2018初中数学中考模拟试卷-精选.pdf
浙教版2018-2019学年度九年级中考数学模拟试卷C
浙教版2018-2019学年度九年级中考数学模拟试卷C一.选择题(共10小题,满分30分,每小题3分)1.若一个数的倒数是﹣2,则这个数是()A.B.﹣C.D.﹣2.2017年中秋小长假长沙县的旅游收入约为1900万,将1900万用科学记数法表示应为()A.19×104B.1.9×104C.1.9×107D.0.19×1083.下列运算正确的是()A.2x+3y=5xy B.5x2•x3=5x5C.4x8÷2x2=2x4D.(﹣x3)2=x54.在2016年龙岩市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A.平均数为160B.中位数为158C.众数为158D.方差为20.35.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块6.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4B.2C.3D.2.57.如图,正方形ABCD中,E为CD的中点,F为BC边上一点,且EF⊥AE,AF的延长线与DC的延长线交于点G,连接BE,与AF交于点H,则下列结论中不正确的是()A.AF=CF+BC B.AE平分∠DAF C.tan∠CGF=D.BE⊥AG8.有下列六个命题:①两条直线被第三条直线所截,同位角相等;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③从直线外一点到这条直线的垂线段,叫做这点到直线的距离;④负数没有平方根;⑤无限小数都是无理数;⑥算术平方根等于它本身的数只有0.其中正确的命题有()A.2个B.3个C.4个D.5个9.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③二.填空题(共6小题,满分18分,每小题3分)11.函数y=的自变量x的取值范围为.12.分解因式:a3﹣a=.13.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.14.若x2﹣2x=1,则2x2﹣4x+3=.15.如图,⊙O中,已知弧AB=弧BC,且弧AB:弧AmC=3:4,则∠AOC=度.16.如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y轴的正半轴上,以AA2=2为边长画等边△AA2C2;以AA3=4为边长画等边△AA3C3,…,按此规律继续画等边三角形,则点A n的坐标为.三.解答题(共4小题,满分23分)17.(5分)计算:2﹣1﹣3tan30°+(﹣1)0++cos60°.18.(6分)先化简,再求值÷(﹣a﹣2),其中a=﹣.19.(6分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状,并证明你的猜想.20.(6分)如图,直线y=mx+n交坐标轴分别于A,B(0,1)两点,交双曲线y=于点C(2,2),点D在直线AB上,AC=2CD.过点D作DE⊥x轴于点E,交双曲线y=于点F,连接CF.(1)求反比例函数y=和直线y=mx+n的表达式;(2)求△CDF的面积.四.解答题(共4小题,满分30分)21.(6分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:(1)参加本次讨论的学生共有人;表中a=,b=;(2)在扇形统计图中,求D所在扇形的圆心角的度数;(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.22.(8分)在成都“白环改建工程中,某F罕轿建设将由甲,乙两个工程队共同施工完成,据调查得知:甲,乙两队单独完成这项上程所需天数之比为4:5,若先由甲,乙两队合作40天,剩下的工程再乙队做10天完成,(1)求甲.乙两队单独完成这取工程各需多少天?(2)若此项工程由甲队做m天,乙队n天完成,①请用含m的式子表示n;②已知甲队每天的施工费为15万元,乙队每天的施工费用为10万元,若工程预算的总费用不超过1150万元,甲队工作的天数与乙队工作的天数之和不超过90天.请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?23.(8分)某校的教室A位于工地O的正西方向,且OA=200m,一台拖拉机从O点出发,以每秒5m的速度沿北偏西53°的方向行驶,设拖拉机的噪声污染半径为130m,则教室A是否在拖拉机的噪声污染范围内?若不在,请说明理由;若在,求出教室A 受噪声污染的时间有几秒.(参考数据:sin53°≈0.80,sin37°≈0.60,tan37°≈0.75)24.(8分)已知菱形ABCD中,∠A=72°,请你用两种把该菱形分成四个等腰三角形,并标出每个等腰三角形的顶角度数(要求在图中直接画出图形,不要求写作法和证明).五.解答题(共1小题,满分9分,每小题9分)25.(9分)如图,⊙O的直径AB的长为10,直线EF经过点B且∠CBF=∠CDB.连接AD.(1)求证:直线EF是⊙O的切线;(2)若点C是弧AB的中点,sin∠DAB=,求△CBD的面积.