开关电源产生噪声的原因与解决方案
开关电源的噪声分析
噪音 问题进行解决 ,有关 工作 人员首先要对开
关 电源 的噪音进行有效 的分析 ,从类 型,成因
等 多个方面入手 ,为解决开关 电源 的噪音问题
搜集 充足 的参看依据。
源 噪音产 生 的几率 : ( 1 )提 高开 关 电源 安装
质量。开关 电源 的安装质量 与多方 面因素都有 着 重 要 的关 系,首 先就 开关 电源 本 身而 言要 选取符合 国家标准的开关 电源 以及各 项功能组 件 ,工作 人员在进行安装之前 一定要 做好 检查 工作 ,确 保开关 电源 的使用质量 。同时相 关工 作 人员也应具有一定 的专业素质 ,这些都是开 关 电源 安装过程 中的基本要求 ,对 其进行有效 的把握 , 可 以很好 的提 高开关 电源 的安装质量 。 ( 2 )合 理组 装开关 电源 的部 件。开 关 电源 虽 然具有着体积 小质量轻的特点 ,但是其 内部 结 构却相 当复杂 ,在进 行开关 电源的安装过程 只 中,有关工作 人员应严格按照说 明书 ,图纸 等
【 关键词 】开 关 电源 噪 声 对策
过 程中 ,就 容 易产 生大量 的噪 音。 ( 2 ) 电路 原 因影 响产 生的噪音 。开关 电源对整个 电路 系
员 ,在进行安装 以及维护工作的过程 中技术人
员的行为直接影响着开关 电源的使用质量 。因 此在实际的工作 中有关管理部门应针对这些技 术人员进行一定的摸底与考核,确保技术人员 具有专业的从业资格 。与此 同时,有关管理单
统产生着控制 作用,而 电路系统在一 定条件 下
开 关 电源在 日常生 活 中被广泛 应 用,其 也会反作用于开关 电源 , 对开关 电源产生影响 , 对 电力 的使 用与管理有着重要 的控制作用 。 目 在实际 的运行过程 中,经常会 由于 电路系统 出 前在我 国进 行普遍 使用的开关 电源 ,其在诸 多 方面都存在着 一定的优点,可 以满足现代 电力 管理 的需要 ,但 是由于其在使用过程 中受 内部 2 开关电源噪音的解决措施 因素 以及外部 因素 的影 响,很容易造成噪音 的 产 生。这种噪音 出现频 率高,产生影响大 ,为 人 们的工作生活带来 的一定的负面影响,因此 如何有效的 降低开关 电源 噪音成为了现在有关 工作人员急 需解决 的问题 。要想对开关电源 的 现 问题而导致开关 电源 噪音 的产生 。
开关电源变压器啸叫原因分析
开关电源变压器啸叫原因分析
根据我做开关电源的经验,总结出变压器发出啸叫声主要有以下几个原因:
1)变压器本身的问题,如浸漆烘干不到位,导致磁芯不牢固引起机械振动而发出响声;还有就是气隙的长度不适合,导致变压器的工作状态不稳定,也会发出响声;最后,线包没有绕紧也可能导致响声。
2)电路设置的问题,尤其是光耦和431配对使用的时候,如果偏置电流设置不当,就会造成电路工作的时候处于不稳定的状态以致产生振荡而发出响声;还有431的输出端和控制端之间的RC反馈设置不当也会造成振荡而引起响声。
3)元器件的质量问题,如输入滤波电容容量不足,输出整流快恢复二极管(或肖特基二极管)质量不好,功率MOS管质量不好,RCD反冲吸收回路的高压电容或二极管质量不好等等,这些问题都有可能导致震荡而引起响声。
4)电路板布线不恰当,从而造成干扰引发振荡,导致响声。
其次就是从机械上下功夫,使得磁分子的运动不引起周围空气的振动。
也就是固定磁芯,使他不能产生机械振动。
变压器有杂音一般是变压器制作工艺没处理好会引起的:
主要有低频杂音和高频杂音,
低频杂音主要表现在哪些方面呢?
高频杂音主要表现在哪些方面呢?
解决问题是要如何做?
是否还有其他方面引起变压器杂音?
