初等数论总复习题及知识点总结
初等数论单元复习

N p1 p2 pn ,
这里p1<p2<p3<…<pn,且p1,p2,p3,…,pn都 是质数,α1, α2, …, αn是自然数,其中αi表示质数 pi在N中出现的重数.通常把上面分解式叫做整数 N的标准分解式.
那么 (1)τ(a) = (α1 +1)(α2 +1)…(αn +1) = ∏(αi+1). (2)σ(a) = (1+ p1+ p12+…+ p1 α1 ) (1+ p2+ p22+… + p2α2) …(1+ pn+ pn2+…+ pn αn ) (3)σ1(a) =
1
2
n
a
a
例1、 已知两个数的最大公约数为8, 最小公倍数为128,求这两个数.
(4)n 个数两两互质 •如果 a1 ,a2 , …,an ( n≥2) 中的任意 两个数 ai, aj ( i ≠ j, I = 1, 2, … , n;j =1, 2, …, 质.
辗转相除法
• 设a,b为两个任意自然数,a>b,如果 a=bq1+r1 (0<r1<b), b=r1q2+r2 (0<r2<r1), r1=r2q3+r3 (0<r3<r2), … rn-3=rn-2qn-1+rn-1 (0<rn-1<rn-2), rn-2=rn-1qn+rn (0<rn<rn-1), rn-1=rnqn+1, 那么 (a,b)=rn.
福师期末考试《初等数论》复习题及参考答案

福师期末考试《初等数论》复习题及参考答案本复习题页码标注所用教材为:教材名称单价作者版本出版社初等数论14.20闵嗣鹤,严士健第三版高等教育出版社复习题及参考答案一一、填空(40%)1、求所有正约数的和等于15的最小正数为考核知识点:约数,参见P14-192、若b1,b2,L L,b11是模11的一个完全剩余系,则8b1+1,8b2+1,L L,8b11+1也是模11的剩余系.考核知识点:完全剩余系,参见P54-573.模13的互素剩余系为考核知识点:互素剩余系,参见P584.自176到545的整数中是13倍数的整数个数为考核知识点:倍数,参见P11-13p是素数,a是任意一个整数,则a被p整除或者5、如果考核知识点:整除,参见P1-4a,b的公倍数是它们最小公倍数的.6、提示:要证明原式成立,只须证明 3 a + a +1,或者 3 a + a 成立即可。
四、(10%)设 p 是不小于 5 的素数,试证明 p ≡ 1(mod 24)考核知识点:最小公倍数,参见 P11-137、如果 a , b 是两个正整数,则存在 整数q , r ,使 a = bq + r , 0 ≤ r p b .考核知识点:整除,参见 P1-48、如果 3 n , 5 n ,则 15( ) n .考核知识点:整除,参见 P1-4二、(10%)试证:6|n(n+1)(2n+1),这里 n 是任意整数。
考核知识点:整除的性质,参见 P9-12提示: i)若 则ii)若 则iii)若 则又三、(10%)假定 a 是任意整数,求证 a 2+ a + 1 ≡ 0(mod 3 ) 或a 2+ a ≡ 0(mod 3 )考核知识点:二次同余式,参见 P882 22 考核知识点:同余的性质,参见 P48-52提示: 且 是不小于 5 的素数. 又 且 是不小于 5 的素数.⎩14 x ≡ 2(mod 8)⎪⎩ x ≡ 3(mod 8) ⎪⎩如果 n = x + y , 所以 x , y 只能与 0,1 同余,所以 x + y ≡ 0,1, 2(mod 4)只能是奇数且即 即五、(15%)解同余式组 ⎧5 x ≡ 1(mod 7) ⎨考核知识点:同余式,参见 P74-75 提示∵ (14,8)=2 且 2 | 2∴ 14x≡2(mod8) 有且仅有二个解 解 7x≡1(mod4) ⇒ x≡3 (mod4) ∴ 6x≡10(mod8)的解为x≡3,3+4(mod8)⎧⎪x ≡ 3(mod 7) 原同余式组等价于 ⎨ ⎧⎪x ≡ 3(mod 7)或 ⎨x ≡ 7 (mod 8)分别解出两个解即可。
