复变函数部分的判断选择填空
复变函数题库(包含好多考试卷,后面都有问题详解)
5.如z0是函数f(z)的本性奇点,则 一定不存在. ( )
6.若函数f(z)在z0可导,则f(z)在z0解析. ( )
7.若f(z)在区域D解析,则对D任一简单闭曲线C .
( )
8.若数列 收敛,则 与 都收敛. ( )
9.若f(z)在区域D解析,则|f(z)|也在D解析. ( )
1.设 ,则 .
2.若 ,则 ______________.
3.函数ez的周期为__________.
4.函数 的幂级数展开式为__________
5.若函数f(z)在复平面上处处解析,则称它是___________.
,
证明 是一个至多n次的多项式或一常数。
《复变函数》考试试题(四)
一. 判断题. (20分)
1.若f(z)在z0解析,则f(z)在z0处满足柯西-黎曼条件.()
2.若函数f(z)在z0可导,则f(z)在z0解析.()
3.函数 与 在整个复平面有界.()
4.若f(z)在区域D解析,则对D任一简单闭曲线C都有 .
7.方程 在单位圆的零点个数为________.
8.设 ,则 的孤立奇点有_________.
9.函数 的不解析点之集为________.
10. .
三.计算题. (40分)
1.求函数 的幂级数展开式.
2.在复平面上取上半虚轴作割线.试在所得的区域取定函数 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 处的值.
3.计算积分: ,积分路径为(1)单位圆( )的右半圆.
4.求 .
四.证明题. (20分)
1.设函数f(z)在区域D解析,试证:f(z)在D为常数的充要条件是 在D解析.
《复变函数》考试试题与答案(一)
《复变函数》考试试题与答案(一)《复变函数》考试试题(一)一、判断问题(20分):1.若f(z)在z0的某个邻域内可导,则函数f(z)在z0解析.()2.有界整函数必在整个复平面为常数.()3.若{Zn}收敛,然后{rezn}{imzn}与都收敛了()4.若f(z)在区域d内解析,且f'(z)?0,那么f(z)?C(常数)5.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.()6.若z0是f(z)的m阶零点,则z0是1/f(z)的m阶极点.()7.若Z如果z0limf(Z)存在且是有限的,那么z0是函数f(Z)()8.若函数f(z)在是区域d内的单叶函数,则f'(z)?0(?z?d).()9.若f(z)在区域d内解析,则对d内任一简单闭曲线c? cf(z)dz?0()10.如果函数f(z)在区域D的圆中是常数,那么f(z)在区域D中是常数(II)填充空格(20点)dz?__________.(n为自然数)1、?| Zz0 |?1(z?z)n022sinz?科兹。
二3.函数sinz的周期为___________.f(z)?4.设计?1z2?1,则f(z)的孤立奇点有__________.n5。
幂级数?nzn?0的收敛半径为__________.6.如果函数f(z)在整个平面上的任何地方都被分解,则调用它_____7.若n??limzn??z1?z2?...?zn?n??n,则______________.limezres(n,0)?z8.____________;其中n是一个自然数sinz9.的孤立奇点为________.ZLMF(z)?_____;ZF(z)的极点,那么z?z010。
如果0是三.计算题(40分):1.设计1f(z)?(z?1)(z?2),求f(z)在d?{z:0?|z|?1}内的罗朗展式.1dz.?|z |?Cosz2。
3?2?7??1f(z)??d?c??z3.设,其中c?{z:|z|?3},试求f'(1?i).W4.找出复数z?1z?1的实部与虚部.证明问题(20分)1函数是常数。
复变函数部分习题解答分析(复拉)
∂u ∂y 2
= 2vvy = −vx 两式相乘并整理得 (4v 2 + 1)vx vy = 0. 由以上
ux = vy = 6xy ⇒ u = 3x2 y + D(y ) (4) 将(3),(4)代入(0)式,得 u =
3x2 y − y 3 + C, v = 3xy 2 − x3 + C .
chz =
ez +e−z 2
1 = 0, e2z + 1 = 0. 2z = Ln(−1) = ln | − 1| + i arg(−1) + 2kπi, z = (k + 2 )πi.
作业卷(三) 一 判断题 1.设 C 为 f (z ) 的解析域 D 内的一条简单正向闭曲线, 则 |z | < 2 内解析, C 取 |z | = 1, 则
的解为 z =
分析:两边同乘以 eiz , 得e2iz = 1. 两边取自然对数, 得 2iz = Ln1 = ln |1| + i arg(1) + 2kπi = 2kπi, z =
条件.
分析:f (z ) 在该点解析, 则 f (z ) 在该点的某一个邻域内可导, 在该点当然连续。填必要.
分析: 解析的充要条件. ux =
复变函数部分习题解答分析
作业卷(一) 一 判断题 1.复数 7 + 6i > 1 + 3i. ×. 两个复数, 只有都是实数时, 才可比较大小. 2.若 z 为纯虚数,则 z = z ¯. √ . 按书上定义, 纯虚数指 yi, y = 0, 若 z = yi , 则 z ¯ = −yi. 3.函数 w = arg(z ) 在 z = −3 处不连续. √ . 当 z 从下方 → −3时, w = arg(z ) 的极限为 −π ; 当 z 从上方 → −3 时, w = arg(z ) 的极限为 π . 4. f (z ) = u + iv 在 z0 = x0 + iy0 点连续的充分必要条件是 u(x, y ), v (x, y ) 在(x0 , y0 ) 点连续. √ . Th1.4.3. 5.参数方程 z = t2 + ti ( t 为实参数)所表示的曲线是抛物线 y = x2 . ×. x = y 2 . 二 填空题 1.若等式 i(5 − 7i) = (x + i)(y − i) 成立,则 x= 2.方程 Im(i − z ¯) = 3 表示的曲线是 3.方程z 3 + 27 = 0的根为 4.复变函数 w =
《复变函数》考试试题与答案各种总结.docx
---《复变函数》考试试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数f(z) 在 z 0 解析 .2. 有界整函数必在整个复平面为常数.3. 若{ z n }收敛,则{Re z n } 与{Im z n }都收敛 .4. 若 f(z) 在区域 D 内解析,且f '( z),则f ( z) C(常数) 5. 若函数 f(z) 在 z 0 处解析,则它在该点的某个邻域内可以展开为幂级数6. 若 z 0 是 f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 .( ) ( ) ( ). ( ).( )()()8. 若函数 f(z) 在是区域 D 内的单叶函数,则f ' (z) 0( zD ).()9. 若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线Cf z dz.( )C( )10. 若函数 f(z) 在区域 D 内的某个圆内恒等于常数,则 f(z)在区域 D 内恒等于常数 . ()二. 填空题( 20 分)1、|z z 0 |dz__________. ( n 为自然数)1 ( z z )n2.sin 2zcos 2z_________.3. 函数sin z的周期为 ___________.f (z)z 2 11,则f ( z)的孤立奇点有 __________.4.设5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ...z n7. 若 n,则 nn______________.Res(e z8.n,0)________,其中 n 为自然数 .z---9.sin z的孤立奇点为 ________ .z若z 0 是 f (z)lim f (z)___10. 的极点,则z z.三. 计算题( 40 分):f (z)11. 设(z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1} 内的罗朗展式 .1dz.|z| 1cos z2.3. 