六.解答题(共1小题,满分10分,每小题10分)26.(10分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.参考答案与试题解析1.解:若一个数的倒数是﹣2,即﹣,则这个数是﹣,故选:B.2.解:将1900万用科学记数法表示应为:1.9×107.故选:C.3.解:A、不是同类项,不能合并,选项错误;B、正确;C、4x8÷2x2=2x6,选项错误;D、(﹣x3)2=x6,选项错误.故选:B.4.解:A、平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B、按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C、数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D、这组数据的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选:D.5.解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选:B.6.解:连接DO,∵PD与⊙O相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴===,设PA=x,则=,解得:x=4,故PA=4.故选:A.7.解:由E为CD的中点,设CE=DE=2,则AD=AB=BC=4,∵EF⊥AE,∴∠AED=90°﹣∠FEC=∠EFC,又∵∠D=∠ECF=90°,∴△ADE∽△ECF,∴=,即=,解得FC=1,A、在Rt△ABF中,BF=BC﹣FC=4﹣1=3,AB=4,由勾股定理,得AF=5,则CF+BC=1+4=5=AF,本选项正确;B、在Rt△ADE,Rt△CEF中,由勾股定理,得AE=2,EF=,则AE:EF=AD:DE=1:2,又∠D=∠AEF=90°,所以,△AEF∽△ADE,∠FAE=∠DAE,即AE平分∠DAF,本选项正确;C、∵AB∥DG,∴∠CGF=∠BAF,∴tan∠CGF=tan∠BAF==,本选项正确;D、∵AB≠AE,BF≠EF,∴BE与AG不垂直,本选项错误;故选:D.8.解:①两条平行线被第三条直线所截,同位角相等,错误;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,错误;④负数没有平方根,正确;⑤无限不循环小数是无理数,错误;⑥算术平方根等于它本身的数有0,1,错误;故选:A.9.解:A、小丽从家到达公园共用时间20分钟,正确;B、公园离小丽家的距离为2000米,正确;C、小丽在便利店时间为15﹣10=5分钟,错误;D、便利店离小丽家的距离为1000米,正确;故选:C.10.解:①当x=1时,结合图象y=a+b+c<0,故此选项正确;②当x=﹣1时,图象与x轴交点负半轴明显小于﹣1,∴y=a﹣b+c>0,故本选项错误;③由抛物线的开口向上知a>0,∵对称轴为0<x=﹣<1,∴2a>﹣b,即2a+b>0,故本选项错误;④对称轴为x=﹣>0,∴a、b异号,即b<0,图象与坐标相交于y轴负半轴,∴c<0,∴abc>0,故本选项正确;∴正确结论的序号为①④.故选:C.11.解:根据题意得:3﹣x≥0,解得:x≤3.故答案为:x≤3.12.解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).13.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.14.解:当x2﹣2x=1时,原式=2(x2﹣2x)+3=2×1+3=5,故答案为:5.15.解:∵弧AB=弧BC,且弧AB:弧AmC=3:4,∴弧ABC:弧AmC=6:4,∴∠AOC的度数为(360°÷10)×4=144°.16.解:∵点A1的横坐标为0.5=1﹣0.5,点A2的横坐标为0.5+1=1.5=2﹣0.5,点A3的横坐标为0.5+1+2=3.5=4﹣0.5,点A4的横坐标为0.5+1+2+4=7.5=8﹣0.5,…∴点A n的横坐标为2n﹣1﹣0.5,纵坐标都为0,∴点A n的坐标为(2n﹣1﹣0.5,0).故答案为:(2n﹣1﹣0.5,0).17.解:原式=﹣3×+1+2+=2+.18.解:÷(﹣a﹣2)====,当a═﹣时,原式=﹣=.19.解:(1)如图1,连接BD,∵点E、H分别为边AB、AD的中点,∴EH∥BD、EH=BD,∵点F、G分别为BC、DC的中点,∴FG∥BD、FG=BD,∴EH=FG、EH∥FG,∴中点四边形EFGH是平行四边形;(2)四边形EFGH是菱形,如图2,连接AC、BD,∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵,∴△APC≌△BPD(SAS),∴AC=BD,∵点E、F、G分别为AB、BC、CD的中点,∴EF=AC、FG=BD,∴EF=FG,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形;(3)四边形EFGH是正方形,设AC、BD交点为O,AC与PD交于点M,AC与EH交于点N,∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD、AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.20.