变压器杂音主要是由于变压器的激磁成分中含有低频杂音,使得磁芯的磁分子在这个低频磁场下运动,产生机械振动,引起周围空气的振动。
这个空气的振动最终传到人的耳朵而被人所听见。
知道原因之后,我们就可以找解决办法了。
首先就是使变压器避免产生这样的低频的磁场,也就是从电路上下功夫,使变压器的激磁电流避开这个频段。
1。
开关电源的噪音抑制
开关电源的噪音抑制
开关电源的噪音抑制当今开关电源大量的在各个领域应用,开关电源以效率高、体积小、重量轻等优点被人们称道,但是开关电源产生的噪音也渐渐被大家所重视。
由于噪音对电网的污染导致许多设备工作异常、甚至无法工作,所以对其噪音的抑制已经被逐渐关注,以致被提到一个很高的高度。
本文就开关电源产生噪音的种类、噪音产生的方式、传递噪音的主要因素、噪音抑制的对策等进行了分析并提出相应的解决方法。
1 噪音的种类 3 传递噪音的主要因素传递噪音主要有以下四个方式:实际电子设备的噪音是通过上述几个方面产生的,要解决它不是一件容易的事情。
电子设备的噪音抑制方法和对策是通过试验和分析查明产生噪音的原因,然后再逐个加以解决。
电子设备的噪音抑制方法和对策包括抑制噪音源的对策和切断噪音传播途径两个方面。
开关电源的抑制噪音的对策也是这样的。
4 开关电源的噪音对策(1)降低电压性噪音源为了防止共模噪音,如图4所示,可设置屏蔽来阻止这种高频电流的泄漏。
即在变压器T1的初级装有屏蔽层,并连接至初级侧的静电位;开关管V1外壳亦连接到初级侧的静电位。
TI的次级装有屏蔽层,也连接到次级侧的静电
位。
这样使高频电位基本上为0V,共模噪音源的干扰幅度可以被大幅度减小。
(2)降低电流性噪音(3)滤波器电路的构成 5 结束语以上对开关电源产生噪音的主要原因进行了分析,并对抑制噪音的措施进行研究。
但是对开关电源来说,对其产生的噪音并不能完全消除,只能随着科学技术的进步逐渐降低减小开关电源的噪音。
adc采集开关电源噪声处理方案
adc采集开关电源噪声处理方案ADC采集开关电源噪声处理方案引言:在电子设备中,ADC(模数转换器)的采集信号质量直接影响着整个系统的性能。
而开关电源作为一种常用的电源供应方式,其输出的噪声信号往往会对ADC采集信号造成干扰,从而影响采集数据的准确性。
因此,针对ADC采集开关电源噪声的处理成为了一个重要的技术问题。
一、开关电源噪声的来源及特点开关电源的工作原理是通过开关管的开关动作,将直流电压转换为高频脉冲信号,再通过滤波电路将其转换为稳定的直流电压。
在这个过程中,开关动作会产生电磁干扰(EMI)和电压波动(Ripple)两种主要的噪声源。
1. 电磁干扰(EMI):开关电源在开关动作时会产生高频噪声,这些噪声通过导线和PCB板传播,对周围的电路和器件产生干扰。
电磁干扰的频率范围主要集中在几十千赫兹到几百兆赫兹,对ADC的采集信号会产生较大的干扰。
2. 电压波动(Ripple):由于开关电源的输出是通过开关管的开关动作来实现的,因此在输出的直流电压中会存在一定的纹波,这种纹波信号会对ADC的采集信号造成干扰。
电压波动的频率主要集中在几百赫兹到几千赫兹,对ADC采集的低频信号会产生较大的影响。
二、开关电源噪声对ADC采集信号的影响开关电源的噪声信号会对ADC采集信号产生直接或间接的影响,主要表现为以下几个方面:1. 降低信噪比(SNR):开关电源的噪声信号会与被采集信号叠加在一起,从而降低了信号的噪声比,使得采集到的信号质量下降。
2. 引入谐波干扰:开关电源的高频噪声会引入谐波干扰,使得采集到的信号中出现频谱分布不均匀的现象,从而导致采集数据的失真。
3. 产生杂散分量:开关电源的电压波动会引入杂散分量,使得采集信号中出现额外的频率成分,干扰了原始信号的准确采集。
三、开关电源噪声处理方案针对开关电源噪声对ADC采集信号的影响,可以采取以下几种方案来进行处理,以提高ADC采集信号的质量:1. 电源滤波:通过在开关电源的输入端或输出端添加滤波电路,可以有效地抑制开关电源产生的高频噪声。
开关电源常见尖峰的产生原因和抑制方法
开关电源的尖峰干扰及其抑制电源纹波会干扰电子设备的正常工作,引起诸如计算机死机、数据处理出错及控制系统失灵等故障,给生产和科研酿成难以估量的损失,因此必须采取措施加以抑制。
产生尖峰的原因很多,以下着重说明滤波电路对二极管反向恢复时间所产生的纹波尖峰加以分析,并总结出几种有效的抑制措施。
2滤波电路为减小电源尖峰干扰需要在电源进线端和电源输出线端分别加入滤波电路。
2.1电源进线端滤波器在电源进线端通常采用如图1所示电路。
该电路对共模和差模纹波干扰均有较好抑制作用。
图中各元器件的作用:(1)L1,L2,C1用于滤除差模干扰信号。
L1,L2磁芯面积不宜太小,以免饱和。
电感量几毫亨至几十毫亨。
C1为电源跨接电容,又称X电容。
用陶瓷电容或聚脂薄膜电容效果更好。
电容量取0.22μF~0.47μF。
(2)L3,L4,C2,C3用于滤除共模干扰信号。
L3,L4要求圈数相同,一般取10,电感量2mH左右。