高中数学:“初等数论”

高中数学:“初等数论”一、知识点概述初等数论是研究自然数的性质及其相互关系的一门数学学科,其研究对象是自然数和它们的运算。
初等数论主要研究质数、公因数和最大公因数、同余、数的分解、勒让德符号、二次剩余等数论基础知识。
二、重点概念解释1. 质数:大于1的自然数,除1和它本身外,不能被其它自然数整除的数字称为质数。
2. 素数:素数是指只有1和它本身两个约数的数。
3. 最大公因数:指两个或两个以上整数共有约数中,最大的一个。
4. 同余:对于任意整数a、b、n(n≠0),若n|(a-b),则称a与b在模n条件下同余,记作a≡b(mod n)。
5. 勒让德符号:勒让德符号(Legendre Symbol)是一种特殊的符号,用来判断一个整数是否是二次剩余,即其是否满足某些特殊性质。
三、典型例题分析例题1:求最大公因数gcd(100, 80)。
答案:首先列出100=2^2×5^2,80=2^4×5,公共因子为2^2×5,即gcd(100,80)=20。
例题2:判断71^25与81在模10下是否同余。
答案:将71=7×10+1,用费马小定理得7^4≡1(mod 10),于是71^25≡(7×10+1)^25≡7^25≡7(mod 10)。
又81≡1(mod 10),因此不同余。
例题3:判断21与31在模5下是否有逆元。
答案:首先求21与31分别除以5的余数为1和1,因为1和5互素,所以1有逆元,然后判断31在模5下是否有逆元:31除以5余1,31与5不互素,因此31在模5下没有逆元。
例题4:求解同余方程3x≡4(mod 5)。
答案:gcd(3,5)=1,因此同余方程有解。
将方程两边乘以3的逆元2(即2×3≡1(mod 5))得到6x≡8(mod 5),即x≡3(mod 5)。
因此,同余方程的解为x≡3(mod 5)。
例题5:对于勒让德符号(a/p),当p为素数,a为整数时,有以下性质:i. (a/p)=0当且仅当a≡0(modp)。
初等数论期末复习

2015年5月8日9时1分
性质(9)
若 a ≡b (mod m1), a ≡b (mod m2), m=[ m1, m2 ], 则 a ≡ b (mod m) .
性质(10) 设d ≥1, d | m,若a ≡b (mod m) ,
则 a ≡ b (mod d ) .
性质(11) 若a ≡b (mod m),则 (a,m) = (b,m).
则一次同余方程ax ≡ b ( mod m )恰有一个解 .
一次同余方程有解的判定
定理3.1.3 设m为正整数, a, b是整数, (a, m)=d,则同
余方程 ax≡b (mod m) 有解的充分必要条件为 d | b.
定理3. 1. 4 设m为正整数, a为整数, (a, m)=d,
d | b,则同余方程 ax ≡ b (mod m) 恰有 d 个解.
变形(1):加上或减去模的倍数,推广的加减变形,
即 a≡b+mk (mod m); 变形(2):移项变形, 由 a≡b+c(mod m) 可得 a-c≡b(mod m); 变形(3):约去同余式两端的公约数,约简变形,
2015年5月8日9时1分
简化剩余系的充要条件
定理2.2 7 整数集合 {a1 , a2 , , a ( m) }为模m的 简化剩余系的充要条件是: ( i ) (ai, m) =1 ( 1≤i ≤ϕ (m) ); ( ii ) 各数关于模m两两不同余.
