与圆有关的组合图形的面积计算(拓展)
组合图形的面积数学教案(精选10篇)
组合图形的面积数学教案(精选10篇)《组合图形的面积》数学教案篇一设计理念:本节课的中心与着力点是“方法”的体会与感悟,计算面积不是刚学,不是重点,但不能忽视,可以加大力度;还要指导学生能根据各种组合图形的条件,有效地选择方法。
在整个探索过程中,相信学生,鼓励学生,给予学生充足的独立思考、交流讨论的时间。
本节课还得预设学生在学习过程中可能出现哪些问题,做好提前准备,这样到课堂上才能真正做到“以不变应万变”。
教学目标:知识目标:1、在自主探索的活动中,理解组合图形面积的计算方法。
2、能根据各种组合图形的条件,灵活有效的选择计算方法并进行正确的解答。
能力目标:1、能运用所学的知识,解决生活中组合图形的实际问题。
2、通过图形的组合和分解培养分析问题、解决问题的能力及动手创新的意识学会把复杂问题转化为简单问题,渗透转化思想。
情感与价值观目标:1、通过动手操作,给学生以美的享受,并能展示自我,张扬个性。
2、让孩子体验到成功的喜悦,培养了学生战胜困难的决心和勇气,团结友爱的美好情感。
教学重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。
教学难点:选择有效的计算方法解决实际问题。
教学过程:一、复习旧知,引入新课1、师:我们会求哪些平面图形的面积了?请回忆下面积计算公式。
2、看黑板上一些正六边形(六边相等、六角相等),你有它们的面积计算公式吗?那要求它的面积,怎么办呢?(转化成我们学过的图形)[设计意图:让学生初步体会到学过的面积计算方法应用的广泛性,渗透转化思想,培养空间观念。
]二、探索组合图形面积计算方法1、割那你能想办法用学过的方法来求正六边形的面积吗?请上来画一画说一说。
这些同学的方法可以归结为一个字:割。
就是把一个没学过的图形割成学过的图形,然后利用面积公式算出每一块面积,再求出整个图形的面积。
且方法千变万化,只要你有目标,就一定能成功。
[设计意思:拓展思维,一题多解,感受探索的乐趣,培养学生学平面图形的兴趣。
人教版六年级数学上册《 圆 组合图形的面积 》教学设计 教学反思
人教版六年级数学上册《圆组合图形的面积》教学设计教学反思一. 教材分析人教版六年级数学上册《圆组合图形的面积》这一章节,是在学生已经掌握了平面几何图形的面积计算方法的基础上进行学习的。
本节课主要让学生掌握圆组合图形的面积计算方法,培养学生的空间想象能力和解决问题的能力。
教材通过具体的例子引导学生思考、探索,从而得出计算圆组合图形面积的方法。
二. 学情分析六年级的学生已经具备了一定的数学基础,对平面几何图形的面积计算方法有一定的了解。
但是,对于圆组合图形的面积计算,他们可能还比较陌生,需要通过实例来引导他们理解和掌握。
此外,学生的空间想象能力和解决问题的能力有待进一步提高。
三. 教学目标1.知识与技能:让学生掌握圆组合图形的面积计算方法,能正确计算圆组合图形的面积。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生解决问题的能力和空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:圆组合图形的面积计算方法。
2.难点:如何将圆组合图形分解为基本图形,并正确计算面积。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、思考、交流,自主探索圆组合图形的面积计算方法。
3.合作学习法:分组讨论,培养学生团队合作意识。
4.实践操作法:让学生亲自动手操作,提高学生的动手能力和解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示圆组合图形的实例和计算过程。
2.学习材料:准备相关的练习题和答案。
3.教学道具:准备一些实物模型,如圆柱、圆锥等,帮助学生直观理解。
七. 教学过程导入(5分钟)教师通过展示一些生活中的实例,如圆形的桌面、圆形的蛋糕等,引导学生思考这些图形的面积如何计算。
学生可能会提到用圆的面积公式计算,教师予以肯定,并提问:“如果这些圆形物体被切割成不同的形状,我们如何计算它们的面积呢?”从而引出本节课的主题。
六年级上册数学讲义-5.3圆和扇形组合图形面积(拓展)-人教版(含答案)
扇形和圆的组合图形的面积学生姓名年级学科授课教师日期时段核心内容扇形和圆的组合图形的面积课型一对一/一对N 教学目标掌握扇形和圆的组合图形的面积的计算重、难点1、会利用平面图形的周长和面积公式求平面图形的周长和面积。
2、会用割、补、分解、代换、增加辅助线等方法,将复杂问题变得简单。
课首沟通和学生交谈。
了解学生对圆的认识,对各计算公式是否掌握。