C2,C3为旁路电容,又称Y电容。
电容量要求2200pF左右。
电容量过大,影响设备的绝缘性能。
在同一磁芯上绕两个匝数相等的线圈。
电源往返电流在磁芯中产生大小相等、方向相反的磁通。
故对差模信号电感L3、L4不起作用(见图2),但对于相线与地线间共模信号,呈现为一个大电感。
其等效电路如图3所示。
由等效电路知:令L1=L2=M=L,UN=RCI1同时RC RL,则:图1电源进线端滤波电路(1)一般ωL RL,则:。
式(1)表明,对共模信号Ug而言,共模电感呈现很大的阻抗。
2.2输出端滤波器输出端滤波器大都采用LC滤波电路。
其元件选择一般资料中均有。
为进一步降低纹波,需加入二次LC滤波电路。
LC滤波电路中L值不宜过大,以免引起自激,电感线圈一般以1~2匝为宜。
电容宜采用多只并联的方法,以降低等效串联电阻。
同时采样回路中要加入RC前馈采样网络。
图2共模电感对差模信号不起作用如果加入滤波器后,效果仍不理想,则要详细检查公共地线的长度、线径是否合适。
开关电源噪声的产生与抑制方法
开关电源噪声的产生与抑制方法
一、电源模块噪声的产生
反激式开关电源拓扑结构,如图所示。
由场效应管Q1导通,输入电流流过变压器和场效应管Q1,再场效应管Q1关断,使得输入电流通过电磁感应到变压器的输出端,实现能量的传递。
由于变压器初级存在漏感,漏感和场效应管Q1的寄生电容产生振荡,振荡产生的减压尖峰,在能量传递过程中,也传递到了输出端,形成噪声。
漏源级的电压波形如图所示。
图反激式电源拓扑
图场效应管漏极电压波形
二、好的布局设计抑制噪声
在设计的过程中,工程师们都会在场效应管DS两端加吸收电路,减小尖峰,可以有效的减小电源模块的输出噪声。
实际应用中,在模块输入输出端加电容,配合好的PCB布局可以更进一步的减小模块的输出纹波与噪声。
PCB板的布局,根据电流的流向上放电容,电源模块纹波噪声都不再是问题。
下图列举了两种布局方式。
图正确的滤波电容PCB板布局
图错误的滤波电容PCB布局
E_URBD-6W系列模块电源设计时,考虑的电容以及变压器的布局,有效的减小了电源模块输出纹波噪声。
下图是典型型号E2405URBD-6W的输出纹波噪声。
图优异的纹波噪声。
开关电源滋滋响,居然是这个因为?
开关电源滋滋响,居然是这个因为?
接触过电气柜的朋友都有过这样的经历,有时开关电源会在通电时发出滋滋的声音(空载时也有),虽然有响声但工作一切正常,那么究竟是哪里出了什么故障吗?
出现响声的原因有以下几种:1、电源输入波不好有可能是附近使用了变频器或者伺服驱动器等污染电源的电气元件。
这种情况进线需要加滤波。
2、输出电压调的不合适有时会在变压器侧将电压调得高一些以避免因用电设备功率过高将电压拉得过低。
大家需要注意开关电源的进线电压范围很大,但仍然有范围,如果波动较大,容易烧毁开关电源。
3、变压器线圈问题这种情况也是导致电压不稳定。
4、开关变压器磁芯松动,定时元件参数变化引起振荡频率变低
5、空载或轻载时很多电源都会有这种现象,此时电源工作在不连
续驱动或较低的频率下,是电源设计的原因,所以一般电源都有一个最小的负载要求。
大家记住开关电源的计算大小不是功率,而是电流。
6、里面的电容有问题
7、负载过重。
开关电流大,频率低这种情况下,必须降低负载或者更换大功率开关电源。
8、电路电压上漂没问题,一般是开关信号耦合电容减小,导致开关电流大,频率低。
开关电源噪声及抑制
第9章 开关电源噪声及抑制
EMI(电磁干扰):是因电磁波造成设备、传输通道或系统性能降低的 一种电磁现象。 EMC(电磁兼容):是指设备或系统在其电磁环境中符合要求运行并 不对其环境中的任何设备产生无法忍受的电磁干扰的能力。
第9章 开关电源噪声及抑制 (三)缓冲吸收电路噪声抑制技术
第9章 开关电源噪声及抑制
(四)磁芯抑制噪声 在电源线、信号线、整流二极管引线上串入感性磁珠或磁环,抑制
高频电流尖峰噪声。
第9章 开关电源噪声及抑制
(五)合理的接线,布局工艺 1、输入、输出线应分开并远离布置; 2、强电、弱电的电源线、信号线应分开,不能交叉布置; 3、输入整流滤波电容应靠近开关器件安装,连线应短而粗,减小引线 电感; 4、变压器次级、输出整流管及滤波电容尽量紧凑安装,避免寄生电感 引起振荡; 5、输出滤波电容采用多个并联,必须直接跨接在主馈线的输出回路上; 6、控制线、信号线采用双绞线。 (六)正确的接地技术 (七)正确使用信号控制电缆线
一、 开关电源噪声
(一)开关电源噪声来源 1、开关器件在大电流、高电压关断和开通时,其电流、电压急剧变化, 形成宽频带电磁干扰噪声源; 2、输出滤波器的输入端,由于变压器漏感,分布电容及滤波电感电容 的存在产生振荡,形成电磁干扰噪声源; 3、整流二极管的开通及关断过程产生浪涌电流尖峰和高频振荡,是形 成干扰噪声的重要来源; 4、其他离散噪声源 漏电噪声源及振荡噪声源 5、交流输入时,整流电路形成的高次谐波噪声
第9章 开关电源噪声及抑制