2015年5月8日9时1分
定理 2.2.8 若( a,m ) = 1 , x 通过模 m 的简化 剩余系,则 ax 也通过模 m 的简化剩余系。
2015年5月8日9时1分
பைடு நூலகம்
利用同余解答整除问题
初等数论知识点总结

《初等数论》总结姓名 xxx学号 xxxxxxxx院系 xxxxxxxxxxxxxxx专业 xxxxxxxxxxxxxxx个人感想初等数论是一门古老的学科,它对于数的性质以及方程整数的解做了深入的研究,是对中等数学数的理论的继续和提高。
有时候上课听老师讲解一些例题,觉得比较简单,结果便是懂非懂地草草了之,但是过段时间做老师留下的一些相似的课后练习时,又毫无头绪,无从下手。
这就是上课的时候没做到全神贯注地去听,所以课下的时间尤为重要,一定做好复习巩固的工作。
老师讲课的方法也十分好,每次上课都会花二十分钟到半个小时来对上节课的知识帮助我们进行回顾,我想很多同学都喜欢并适合这种教学方式。
知识点总结第一章 整数的可除性1. 定义:设b a ,是给定的数,0≠b ,若存在整数c ,使得bc a =则称b 整除a ,记作a b |,并称b 是a 的一个约数,称a 是b 的一个倍数,如果不存在上述c ,则称b 不能整除a 2性质:(1)若c b |且a c |,则a b |(传递性质);(2)若a b |且c b |,则)(|c a b ±即为某一整数倍数的整数之集关于加、减运算封闭。
若反复运用这一性质,易知a b |及c b |,则对于任意的整数v u ,有)(|cv au b ±。
更一般,若n a a a ,,,21Λ都是b 的倍数,则)(|21n a a a b +++Λ。
或着i b a |,则∑=ni ii b c a 1|其中n i Z c i ,,2,1,Λ=∈;(3)若a b |,则或者0=a ,或者||||b a ≥,因此若a b |且b a |,则b a ±=; (4)b a ,互质,若c b c a |,|,则c ab |;(5)p 是质数,若n a a a p Λ21|,则p 能整除n a a a ,,,21Λ中的某一个;特别地,若p 是质数,若n a p |,则a p |;(6)(带余数除法)设b a ,为整数,0>b ,则存在整数q 和r ,使得r bq a +=,其中b r <≤0,并且q 和r 由上述条件唯一确定;整数q 被称为a 被b 除得的(不完全)商,数r 称为a 被b 除得的余数。
初等数论知识点整理

初等数论知识点整理 1. 整数的基本性质:
- 整数的定义与整数集的基本运算
- 整数的大小与比较
- 整数的不同表示形式(十进制、二进制、八进制等) 2. 整除与约数:
- 整除的定义与性质
- 素数的定义与判定方法
- 约数的定义与性质
- 最大公约数与最小公倍数的概念与计算方法
3. 同余与模运算:
- 同余的定义与性质
- 同余的基本运算性质
- 模运算的基本性质
- 剩余类和完全剩余系的概念与性质
4. 质数与素数:
- 质数与素数的定义
- 质数与素数的性质和特性
- 素数的测试方法与算法
- 质因数分解的方法与应用
5. 数论基本定理:
- 唯一分解定理(素因数分解定理)
- 辗转相除法与欧几里得算法
- 欧拉函数与欧拉定理
- 费马小定理与扩展欧几里得算法
6. 数论问题的应用:
- 同余方程与线性同余方程
- 不定方程的整数解与应用
- 素数分布与素数定理
- 模重复性与周期性问题
注意:本整理的所有内容仅供参考,请勿将其作为官方教材或其他正式场合使用。
初等数论知识点总结

初等数论知识点总结初等数论是数论中的一个分支,它主要研究自然数的整除性质以及其它基本性质。
初等数论主要包括素数与合数、整数表示、整数方程、模运算、同余方程、数乘次幂循环节等内容。
下面将对初等数论的关键知识点进行总结。
1.素数与合数:素数(质数)是只能被1和自身整除的自然数,合数是除了1和自身以外还能被其它数整除的自然数。
质数有无穷多个,这个结论由欧几里得证明。
常见的质数有2、3、5、7等。
2.素因子分解:任何一个自然数都可以唯一分解成若干个素数的乘积形式,这个分解过程称为素因子分解。
例如,24可以分解为2^3*3,其中2和3是24的素因子。
3.最大公约数与最小公倍数:最大公约数(GCD)是指两个或多个数中最大的能够整除所有这些数的自然数,最小公倍数(LCM)是指两个或多个数中最小的能够被这些数整除的自然数。
GCD可以通过欧几里得算法进行计算,而LCM可以通过两个数的乘积除以它们的GCD得到。