设f ( z)3 271d{ z :| z | 3} ,试求 f ' (1 i ).Cz,其中 Cz 1w1 的实部与虚部 .4.求复数z四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2. 试证 : f ( z) z(1 z) 在割去线段 0Re z 1 的 z 平面内能分出两个单值解析分支,并求出支割线0 Re z 1上岸取正值的那支在 z 1的值 .《复变函数》考试试题(一)参考答案一. 判断题1.× 2.√ 3.√ 4.√5.√6.√ 7.×8.×9.× 10.×二.填空题2 in1 2.1 ;3. 2k , ( k z) ;4.z i ; 5.11.n;16. 整函数;7. ; 1 ; 9. 0; 10..8.(n 1)!三.计算题 .1. 解因为 0 z 1, 所以 0 z 1f ( z)1 1 1 z zn1 ( z )n.( z 1)(z 2) 1 z 2(1 )n 02 n 0 22---2.解因为z21Re s f (z)lim lim,cosz sin z1 z z z222Re s f (z)lim z2lim1 1 . cosz sin zz z z2 22所以1dz2i(Re s f (z)Re s f (z)0. z2 cosz z2z23.解令 ()3271,则它在 z 平面解析,由柯西公式有在z 3内,f (z)c ()dz2i(z) . z所以 f (1i )2i( z) z 1 i2i (136i )2(613i ) .4.解令 z a bi ,则w z 11212( a1bi )12( a1)2b2. z 1z 1222b22b( a 1) b( a 1)(a 1)z12(a1)z12bb2 .故 Re( z1)1( a1)2b2,Im(z1)(a1)2四. 证明题 .1.证明设在 D 内 f (z) C .令 f ( z) u iv ,2u2v2c2.则 f ( z)两边分别对 x, y 求偏导数,得uu x vv x0(1) uu y vv y0(2)因为函数在 D 内解析,所以 u x v y ,u y v x.代入 (2)则上述方程组变为uu x vv x0 .消去 u x得,(u2v2 )v x0 .vu x uv x01)若 u2v20 ,则 f (z)0 为常数.2)若 v x0,由方程(1) (2) 及C.R.方程有u x0,u y0 , v y0 .所以 u c1, v c2. ( c1 ,c2为常数).---所以 f ( z) c 1 ic 2 为常数 .2. 证明 f ( z)z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z 1 的 z 平面内变点就不可能单绕 0 或 1 转一周 , 故能分出两个单值解析分支 .由于当 z 从支割线上岸一点出发 ,连续变动到 z0,1 时 , 只有 z 的幅角增加. 所以f ( z)z(1 z) 的幅角共增加. 由已知所取分支在支割线上岸取正值 , 于是可认为该分2z1的幅角为, 故 f ( 1)i2i .支在上岸之幅角为 0,因而此分支在2e22《复变函数》考试试题(二)一. 判断题 . (20 分)1. 若函数 f ( z)u( x, y) iv ( x, y) 在 D 内连续,则 u(x,y)与 v(x,y)都在 D 内连续 .( ) 2. cos z 与 sin z 在复平面内有界 .()3.若函数 f(z)在 z 解析,则 f(z)在 z 连续 .()0 04. 有界整函数必为常数 .一定不存在 .()5. 如 0是函数f(z)的本性奇点,则 lim f ( z) ()zz z 06. 若函数 f(z)在 z 0 可导,则 f(z)在 z 0 解析 .()7.若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线 Cf (z)dz0 .C( ) 8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .() 9. 若 f(z)在区域 D 内解析,则 |f(z)|也在 D 内解析 .()10. 存在一个在零点解析的函数1 ) 0 1 1 1,2,... .f(z) 使 f (且 f ( ) ,nn 1 2n 2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z__, z __2.设 f (z) ( x 22xy) i(1 sin( x 2y 2 ), z x iy C ,则 limf ( z) ________.z 1i3.|z z 0| 1(zdz_________.z )n( n 为自然数)---4.幂级数 nz n的收敛半径为__________ .n05.若 z0是 f(z)的 m 阶零点且 m>0,则 z0是f '( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.8.设 f ( z)1,则 f (z) 的孤立奇点有_________.21z9.函数 f ( z) | z | 的不解析点之集为________.10. Res(z41,1) ____ . z三. 计算题 . (40 分)1.求函数sin( 2z3)的幂级数展开式 .2.在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z | 1)i的右半圆 .sin z dzz 2(z) 24.求2.四. 证明题 . (20 分)1. 设函数 f(z)在区域 D 内解析,试证: f(z)在 D 内为常数的充要条件是 f (z) 在D内解析 .2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(二)参考答案一.判断题 .1.√2.×3.√4.√ 5.× 6.×7.×8.√9.× 10.× .二.填空题---1.1 ,, i ;2. 3(1sin 2)i ;3.2 i n14. 1;5. m 1 . 0n;216.2k i ,( k z) .7. 0;8. i;9.R ;10. 0.三.计算题1.解 sin(2 z3 )( 1)n (2 z3 )2 n 1(1)n 22n 1 z6n3.n 0(2 n1)!n 0(2n1)!2.解令 z re i.2 ki则 f ( z)z re2,(k0,1).又因为在正实轴去正实值,所以k0 .所以 f (i)ie 4.3.单位圆的右半圆周为z e i,ide i e i 所以 zdz22i22 4.解.2 2 2i .即 u, v 满足 C.R.,且u x , v y , u y ,v x连续 , 故f ( z)在D内解析 .( 充分性 ) 令f ( z)u iv, 则 f ( z)u iv ,因为 f ( z) 与 f ( z) 在D内解析,所以u x v y , u y v x,且 u x ( v) y v y , u y( v x )v x.比较等式两边得u x v y u y v x0 .从而在 D 内 u, v 均为常数,故f ( z)在 D 内为常数.2. 即要证“任一n次方程a0 z n a1z n1a n 1z a n0(a00) 有且只有n 个根”.证明令 f (z)a0 z n a1z n 1a n1za n0 ,取 R max a1a n,1 ,当 za0在 C : z R 上时,有(z)a1 R n 1an 1R a n( a1a n )R n 1a0R n.f ( z) .由儒歇定理知在圆z R 内,方程 a0 z n a1z n 1a n 1z a n0与 a0 z n0有相---同个数的根 . 而 a 0 z n 0 在 z R 内有一个 n 重根 z 0 . 因此 n 次方程在 z R 内有 n 个根 .《复变函数》考试试题(三)一 . 判断题 . (20 分).1. cos z 与 sin z 的周期均为 2k .( )2. 若 f ( z) 在 z 0 处满足柯西 - 黎曼条件 , 则 f ( z) 在 z 0 解析 . ( )3. 若函数 f ( z) 在 z 0 处解析,则 f ( z) 在 z 0 连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )5.若函数 f ( z) 是区域 D 内解析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D 内为常数 . ( )6. 若函数 f ( z) 在 z 0 解析,则 f ( z) 在 z 0 的某个邻域内可导 . ()7.