第9章 开关电源噪声及抑制
二、 开关电源噪声抑制
(一)屏蔽噪声技术—使被屏蔽的电路不受外界噪声干扰及电路不向外 界辐射干扰噪声,适用于电磁辐射干扰噪声,对传导干扰噪声不起作用 。
解决开关电源啸叫的六种方法
解决开关电源啸叫的六种方法【大比特导读】开关电源控制着电路中开关管开通和关断的时间比率,维持着稳定的电路电压输出,是一种非常常见的电源设计。
但是从事过开关电源设计的人都知道,在对开关电源进行测试的过程当中,经常会听到一些啸叫声,类似于打高压不良时发出的漏电音,或着像高压拉弧的声音。
那么当这些现象出现时,应当如何解决他们?开关电源控制着电路中开关管开通和关断的时间比率,维持着稳定的电路电压输出,是一种非常常见的电源设计。
但是从事过开关电源设计的人都知道,在对开关电源进行测试的过程当中,经常会听到一些啸叫声,类似于打高压不良时发出的漏电音,或着像高压拉弧的声音。
那么当这些现象出现时,应当如何解决他们呢?通常来说,开关电源啸叫的原因一般有下面几种诱因。
1、PWM IC接地走线失误通常产品表现为会有部分能正常工作,但有部分产品却无法带载并有可能无法起振的故障,特别是应用某些低功耗IC时,更有可能无法正常工作。
比如SG6848($0.2610)试板,由于当初没有透彻了解IC的性能,凭着经验便匆匆layout,结果试验时竟然不能做宽电压测试。
2、变压器浸漆不良包括未含浸凡立水。
啸叫并引起波形有尖刺,但一般带载能力正常,特别说明:输出功率越大者啸叫越强,小功率者则表现不一定明显。
一款72W的充电器产品中就有过带载不良的经验,并在此产品中发现对磁芯的材质有着严格的要求。
补充一点,当变压器的设计欠佳时,也有可能工作时振动产生异响。
3、光耦工作电流点走线失误当光耦的工作电流电阻的位置连接在次级滤波电容之前时,也会有啸叫的可能,特别是当带载越多时更甚。
4、基准稳压IC TL431($0.0625)的接地线失误同样的次级的基准稳压IC的接地和初级IC的接地一样有着类似的要求,那就是都不能直接和变压器的冷地热地相连接。
如果连在一起的后果就是带载能力下降并且啸叫声和输出功率的大小呈正比。
当输出负载较大,接近电源功率极限时,开关变压器可能会进入一种不稳定状态。
开关电源噪声的产生与抑制措施(5篇模版)
开关电源噪声的产生与抑制措施(5篇模版)第一篇:开关电源噪声的产生与抑制措施噪声的种类开关电源无论在体积、重量和效率方面都有显著的优点,已得到广泛的应用。
但开关电源最大缺点是容易产生噪声。
噪声的产生一般可分为两大类:一是开关电源内部元件形成的干扰;二是由于外界因素影响而使开关电源产生的干扰,这涉及到人为因素和自然界的因素。
1.1 输出脉动噪声主要是在输出端出现的脉冲干扰,产生的原因有:由AC输入频率引起的低频脉动电压;开关电源频率引起的高次谐波脉动电压;开关接通、断开时的尖峰噪声;对上述噪声的振幅最大值可用同轴电缆接到示波器上来观察测定。
1.2 辐射电场强度开关电源产生的噪声会辐射到空间。
辐射噪声的测定方法是:接好天线,开启仪器(场强仪等),用天线接收直射波与反射波。
被测电源放在非金属的实验台上以360°来回转动,天线以上下1~4m距离移动以检测最大值。
测试以垂直与水平两个方向来测定。
1.3 外来突变电压外来突变电压干扰可用噪声模拟器检测。
在输入交流线上同时注入同相杂音(注入电压据开关电源种类而定)。
两者相位以90°、270°为最合适。
确认在这外来突变电压的作用下,输出直流电压有无变动,并观察保护装置等是否产生误动作。
1.4 雷电冲击耐压实验使用雷电冲击发生器,以保险丝以外的元件不损坏为原则,看一看输出电压的变动是否超过附加电压的规定。
噪声产生源 2.1 开关管开关功率管及其散热器与外壳和电源内部的引线间存在分布电容。
当开关管流过大的脉冲电流时,大体上形成了矩形波,该波形含有许多高频成份。
由于开关电源使用的元件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流。
凡有短路电流的导线及这种脉冲电流流经的变压器和电感产生的电磁场形成噪声源。
2.2 二极管的恢复特性PN型硅二极管用作高频整流时,正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过)。
开关电源的纹波和噪声
本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。
一.纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。
纹波是输出直流电压的波动,与开关电源的开关动作有关。
每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。
纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。
噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。