4.模运算与同余方程:模运算是将一个数除以另一个数所得到的余数,同余方程是指具有相同余数的整数关系。
例如,如果a除以n与b除以n得到相同的余数,即a≡b (mod n),则称a与b在模n下是同余的。
5.素数定理与欧拉定理:素数定理是指当自然数x趋于无穷大时,小于等于x的素数的数量约等于x / ln(x),其中ln(x)是自然对数。
欧拉定理是指当正整数a与自然数n互质时,a^(φ(n)) ≡ 1 (mod n),其中φ(n)是小于n且与n互质的自然数的个数。
6.立方与四方数:立方数是指一个数的立方,四方数是指一个数可以表示为四个整数的平方和。
高斯数学说是指四方数的性质,它由高斯证明,表示为四个整数的平方和的非负整数解的个数等于该数的除以8的余数。
7.费马小定理与小费马定理:费马小定理是费马定理的一个特殊情况,它表明如果p是一个素数,a是一个与p互质的整数,那么a^(p-1) ≡ 1 (mod p)。
小费马定理是费马小定理的推广,它表明如果a是一个整数,m是一个大于1的自然数,且a与m互质,那么a^φ(m) ≡ 1 (mod m),其中φ(m)是小于m且与m 互质的自然数的个数。
初等数论总复习题

《初等数论》(2019级小教)总复习题1、进位制的互化:(1)(20 011)3=( )10;(2)(31 404)5=( )10;(3)(7 137)10=( )2;(4)(21 58)10=( )8;(5)(1376)8=( )5;(6)2000=( )3=( )7=( )9=( )12;(7)(12301)5=( )7 .2、已知(ab)9=(ba)7,求a,b.3、(1)以2为基,求13,15,19的小数展开式; (2)以12为基,求113,114的小数展开式. 4、如果(52)k 是(25)k 的两倍,那么(123)k 在十进位制中表示多少?5、某正整数除以3余2,除以4余1,则此数除以12余数为?6、计算:(1)(110)2+(1011)2;(10101)2-(111)2; (10101)2×(101)2;(1101001)2÷(1010)2.(2)(2517)8+(3124)8;(15721)8-(452)8; (301)8×(125)8;(212)÷(27)8.7、若962427ab 且1162427ab ,求a,b.8、四位数7a2b̅̅̅̅̅̅̅能同时被2,3,5整除,求a,b.̅̅̅̅̅̅̅̅̅̅,求a,b.9、已知99|81ab93̅̅̅̅̅̅̅̅̅̅̅̅,求a,b.10、已知24|62742ab11、三个相邻偶数之积是四位数,且其末位数为8,求这个三位数。
12、若1176a=b4(a,b为正整数),求a的最小值。
13、975*935*972*( ) ,要使这个乘积的最后四个数都是零,则()内最小应填几?14、写出下列各数的标准分解式.193975,26840,111111,999 999 999 99915、某数除300,262,205余数相同,则此数最大值为 .16、某数除701,1059,1417,2312余数相同,则此数最大值为多少.17、720的所有正约数的倒数之和为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初等数论总复习题及知识点总结最后,给大家提一点数论的学习方法,即一定不能忽略习题的作用,通过做习题来理解数论的方法和技巧,华罗庚教授曾经说过如果学习数论时只注意到它的内容而忽略习题的作用,则相当于只身来到宝库而空手返回而异。
数论有丰富的知识和悠久的历史,作为数论的学习者,应该懂得一点数论的常识,为此在辅导材料的最后给大家介绍数论中著名的“哥德巴赫猜想”和费马大定理的阅读材料。
初等数论自学安排第一章:整数的可除性(6学时)自学18学时整除的定义、带余数除法最大公因数和辗转相除法整除的进一步性质和最小公倍数素数、算术基本定理[x]和{x}的性质及其在数论中的应用习题要求:2,3 ;:4 ;:1;:1,2,5;:1。
第二章:不定方程(4学时)自学12学时二元一次不定方程多元一次不定方程勾股数费尔马大定理。
习题要求:1,2,4;:2,3。
第三章:同余(4学时)自学12学时同余的定义、性质剩余类和完全剩余系欧拉函数、简化剩余系欧拉定理、费尔马小定理及在循环小数中的应用习题要求:2,6;:1;:2,3;1,2。
第四章:同余式(方程)(4学时)自学12学时同余方程概念孙子定理高次同余方程的解数和解法素数模的同余方程威尔逊定理。
习题要求:1;:1,2;:1,2。