如果函数 f ( z) 在 D{ z :| z | 1} 上解析 , 且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) .( )8.若函数 f ( z) 在 z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若 z 0 是 f ( z) 的 m 阶零点 , 则 z 0 是 1/ f ( z) 的 m 阶极点 . ( )10.若z 0 是 f (z)的可去奇点,则 Res( f ( z), z 0 ) 0. ( )二 . 填空题 . (20 分)1. 设 f ( z)1 ,则 f ( z) 的定义域为 ___________.2 z 12. 函数 e z 的周期为 _________.3. 若 z nn 2 i (1 1) n ,则 lim z n__________.1 nnn4. sin 2 z cos 2 z___________.dz5.|z z 0 | 1(z z )n( n 为自然数)_________.6. 幂级数nx n 的收敛半径为 __________.n设 f (z) 1f z 的孤立奇点有z 2 1,则7.( ) __________.ez---9.若 z 是 f (z)的极点,则 lim f (z) ___ .z z 0z10.Res(en ,0) ____ .z三 . 计算题 . (40 分)11. 将函数 f ( z) z 2e z 在圆环域 0 z内展为 Laurent 级数 .2. 试求幂级数n!z n的收敛半径 .n nn3. 算下列积分:e zdz,其中 C是| z |1.Cz 2 (z29)4. 求 z92z6z 28z 2 0 在| z|<1内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,并且假定存在着一个正整数 n ,以及两个正数 R 及 M ,使得当 | z|R 时| f ( z) |M | z |n,证明 f (z) 是一个至多 n 次的多项式或一常数。
复变函数复习题一(参考答案)
复习题一一、 判断题(正确打∨,错误打⨯,把判断结果填入下表):1、若函数f (z )在0z 解析,则f (z )在0z 的某个邻域内可导。
(∨)2、若函数f (z )在0z 处解析,则f (z )在0z 满足C.-R.条件。
( ∨)3、如果0z 是f (z )的可去奇点,则)(lim 0z f z z →不存在。
(⨯ )4、若函数f (z )在区域D 内解析,则)('z f 在区域D 内解析。
(∨ )5、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展为幂级数。
( ∨)6、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。
(∨ )7、若函数f (z )在区域D 内的解析,且在D 内某一条曲线上恒为常数,则f (z )在区域D 内恒等于常数。
(∨ )8、若0z 是f (z )的m 阶零点,则0z 是)(1z f 的m 阶极点。
(∨ ) 9、如果函数f (z )在闭圆3||k ≤z :上解析,且时当3|z |=,有)0(|)(|>≤m m z f ,则m z f ≤∈∀|)(|,k z 有。
( ∨ ) 10、lim z z e →∞=∞。
(⨯ )二、 单项选择题(将选择结果填入下表。
)1、方程| z + 3 | + | z + 1 | = 4所表示的图形是:(A )双曲线; (B )椭圆; (C )直线; (D )圆。
.)(()()()()()()()(2)(22轴上可导仅在;仅在原点可导;处处不可导;处处可微,那么设、x z f D z f C z f B z f A x i xy z f-=3、设c :,1=-i z 则⎰=-C dz i z z2)(cos(A )eiπ2 (B )1sinh 2π (C )0 (D )i i cos.0)(;0)(;)(;)()(41232但发散,通项趋于通项不趋于条件收敛绝对收敛为级数、D C B A ne n in ∑∞=.)(;)(;)(;)()(353sin 二级极点一级极点可去奇点本性奇点是在点函数、D C B A z e zz =-三、填空题,2,1,0;23arctan ,311±±=+-=--=k k Argz i z ππ则设、 2、=-+22i i __543i +-__。
复变函数论试题库
《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z n z z dz__________.(n 为自然数) 2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.=)0,(Re n zz e s ,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续.( )2. cos z 与sin z 在复平面内有界.( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析.( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求 .四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
复变函数复习题答案
《复变函数》参考答案一、判断题1、错2、对3、对4、对5、对6、对7、错8、错9、错 10、错二、填空题1、2,10,1i n n π=⎧⎨≠⎩ 2、1 3、2,k k z π∈ 4、z i =±5、16、整函数7、ξ8、1(1)!n - 9、0 10、∞三、计算题1、解:2222,u x u yx x y y x y ∂∂==∂+∂+ (,)(0,0)(,)x y y x v x y u dx u dy C =-++⎰22yx dy C x y =++⎰=arctan yx+C 又 11(1)(1,1)(1,1)ln 2(arctan1)ln 222f i u iv i C +=+=++= 故C=,4π- (,)a r c t a n 4y v x y x π=-2、解:()29zf z z =-在||2z ≤上解析,由柯西积分公式有:222||2||2292|(9)()95z i z z z z z dz dz i z z i z i z ππ=-≤=-==⋅=-++-⎰⎰ 3、解:解:令22(),(9)z e f z z z =-则0201Re ()|99z z z e s f z z ====--, 故原式=02Re ()z i s f z π==2,9i π-4、解: 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑5、解:12222011(1)2!!n zn z z e z z z n -+∞==+++=∑6、解:令962()282f z z z z z =-+--,()8z z ϕ=-,则在:||1C z =上()f z 与()z ϕ均解析,且|()|6|()|8f z z ϕ≤<=,故由儒歇定理有(,)1N f C ϕ+=。
即在||1z <内方程只有一个根。
《复变函数》考试试题(八)参考答案
《复变函数》考试试题(八)参考答案一、判断题.1. ×2. ×3. ×4. √5. × 二、填空题.1. 1-2. ()π-3. 1()f z z z=+4. 0,∞5. i6. 2π7. 18. 221nπ-9.本性 10. π- 三、计算题.1.解:arg 2155z k ik w zeπ+= 0,1,2,3,k =1=- 得251k ieππ+-= 从而有2k =4114105102331(1)22(co s sin )44iw i e i i ππππ-+--=⋅=+=2.解:(1)2()1L n z f z z =-的各解析分支为2ln 2()1k z k f z z π+=-,(0,1,)k =± .1z =为0()f z 的可去奇点,为()k f z 的一阶极点(0,1,)k =± 。