开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。
噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。
噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。
利用示波器可以看到纹波和噪声的波形,如图1所示。
纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。
纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。
图1 纹波和噪声的波形二.纹波和噪声的测量方法纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。
目前测量纹波和噪声电压是利用宽频带示波器来测量的方法,它能精准地测出纹波和噪声电压值。
由于开关电源的品种繁多(有不同的拓扑、工作频率、输出功率、不同的技术要求等),但是各生产厂家都采用示波器测量法,仅测量装置上不完全相同,因此各厂对不同开关电源的测量都有自己的标准,即企业标准。
用示波器测量纹波和噪声的装置的框图如图2所示。
它由被测开关电源、负载、示波器及测量连线组成。
有的测量装置中还焊上电感或电容、电阻等元件。
图2 示波器测量框图从图2来看,似乎与其他测波形电路没有什么区别,但实际上要求不同。
开关电源产生的噪声的原因与解决方案
开关电源产生的噪声的原因与解决方案电子猎头:帮助电子工程师实现人生价值!电子元器件:价格比您现有供应商最少降低5%从数据中心的服务器到电信设备和工业系统,开关模式电源(SMPS)用于各种应用,因为它具有高效率,功率密度和低成本的快速瞬态响应等优点。
然而,虽然提供许多优点,但已知SMPS电源如开关降压和升压DC/DC转换器以及负载点(POL)调节器会产生噪声。
在寻求保持数据完整性和高性能的许多应用中,这种噪声是不希望的。
此外,为了通过更严格的新监管标准,电源产生的EMI必须保持低于以往的水平。
实际上,这些电源的开关频率会产生许多不同类型的噪声。
之前有人认为它们是由开关频率引起的高频噪声的开关噪声开关转换,开关转换后振铃,以及在一个系统中运行的多个开关稳压器引起的拍频。
这里我们将研究开关稳压器和DC/DC转换器产生的这些不同类型的噪声,并讨论解决方案,包括滤波技术,以减少和最小化开关SMPS电源中的噪声。
SMPS噪声根据Dostal,主要噪声类型是由开关频率产生的开关噪声供应。
他说,通常,对于非隔离式DC/DC转换器,此噪声的频带在500 kHz 和3 MHz之间。
但是,由于它取决于开关频率,因此可以使用低通滤波器轻松控制和滤除。
开关噪声会产生输出纹波电压,如图1所示。
可以使用无源LC低通滤波器或有源低通滤波器轻松滤除。
图1:由开关稳压器的开关频率引起的输出纹波电压(顶部)。
使用LC滤波器的衰减纹波电压显示在底部。
然而,在我们进入滤波器设计之前,让我们更详细地检查输出纹波电压。
如公式1所示,开关稳压器的输出纹波电压可以通过电感电流纹波精确计算,电感电流纹波基于电感的实际电感值,开关转换器的输入和输出电压,开关频率(fSW)和输出电容(COUT))包括其等效串联电阻(ESR)和等效串联电感(ESL)。
根据ADI的开关转换器数据手册,在电感选择方面存在一些折衷。
例如,小电感器以较大的电感器电流纹波为代价提供更好的瞬态响应,而大电感器以较慢的瞬态响应能力为代价导致较小的电感器电流纹波。
开关电源EMI噪声分析及抑制
开关电源EMI噪声分析及抑制开关电源是一种高效率的电源转换器,能将电能转换为不同电压、电流和频率的输出。
然而,由于其高频开关行为引起的电磁干扰(EMI)噪声,可能对其他电子设备和通信系统产生不良影响。
因此,EMI噪声的分析和抑制对于开关电源设计和应用至关重要。
EMI噪声源主要包括开关器件、开关电容和开关电感。
开关器件的开关动作会产生脉冲干扰,频率可达数MHz至数GHz。
开关电容和开关电感则会导致谐振效应,形成谐振峰,并产生共模和差分噪声。
为了对EMI噪声进行分析,通常需要进行频谱分析。
可以使用频谱分析仪来测量开关电源的频谱,并确定EMI噪声的频率范围和幅度。
根据测量结果,可以采取相应的措施来抑制EMI噪声。
首先,选择合适的滤波器。
在开关电源的输入端和输出端都可以加入滤波器,以滤除高频噪声。
常用的滤波器包括电源型滤波器、陷波滤波器和共模滤波器等。
电源型滤波器通常采用电容和电感组成,并将高频噪声短路至地。
陷波滤波器则能够抑制特定频率的噪声,而共模滤波器则能滤除共模噪声。
其次,可以采取屏蔽措施。
通过将敏感部件(例如传感器和高速信号线)包裹在屏蔽层中,可以阻挡电磁辐射对其的干扰。
屏蔽可以采用金属盒、铜箔和铁氧体等材料实现。
此外,还可以采用良好的地线布局和绝缘层来提高屏蔽效果。
