,5},∴A∪B={1,2,4,5},又∵集合U={n|n∈N*且n≤9}={1,2,3,4,5,6,7,8,9},(A∪B)={3,6,7,8,9},∴∁U故∁(A∪B)共有5个元素,U故选:B.2.(3分)与α=+2kπ(k∈Z)终边相同的角是()A.345°B.375°C.﹣πD.π【解答】解:由α=+2kπ(k∈Z),得与角α终边相同的角是:,360°+15°=375°.故选:B.3.(3分)sin80°cos70°+sin10°sin70°=()A.﹣B.﹣C.D.【解答】解:sin80°cos70°+sin10°sin70°=cos10°cos70°+sin10°sin70°=.故选:C.4.(3分)下列函数中是奇函数的是()A.y=x+sinx B.y=|x|﹣cosx C.y=xsinx D.y=|x|cosx【解答】解:A,y=x+sinx,有f(﹣x)=﹣x﹣sinx=﹣f(x),为奇函数;B,y=|x|﹣cosx,f(﹣x)=|﹣x|﹣cos(﹣x)=f(x),为偶函数;C,y=xsinx,f(﹣x)=(﹣x)sin(﹣x)=xsinx=f(x),为偶函数;D,y=|x|cosx,f(﹣x)=|﹣x|cos(﹣x)=f(x),为偶函数.故选:A.5.(3分)已知cosθ>0,tan(θ+)=,则θ在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由题意得,tan(θ+)=,所以=,即,解得tanθ=<0,则θ在第二或四象限,由cosθ>0得,θ在第一或四象限,所以θ在第四象限,故选:D.6.(3分)函数f(x)=log2x+x﹣4的零点在区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解答】解:f(x)=log2x+x﹣4,在(0,+∞)上单调递增.∵f(2)=1+2﹣4=﹣1<0,f(3)=log23﹣1>0∴根据函数的零点存在性定理得出:f(x)的零点在(2,3)区间内∴函数f(x)=log2x+x﹣4的零点所在的区间为(2,3),故选:C.7.(3分)若偶函数f(x)在[0,+∞)上单调递减,设a=f(1),b=f(log0.53),c=f(log23﹣1),则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b【解答】解:∵偶函数f(x)在[0,+∞)上单调递减,∴f(x)在(﹣∞,0]上单调递增,∵log0.53=<=﹣1,log23﹣1=log21.5∈(0,1),a=f(1),b=f(log0.53),c=f(log23﹣1),∴b<a<c.故选:B.8.(3分)如图,正方形ABCD边长为1,从某时刻起,将线段AB,BC,CD,DA分别绕点A,B,C,D顺时针旋转相同角度α(0<α<),若旋转后的四条线段所围成的封闭图形面积为,则α=()A.或B.或C.或D.或【解答】解:如图所示,旋转后的四条线段所围成的封闭图形为正方形,边长为cosα﹣sinα,由题意可得:(cosα﹣sinα)2=,可得:cosα﹣sinα=±①,2sinαcosα=又0<α<,可得:cosα+sinα==,②所以:由①②可得:cosα=.故α=或.故选:A.9.(3分)函数f(x)=Asin(ωx+φ)的单调递减区间为[kπ﹣,kπ+](k∈Z),则下列说法错误的是()A.函数f(﹣x)的最小正周期为πB.函数f(﹣x)图象的对称轴方程为x=+(k∈Z)C.函数f(﹣x)图象的对称中心为(+,0)(k∈Z)D.函数f(﹣x)的单调递减区间为[kπ+,kπ+](k∈Z)【解答】解:由题意,ω=2,函数f(x)=Asin(ωx+φ)的周期为π,φ=,f(﹣x)=Asin(﹣2x+),x=+,﹣2x+=kπ+,f(﹣x)=Asin(﹣2x+)≠0,故选C.10.(3分)设函数f(x)=,则下列说法正确的是()①若a≤0,则f(f(a))=﹣a;②若f(f(a))=﹣a,则a≤0;③若a≥1,则f(f(a))=;④若f(f(a))=,则a≥1.A.①③B.②④C.①②③D.①③④【解答】解:当a≤0时,则f(f(a))==﹣a,故①正确;当a≥1时,f(f(a))==,故③正确;当0<a<1,f(f(a))=log0.5(log0.5a)∈R,故此时存在0<a<1,使得f(f(a))=﹣a也存在0<a<1,使得f(f(a))=,故②④错误;故选:A二、填空题:本大题共5小题,每小题4分,共20分).11.(4分)函数f(x)=的定义域为(﹣1,0)∪(0,+∞).【解答】解:由题意得:,解得:x>﹣1且x≠0,故函数的定义域是(﹣1,0)∪(0,+∞),故答案为:(﹣1,0)∪(0,+∞).12.(4分)函数f(x)=2cos2x•tanx+cos2x的最小正周期为π;最大值为.【解答】解:函数f(x)=2cos2x•tanx+cos2x=2sinxcosx+cos2x=sin2x+cos2x=sin(2x+)的最小正周期为=π,最大值为,故答案为:π,13.(4分)如果将函数f(x)=sin2x图象向左平移φ(φ>0)个单位,函数g(x)=cos(2x ﹣)图象向右平移φ个长度单位后,二者能够完全重合,则φ的最小值为.