0R e ((),1)0s f z = R e ((),1)ks f z k i π= (1,2,)k =±± (2)1100011R e R e !!znn n z z n e z ss zz n n ∞++===⎡⎤=⋅=⎢⎥⎣⎦∑ 3.计算下列积分 解:(1)72323221()12(1)(2)(1)(1)zf z z z z zz==-+-+1R e (,)1s f C -∞=-=-2()2[R e (,)]2z f z d z i s f i ππ==-∞=⎰(2)设2222222()()()()zzf z z a z a i z a i ==++-令22()()zz z a i ϕ=+, 32()()a iz z z a i ϕ'=+则23()2()1R e (,)1!(2)4a i a i s f a i i a i aϕ'===-I m 0()2R e (,)2z f z d z i s f a i aππ>==⎰2222()2x d x x a aπ+∞-∞=+⎰4.儒歇定理:设c 是一条围线,()f z 及()z ϕ满足条件: (1)它们在c 的内部均解析,且连续到c ; (2)在c 上,()()f z z ϕ>则f 与f ϕ+在c 的内部有同样多零点,即()10f z = 6()6g z z z =+有 ()()f z g z >由儒歇定理知66100z z ++=在1z <没有根。
复变函数论试题库及答案
《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 解析, 则对D 任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 的某个圆恒等于常数,则f(z)在区域D 恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 的罗朗展式.2..cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 解析. 证明:如果|)(|z f 在D 为常数,那么它在D 为常数.2. 试证: ()f z 0Re 1z ≤≤的z 平面能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 连续,则u (x,y )与v (x,y )都在D 连续.( )2. cos z 与sin z 在复平面有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 解析, 则对D 任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 解析,则|f (z )|也在D 解析. ( ) 10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 解析,试证:f (z )在D 为常数的充要条件是)(z f 在D 解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 解析且在D 的某个圆恒为常数,则数f (z )在区域D 为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z 的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 解析. 证明:如果|)(|z f 在D 为常数,那么它在D为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
(完整版)《复变函数》考试试题与答案(二)
《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续.( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( ) 6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f . ( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f i z ________.3. =-⎰=-1||00)(z z n z z dz _________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=ii z z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求 dz z z z ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×.二. 填空题1.1,2π-, i ;2. 3(1sin 2)i +-;3. 2101i n n π=⎧⎨≠⎩; 4. 1; 5. 1m -. 6. 2k i π,()k z ∈. 7. 0; 8. i ±; 9. R ; 10. 0.三. 计算题1. 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑. 2. 解 令i z re θ=.则22(),(0,1)k i f z k θπ+===.又因为在正实轴去正实值,所以0k =.所以4()i f i e π=.3. 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤.所以22222i i i i z dz de e i ππθθππ---===⎰⎰.4. 解 dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0.四. 证明题.1. 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-. (12,c c 为实常数). 令12(,),(,)u x y c v x y c ==-. 则0x y y x u v u v ====. 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析. (充分性) 令()f z u iv =+, 则 ()f z u iv =-,因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-. 比较等式两边得 0x y y x u v u v ====. 从而在D 内,u v 均为常数,故()f z 在D 内为常数.2. 即要证“任一 n 次方程 101100(0)n n n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”.证明 令1011()0n n n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n n n n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<. ()f z =.由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00n a z = 有相同个数的根. 而 00n a z = 在 z R < 内有一个 n 重根 0z =. 因此n 次方程在z R <内有n 个根.。
网络教育《复变函数》作业及答案
3!
(2n 1)!
17、求函数 sin z3 z6
在0
|
z
|
内的罗朗展式。
解: sin z3
1
z3
... (1)n
z 6n3
...;
z 6 z3 3!
(2n 1)!
四、证明题 1、若函数 f(z)在 z0 处可导,则 f(z)在 z0 连续。 证明:根据定义可得:若函数 f(z)在 z0 处可导,则 f(z)在 z0 连续。
20、cos z 与 sin z 的周期均为 2k 。( √ )
21、若函数 f(z)在 z0 解析,则 f(z)在 z0 处满足 Cauchy-Riemann 条件。(√ )
第1页共7页 在您完成作业过程中,如有疑难,请登录学院网站“辅导答疑”栏目,与老师进行交流讨论!
22、若函数 f(z)在 z0 处解析,则 f(z)在 z0 连续。(√ )
则
lim
zz0
f
(z) _= (x02
2x0 y0) i(1sin(x02
y02 ),
13、幂级数 nxn 的收敛半径为____1______ n0
14、若 z0 是 f(z)的 m 阶零点且 m>0,则 z0 是 f '(z) 的__ m-1 级___零点。
15、函数 f (z) | z | 的不解析点之集为__ lim z1 z2 ... zn ____。
z 1
解: z 1 (z 1)(z 1) | z |2 1 z z ; z 1 | z 1|2 | z 1|2 | z 1|2
第5页共7页 在您完成作业过程中,如有疑难,请登录学院网站“辅导答疑”栏目,与老师进行交流讨论!