第五章:二次同余式和平方剩余(4学时)自学12学时二次同余式单素数的平方剩余与平方非剩余勒让德符号二次互反律雅可比符号、素数模同余方程的解法习题要求:2;:1,2,3;:1,2;:2;:1。
第一章:原根与指标(2学时)自学8学时指数的定义及基本性质原根存在的条件指标及n次乘余模2及合数模指标组、特征函数习题要求:3。
第一章整除一、主要内容整除的定义、带余除法定理、余数、最大公因数、最小公倍数、辗转相除法、互素、两两互素、素数、合数、算术基本定理、Eratosthesen筛法、[x]和{x}的性质、n!的标准分解式。
二、基本要求通过本章的学习,能了解引进整除概念的意义,熟练掌握整除整除的定义以及它的基本性质,并能应用这些性质,了解解决整除问题的若干方法,熟练掌握本章中二个著名的定理:带余除法定理和算术基本定理。
认真体会求二个数的最大公因数的求法的理论依据,掌握素数的定义以及证明素数有无穷多个的方法。
能熟练求出二个整数的最大公因数和最小公倍数,掌握高斯函数[x]的性质及其应用。
三、重点和难点(1)素数以及它有关的性质,判别正整数a 为素数的方法,算术基本定理及其应用。
(2)素数有无穷多个的证明方法。
(3)整除性问题的若干解决方法。
(4)[x]的性质及其应用,n!的标准分解式。
四、自学指导整除是初等数论中最基本的概念之一,b∣a的意思是存在一个整数q,使得等式a=bq成立。
因此这一标准作为我们讨论整除性质的基础。
也为我们提供了解决整除问题的方法。
即当我们无法用整除语言来叙述或讨论整除问题时,可以将其转化为我们很熟悉的等号问题。
对于整除的若干性质,最主要的性质为传递性和线性组合性,即(1)a∣b, b∣c, 则有a∣c (2)a∣b, a∣c, 则有a∣mb+nc读者要熟练掌握并能灵活应用。
特别要注意,数论的研究对象是整数集合,比小学数学中非负整数集合要大。
本章中最重要的定理之一为带余除法定理,即为设a是整数,b是非零整数,则存在两个整数q,r,使得a=bq+r (0)它可以重作是整除的推广。
同时也可以用带余除法定理来定义整除性,(即当余数r=0时)。
带余除法可以将全体整数进行分类,从而可将无限的问题转化为有限的问题。
这是一种很重要的思想方法,它为我们解决整除问题提供了又一条常用的方法。
同时也为我们建立同余理论建立了基础。
读者应熟知常用的分类方法,例如把整数可分成奇数和偶数,特别对素数的分类方法。
例全体奇素数可以分成4k+1,4k+3;或6k+1,6k+5等类型。
和整除性一样,二个数的最大公约数实质上也是用等号来定义的,因此在解决此类问题时若有必要可化为等式问题,最大公因数的性质中最重要的性质之一为 a=bq+c,则一定有(a,b)=(b,c),就是求二个整数的最大公约数的理论根据。
也是解决关于最大公约数问题的常用方法之一。
读者应有尽有认真体会该定理的证明过程。
互素与两两互素是二个不同的概念,既有联系,又有区别。
要认真体会这些相关的性质,例如,对于任意a ,b∈Z,可设(a ,b)=d,则a=da1 ,b=db1,则(a1 ,b1)=1,于是可对a1 ,b1使用相应的定理,要注意,相关定理及推论中互素的条件是经常出现的。
读者必须注意定理成立的条件,也可以例举反例来进行说明以加深影响。
顺便指出,若a∣c,b∣c,(a ,b)=1,则ab∣c是我们解决当除数为合数时的一种方法。
好处是不言而喻的。
最小公倍数实际上与最大公因数为对偶命题。
特别要指出的是a和b的公倍数是有无穷多个。
所以一般地在无穷多个数中寻找一个最小数是很困难的,为此在定义中所有公倍数中的最小的正整数。
这一点实际上是应用自然数的最小自然数原理,即自然数的任何一个子集一定有一个最小自然数有在。
最小公倍数的问题一般都可以通过以下式子转化为最大公因数的问题。
两者的关系为a ,b∈N,[a ,b]=上述仅对二个正整数时成立。
当个数大于2时,上述式子不再成立。
证明这一式子的关键是寻找a , b的所有公倍数的形式,然后从中找一个最小的正整数。
解决了两个数的最小公倍数与最大公因数问题后,就可以求出n个数的最小公倍数与最大公因数问题,可以两个两个地求。
即有下面定理设是n个整数,则()=设则有[]=素数是数论研究的核心,许多中外闻名的题目都与素数有关。
除1外任何正整数不是质数即为合数。
判断一个已知的正整数是否为质数可用判别定理去实现。
判别定理又是证明素数无穷的关键。
实际上,对于任何正整数n>1,由判别定理一定知存在素数p,使得p∣n 。
即任何大于1的整数一定存在一个素因数p 。
素数有几个属于内在本身的性质,这些性质是在独有的,读者可以用反例来证明:素数这一条件必不可少。
以加深对它们的理解。