解:(1)∵直线y=mx+n经过B(0,1),C(2,2)两点,∴,解得,∴直线的表达式为y=;∵点C(2,2)在双曲线y=上,∴2=,解得k=4,∴反比例函数的解析式为y=;(2)作CH⊥x轴于H,∵C(2,2),∴CH=2,∵DE⊥x轴于点E,∴CH∥DE,∴==,由直线y=x+1可知A(﹣2,0),∴OA=2,AH=4,∵AC=2CD,∴=,∴==,∴DE=3,AE=6,∴D(4,3),把x=4代入y=得,y=1,∴F(4,1),∴DF=3﹣1=2,∴△CDF的面积=×2×(4﹣2)=2.21.解:(1)参加本次讨论的学生共有12÷0.24=50,则a=50×0.2=10,b=8÷50=0.16,故答案为:50、10、0.16;(2)D所在扇形的圆心角的度数为360°×0.4=144°;(3)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率为=.22.解:(1)设甲.乙两队单独完成这取工程各需4x,5x天,由题意得:(+)×40+=1,解得:x=20,经检验:x=20是原方程的根,∴4x=80,5x=100,答:甲.乙两队单独完成这取工程各需80,100天;(2)①由题意得:n=(1﹣)÷=100﹣,②令施工总费用为w万元,则w=15m+10×(100﹣)=m+1000.∵两队施工的天数之和不超过90天,工程预算的总费用不超过1150万元,∴m+1000≤1150,m+(100﹣)≤90,∴40≤m≤60,∴当m=40时,完成此项工程总费用最少,∴n=100﹣=50,w=1100元,答:甲、乙两队各工作40,50天,完成此项工程总费用最少,最少费用是1100元.23.解:如图,过点A作AB⊥OM于点B,∵∠MON=53°,∴∠AOM=90°﹣53°=37度.在Rt△ABO中,∠ABO=90°,∵sin∠AOB=,∴AB=AO•sin∠AOB=200×sin37°≈120(m).∵120m<130m.∴教室A在拖拉机的噪声污染范围内.根据题意,在OM上取C,D两点,连接AC,AD,使AC=AD=130m,∵AB⊥OM,∴B为CD的中点,即BC=DB,∴BC==50(m),∴CD=2BC=100(m).即影响的时间为=20(s).24.解:如图所示:25.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°即∠ADC+∠CDB=90°,∵∠ADC=∠ABC,∠CBF=∠CDB,∴∠ABC+∠CBF=90°即∠ABF=90°,∴AB⊥EF∴EF是⊙O的切线;(2)解:作BG⊥CD,垂足是G,在Rt△ABD中∵AB=10,sin∠DAB=又∵sin∠DAB=∴BD=6∵C是弧AB的中点,∴∠ADC=∠CDB=45°,∴BG=DG=BD×sin45°=6×=3,∵∠DAB=∠DCB∴tan∠DCB==,∴CG=∴CD=CG+DG=4+3=7,=CD•BG==21.∴S△CBD26.解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:AC2=(0﹣3)2+(﹣3a﹣0)2=9a2+9、CD2=(0﹣1)2+(﹣3a+4a)2=a2+1、AD2=(3﹣1)2+(0+4a)2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1即,抛物线的解析式:y=﹣x2+2x+3.②∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵MF:BF=1:2,即BF=2MF,∴2(﹣x2+2x+3)=x+1,化简,得:2x2﹣3x﹣5=0解得:x1=﹣1、x2=∴M(,)、N(,).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如右图;设Q(1,b),则QD=4﹣b,QB2=QG2=(1+1)2+(b﹣0)2=b2+4;∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;代入数据,得:(4﹣b)2=2(b2+4),化简,得:b2+8b﹣8=0,解得:b=﹣4±2;即点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2).。
寺仙乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
寺仙乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1、(2分)若方程mx+ny=6有两个解,则m,n的值为()A. 4,2B. 2,4C. -4,-2D. -2,-4 【答案】C【考点】解二元一次方程组【解析】【解答】解:把,代入mx+ny=6中,得:,解得:.故答案为:C.【分析】将x、y的两组值分别代入方程,建立关于m、n的方程组,再利用加减消元法求出m、n的值。