15、设 f (z)
《复变函数》考试试题与答案各种总结
《复变函数》考试试题(一)一、 判断题(20分):1、若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析、 ( )2、有界整函数必在整个复平面为常数、 ( )3、若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛、 ( )4、若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)、 ( )5、若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数、 ( )6、若z 0就是)(z f 的m 阶零点,则z 0就是1/)(z f 的m 阶极点、 ( )7、若)(lim 0z f z z →存在且有限,则z 0就是函数f(z)的可去奇点、 ( )8、若函数f(z)在就是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠、 ( ) 9、 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f 、( )10、若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数、( ) 二、填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________、(n 为自然数)2、=+z z 22cos sin _________、 3、函数z sin 的周期为___________、4、设11)(2+=z z f ,则)(z f 的孤立奇点有__________、5、幂级数nn nz∞=∑的收敛半径为__________、6、若函数f(z)在整个平面上处处解析,则称它就是__________、7、若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________、8、=)0,(Re n zz e s ________,其中n 为自然数、9、 zz sin 的孤立奇点为________ 、10、若0z 就是)(z f 的极点,则___)(lim 0=→z f z z 、三、计算题(40分):1、 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式、2、 .cos 11||⎰=z dz z3、 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4、 求复数11+-=z z w 的实部与虚部、四、 证明题、(20分) 1、 函数)(z f 在区域D 内解析、 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数、 2、 试证: ()f z =0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值、 《复变函数》考试试题(一)参考答案一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题 1、 2101i n n π=⎧⎨≠⎩ ; 2、 1; 3、 2k π,()k z ∈; 4、 z i =±; 5、 16、 整函数;7、 ξ;8、 1(1)!n -; 9、 0; 10、 ∞、三.计算题、1、 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑、 2、 解 因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-、 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰、 3、 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内, ()()2()c f z dz i z z ϕλπϕλ==-⎰、所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+、 4、 解 令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a bi a bw z z a b a b a b -+-+==-=-=-+++++++++、 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b-=+++、 四、 证明题、1、 证明 设在D 内()f z C =、令2222(),()f z u iv f z u v c =+=+=则、两边分别对,x y 求偏导数, 得 0(1)0(2)x x yy uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-、 代入 (2) 则上述方程组变为00x x x x uu vv vu uv +=⎧⎨-=⎩、 消去x u 得, 22()0x u v v +=、 1) 若220u v +=, 则 ()0f z = 为常数、2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =、 所以12,u c v c ==、 (12,c c 为常数)、 所以12()f z c ic =+为常数、2、证明()f z =0,1z =、 于就是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支、由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π、 所以()f z =2π、 由已知所取分支在支割线上岸取正值, 于就是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π,故2(1)i f e π-==、《复变函数》考试试题(二)一. 判断题、(20分)1、 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续、 ( )2、 cos z 与sin z 在复平面内有界、 ( )3、 若函数f (z )在z 0解析,则f (z )在z 0连续、 ( )4、 有界整函数必为常数、 ( )5、 如z 0就是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在、 ( )6、 若函数f (z )在z 0可导,则f (z )在z 0解析、 ( )7、 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f 、( )8、 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛、 ( ) 9、 若f (z )在区域D 内解析,则|f (z )|也在D 内解析、 ( )10、 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f 、( )二、 填空题、 (20分)1、 设i z -=,则____,arg __,||===z z z2、设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________、3、=-⎰=-1||00)(z z n z z dz_________、(n 为自然数)4、 幂级数0n n nz ∞=∑的收敛半径为__________ 、5、 若z 0就是f (z )的m 阶零点且m >0,则z 0就是)('z f 的_____零点、6、 函数e z 的周期为__________、7、 方程083235=++-z z z 在单位圆内的零点个数为________、 8、 设211)(zz f +=,则)(z f 的孤立奇点有_________、 9、 函数||)(z z f =的不解析点之集为________、10、 ____)1,1(Res 4=-zz 、 三、 计算题、 (40分)1、 求函数)2sin(3z 的幂级数展开式、2、 在复平面上取上半虚轴作割线、 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值、3、 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆、4、 求dzz zz ⎰=-22)2(sin π、四、 证明题、 (20分)1、 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件就是)(z f 在D 内解析、2、 试用儒歇定理证明代数基本定理、《复变函数》考试试题(二)参考答案一. 判断题、1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×、 二、 填空题1、1,2π-, i ; 2、 3(1sin 2)i +-; 3、2101i n n π=⎧⎨≠⎩; 4、 1; 5、 1m -、 6、 2k i π,()k z ∈、 7、 0; 8、 i ±; 9、 R ; 10、 0、 三、 计算题1、 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑、2、 解 令i z re θ=、则22(),(0,1)k if z k θπ+===、又因为在正实轴去正实值,所以0k =、所以4()if i eπ=、3、 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤、所以22222ii i iz dz de ei ππθθππ---===⎰⎰、4、 解dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0、四、 证明题、1、 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-、 (12,c c 为实常数)、 令12(,),(,)u x y c v x y c ==-、 则0x y y x u v u v ====、 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析、 (充分性) 令()f z u iv =+, 则 ()f z u iv =-, 