知识导图课首小测1.一个圆形花坛的半径是3m,它的面积是多少平方米?(已知圆的半径,求圆的面积)2.圆形花坛的直径是20m,它的面积是多少平方米?(已知圆的直径,求圆的面积)3.一个圆形蓄水池的周长是25.12m,这个蓄水池的占地面积是多少?(已知圆的周长,求圆的面积)4.求下图扇形的面积。
导学一:运用代换法将复杂的图形转化为简单的规则图形例 1. 图1中右半部分阴影面积比左半部分阴影面积大33平方厘米,AB=60厘米,CB垂直AB,求BC的长。
我爱展示1.如图1-1所示,两个圆的圆心分别为O1、O两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO1O的面积。
2.如图1-2,所示,求右半部分阴影面积比左半部分阴影面积大多少平方厘米。
3.如图1-3:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少平方厘米?导学二:巧用各基本图形的计算公式求解知识点讲解 1:把R2看成一个整体例 1. 图2中已知阴影部分的面积是20平方分米,求环形的面积。
我爱展示1.下图中正方形的面积是8平方米,圆的面积是多少平方米?2.已知下图2-2中阴影部分三角形的面积是5平方米,求圆的面积。
3.已知下图2-3中阴影部分三角形的面积是7平方米,求圆的面积。
知识点讲解 2:从局部到整体,从整体到局部,牢记公式,巧妙应用。
例 1. 如图3,半圆S1的面积是14.13平方厘米,圆S2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?我爱展示1.下图3-1中,△ABC是等腰直角三角形,以为半径的圆弧交延长线于点,已知阴影部分的面积是求。
数学六年级-圆的组合图形面积计算
辅导讲义案例1:有一个著名的希波克拉蒂月牙问题.如图:以AB为直径作半圆,C是圆弧上一点,(不与A、B重合),以AC、BC为直径分别作半圆,围成两个月牙形(阴影部分).已知直径AC为6cm,直径BC为8cm,直径AB为10cm.(1)将直径分别为AB、AC、BC所作的半圆面积分别记作S AB、S AC、S BC.分别求出三个半圆的面积。
(2)请你猜测:这两个月牙形(阴影部分)的面积与三角形ABC的面积之间的数量关系,并说明理由。
案例2:归纳总结以下基本图面积计算方法(1)扇形:扇形的面积=扇形中的弧长部分=扇形的周长(2)弓形面积:弓形面积=(3)“弯角”面积:如图:(4)“谷子”面积:如图:例题1:如图,直径AB为3厘米的半圆以A点为圆心逆时针旋转60°,使AB到达AC的位置,求图中的阴影部分的面积。
例题2:如图,三角形ABC是等腰直角三角形,腰AB长为4厘米,求阴影部分的面积?试一试:如图,三角形ABC是直角三角形,AC=20,阴影(1)的面积比阴影(2)的面积小23,求BC的长?例题3:如图,ABCD 是一个正方形,2ED DA AF ===,阴影部分的面积是多少?试一试:下图中,cm DC DB AD 10===,求阴影部分的面积.例题4:如图,ABCD是平行四边形,8cm∠=︒,高4cmCH=,弧BE、DF分DABAB=,30AD=,10cm别以AB、CD为半径,弧DM、BN分别以AD、CB为半径,则阴影部分的面积为多少?(精确到0.01)例题5:如图所示,直角三角形ABC的斜边AB长为10厘米,60ABC∠=︒,此时BC长5厘米.以点B为中心,将ABC∆顺时针旋转120︒,点A、C分别到达点E、D的位置.求AC边扫过的图形即图中阴影部分的面积.试一试:如下图,Rt△CAB中,AB=3,AC=4,将它以A点为中心逆时针旋转60°,得到Rt△EAD,求阴影部分面积是多少?1.有8个半径为1的小圆,用它们圆周的一部分连成一个花瓣图形(如图阴影所示),图中黑点是这些圆的圆心,那么花瓣图形的面积是()(A)16(B)16π+(C)1162π+(D)162π+2.如图,一只羊被4米长的绳子拴在长为3米,宽为2米的长方形水泥台的一个顶点上,水泥台的周围都是草地,问这头羊能吃到草的草地面积是多少?(结果精确到0.01平方米)3.如图,已知正方形ABCD的边长为5,正方形CEFG的边长为3,求图中阴影部分的面积.(π为3.14)4.如图,ABCD是正方形,边长是8厘米,BE=4厘米,其中圆弧BD的圆心是C点,那么图中阴影部分的面积等于多少平方厘米?5.如图,两个正方形的边长分别是6和5.求图形中阴影部分的面积.6.7.8.如图所示,已知半圆的直径AB=12,BC所对的圆心角∠CAB=30°,并且小阴影面积为3.26,求大阴影的面积.7.如图,正方形的边长为10,那么图中阴影部分的面积是多少?8.如图,矩形的长为4,宽为5,求阴影部分的面积?A BDCA1.如图是以边长为40米的正方形ABCD 的顶点A 为圆心,AB 长为半径的弧与以CD 、BC 为直径的半圆构成的花坛(图中阴影部分).小杰沿着这个花坛边以相同的速度跑了6圈,用去了8分钟,求(1)花坛(图中阴影部分)面积;(2)小杰平均每分钟跑多少米?2.某同学用所学过的圆与扇形的知识设计了一个问号,如图中阴影部分所示,已知图中的大圆半径为4,两个小圆半径均为2,求图中阴影部分的面积。