此外,优化PCB设计也是抑制EMI噪声的重要手段。
首先,在布局设计时,应尽量减小回路面积和环路面积,以降低信号线的长度和电流回路的大小。
其次,应使用短而宽的连线,以减小线路的电感和电阻。
而在布线设计时,则需要注意信号线和电源线的分离,避免共模干扰。
此外,由于高频信号对连线的特殊要求,可以采用扇形隔离和差分传输等技术来提高电路的抗干扰能力。
最后,还可以通过使用低EMI噪声的开关元件、降低开关频率和斩波频率来抑制EMI噪声。
开关元件的选择应具备低开关电流和低开关损耗的特性,以减小开关动作带来的噪声。
而降低开关频率和斩波频率则是通过改变控制电路来实现的,可以减小时域和频域上的噪声。
电源音频噪声产生和消除
电源音频噪声背景现代开关电源的设计要求由效率驱动,这不仅包括满载条件下的效率,还包含断开电缆连接时睡眠模式或空载条件下的效率。
无论何种电源负载,电源系统集成商都必须满足能源之星、80 Plus以及欧盟委员会的CoC等新规范。
要满足这些要求,电源必须将开关频率降至20kHz以下,有时甚至低至几kHz。
由于人耳可以听到低于20kHz的声音频率(而且在2kHz至5kHz之间最敏感),因此很难避免出现音频噪声。
对于消费者应用而言尤其如此,例如所有客厅中都有电话或笔记本电脑充电器,或者LED驱动器,如果产生噪声,那将是非常烦扰的事情。
电源噪声的起因对音频噪声最敏感的电源组件通常是MLC陶瓷电容器、电感器或变压器。
电感器和变压器等磁性组件在一定频率下会受高压脉冲应力的影响,导致物理效应,例如线圈上的反向压电效应或铁芯上的磁致伸缩。
反向压电效应和磁致伸缩是将施加的电能转换为机械力的作用机制。
这种机械力使线圈或铁芯振动,从而使其周围的空气移位并表现为声波。
由于这些振动会在谐振频率上被放大多倍,因此说到底,我们要设法解决的是这些电源组件产生的机械自谐振频率(SRF)。
首先,我们需要测量机械SRF以查看其是否在音频噪声范围内。
如果是,则找出谐振的来源。
最后,在设计阶段选择合适的电气参数以限制开关频率的范围。
通过避免机械SRF,从而较轻松地降低噪声。
机械自谐振机械自谐振现象已经有模型可以识别,并已定义了可用的控件。
其中,胡克定律是较为特殊的一种模型。
图1显示了弹簧质量系统的方程式。
该系统类似于电感器的螺旋线圈以及焊接了磁性组件的PCB组件的质量。
图1: PCB 组件上的胡克定律应用如上图所示,红球的质量(m )与PCB 组件的质量相同。
位移(x )由反向压电效应或磁致伸缩力引起。
施加的力与PCB 板重量之间的关系可以用一个二阶微分方程来完美表述(见图2)。
图2:用微分方程表述胡克定律因此,该质量弹簧系统的谐振频率可以用公式(1)来计算:其中k 是弹簧的刚度常数,m 是质量。
开关电源的电磁干扰及噪声抑制方法
开关电源的电磁干扰及噪声抑制方法开关电源是现代电子应用中常见的一种电源形式,其工作原理是通过开关管开关控制输入电压的大小和频率以实现电压转换。
但是,开关电源在工作过程中会产生电磁干扰和噪声,对其他电子设备的正常工作产生影响。
因此,为了抑制开关电源的电磁干扰和噪声,在设计和使用开关电源时需要采取一些措施。
首先,开关电源产生的电磁干扰主要包括导向式干扰和辐射式干扰。
导向式干扰是指开关电源通过引线或线路对周围设备产生的电磁干扰,辐射式干扰是指开关电源通过电磁波辐射对周围设备产生的干扰。
对于导向式干扰,可以采取以下措施进行抑制:1.滤波器:在开关电源的输入和输出端加装滤波器,用于滤除高频噪声和电磁干扰。
常用的滤波器有LC滤波器、RC滤波器和Pi型滤波器等。
2.输入电源线路的处理:尽量缩短输入电源线路的长度,采用屏蔽线材,减小电磁干扰的传播路径。
同时,在输入电源线上添加额外的滤波电容和电感,抑制高频噪声。
3.地线处理:通过合理布置地线,减小接地电阻,提高地线的抗干扰能力。
将开关电源的地线与其他设备的接地点连接,共用同一个地线。
对于辐射式干扰,可以采取以下措施进行抑制:1.屏蔽:在开关电源的外壳上添加金属屏蔽罩,减少电磁辐射。
金属屏蔽罩应与开关电源的地线连接,以形成完整的屏蔽。
2.PCB设计:在开关电源的PCB板设计中,合理布局信号和电源线路,减小线路的长度。
同时,采用地平面和电源平面屏蔽,减少信号线和电源线的交叉和干扰。
3.使用低频率开关管:低频率工作的开关管辐射干扰较小,可以有效降低开关电源的电磁辐射干扰。
此外1.选择合适的元器件:选用带有防干扰措施的元器件,如具有抗干扰特性的电解电容和电感器件,减小干扰的产生和传播。
2.电源输出滤波:在开关电源的输出端添加滤波电容和电感,减小输出电压的纹波和噪声。
3.接地处理:通过合理的接地设计和连接方式,减小接地电阻,提高接地抗干扰能力。
4.EMI滤波器:在开关电源的输入端和输出端加装EMI滤波器,进一步滤除高频噪声和电磁干扰。
导致开关电源啸叫的六种情况及解决方法