因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-、比较等式两边得 0x y y x u v u v ====、 从而在D 内,u v 均为常数,故()f z 在D 内为常数、2、 即要证“任一 n 次方程 101100(0)n n n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”、证明 令1011()0nn n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n nn n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<、()f z =、由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00na z = 有相 同个数的根、 而 00na z = 在 z R < 内有一个 n 重根 0z =、 因此n 次方程在z R <内有n 个根、《复变函数》考试试题(三)一、 判断题、 (20分)、1、 cos z 与sin z 的周期均为πk2、 ( ) 2、 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析、 ( )3、 若函数f (z )在z 0处解析,则f (z )在z 0连续、 ( )4、 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛、 ( )5、 若函数f (z )就是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数、 ( )6、 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导、 ( )7、 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f 、 ( )8、 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数、( )9、 若z 0就是)(z f 的m 阶零点, 则z 0就是1/)(z f 的m 阶极点、 ( ) 10、 若z 就是)(z f 的可去奇点,则)),((Res 0=z z f 、( )二、 填空题、 (20分)1、 设11)(2+=z z f ,则f (z )的定义域为___________、2、 函数e z的周期为_________、3、 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________、4、 =+z z 22cos sin ___________、5、 =-⎰=-1||00)(z z n z z dz_________、(n 为自然数) 6、 幂级数∑∞=0n n nx 的收敛半径为__________、7、 设11)(2+=z z f ,则f (z )的孤立奇点有__________、8、 设1-=ze ,则___=z 、9、 若0z 就是)(z f 的极点,则___)(lim 0=→z f z z 、10、 ____)0,(Res =n zze 、三、 计算题、 (40分)1、 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数、2、 试求幂级数nn n z nn ∑+∞=!的收敛半径、3、 算下列积分:⎰-C z z z ze )9(d 22,其中C 就是1||=z 、4、 求0282269=--+-z z z z在|z |<1内根的个数、四、 证明题、 (20分) 1、 函数)(z f 在区域D 内解析、 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数、 2、 设)(z f 就是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 就是一个至多n 次的多项式或一常数。
复变函数复习题二(参考答案)
复习题二一、 判断题(正确打∨,错误打⨯,把判断结果填入下表。
):1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内解析。
( )2、如果z 0是f (z )的本性奇点,则)(lim 0z f z z →一定不存在。
( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。
( )4、cos z 与sin z 在复平面内有界。
( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。
( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。
( )7、若0z 为)(z f 的孤立奇点,且)(lim 0z f z z →存在且有限,则z 0是函数f (z )的可去奇点。
( )8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。
( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。
( )10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。
( )二、 单项选择题(将选择结果填入下表。
).)Re()Re()(;)(;)(;)()(,12121212121z z D z z C z z B z z A z z =====则必有若、.)2,3,2()()2,3,2()(;)2,3,2()(;)2,2,3()()(),,()23()()(222----=+++++-=D C B A c b a y x cxy i by ax y x z f 处处解析,则若、.2)(;2)(;)12()(;)()12()()(13ππππk D i k z C k z B k i k z A e z =-=+==为整数,则此方程解为方程、.0)(;0)(;)(;)()(4122但发散,通项趋于通项不趋于绝对收敛条件收敛为级数、D C B A ne n in ∑∞=.)(;)(;)(;)()(0sin 52二级极点一级极点可去奇点本性奇点是在点函数、D C B A z zz =三、填空题.,2,1,0,23,2311 ±±=+-=-=k k Argz iz ππ则设、2、=+-++→11lim 22z iz z i z _21i -_________。
《复变函数》考试试题与答案各种总结
《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()(1)f z z z =-在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(一)参考答案一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题 1. 2101i n n π=⎧⎨≠⎩; 2. 1; 3. 2k π,()k z ∈; 4. z i =±; 5. 16. 整函数;7. ξ;8. 1(1)!n -; 9. 0; 10. ∞.三.计算题.1. 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑.2. 解 因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-. 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰. 3. 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内, ()()2()c f z dz i z z ϕλπϕλ==-⎰.所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+. 4. 解 令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a b i a b w z z a b a b a b -+-+==-=-=-+++++++++. 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b -=+++. 四. 证明题.1. 证明 设在D 内()f z C =. 令2222(),()f z u iv f z u v c =+=+=则.两边分别对,x y 求偏导数, 得 0(1)0(2)x x y y uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-. 代入 (2) 则上述方程组变为x x x x uu vv vu uv +=⎧⎨-=⎩. 消去x u 得, 22()0x u v v +=. 1) 若220u v +=, 则 ()0f z = 为常数.2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =. 所以12,u c v c ==. (12,c c 为常数).所以12()f z c ic =+为常数. 2. 证明()(1)f z z z =-的支点为0,1z =. 于是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π. 所以()(1)f z z z =-的幅角共增加2π. 由已知所取分支在支割线上岸取正值, 于是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π, 故2(1)22i f e i π-==.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f i z ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×. 二. 填空题1.1,2π-, i ; 2. 3(1sin 2)i +-; 3. 2101i n n π=⎧⎨≠⎩; 4. 1; 5. 1m -.6. 2k i π,()k z ∈.7. 0;8. i ±;9. R ; 10. 0. 三. 计算题1. 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑. 2. 解 令i z re θ=. 则22(),(0,1)k if z z rek θπ+===.