六年级上册数学教案圆的面积 第3课时 与圆有关的组合图形的面积(1)_西师大版
圆的面积第3课时与圆有关的组合图形的面积(1)◆教学内容:教科书第23页,求与圆有关的组合图形的面积。
◆教学提示:本节课是在学生学习了圆的面积计算之后安排的,学生在以前已经学习了长方形与正方形的面积计算,在此基础上学习与圆有关的组合图形面积的计算,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。
让学生自主探索计算组合图形的基本方法,并在交流、讨论中开阔思路,修正想法,从而更好地解决生活中有关组合图形的实际问题教材中一共安排了两个例题,本节课学习例1.例1是两个图形(半圆和正方形)面积的组合,解答时突出它的主要思路是:半圆面积+正方形面积,用主要解题思路指导解题过程,关注对共用条件的分析。
(1.2米既是正方形的边长,又是圆直径)◆教学目标:1.知识与技能:通过计算窗户的面积,掌握求组合图形面积或周长的方法;通过计算花坛周围小路的面积,掌握求圆环面积的方法。
2.过程与方法:经历解决问题的过程,学会从不同的角度去分析解决生活中的现实问题,思考解决问题的不同策略和方案。
3.情感态度与价值观:体会学习圆的面积的现实意义和价值。
◆重点难点:教学重点:掌握求简单组合图形面积的方法。
教学难点:能将组合图形分解成基本图形。
◆教学准备:教具准备:多媒体课件学具准备:圆规、直尺、练习本等◆教学过程:(一)新课导入出示所学过的几何图形:长方形、正方形、平行四边形、三角形、梯形、圆。
让学生说说怎样求这些图形的面积?生活中,有些现实问题并不是直接求这些基本图形的面积。
例如:希望小学的阅览室有这样的窗户(呈现例1图),圆形花坛的周围有一条小路(呈现课堂活动第2题图)。
如何计算它们的面积?解决相关的问题呢?我们这节课就来研究这个问题。
【设计意图:复习学过的几种基本图形的面积计算方法,唤醒学生的旧知,为下面学习组合图形的面积计算作下铺垫。
】(二)探究新知投影出示例1情境图。
学校阅览室的窗户上面是半圆的,下面是正方形(如右图)。
五年级下册数学《圆之组合图形的面积计算》的教案【优秀8篇】
五年级下册数学《圆之组合图形的面积计算》的教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!五年级下册数学《圆之组合图形的面积计算》的教案【优秀8篇】作为一名老师,常常要根据教学需要编写教学设计,借助教学设计可以提高教学效率和教学质量。
圆的周长和面积(组合图形)--六年级上册数学计算大通关(北师大版)(答案解析)
专题01 圆的周长和面积(组合图形)答案解析一.计算题(共20小题)1.计算下面图形阴影部分的周长和面积。
(单位:厘米)【分析】根据题意,圆的直径为(4×3)厘米,阴影部分的周长等于圆的周长的一半加上5条4厘米长的线段之和,利用圆的周长公式:C=πd,代入数据即可求出阴影部分的周长;阴影部分的面积等于圆的面积的一半减去边长为4厘米的正方形面积,分别利用圆的面积和正方形的面积公式求出这两个图形的面积,再相减即可得解。
××÷+×【解答】3.14(43)245×÷+=3.1412220+=18.8420=38.84(厘米)2××÷÷−×3.14(432)244=2×÷−3.146216×÷−=3.1436216−=56.5216=40.52(平方厘米)即阴影部分的周长是38.84厘米,面积是40.52平方厘米。
2.如图中,大圆的半径等于小圆的直径。
请计算阴影部分的周长。
【分析】观察图形可知,阴影部分的周长=大圆的周长+小圆的周长,再根据圆的周长公式:C=πd或C =2πr,据此进行计算即可。
【解答】3.14×2×4+3.14×4=6.28×4+3.14×4=25.12+12.56=37.68(cm)则阴影部分的周长为37.68cm。
3.计算下面图形的周长与面积。
【分析】周长等于大圆周长的一半加上两个半圆的周长(即一个小圆的周长);面积等于大圆面积的一半减去两个小圆面积的一半(即一个小圆的面积),据此解答。
【解答】周长:3.14×40÷2+3.14×(40÷2)=125.6÷2+3.14×20=62.8+62.8=125.6(cm)面积:3.14×(40÷2) 2÷2-3.14×(40÷4) 2=3.14×202÷2-3.14×10 2=3.14×400÷2-3.14×100=1256÷2-314=628-314=314(cm2)4.计算下边图形的周长和面积。