2、(2分)已知方程组,则(x﹣y)﹣2=()A. 2B.C. 4D.【答案】D【考点】代数式求值,解二元一次方程组【解析】【解答】解:,①﹣②得:x﹣y=2,则原式=2﹣2= .故答案为:D【分析】观察方程组中同一未知数的系数特点及所求代数式的底数,由①﹣②得出x-y的值,再整体代入求值即可。
3、(2分)为了了解某区初中中考数学成绩情况,从中抽查了1000名学生的数学成绩,在这里样本是()A. 全区所有参加中考的学生B. 被抽查的1000名学生C. 全区所有参加中考的学生的数学成绩D. 被抽查的1000名学生的数学成绩【答案】D【考点】总体、个体、样本、样本容量【解析】【解答】解:本题考查的对象是某区初中中考数学成绩,故样本是所抽查的1000名学生的数学成绩,D正确,符合题意.考查的对象是数学成绩而不是学生,因而A、B错误,不符合题意.全区所有参加中考的学生的数学成绩是总体,则C错误,不符合题意.故答案为:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据样本、总体、个体、样本容量的定义即可进行判断.4、(2分)已知a、b满足方程组,则3a+b的值为()A. 8B. 4C. ﹣4D. ﹣8【答案】A【考点】代数式求值,解二元一次方程组【解析】【解答】解:,①×2+②得:5a=10,即a=2,将a=2代入①得:b=2,则3a+b=6+2=8.故答案为:A【分析】先利用加减消元法求出方程组的解,再将a、b的值代入3a+b,计算即可。
2018-2019学年最新山东省菏泽市初中八年级上学期期中数学模拟试卷及答案-精编试题
八年级上学期期中数学模拟试卷一、选择题(每题3分,共30分)1.(3分)下列图形中对称轴最多的是()A.圆B.正方形C.等腰三角形 D.线段2.(3分)如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠23.(3分)如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1 B.2 C.3 D.44.(3分)已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形 D.等腰直角三角形5.(3分)如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°6.(3分)∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤57.(3分)如图,DE是△ABC中AC边的垂直平分线,若BC=9厘米,AB=11厘米,则△EBC的周长为()厘米.A.16 B.18 C.20 D.288.(3分)分式值为0,则x应满足()A.x=﹣1 B.x=1 C.x=±1 D.x=﹣29.(3分)下列约分中,正确的是()A.=x3B.=0C.D.10.(3分)计算:的结果为()A.1 B.C.D.二、填空题(每题3分,共30分)11.(3分)如图,点E,F分别在∠CAB的边AC,AB上,若AB=AC,AE=AF,BE与CF交于点D.给出结论:①△ABE≌△ACF;②BD=DE;③△BDF≌△CDE;③点D在∠BAC的平分线上其中正确的结论有(填写序号)12.(3分)如果一个等腰三角形的一个外角等于40°,则该等腰三角形的底角的度数是.13.(3分)下列式子①,②,③,④中,是分式的有个.14.(3分)点M(﹣2,1)关于x轴对称的点N的坐标是.15.(3分)如图,∠DAB=∠EAC=60°,AB=AD,AC=AE,BE和CD相交于O,AB和CD相交于P,则∠DOE的度数是°.(3分)用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠D′O′C′= 16.∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是(写出全等的简写).(3分)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠CMD=35°,17.则∠MAB是度.18.(3分)化简÷的结果是.19.(3分)若,则的值是.20.(3分)在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三、解答题:(21--25题每题8分,26--27题每题10分共60分)21.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.试判断线段AE与CD 的关系,并说明理由.22.(8分)如图已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.若BD=4,CE=6,试求DE 的长.23.(8分)已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.24.(8分)如图,∠ABC的平分线BF与∠ACG的平分线CF相交于点F,过点F作DE∥BC交AC于E,若BD=8,DE=3,求CE的长.25.(8分)计算(1)(1﹣)2÷(2)•﹣÷.26.(10分)将分式(x﹣)÷化简,然后请你给x选择一个合适的值代入求值.27.