又因为在正实轴去正实值,所以0k =.所以4()if i eπ=.3. 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤.所以22222ii i iz dz de ei ππθθππ---===⎰⎰.4. 解dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0.四. 证明题.1. 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-. (12,c c 为实常数). 令12(,),(,)u x y c v x y c ==-. 则0x y y x u v u v ====. 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析. (充分性) 令()f z u iv =+, 则 ()f z u iv =-, 因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-.比较等式两边得 0x y y x u v u v ====. 从而在D 内,u v 均为常数,故()f z 在D 内为常数. 2. 即要证“任一 n 次方程 101100(0)nn n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”.证明 令1011()0nn n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n nn n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<.()f z =.由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00n a z = 有相同个数的根. 而 00n a z = 在 z R < 内有一个 n 重根 0z =. 因此n 次方程在z R < 内有n 个根.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________. 4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =nzze . 三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
复变函数第三章习题参考答案
工程数学(复变函数) 第三章复习题参考答案
湖南大学数学与计量经济学院
一、判断题(每题2分,5题共10分)
1、 f ( z ) 为定义在区域 D 内的解析函数,则其导函数 f ( z ) 也是解析函数. ( 若 2、 f ( z ) 在区域 D 内解析, 若 则对 D 内任一简单闭曲线 C 都有 f ( z )dz 0 ( .
i i
1 1 2 1 2 i sin 2 i i (e e ) ( sh2 )i 2 4i 2
(3)
0 z sin zdz 0 zd cos z z cos z 0 0 cos zdz
1
1
1
1
cos1 sin z 0 sin1 cos1
2 2
1 1 (2 i ) z 2 i 2 2
y
0
y 2x dy c 2 arctan c 2 2 x x y
f (1 i) u(1,1) iv(1,1) ln 2 i(2arctan1 c) ln 2
y 故 c , v( x, y ) 2 arctan 2 x 2
1 5 5、解 ( 1) ( x iy )dz ( x ix )d ( x ix ) i c 0 6 6
C
) )
3、若函数 f ( z ) 是区域 D 内的解析函数,则它在 D 内有任意阶导数.( 4、当复数 z 0 时,其模为零,辐角也为零.
( ).
复变函数试卷及答案
复变函数试卷及答案【篇一:《复变函数》考试试题与答案各种总结】xt>一、判断题(20分):1.若f(z)在z0的某个邻域内可导,则函数f(z)在z0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若{zn}收敛,则{re zn}{im zn}与都收敛. ( )4.若f(z)在区域d内解析,且f(z)?0,则f(z)?c(常数).( )5.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.( )6.若z0是f(z)的m阶零点,则z0是1/f(z)的m阶极点. ( )7.若z?z0limf(z)存在且有限,则z0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域d内的单叶函数,则f(z)?0(?z?d). ( )9. 若f(z)在区域d内解析, 则对d内任一简单闭曲线c?cf(z)dz?0.( )10.若函数f(z)在区域d内的某个圆内恒等于常数,则f(z)在区域d 内恒等于常数.()二.填空题(20分)dz?__________.(n为自然数)1、 ?|z?z0|?1(z?z)n22sinz?cosz? _________. 2.3.函数sinz的周期为___________.f(z)?4.设?1z2?1,则f(z)的孤立奇点有__________.n?nzn?0的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若n??limzn??z1?z2?...?zn?n??n,则______________.limezres(n,0)?z8.________,其中n为自然数.sinz9. 的孤立奇点为________ .zlimf(z)?___zf(z)的极点,则z?z010.若0是.三.计算题(40分):1. 设1f(z)?(z?1)(z?2),求f(z)在d?{z:0?|z|?1}内的罗朗展式.1dz.?|z|?1cosz2.3?2?7??1f(z)??d?c??z3. 设,其中c?{z:|z|?3},试求f(1?i).w?4. 求复数z?1z?1的实部与虚部.四. 证明题.(20分) 1. 函数为常数. 2. 试证: f(z)?f(z)在区域d内解析. 证明:如果|f(z)|在d内为常数,那么它在d内在割去线段0?rez?1的z平面内能分出两个单值解析分支,并求出支割线0?rez?1上岸取正值的那支在z??1的值.《复变函数》考试试题(一)参考答案一.判断题?2?in?11. ? ;2. 1;3. 2k?,(k?z);4. z??i; 5. 1 0n?1?6. 整函数;7. ?;8. 三.计算题.1. 解因为0?z?1, 所以0?z?1?1?zn111n??z??(). f(z)???2n?02(z?1)(z?2)1?z2(1?)n?021; 9. 0; 10. ?.(n?1)!2. 解因为z?resf(z)?limz??2?2z??2?lim1??1, coszz???sinzz??2resf(z)?limz???2z???2?lim1?1. coszz????sinz所以1sf(z)?resf(z)?0. z?2cosz?2?i(re??z??z?2223. 解令?(?)?3??7??1, 则它在z平面解析, 由柯西公式有在z?3内, f(z)??(?)?c??z?2?i?(z).所以f?(1?i)?2?i??(z)z?1?i?2?i(13?6i)?2?(?6?13i). 4. 解令z?a?bi, 则 w?z?122a(?1?bi)2a(?1)b2. 2?1?1?122222z?1z?1(a?1)?b(a?1)?ba(?1)?bz?12(a?1)z?12b, . )?1?im()?z?1(a?1)2?b2z?1(a?1)2?b2故 re(四. 证明题.1. 证明设在d内f(z)?c.令f(z)?u?iv,则f(z)?u2?v2?c2.2?uux?vvx?0两边分别对x,y求偏导数, 得??uuy?vvy?0(1)(2)因为函数在d内解析, 所以ux?vy,uy??vx. 代入 (2) 则上述方程组变为?uux?vvx?022. 消去ux得, (u?v)vx?0. ??vux?uvx?01) 若u?v?0, 则 f(z)?0 为常数.2) 若vx?0, 由方程 (1) (2) 及 c.?r.方程有ux?0, uy?0, vy?0. 所以u?c1,v?c2. (c1,c2为常数).22所以f(z)?c1?ic2为常数. 2.证明f(z)?的支点为z?0,1. 于是割去线段0?rez?1的z平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z从支割线上岸一点出发,连续变动到z?0,1 时, 只有z的幅角增加?. 所以f(z)?的幅角共增加?. 由已知所取分支在支割线上岸取正值, 于是可认为该分2?i?2支在上岸之幅角为0, 因而此分支在z??1的幅角为,故f(?1)??.2《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数f(z)?u(x,y)?iv(x,y)在d内连续,则u(x,y)与v(x,y)都在d 内连续. ( )2. cos z与sin z在复平面内有界.( )3. 若函数f(z)在z0解析,则f(z)在z0连续. ( )4. 有界整函数必为常数. ( )5. 如z0是函数f(z)的本性奇点,则limf(z)一定不存在. ( )z?z06. 若函数f(z)在z0可导,则f(z)在z0解析. ( )7. 若f(z)在区域d内解析, 则对d内任一简单闭曲线c?f(z)dz?0.c( )8. 若数列{zn}收敛,则{rezn}与{imzn}都收敛. ( ) 9. 若f(z)在区域d内解析,则|f(z)|也在d内解析. ( )11110. 存在一个在零点解析的函数f(z)使f()?0且f()?,n?1,2,....n?12n2n( )二. 填空题. (20分)1. 设z??i,则|z|?__,argz?__,?__z?1?i2.设f(z)?(x2?2xy)?i(1?sin(x2?y2),?z?x?iy?c,则limf(z)?________.3.dz?|z?z0|?1(z?z0)n?_________.(n为自然数)4. 幂级数?nzn的收敛半径为__________ .n?0?5. 若z0是f(z)的m阶零点且m0,则z0是f(z)的_____零点.6. 函数ez的周期为__________.7. 方程2z5?z3?3z?8?0在单位圆内的零点个数为________. 8. 设f(z)?1,则f(z)的孤立奇点有_________. 21?z9. 函数f(z)?