苏教版五年级数学上册第二单元《组合图形的面积》教案
苏教版五年级数学上册第二单元《组合图形的面积》教案一. 教材分析苏教版五年级数学上册第二单元《组合图形的面积》是根据《义务教育数学课程标准》编写的一篇教材。
本节课主要让学生掌握组合图形的面积计算方法,培养学生解决实际问题的能力。
教材通过生活中的实际情境,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
二. 学情分析五年级的学生已经掌握了基本图形的面积计算方法,具备了一定的空间观念和逻辑思维能力。
但学生在解决组合图形面积问题时,仍有一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生通过观察、操作、思考、交流等途径,逐步掌握组合图形的面积计算方法。
三. 教学目标1.知识与技能:学生会计算组合图形的面积,并能运用所学知识解决实际问题。
2.过程与方法:学生通过观察、操作、思考、交流等途径,探索组合图形的面积计算方法,培养解决问题的能力。
3.情感态度与价值观:学生感受数学与生活的紧密联系,增强学习数学的兴趣,树立自信心。
四. 教学重难点1.重点:组合图形的面积计算方法。
2.难点:如何引导学生探索组合图形的面积计算方法,以及运用所学知识解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实际情境,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、操作、思考、交流,自主探索组合图形的面积计算方法。
3.小组合作学习:培养学生团队合作精神,提高学生解决问题的能力。
六. 教学准备1.教具:组合图形模型、多媒体课件。
2.学具:练习纸、剪刀、胶水。
七. 教学过程导入(5分钟)教师通过展示生活中的组合图形,如拼图、包装等,引导学生观察、思考:这些组合图形的面积如何计算呢?从而激发学生的学习兴趣,引入新课。
呈现(10分钟)1.教师展示一组组合图形,如一个长方形内部包含一个三角形和一个梯形。
2.引导学生观察这些组合图形,并提出问题:如何计算这些组合图形的面积呢?3.学生分组讨论,分享各自的思考和见解。
组合图形中圆的周长与面积
组合图形中圆的周长与面积一、学习目标:1.巩固加深对圆的周长与面积的理解与计算,掌握在组合图形中求圆的周长及面积的方法。
2.提高自己思维的灵活性。
二、知识基础:1.什么叫圆的周长?围成圆的曲线的长叫圆的周长。
什么叫圆的面积?圆所占平面的大小叫圆的面积?2.怎样求圆的周长和面积?圆的周长:c=πd 或c=2πr 。
圆的面积:2r S π=3.一个边长2分米的正方形剪下一个最大的圆,圆的周长为(6.28)分米。
面积为(3.14)平方分米。
4.在一个正方形内做一个最大的圆,圆的面积是正方形面积的(4π) 正方形的边长就是圆的直径,设圆的直径为2r ,半径为r ,圆面积为2r π正方形边长就为2r ,正方形面积为24)2()2(r r r =⨯ 所以4422ππ==÷r r 正方形面积圆面积三、方法例谈例1:将半径分别为3厘米和2厘米的两个半圆如图放置,求阴影部分周长。
请认真看图:阴影部分周长是由哪些组合起来的?怎样分别求出这几部分的长度?厘米31=B O厘米1231212=-=-=O O A O A OAC=2—1=1厘米112r C O π=; 1121r C O π= 2221r C O π= cm r r C C O O 7.15214.3314.321212121=⨯+⨯=+=+ππ 阴影部分周长:厘米两个半圆7.197.15131=++=++AC B O答:阴影部分周长为19.7厘米例2:如图:从点A 到点B 沿大圆周长和沿着中、小圆的周长走,路程相同吗?①认真看图:大圆周是由哪几部分组成?中、小圆周是由哪几部分组成?②这题是要我们求什么?求大圆的半周长,求中、小圆的半周长,然后进行比较大小③怎样进行计算呢?设中圆直径为D ,小圆直径为d ,则:大圆直径为D+d ,所以d D d D C πππ2121)(21+=+=大 D C π21=中 d C π21=小 d D C C ππ2121+=+小中 所以:小中大C C C +=这就是说两种求法经过的路程是相同的。
六年级数学圆的面积教案(优秀8篇)
六年级数学圆的面积教案(优秀8篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!六年级数学圆的面积教案(优秀8篇)在教学工作者实际的教学活动中,时常需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。
苏教版五年级下册数学《组合图形的面积》
8π÷4×3 =2π×3 =6π =18.84(平方厘米)
求下面半环的面积.