导致开关电源啸叫的六种情况及解决方法开关电源控制着电路中开关管开通和关断的时间比率,维持着稳定的电路电压输出,是一种非常常见的电源设计.但是从事过开关电源设计的人都知道,在对开关电源进行测试的过程当中,经常会听到一些啸叫声,类似于打高压不良时发出的漏电音,或着像高压拉弧的声音。
那么当这些现象出现时,应当如何解决他们呢?通常来说,开关电源啸叫的原因一般有下面几种诱因。
1、PWM IC接地走线失误通常产品表现为会有部分能正常工作,但有部分产品却无法带载并有可能无法起振的故障,特别是应用某些低功耗IC时,更有可能无法正常工作。
比如SG6848($0.2610)试板,由于当初没有透彻了解IC的性能,凭着经验便匆匆layout,结果试验时竟然不能做宽电压测试.2、变压器浸漆不良包括未含浸凡立水。
啸叫并引起波形有尖刺,但一般带载能力正常,特别说明:输出功率越大者啸叫越强,小功率者则表现不一定明显。
一款72W的充电器产品中就有过带载不良的经验,并在此产品中发现对磁芯的材质有着严格的要求。
补充一点,当变压器的设计欠佳时,也有可能工作时振动产生异响。
3、光耦工作电流点走线失误当光耦的工作电流电阻的位置连接在次级滤波电容之前时,也会有啸叫的可能,特别是当带载越多时更甚。
4、基准稳压IC TL431($0。
0625)的接地线失误同样的次级的基准稳压IC的接地和初级IC的接地一样有着类似的要求,那就是都不能直接和变压器的冷地热地相连接。
如果连在一起的后果就是带载能力下降并且啸叫声和输出功率的大小呈正比。
当输出负载较大,接近电源功率极限时,开关变压器可能会进入一种不稳定状态.前一周期开关管占空比过大,导通时间过长,通过高频变压器传输了过多的能量;直流整流的储能电感本周期内能量未充分释放,经PWM判断,在下一个周期内没有产生令开关管导通的驱动信号,或占空比过小.开关管在之后的整个周期内为截止状态,或者导通时间过短。
储能电感经过多于一整个周期的能量释放,输出电压下降,开关管下一个周期内的占空比又会较大……如此周而复始,使变压器发生较低频率(有规律的间歇性全截止周期,或占空比剧烈变化的频率)的振动,发出人耳可以听到的较低频率的声音。
开关电源变压器发生异响的原因及解决办法
开关电源变压器发生异响的原因及解决办法(1)变压器的工艺问题①役漆烘F不到位,导致燃芯不牢固引起机械振动而宣布晌市:②气隙的长度不适合,导致变爪器的T.作状态不安稳而宣布响声:③线包没有绕紧也或许导致响声;①磁芯组合有气隙存在,高频时引起空气振动而宣布响声(变压器假如通过真空全投,一-般不会发声)(2)变压器的环路问题变压器的环路问题即指变压器的环路发作振动然后引起变爪器发作啉叫。
①电路板布线不妥,然后形成1扰引发振动,导致响声:②反馈回路参数设置不妥,导致环路不安稳以致发作振动而宣布响声:③环路中元器材的质量问题,如输入滤波电容容量缺乏,输川整流快恢复二极管质量欠好,功率MOS管质量欠好,RCD 反冲吸收回路的高压电容或二极管质量欠好等等,这些问题都有或许导致震动而引起响声。
(3)变爪器的铁心问题变压器铁心发作饱和时,线圈中电流增大,变乐器发热并发作自激震动,线圈的振动引起周围空气,的振动然后宣布响声。
(4)开关电源的负载问题①开关电源在空载或轻载的情况下,在某些T.作点处会发作振动现象,表现为变乐器的啉叫和输出的不安稳。
发作这种现象是因为空载/轻载时,开关瞬时注册时刻过大然后形成输山能量太大,进而电压过冲也很大,需求较长的时刻去恢复到正常电瓜,因此开关需停此作业-段时刻,这样开关就T.作于间敬性工。
作形式,使变瓜器发作较低频率(有规则的问歇性全截u!;周期或占空比剧烈改变的频率)的振动。
②变压器T.作在严峻的超载状态,时刻都有焚毁的可叮能逐个这就是许多电源焚毁前“惨叫”的由来。
开关变压器异响及解决方法示例示例一开关电源上电后呈现打嗝声,测各路输出直流电压均极低,且不安稳。
先从负载电路查起,无损坏元件。
后来要点检测N1绕组所并联的电压吸收网络,感觉未有异常。
拿来振动小板,将振动芯片及外围电路悉数替代,上电后毛病仍旧。
阐明、振动、稳压环节皆无问题,重查负载电路也无异常。
检修陷入困境。
想到是否开关变压器坏掉?得首先排除这个或许性。
如何解决电路中的电源噪声问题
如何解决电路中的电源噪声问题电源噪声是电子电路设计和应用中常见的问题之一。
它可以影响电路的性能、稳定性和可靠性。
在本文中,将探讨电源噪声的来源、对电路的影响以及一些解决电源噪声问题的方法。
一、电源噪声的来源电源噪声主要来自于以下几个方面:1. 电源本身:电源本身的设计和质量会对电源噪声产生影响。
例如,开关电源噪声相对较大,而线性电源噪声相对较小。
此外,电源的质量和稳定性也会对噪声产生一定的影响。
2. 电源线和接地线:电源线和接地线的长度、布局以及与其他信号线的距离都会对电源噪声的传播和干扰产生影响。
如果电源线和接地线与信号线靠得太近,可能会引入电源噪声。
3. 外部环境:外部环境中的电磁干扰源,例如电线、电机和无线电设备等,也是电源噪声的来源之一。