|z|的不解析点之集为________.z?110. res(,1)?____. 4z三. 计算题. (40分)3sin(2z)的幂级数展开式. 1. 求函数2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z?i处的值.??|z|dz,积分路径为(1)单位圆(|z|?1)?ii3. 计算积分:i的右半圆.4. 求sinzz?2(z?)22dz.四. 证明题. (20分)1. 设函数f(z)在区域d内解析,试证:f(z)在d内为常数的充要条件是f(z)在d内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.【篇二:复变函数试题与答案】>一、选择题1.当z?1?i时,z100?z75?z50的值等于() 1?i(a)i (b)?i(c)1 (d)?12.设复数z满足arc(z?2)??3,arc(z?2)?5?,那么z?() 61331?i (d)??i 2222(a)?1?3i (b)?3.复数z?tan??i(3?i (c)??????)的三角表示式是() 2 ???)?i??)] (b)sec?(a)sec22??3?3???)?i??)] 22?(c)?sec3?3?????)?i??)](d)?sec???)?i??)] 2222224.若z为非零复数,则z?与2z的关系是()2222(a)z??2z (b)z??2z22(c)z??2z (d)不能比较大小5.设x,y为实数,则动点(x,y)z1?x??yi,z2?x??yi且有z1?z2?12,的轨迹是()(a)圆(b)椭圆(c)双曲线(d)抛物线6.一个向量顺时针旋转?3,向右平移3个单位,再向下平移1个单位后对应的复数为1?3i,则原向量对应的复数是()(a)2(b)1?i (c)3?i (d)3?i17.使得z2?z成立的复数z是() 2(a)不存在的(b)唯一的(c)纯虚数(d)实数8.设z为复数,则方程z??2?i的解是()(a)?3333?i (b)?i (c)?i (d)??i 44449.满足不等式z?i?2的所有点z构成的集合是() z?i(a)有界区域(b)无界区域(c)有界闭区域(d)无界闭区域10.方程z?2?3i?2所代表的曲线是()(a)中心为2?3i,半径为2的圆周(b)中心为?2?3i,半径为2的圆周(c)中心为?2?3i,半径为2的圆周(d)中心为2?3i,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为()(a)z?1?2 (b)z?3?z?3?4 z?2z?a?1(a?1) (d)z?a?z?a?c?0(c?0) 1?az(c)12.设f(z)?1?,z1?2?3i,z2?5?i,,则f(z1?z2 )(a)?4?4i(b)4?4i(c)4?4i(d)?4?4i13.limim(z)?im(z0)() x?x0z?z0(a)等于i(b)等于?i(c)等于0(d)不存在14.函数f(z)?u(x,y)?iv(x,y)在点z0?x0?iy0处连续的充要条件是()(a)u(x,y)在(x0,y0)处连续(b)v(x,y)在(x0,y0)处连续(c)u(x,y)和v(x,y)在(x0,y0)处连续(d)u(x,y)?v(x,y)在(x0,y0)处连续 2z2?z?115.设z?c且z?1,则函数f(z)?的最小值为() z (a)?3 (b)?2(c)?1 (d)1二、填空题1.设z?(1?i)(2?i)(3?i),则z? (3?i)(2?i)2.设z?(2?3i)(?2?i),则argz?3.设z?,arg(z?i)?3?,则z? 4(cos5??isin5?)24.复数的指数表示式为 2(cos3??isin3?)5.以方程z?7?i的根的对应点为顶点的多边形的面积为6.不等式z?2?z?2?5所表示的区域是曲线的内部 67.方程2z?1?i?1所表示曲线的直角坐标方程为2?(1?i)z8.方程z?1?2i?z?2?i所表示的曲线是连续点和的线段的垂直平分线9.对于映射??2i22,圆周x?(y?1)?1的像曲线为 z410.lim(1?z?2z)? z?1?i三、若复数z满足z?(1?2i)z?(1?2i)?3?0,试求z?2的取值范围.四、设a?0,在复数集c中解方程z2?2z?a.五、设复数z??i,试证z是实数的充要条件为z?1或im(z)?0. 21?z3六、对于映射??11(z?),求出圆周z?4的像. 2z七、试证1.z1?0(z2?0)的充要条件为z1?z2?z1?z2; z2z1?0(zj?0,k?j,k,j?1,2,?,n))的充要条件为 z22.z1?z2???zn?z1?z2???zn.八、若limf(z)?a?0,则存在??0,使得当0?z?z0??时有f(z)?x?x01a. 2九、设z?x?iy,试证x?y2?z?x?y.十、设z?x?iy,试讨论下列函数的连续性: ?2xy,z?0?1.f(z)??x2?y2 ?0,z?0??x3y?,z?02.f(z)??x2?y2.?0,z?0?第二章解析函数一、选择题:1.函数f(z)?3z在点z?0处是( )(a)解析的(b)可导的(c)不可导的(d)既不解析也不可导2.函数f(z)在点z可导是f(z)在点z解析的( )4 2(a)充分不必要条件(b)必要不充分条件(c)充分必要条件(d)既非充分条件也非必要条件3.下列命题中,正确的是( )(a)设x,y为实数,则cos(x?iy)?1(b)若z0是函数f(z)的奇点,则f(z)在点z0不可导(c)若u,v在区域d内满足柯西-黎曼方程,则f(z)?u?iv在d内解析(d)若f(z)在区域d内解析,则在d内也解析4.下列函数中,为解析函数的是( )(a)x2?y2?2xyi(b)x2?xyi(c)2(x?1)y?i(y2?z?x20?2x)(d)x3?iy35.函数f(z)?z2im(z)在处的导数( )(a)等于0 (b)等于1 (c)等于?1(d)不存在6.若函数f(z)?x2?2xy?y2?i(y2?axy?x2)在复平面内处处解析,那么实常数a?( )(a)0(b)1(c)2(d)?27.如果f?(z)在单位圆z?1内处处为零,且f(0)??1,那么在z?1内f(z)?( )(a)0(b)1(c)?1(d)任意常数8.设函数f(z)在区域d内有定义,则下列命题中,正确的是(a)若f(z)在d内是一常数,则f(z)在d内是一常数(b)若re(f(z))在d内是一常数,则f(z)在d内是一常数(c)若f(z)与f(z)在d内解析,则f(z)在d内是一常数(d)若argf(z)在d内是一常数,则f(z)在d内是一常数9.设f(z)?x2?iy2,则f?(1?i)?( )5【篇三:大学复变函数考试卷试题及答案】ss=txt>?z2?,z?01.设f?z???z,则f?z?的连续点集合为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7. 是 f (z) z z 2 的二级极点,并且 Re s f (z), 0 .
8. 如果 f (z) 在 z0 解析,那么 f (z) 在 z0 可导.
9. 设 x, y 为实数,则 sin(x iy) 1.
10.
如果
f( z) u iv 解析,则
f (z)
v y
i
u y
.
11. z0 是 f (z) 的可去奇点,则 Re s f (z), z0 0 .
9.
c 为正向圆周 z
1
,则
c
1 cos
z
dz
10. c 为正向圆周 z 2 ,则 czdz
11. 幂级数 (1 i)n(z 1)n 的收敛半径是 n 0
12. 函数 f (z) 的孤立奇点 a 为极点的充要条件是:
13.设
f
(z)
z
sin z5
z
,则 Re s f
(z),0
14.设
f
C. u(x ,y ),v(x ,y )至少有一个在区域 D 内连续 D. 以上都不对
2.
z
sin z 2
0 是函数
的
.
z
A.本性奇点
B. 极点
C. 连续点
D. 可去奇点
3. 如果级数 C nz n 在z 2 点收敛,则级数在
.
n 0
A. z 2 点条件收敛
B. z 2i 点绝对收敛
C. z 1 i 点绝对收敛 D. z 1 2i 点一定发散
(z)
z
sin z4
z
,则 Re s f
(z),0
15.设
f (z)
(z 1)3 z4
,
则 Re s f (z),
.
。 。
选择题
1. 若
,则复函数f(x ,y ) u(x ,y ) iv(x ,y )是区域 D 内的连续函数.
A. u(x ,y ),v(x ,y )在区域 D 内连续
B. u(x ,y )在区域 D 内连续
4、下列函数中,在 z 0 处解析的函数是( )
(A) f (z) Re z (B) f (z) z 2
5、 z
1是函数
f (z) sin
1的 z 1
(
)
(A) 本质奇点
(B) 极点
(C) f (z) | z | (C) 可去奇点
(D) f (z) z (D) 非孤立奇点
判断题
1. 如果 f (z) 在 z0 可导,那么 f (z) 在 z0 解析。
2. ez 是以 2 i 为周期的函数.
3.
如果
f( z) u iv 解析,则
f (z)
u x
i
v x
.
4.
z
0
是
f
(z)
sin z z3
的二级极点,并且
Re
s f
( z ),0
0
.
5. z 是 f( z)的 m 级极点与 z 是 1 的 m 级零点等价.
0
0 f( z)
6. 是 f (z) 的可去奇点,则 Re s f (z), 0 .
16. 是
f (z)
z
z
1
的可去奇点,
所以 Re s f
(z), 0.
17.
z0 是
f
(z) 的极点,则 lim zz0f(z) Nhomakorabea.
(
)
(
)
(
)
(
)
(
)
(
)
填空题
1. ( 3 i)5 .
2. 设复数 z1 3 i 、 z2 1 i ,则 arg(z1z2 )
。
3.
i
。
(i 1)(i 2)(i 3)
4. arg(2 3 2 i) .
5. ln(1) .
6. ln(i)
7. Ln(3 4i) .
8. 设 z x iy , x, y 则 | ez2 |
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
()
12. 是 f (z) 1 z z 2 的二级极点,并且 Re s f (z), 1 .
z 13. ez 是以 2 i 为周期的函数,并且 ez 0
14.沿正向园周 C :
z
2
的积分
c
z z
dz
0.
15.如果 f (z) 在区域 D 内解析,则 f (z) 在区域 D 内也解析.