15厘米
C=18.84分米
18.84÷π÷2=3(分米)
32π=9π=28.26(平方分米)
下面两个图形,你见过吗?
圆环具有哪些特点?
(1)两个圆的圆心在同一个点上。
(同心圆)
(2)两个圆间的距离处处相等。
·
·
·
例10:下图是王师傅加工的一个圆环 形铁片。它的外圆半径是10厘米,内 圆半径是6厘米。你会求这个铁片的 面积吗?
外圆面积:
102π=100π ( cm2)
内圆面积:
62π=36π (cm2)
圆环形铁片的面积:
100π-36π=64π =200.96 (cm2)
R
102π-62π
r
=(102-62)π
长方形的面积:
4
8×4=32(平方厘米)
半圆的面积:
42×π÷2=25.12(平方厘米)
涂色部分的面积:
32-25.12=6.88(平方厘米)
综合算式:
8×4-42π÷2
直角三角形的面积:
3
6×6÷2=18(平方厘米)
半圆的面积:
32×π÷2=14.13(平方厘米)
涂色部分的面积:
18+14.13=32.13(平方厘米)
•
10、低头要有勇气,抬头要有低气。2021/5/22021/5/22021/5/25/2/2021 2:27:00 PM
•
11、人总是珍惜为得到。2021/5/22021/5/22021/5/2M ay-212-May-21
•
12、人乱于心,不宽余请。2021/5/22021/5/22021/5/2Sunday, May 02, 2021
六年级奥数题-圆及组合图形(含分析答案解析)
圆和组合图形(后面有答案分析)一、填空题1._______________________________ 算出圆内正方形的面积为2._______________________________________________________________ 右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是 __________________3.一个扇形圆心角120。
,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米•这个扇形面积是 _______________ .4•如图所示,以B、C为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是____________ 厘米.(保留两位小数)5.____________________________ 三角形力%是直角三角形,阴影部分①的而积比阴影部分②的面积小28 平方厘米.长40厘米,%长厘米.6.如右图,阴影部分的而积为2平方厘米,等腰直角三角形的面积7.扇形的而积是31.4平方厘米,它所在圆的而积是157平方厘米,这个扇形的圆心角是__________ 度.8.图中扇形的半径OA=O^6厘米.ZAOB = 45°, AC垂直OB亍G那么图中阴影部分的而积是__________ 平方厘米.(” =3・14)A9._______________________________________________ 右图中正方形周长是20厘米.图形的总面积是_____________________________________ 平方厘米.10.___________________________________________________ 在右图中(单位:厘米),两个阴影部分面积的和是 _____________________________ 平方厘米.二、解答题11.力%是等腰直角三角形.Q是半圆周的中点,%是半圆的直径,已知: AABMO,那么阴影部分的面积是多少?(圆周率∕r = 3.14)12.如图,半圆S的面积是14.13平方厘米,圆S的而积是19.625平方厘米. 那么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知圆心是Q半径尸9厘米,Z1 = Z2 = 15‰那么阴影部分的而积是多少平方厘米?(龙心3・14)14.右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总而积是多少平方厘米?1.18平方厘米.由图示可知,正方形两条对角线的长都是6厘米,正方形由两个面积相等的三角形构成•三角形底为6厘米,高为3厘米,故正方形而积为6×3×1×2 = 18(平 2方厘米).2. 1.14平方厘米.由图示可知,图中阴影部分面积为两个圆心角为45。
北师大版数学六年级上册《圆的面积(一)》教学设计3
北师大版数学六年级上册《圆的面积(一)》教学设计3一. 教材分析北师大版数学六年级上册《圆的面积(一)》是小学数学的重要内容,主要让学生掌握圆的面积计算公式,并能够应用于实际问题中。