二、电源噪声对电路的影响电源噪声会对电路产生以下几个方面的影响:1. 信号干扰:电源噪声可通过电源线和接地线传播到其他信号线上,从而引入信号干扰。
这可能会导致信号失真、接收误差等问题。
2. 稳定性问题:电源噪声会使电路的工作点不稳定,导致输出信号的波动和不确定性增加。
3. 时钟抖动:时钟信号受电源噪声的影响,可能会导致时钟信号的抖动,从而影响时序电路的正常工作。
三、解决电源噪声问题的方法为了解决电路中的电源噪声问题,可以采取以下一些方法:1. 电源滤波:通过在电路中增加适当的电源滤波电路,可以有效地降低电源噪声。
常用的电源滤波电路包括低通滤波器、降噪电容和降噪电感等。
2. 接地设计:良好的接地设计可以减少电源噪声对信号的传播和干扰。
在接地设计中,需要注意电源线和接地线的布线准则,以及与信号线的距离。
3. 绕线和屏蔽:对于线缆和信号传输线路,可以采取合适的绕线和屏蔽措施,减少电源噪声的干扰。
4. 电源隔离:对于一些敏感的电路和设备,可以考虑使用电源隔离技术,将电源和信号部分进行隔离,从而减少电源噪声的传播。
5. 使用低噪声组件:在电路设计中,选择低噪声的器件和元件,可以降低电源噪声对电路的影响。
开关电源的噪音及解决方法
开关电源具有线性电源无可比拟的许多优点:体积小,重量轻,效率高等等,但开关电源会产生电磁干扰,尤其是中大功率等级的开关电源干扰更为严重。
这是由于开关电源存在着整流谐波、开关频率和它的谐波以及在开关转换中所固有的高速电流和电压瞬变。
产生电磁干扰是开关电源本身的特点所决定的,是难以避免的,关键是如何采取有效的措施来减小其干扰程度。
通过对开关电源进行电磁兼容性测试得知,一般有以下四项指标不合格。
CE01100Hz~15KHz电源线传导发射。
CE0315KHz~50MHz电源线传导发射。
RE0125Hz~50KHz磁场辐射发射。
RE0214KHz~10GHz电场辐射发射。
2开关电源电磁干扰产生原因分析开关电源按主电路型式可分为全桥式,半桥式,推挽式等几种,但无论何种类型的开关电源在工作时都会产生很强的噪声。
它们通过电源线以共模或差模方式向外传导,同时还向周围空间辐射。
开关电源对由电网侵入的外部噪声也很敏感,并经它传递到其他电子设备中产生干扰。
图1是一种最简单的开关电源主电路型式,直流变换式它激单边型开关电源,以此为例分析开关电源的噪声来源。
交流电输入开关电源后,由桥式整流器V1~V4整理成直流电压Vi加在高频变压器的初级L1和开关管V5上。
开关管V5的基极输入一个几十到几百千赫的高频矩形波,其重复频率和占空比由输出直流电压VO的要求来确定。
被开关管放大了的脉冲电流由高频变压器耦合到次级回路。
高频变压器初次级匝数之比也是由输出直流电压VO的要求来确定的。
高频脉冲电流经二极管V6整流并经C2滤波后变成直流输出电压VO。
因此开关电源在以下几个环节都将产生噪声,形成电磁干扰。
(1)高频变压器初级L1、开关管V5和滤波电容C1构成的高频开关电流环路,可能会产生较大的空间辐射。
如果电容器滤波不足,则高频电流还会以差模方式传导到输入交流电源中去。
如图1中的I1 。
(2)高频变压器次级L2、整流二极管V6、滤波电容C2也构成高频开关电流环路会产生空间辐射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源产生噪声的原因与解决方案
从数据中心的服务器到电信设备和工业系统,开关模式电源(SMPS)用于各种应用,因为它具有高效率,功率密度和低成本的快速瞬态响应等优点。
此外,为了通过更严格的新监管标准,电源产生的EMI必须保持低于以往的水平。
实际上,这些电源的开关频率会产生许多不同类型的噪声。
之前有人认为它们是由开关频率引起的高频噪声的开关噪声开关转换,开关转换后振铃,以及在一个系统中运行的多个开关稳压器引起的拍频。
这里我们将研究开关稳压器和DC/DC转换器产生的这些不同类型的噪声,并讨论解决方案,包括滤波技术,以减少和最小化开关SMPS电源中的噪声。
SMPS噪声
根据Dostal,主要噪声类型是由开关频率产生的开关噪声供应。
他说,通常,对于非隔离式DC/DC转换器,此噪声的频带在500 kHz和3 MHz之间。
但是,由于它取决于开关频率,因此可以使用低通滤波器轻松控制和滤除。
开关噪声会产生输出纹波电压,如图1所示。
可以使用无源LC低通滤波器或有源低通滤波器轻松滤除。
图1:由开关稳压器的开关频率引起的输出纹波电压(顶部)。
使用LC滤波器的衰减纹波电压显示在底部。
然而,在我们进入滤波器设计之前,让我们更详细地检查输出纹波电压。
如公式1所示,开关稳压器的输出纹波电压可以通过电感电流纹波精确计算,电感电流纹波基于电感的实际电感值,开关转换器的输入和输出电压,开关频率(fSW)和输出电容(COUT))包括其等效串联电阻(ESR)和等效串联电感(ESL)。
根据ADI的开关转换器数据手册,在电感选择方面存在一些折衷。
例如,小电感器以较大的电感器电流纹波为代价提供更好的瞬态响应,而大电感器以较慢的瞬态响应能力为代。