【解答】解:将函数y=sin2x的图象向左平移φ(φ>0)个单位得到:y=sin[2(x+φ)]=sin (2x+2φ)的图象,将函数g(x)=cos(2x﹣)图象向右平移φ个长度单位后,可得函数y=cos[2(x﹣φ)﹣]=cos (2x﹣2φ﹣)=sin[﹣(2x﹣2φ﹣)]=sin(﹣2x+2φ)=sin(2x﹣2φ+)的图象,二者能够完全重合,由题意可得,即:2x+2φ=2x﹣2φ++2kπ,k∈Z,解得:φ=kπ+,(k∈Z)当k=0时,φ=.min故答案为:.14.(4分)如图所示,已知A,B是单位圆上两点且|AB|=,设AB与x轴正半轴交于点C,α=∠AOC,β=∠OCB,则sinαsinβ+cosαcosβ= .【解答】解:由题意,∠OAC=β﹣α,∵A,B是单位圆上两点且|AB|=,∴sinαsinβ+cosαcosβ=cos(β﹣α)=cos∠OAC==,故答案为.15.(4分)设函数f(x)=,若关于x的方程f(x)﹣a=0有三个不等实根x1,x2,x3,且x1+x2+x3=﹣,则a= .【解答】解:如图所示,画出函数f(x)的图象,不妨设x1<x2<x3,则x1+x2=2×=﹣3,又x1+x2+x3=﹣,∴x3=.∴a==.故答案为:.三、解答题:本大题共5小题,共50分.解答写出文字说明、证明过程或演算过程.16.(8分)已知集合A={x|2x﹣6≤2﹣2x≤1},B={x|x∈A∩N},C={x|a≤x≤a+1}.(Ⅰ)写出集合B的所有子集;(Ⅱ)若A∩C=C,求实数a的取值范围.【解答】解:(Ⅰ)对于集合A,因为2x﹣6≤2﹣2x≤1,则x﹣6≤﹣2x≤0,解可得:0≤x≤2.即A={x|0≤x≤2},又由B={x|x∈A∩N},则B={0,1,2};故B的子集有∅、{0}、{1}、{2}、{0,1}、{0,2}、{1,2}、{0,1,2};(Ⅱ)若A∩C=C,则C是A的子集,则必有:,解可得:0≤a≤1,即a的取值范围是:[0,1].17.(10分)已知函数f(x)=cos(x﹣)﹣sin(x﹣).(Ⅰ)判断函数f(x)的奇偶性,并给出证明;(Ⅱ)若θ为第一象限角,且f(θ+)=,求cos(2θ+)的值.【解答】解:(Ⅰ)结论:函数f(x)为定义在R上的偶函数.证明:函数f(x)的定义域为R,关于原点对称,f(x)=cos(x﹣)﹣sin(x﹣)=f(﹣x)=.因此,函数f(x)为定义在R上的偶函数;(Ⅱ)∵f(θ+)=,∴.由于θ为第一象限角,故,∴cos(2θ+)===.18.(10分)设函数f(x)为R上的奇函数,已知当x>0时,f(x)=﹣(x+1)2.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(m2+2m)+f(m)>0,求m的取值范围.【解答】解:(Ⅰ)∵函数f(x)为R上的奇函数,∴f(0)=0,若x<0,则﹣x>0,∵当x>0时,f(x)=﹣(x+1)2.∴当﹣x>0时,f(﹣x)=﹣(﹣x+1)2=﹣(x﹣1)2.∵f(x)是奇函数,∴f(﹣x)=﹣(x﹣1)2=﹣f(x),则f(x)=(x﹣1)2,x<0,则函数f(x)的解析式f(x)=;(Ⅱ)若f(m2+2m)+f(m)>0,则f(m2+2m)>﹣f(m)=f(﹣m),当x>0时,f(x)=﹣(x+1)2为减函数,且f(x)<﹣1<f(0),当x<0时,f(x)=(x﹣1)2为减函数,且f(x)>1>f(0),则函数f(x)在R上是减函数,则m2+2m<﹣m,即m2+3m<0,则﹣3<m<0,即m的取值范围是(﹣3,0).19.(10分)设某等腰三角形的底角为α,顶角为β,且cosβ=.(Ⅰ)求sinα的值;(Ⅱ)若函数f(x)=tanx在[﹣,α]上的值域与函数g(x)=2sin(2x﹣)在[0,m]上的值域相同,求m的取值范围.【解答】解:(Ⅰ)由题意,β=π﹣2α,∴cosβ==﹣cos2α=2sin2α﹣1∵α∈(0,),∴sinα=;(Ⅱ)由题意,函数f(x)=tanx在[﹣,α]上单调递增,∵α∈(0,),sinα=,∴cosα=,∴tanα=2,∴函数f(x)=tanx在[﹣,α]上的值域为[﹣,2],∴函数g(x)=2sin(2x﹣)在[0,m]上的值域为[﹣,2],∴y=sinx在[﹣,2m﹣]上的取值范围是[﹣,1],∴≤2m﹣≤,∴≤m≤.20.(12分)函数f(x)=4sinωx•cos(ωx+)+1(ω>0),其图象上有两点A(s,t),B(s+2π,t),其中﹣2<t<2,线段AB与函数图象有五个交点.(Ⅰ)求ω的值;(Ⅱ)若函数f(x)在[x1,x2]和[x3,x4]上单调递增,在[x2,x3]上单调递减,且满足等式x4﹣x3=x2﹣x1=(x3﹣x2),求x1、x4所有可能取值.【解答】解:(Ⅰ)f(x)=4sinωx•cos(ωx+)+1====,由于|AB|=2π,且线段AB与函数f(x)图象有五个交点,因此,故ω=1;(Ⅱ)由(Ⅰ)得,函数f(x)=,由题意知,因此x4﹣x3=x2﹣x1=(x3﹣x2)=.即,.∵函数f(x)在[x1,x2]上单调递增,在[x2,x3]上单调递减,∴f(x)在x处取得最大值,即=2.2,即.∴=.=.。