本节课的教学内容主要包括圆的面积公式的推导、理解和应用。
教材通过生动的图片和生活实例,引导学生探究圆的面积公式,培养学生的探究能力和空间想象力。
二. 学情分析六年级的学生已经掌握了平面图形的面积计算方法,对图形的面积有一定的认识。
同时,学生通过前几册的学习,已经掌握了圆的基础知识,如圆的周长、直径等。
但是,学生对于圆的面积公式的推导和理解还比较困难,需要通过实例和操作来进一步巩固。
三. 教学目标1.让学生掌握圆的面积计算公式,并能够应用于实际问题中。
2.培养学生的探究能力和空间想象力。
3.培养学生的合作意识和交流能力。
四. 教学重难点1.圆的面积公式的推导和理解。
2.圆的面积公式的应用。
五. 教学方法1.情境教学法:通过生动的图片和生活实例,引导学生探究圆的面积公式。
2.操作教学法:让学生通过实际操作,体验圆的面积公式的推导过程。
3.合作学习法:学生进行小组合作,共同解决问题,培养学生的合作意识和交流能力。
六. 教学准备1.准备相关的图片和生活实例,用于引导学生探究圆的面积公式。
2.准备圆的面积公式推导的操作材料,如圆的切割和拼接道具。
3.准备小组合作的学习材料,如问题纸和计算器。
七. 教学过程1.导入(5分钟)通过展示一些与圆相关的图片,如圆形桌面、圆形的操场等,引导学生关注圆的面积。
提问:你们知道这些图形的面积是如何计算的吗?让学生回顾已学的平面图形面积计算方法,为新课的学习做好铺垫。
2.呈现(10分钟)介绍圆的面积公式的推导过程。
首先,让学生观察圆的切割和拼接过程,引导学生发现圆的面积与半径的关系。
然后,通过公式推导,引导学生理解圆的面积公式。
在此过程中,注意引导学生思考和提问,帮助学生理解和掌握圆的面积公式。
苏教版数学五年级下册《圆环和组合图形的面积》说课稿(附反思、板书)课件
三、说教学重难点
教学重点
认识图形各部分间的关系,利用学过的公式来解决问题 。
教学难点
使学生进一步体验图形和生活的联系,感受平面图形 的学习价值。
四、说学情
从学生思维角度看,五年级学生具有一定的抽象和逻辑思维能 力。这一学段中的学生已经有了许多机会接触到数与计算、空间图 形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数 学活动经验,并具有了转化的数学思想。
学生独立操作计算。 组织交流解题方法, 提问:有更简便的计算方法吗? 小结:求圆环的面积一般是把外圆的面积减去内圆的面积,还可 以利用乘法分配率进行简便计算。
设计意图:通过观察、比较认识圆环面积的计算方法。 与同伴进行交流,愿意并学会合作,体验学习数学的快乐。
(二)学习“试一试”。 ⑴ 课件出示“试一试”的组合图形, 全班交流:这个组合图形由哪些平面图形组合而成? 求这个组合图形的面积,其实就是求哪两个平面图形面积的和?
⑵ 学生独立计算。 ⑶ 展示、交流。 小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美 丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图 形是由哪些基本的图形组合而成的。
板块三、课堂练习
1.读教材第99页例11。
分析与解答:铁片的面积可以用外圆的面积减去里面内圆的面积。
外圆的面积:3.14×( )=( )(平方厘米)
板块二、探究新知 (一)教学例11。 1、出示圆环图形,这是什么图形?
你知道吗? 小组交流:怎样求这个圆环的面积?指名说出解答思路。
2、出示例11题目,读题。 师:这是由两个同心圆组合成的圆环,要计算它的面积,你有什 么好的方法? 交流:(1)求出外圆的面积(2)求出内圆的面积(3)计算圆环 的面积
外方内圆及外圆内方面积的计算教案
外方内圆及外圆内方面积的计算教案一、教学目标1. 让学生理解并掌握外方内圆及外圆内方的概念。
2. 让学生学会计算外方内圆及外圆内方的面积。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 外方内圆的面积计算:外方内圆是指一个正方形内部有一个圆,要求计算这个组合图形的面积。
2. 外圆内方的面积计算:外圆内方是指一个圆内部有一个正方形,要求计算这个组合图形的面积。
三、教学重点与难点1. 教学重点:让学生掌握外方内圆及外圆内方的面积计算方法。
2. 教学难点:如何引导学生理解并推导出面积计算公式。
四、教学方法1. 采用直观演示法,通过实物模型或动画演示,让学生直观地理解外方内圆及外圆内方的概念。
2. 采用引导学生自主探究、合作交流的学习方式,让学生在探究中发现问题、解决问题,培养学生的动手操作能力和思维能力。