(10分)如图,在四边形ABCD中,∠C=∠B=90°,M为CB的中点,且DM平分∠ADC,(1)AM平分∠DAB吗?为什么?(2)线段AD,AB,DC有怎样的数量关系,说明理由.参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列图形中对称轴最多的是()A.圆B.正方形C.等腰三角形 D.线段【解答】解:A、圆的对称轴有无数条,它的每一条直径所在的直线都是它的对称轴;B、正方形的对称轴有4条;C、等腰三角形的对称轴有1条;D、线段的对称轴有2条.故图形中对称轴最多的是圆.故选:A.2.(3分)如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:C.3.(3分)如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则C H的长是()A.1 B.2 C.3 D.4【解答】解:在△ABC中,AD⊥BC,CE⊥AB,∴∠AEH=∠ADB=90°;∵∠EAH+∠AHE=90°,∠DHC+∠BCH=90°,∵∠EHA=∠DHC(对顶角相等),∴∠EAH=∠DCH(等量代换);∵在△BCE和△HAE中,∴△AEH≌△CEB(AAS);∴AE=CE;∵EH=EB=3,AE=4,∴CH=CE﹣EH=AE﹣EH=4﹣3=1.故选:A.4.(3分)已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形 D.等腰直角三角形【解答】解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选:C.5.(3分)如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故选:C.6.(3分)∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤5【解答】解:∠AOB的平分线上一点P到OA的距离为5则P到OB的距离为5因为Q是OB上任一点,则PQ≥5故选:B.7.(3分)如图,DE是△ABC中AC边的垂直平分线,若BC=9厘米,AB=11厘米,则△EBC的周长为()厘米.A.16 B.18 C.20 D.28【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=11厘米+9厘米=20厘米,故选:C.8.(3分)分式值为0,则x应满足()A.x=﹣1 B.x=1 C.x=±1 D.x=﹣2【解答】解:∵分式值为0,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故选:A.9.(3分)下列约分中,正确的是()A.=x3B.=0C.D.【解答】解:A、=x4,故本选项错误;B、=1,故本选项错误;C、==,故本选项正确;D、=,故本选项错误;故选:C.10.(3分)计算:的结果为()A.1 B.C.D.【解答】解:===1,故选A.二、填空题(每题3分,共30分)11.(3分)如图,点E,F分别在∠CAB的边AC,AB上,若AB=AC,AE=AF,BE与CF交于点D.给出结论:①△ABE≌△ACF;②BD=DE;③△BDF≌△CDE;③点D在∠BAC的平分线上其中正确的结论有①③④(填写序号)【解答】解:在△CAF和△BAE中,∵,∴△CAF≌△BAE(SAS),即△ABE≌△ACF,∴①正确;∵根据已知不能推出BD=DE,∴②错误;∵△ABE≌△ACF,∴∠C=∠B,∵AC=AB,AE=A F,∴CE=BF,在△CED和△BFD中,∵,∴△CED≌△BFD(AAS),∴③正确;连接AD,∵△CED≌△BFD,∴DE=DF,在△EAD和△FAD中,∵,∴△EAD≌△FAD(SSS),∴∠EAD=∠FAD,即D在∠BAC的角平分线上,∴④正确;故答案为:①③④.12.(3分)如果一个等腰三角形的一个外角等于40°,则该等腰三角形的底角的度数是20°.【解答】解:∵三角形相邻的内外角互补∴这个内角为140°∵三角形的内角和为180°∴底角不能为140°∴底角为20°.故填20°.13.(3分)下列式子①,②,③,④中,是分式的有①③个.【解答】解:①,③,是分式,故答案为:①③14.(3分)点M(﹣2,1)关于x轴对称的点N的坐标是N(﹣2,﹣1).【解答】解:根据题意,M与N关于x轴对称,则其横坐标相等,纵坐标互为相反数;所以N点坐标是(﹣2,﹣1).故答案为:(﹣2,﹣1).15.(3分)如图,∠DAB=∠EAC=60°,AB=AD,AC=AE,BE和CD相交于O,AB和CD相交于P,则∠DOE的度数是120 °.【解答】解:∵∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠BAC+∠EAC,∴∠DAC=∠EAB,在△ADC和△AEB中,,∴△ADC≌△AEB(SAS),∴∠E=∠ACD,又∵∠AFE=∠OFC,∴∠EAF=∠COF=60°,∴∠DOE=120°.故答案为:120.(3分)用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠D′O′C′= 16.∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是SSS (写出全等的简写).【解答】解:OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等.故填SSS.(3分)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠CMD=35°,17.则∠MAB是35 度.【解答】解:如图,过点M作MN⊥AD于N,∵∠C=90°,DM平分∠ADC,∴MC=MN,∴∠CMD=∠NMD,∵M是BC的中点,∴MB=MC,∴MB=MN,又∵∠B=90°,∴AM是∠BAD的平分线,∠AMB=∠AMN,∵∠CMD=35°,∴∠AMB=(180°﹣35°×2)=55°,∴∠MAB=90°﹣∠AMB=90°﹣55°=35°.故答案为:3518.(3分)化简÷的结果是2x .【解答】解:原式=•=2x.故答案为2x.19.(3分)若,则的值是 6 .【解答】解:由,可以得到:a﹣b=﹣4ab,∴=.故的值是6.20.(3分)在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为12 .【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三、解答题:(21--25题每题8分,26--27题每题10分共60分)21.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.试判断线段AE与CD 的关系,并说明理由.【解答】解:AE=CD,AE⊥CD,理由:延长AE交CD于M,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD,∠AEB=∠BDC,∵∠ABC=90°,∴∠DAE+∠AEB=90°,∴∠DAE+∠BDC=90°,∴∠AMD=90°,∴AM⊥CD.22.(8分)如图已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.若BD=4,CE=6,试求DE 的长.【解答】解:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥m,∴∠BDA=90°,∴∠DBA+∠BAD=90°,∴∠DBA=∠CAE,在△ABD和△CAE中,∴△DBA≌△EAC(AAS),∴AE=DB,AD=CE,∵BD=4,CE=6,∴DE=DA+AE=CE+BD=10.23.(8分)已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.【解答】解:∵AB=AC,∴∠B=∠C(等边对等角),∵DE⊥BC于E,∴∠FEB=∠FEC=90°,∴∠B+∠EDB=∠C+∠EFC=90°,∴∠EFC=∠EDB(等角的余角相等),∵∠EDB=∠ADF(对顶角相等),∴∠EFC=∠A DF,∴△ADF是等腰三角形.24.(8分)如图,∠ABC的平分线BF与∠ACG的平分线CF相交于点F,过点F作DE∥BC交AC于E,若BD=8,DE=3,求CE的长.【解答】解:∵BF、CF分别平分∠ABC、∠ACB的外角,∴∠DBF=∠CBF,∠FCE=∠FCM,∵DE∥BC,∴∠DFB=∠CBF,∠EF C=∠FCM,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD,EF=CE,∴BD﹣CE=FD﹣EF=DE,∴EF=DF﹣DE=BD﹣DE=8﹣3=5,∴EC=5.故答案为5.25.(8分)计算(1)(1﹣)2÷(2)•﹣÷.【解答】解:(1)(1﹣)2÷=×=(2)•﹣÷=﹣==126.(10分)将分式(x﹣)÷化简,然后请你给x选择一个合适的值代入求值.【解答】解:(x﹣)÷=(﹣)×=×=x+1,当x=3时,原式=4.27.(10分)如图,在四边形ABCD中,∠C=∠B=90°,M为CB的中点,且DM平分∠ADC,(1)AM平分∠DAB吗?为什么?(2)线段AD,AB,DC有怎样的数量关系,说明理由.【解答】解:(1)AM是平分∠DAB.理由:作ME⊥AD于点E,∴∠AEM=∠DEM=90°.∵DM平分∠ADC,∴∠EDM=∠CDM.∵∠C=∠B=90°,∴∠B=∠AEM.∠DEM=∠C.∴ME=MC.∵M是BC的中点,∴BM=CM.∴BM=EM.在Rt△AEM和Rt△ABM中,∴Rt△AEM≌Rt△ABM(HL),∴∠EAM=∠BAM,∠AME=∠AMB,∴AM是平分∠DAB;(2)AD=CD+AB.理由:如图2,延长DM、AB相交于点F,∵M是BC的中点,∴CM=BM.∵AB∥CD,∴∠C=∠B,∠CDM=∠F.在△DCM和△FBM中,,∴△DCM≌△FBM(AAS),∴CD=BF,DM=FM.∵AM⊥DM,∴AD=AF.∵AF=AB+BF,∴AF=AB+CD,∴AD=AB+CD.新课标精品卷--------期中模拟试题。
2018-2019学年初中数学二次根式、勾股定理、平行四边形一次函数和数据的分析中考模拟考试测试题
②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.