其中p∣abp∣a或p∣b也是常用的性质之一。
也是证明算术基本定理的基础。
算术基本定理是整数理论中最重要的定理之一,即任何整数一定能分解成一些素数的乘积,而且分解是唯一的,不是任何数集都能满足算术基本定理的,算术基本定理为我们提供了解决其它问题的理论保障。
它有许多应用,由算术基本定理我们可以得到自然数的标准分解问题。
设a=,b=,则有(a,b)=[a,b]= 例如可求最大公约数,正整数正约数的个数等方面问题,对具体的n,真正去分解是件不容易的事。
对于较特殊的n,例如n!分解还是容易的。
应用[x]的性质,n!的标准分解式可由一个具体的公式表示出来,这一公式结合[x]的性质又提供了解决带有乘除符号的整除问题的方法。
本章的许多问题都围绕着整除而展开,读者应对整除问题的解决方法作一简单的小结。
五、例子选讲补充知识①最小自然数原理:自然数的任意非空子集中一定存在最小自然数。
②抽屉原理:(1)设n是一个自然数,有n个盒子,n+1个物体,把n+1个物体放进n个盒子,至少有一个盒子放了两个或两个以上物体;(2)km+1个元素,分成k组,至少有一组元素其个数大于或等于m+1;(3)无限个元素分成有限组,至少有一组其元素个数为无限。
③梅森数:形如2n-1的数叫梅森数,记成Mn=2n-1。
④费尔马数:n为非负整数,形如的数叫费尔马数,记成Fn=。
⑤设n=,设n的正因子个数为d(n),所有正因子之和为,则有⑥有关技巧1、整数表示a=a010n+a110n-1+…+an,a=2kb(b为奇数)2、整除的常用方法a、用定义b、对整数按被n除的余数分类讨论c、连续n个整数的积一定是n的倍数d、因式分解an-bn=(a-b)M1,an+bn=(a+b)M2,2 ne、用数学归纳法f、要证明a|b,只要证明对任意素数p,a中p的幂指数不超过b中p的幂指数即可,用p(a)表示a中p的幂指数,则a|bp(a)p(b)例题选讲例1、请写出10个连续正整数都是合数、解:11!+2,11!+3,……,11!+11。
例2、证明连续三个整数中,必有一个被3整除。
证:设三个连续正数为a,a+1,a+2,而a只有3k,3k+1,3k+2三种情况,令a=3k,显然成立,a=3k+1时,a+2=3(k+1),a=3k+2时,a+1=3(k+1)。
例3、证明lg2是无理数。
证:假设lg2是有理数,则存在二个正整数p,q,使得lg2=,由对数定义可得10=2,则有25 =2,则同一个数左边含因子5,右边不含因子5,与算术基本定理矛盾。
∴lg2为无理数。
例4、求(21n+4,14n+3)解:原式=(21n+4,14n+3)=(7n+1,14n+3)=(7n+1,7n+2)=(7n+1,1)=1例5、求2004!末尾零的个数。
解:因为10=25,而2比5多,所以只要考虑2004!中5的幂指数,即5(2004!)=例6、证明(n!)(n-1)!|(n!)!证:对任意素数p,设(n!)(n-1)!中素数p的指数为,(n!)!中p的指数β,则,,即,即左边整除右边。
例7、证明2003|(+-xx)证:∵ =(2003-1)2002=2003M1+1=(2003+1)2002=2003M2+1∴+-xx=2003(M1+M2-1)由定义2003|(+-xx)例8、设d(n)为n的正因子的个数, (n)为n的所有正因子之和,求d(1000), (1000)。
解:∵1000=2353∴d(1000)=(3+1)(3+1)=16, (1000)=例9、设c不能被素数平方整除,若a2|b2c,则a|b证:由已知p(c)≤1,且p(a2)≤p(b2c)∴2p(a)≤2p(b)+p(c), ∴ p(a)≤p(b)+即p(a)≤p(b), ∴ a|b例10、若Mn为素数,则n一定为素数。
证:若n为合数,则设n=ab,(1<a,b<n)∴2ab-1=(2a)b-1=(2a-1)M为合数,与Mn 为素数矛盾,∴ n为素数。
例11、证明对任意m,n,m≠n, (Fn,Fm)=1。
证:不妨设n>m,则Fn-2=()()=(Fn-1-2)()= Fn-1Fn-2……Fm- F0设(Fn,Fm)=d,则d|Fn,d|Fmd|2但Fn为奇数,∴d=1, 即证。
例12、设m,n是正整数。
证明证 : 不妨设。
由带余数除法得我们有由此及得,=注意到,若,则,结论成立、若,则继续对作同样的讨论,由辗转相除法知,结论成立。
显见,2用任一大于1的自然a代替,结论都成立。
例13、证明:对任意的正整数,成立如下不等式。
其中是数的以10为底的对数,是的不同的素因数(正的)的个数。