3. 采用讲解法,讲解面积计算的原理和公式,让学生理解并掌握计算方法。
五、教学步骤1. 导入新课:通过展示实物模型或动画,引导学生观察外方内圆及外圆内方的特点,激发学生的学习兴趣。
2. 自主探究:让学生分组讨论,尝试计算外方内圆及外圆内方的面积,并总结计算方法。
3. 讲解演示:讲解外方内圆及外圆内方的面积计算原理和公式,让学生跟随讲解过程,理解并掌握计算方法。
4. 练习巩固:设计一些练习题,让学生独立完成,检验学生对面积计算方法的掌握程度。
5. 总结拓展:总结本节课所学内容,引导学生思考如何将所学知识应用到实际问题中。
六、教学评价1. 通过课堂练习和课后作业,评价学生对面积计算方法的掌握程度。
2. 观察学生在解决问题时的思维过程,评价学生的逻辑思维和解决问题的能力。
3. 结合学生的课堂表现和作业完成情况,对学生的学习态度和合作精神进行评价。
七、教学资源1. 实物模型或动画演示:用于直观展示外方内圆及外圆内方的特点。
2. 练习题:设计一些练习题,用于巩固所学知识。
3. 教学课件:展示教学内容和步骤,辅助学生学习。
数学北师大六年级上册-圆的组合图形面积计算教案
数学北师大六年级上册-圆的组合图形面积计算教案一、教学目标1. 让学生理解圆的组合图形面积计算的意义,掌握计算方法,并能灵活运用。
2. 培养学生观察、分析、概括的能力,提高解决实际问题的能力。
3. 培养学生合作交流、积极探究的学习态度,激发学习数学的兴趣。
二、教学内容1. 圆的组合图形面积计算的意义。
2. 圆的组合图形面积计算的方法。
3. 圆的组合图形面积计算的应用。
三、教学重点与难点1. 教学重点:圆的组合图形面积计算方法。
2. 教学难点:灵活运用圆的组合图形面积计算方法解决实际问题。
四、教具与学具准备1. 教具:多媒体课件、圆规、直尺、量角器。
2. 学具:练习本、圆规、直尺、量角器。
五、教学过程1. 导入:通过生活中的实例,引出圆的组合图形面积计算的问题,激发学生的学习兴趣。
2. 新课:讲解圆的组合图形面积计算的意义,引导学生观察、分析、概括计算方法。
3. 演示:利用多媒体课件,展示圆的组合图形面积计算的步骤和技巧。
4. 练习:布置课堂练习,让学生独立完成,教师巡回指导,解答学生疑问。
5. 讲评:针对学生练习中的共性问题,进行讲解和评析,巩固所学知识。
6. 应用:布置实际应用题,让学生分组讨论,合作完成,提高解决问题的能力。
7. 总结:对本节课所学内容进行总结,强调重点和难点。
六、板书设计1. 圆的组合图形面积计算2. 目录:教学目标、教学内容、教学重点与难点、教具与学具准备、教学过程、板书设计、作业设计、课后反思3. 正文:根据教学过程,逐步展示圆的组合图形面积计算的方法和步骤。
七、作业设计1. 基础题:计算给定圆的组合图形的面积。
2. 提高题:解决实际问题,运用圆的组合图形面积计算方法。
3. 拓展题:研究圆的组合图形面积计算在其他领域的应用。
八、课后反思1. 教师反思:总结本节课的教学效果,分析学生的掌握情况,找出存在的问题,为下一节课做好准备。
2. 学生反思:让学生回顾本节课所学内容,自我评价掌握程度,提出改进措施。
【小学奥数】专题:如何计算圆和扇形组合的图形面积
面积的 2 ,那么这个扇形的圆心角是多少度?
5
解: 因为 S扇形 n
S 360
所以
2 n , 5 360
n 2, 360 5
解得 n=144
答:扇形的圆心角是144度.
二.应数用学举一例百分
例题5 解答题:
※(2)如果扇形的圆心角变为原来的5倍,半
径变为原来的 1/3 ,那么这个扇形的弧长变为
黄颜色部分的面积 R2 r2
R2 r2
数学一百分 三.巩固练习
2.在面积是720平方毫米的圆上,有一个 面积为45平方毫米的同半径的扇形,这个 扇形的圆心角的度数是多少度?
解: S=720平方毫米,S扇形 45 平方毫米, S扇形 = n , 45 = n , n 22.50. S 360 720 360
例题3 (1)圆的直径是4米,周长是多少米?面 积是多少平方米?
解:(1)d=4米,r=2米,
C=πd =3.14×4 =12.56(m) .
S r2 =3.14×4 =12.56(平方米).
答:圆的周长是12.56米,面积是12.56平方米.
数学一百分 二.应用举例
例题3 (2)扇形的半径为3厘米,圆心角为 120°,求扇形的面积及扇形的弧长.
20cm,求扇形的面积?
解:(3)r=6cm, l=20-2×6=8(cm),
S扇形
1 lr 2
1 86 2
24
或 l n r , 6 n 8, nπ=240,
180 180
S扇形
n r2
360
240 36 360
24(平方厘米).
答:扇形的面积为24平方厘米.
数学一百分
二.应用举例
含有圆的组合图形教学设计及反思
含有圆的组合图形教学设计说明北屯镇中学朱慧敏教学内容:人教版小学数学教材六年级上册第69~70页例3及相关练习。
教学目标:1.结合具体情境认识与圆相关的组合图形的特征,掌握计算此类图形面积的方法,并能准确计算。
2.在解决实际问题的过程中,通过独立思考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。
3.结合例题渗透传统文化的教育,通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。
教学重点:使学生了解在任何正方形都有一个外接圆和一个内切圆,这两个圆是同心圆,掌握计算组合图形面积的方法,并能准确计算。
教学难点:通过正方形性质的教学培养学生的探索、推理、归纳、迁移等能力;对组合图形进行分析。
教学准备:课件、学具、作业纸。
教学过程:一、创设情景,谈话引入1.师:古时候,由于人们的活动范围狭小,往往凭自己的直觉认识世界,看到眼前的地面是平的,以为整个大地是平的,并且把天空看作是倒扣着的一口巨大的锅。
我国古代有“天圆如张盖,地方如棋局”的说法。
(结合课件出示)虽然这种说法是错误的,却产生了深远的影响,尤其体现在建筑设计上。
2.课件展示:生活中关于方与圆的精美图片,精美的雕窗。
【设计意图】由传统文化对建筑设计产生的影响导入课堂,自然地引出例题的教学,极大地激发了学生学习的兴趣和探索的热情。
二、探究新知,解决问题1.实践操作(课件出示教材例3中的雕窗插图)中国建筑中经常能见到“外方内圆”和“外圆内方”的设计。
上图中的两个圆半径都是1m,你能求出正方形和圆之间部分的面积吗?上图中两个圆的半径都是1m,怎样求正方形和圆之间部分的面积呢?题目中都告诉了我们什么?师:谁能说说这两种设计有什么联系和区别?预设1:左边的雕窗外面是方的里面是圆的;右边的雕窗外面是圆的里面是方的。
师:我们可以将上述特征分别概括地称为外方内圆、外圆内方。
预设2:都是由圆和正方形这两个图形组成的。
师:也就是我们以前学过的什么图形?(组合图形)你能用学具组合出这两个图形吗?【设计意图】动手操作的过程是从实物中抽象出图形的过程,使学生充分体会图形的组合与位置关系,理解组合图形面积的产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.计算下面图形中阴影部分的面积。
(单位:厘米)
2.求下面图形中阴影部分的面积。
(单位:分米)
(3)
位:米)
(4)
1.计算下面图中阴影部分的面积。
(单
2.下面两个圆中直角等腰三角形的面积都是5平方厘米,求圆的面积。
3.已知扇形的面积是3.14平方厘米,求图中阴影部分的面枳。
4.如囹,己知廈角等腰三角形ABC的底边AC K 20厘爪,求阴影部分的面积。
与圈有关的组合图形的面积计算
5.如图,已知扇形DEC的半径为18厘米,扇形BCF的半径为6厘米,四边形ABCD为长
方形。
求阴影部分的面积。
与圈有关的组合图形的面积计算
6.如图,三个圆的半径分别为1厘米、2厘米、3厘米,AB与CD垂直且过这三个圆的共有
圆形0,图中阴影部分的面积是多少?
7.如图,0为圆心,CO垂直于AB ,C为另一个圆的圆心f AC =BC ,三角形ABC 的面积为
45平方厘爪,求阴影部分的面积。
C
1.图中五个相同的圆的圆心连线构成一个边长为10厘米的正五边形,求五边形的内阴影部分
-6-
与圈有关的组合图形的面积计算的面积。
2.如图,两个扌圆形AOB与A'0'B'^放一起,POQO'是面积为5平方厘米的正
方形,那么畫合后的图中阴影部分的面积为多少平方厘米?
3.计算图中阴影部分的面积。
(单位:厘米)
4.如图,已知六个圆的面积相等,而阴影部分的面积为60平方厘米。
六个圆的面积为多少平方厘米?
20
A f
B
-8-
5.如图,已知大正方形的面积为100平方厘米,小正方形的面积为50平方厘米,求阴影
部分的面积。
6.如图,圆0的半径是15厘米,zAOB =90° , zCOD =120° , CD =26厘米,求
阴影部分的面积。
7.如图,zAOB =90° , C为AB弧的中点,已知阴影甲的面积为16平方厘米,阴影
乙的面积是多少?
A
B
与圈有关的组合图形的面积计穿
8.如图,在长方形ABCD中,AD=DE=3厘米,AE=AB ,求阴影部分的面积。
9.如图是一个古座钟的图画,如果内圆的半径为12厘米,阴影部分的面积是
多少?
-
11。