24.某初中在“读书共享月”活动中.学生都从家中带了图书到学校给大家共享阅读.经过抽样调查得知,初一人均带了2册;初二人均带了3.5册:初三人均带了2.5册.已知各年级学生人数的扇形统计图如图所示,其中初三共有210名学生.请根据以上信息解答下列问题:
(1)扇形统计图中,初三年级学生数所对应的圆心角为°;
28.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于 BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.
(1)根据条件与作图信息知四边形ABEF是
A.非特殊的平行四边形
B.矩形
C.菱形
D.正方形
(2)设AE与BF相交于点O,四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.
22.随着”互联网+“时代的到来,利用网络呼叫专车的打车方式深受大众欢迎.据了解,在非高峰期时,某种专车所收取的费用y(元)与行驶里程x(km)的函数图象如图所示.请根据图象,回答下列问题:
(1)当x≥5时,求y与x之间的函数关系式;
(2)若王女士有一次在非高峰期乘坐这种专车外出,共付费47元,求王女士乘坐这种专车的行驶里程.
【详解】
∵EF∥BC,GH∥AB,
∴四边形HPFD、BEPG、AEPH、CFPG为平行四边形,
∴S△PEB=S△BGP,
2018年全国中考数学真题江苏徐州中考数学(解析版-精品文档)
2018年江苏省徐州市初中毕业、升学考试数学学科满分:140分一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(2018江苏徐州,1,3分)4的相反数是A.14 B.14- C.4 D.-4【答案】D2.(2018江苏徐州,2,3分)下列计算正确的是A.2221a a-=B.22()ab ab=C.235a a a+=D.236()a a=3.(2018江苏徐州,3,3分)下列图形中,既是轴对称图形,又是中心对称图形的是A.B.C.D.【答案】A4.(2018江苏徐州,4,3分)右图是由5个相同的正方体搭成的几何体,其左视图是A.B.C.D.【答案】D5.(2018江苏徐州,5,3分)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率A.小于12B.等于12C.大于12D.无法确定【答案】A6.(2018江苏徐州,6,3分)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0 1 2 3人数13352923关于这组数据,下列说法正确的是A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册【答案】B7.(2018江苏徐州,7,3分)如图,在平面直角坐标系中,函数y kx=与2yx=-的图象交于A、B两点,过A作y轴的垂线,交函数4yx=的图象于点C.连接BC,则△ABC的面积为A.2 B.4 C.6 D.8【答案】C8.(2018江苏徐州,8,3分)若函数y kx b=+的图象如图所示,则关于x的不等式20kx b+<的解集为A.3x<B.3x>C.6x<D.6x>【答案】D二、填空题9.(2018江苏徐州,9,3分)五边形的内角和为 .【答案】540°10.(2018江苏徐州,10,3分)我国自主研发的某型号手机处理器采用10nm工艺,已知1nm=0.000 000 001m,则10nm用科学计数法可表示为 .【答案】1×10-8nm11.(2018江苏徐州,11,3分)化简:32-= .【答案】2-312.(2018江苏徐州,12,3分)若2x-在实数范围内有意义,则x的取值范围是 .【答案】x≥213.(2018江苏徐州,13,3分)若2m+n=4,则代数式6-2m-n的值为 .【答案】214.(2018江苏徐州,14,3分)若菱形的两条对角线的长分别为6cm和8cm,则其面积为cm2. 【答案】2415.(2018江苏徐州,15,3分)如图,Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD= .【答案】35°16.(2018江苏徐州,16,3分)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为 .【答案】217.(2018江苏徐州,17,3分)如图,每个图案均有边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多个(用含n的代数式表示).【答案】4n+318.(2018江苏徐州,18,3分)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点.P为AC上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q的运动路径长为 .【答案】419.(2018•徐州,19①,5)计算:(1)2013112018()82--+-+;(2)2222a b a ba b a b-+÷--.【解答过程】原式=-1+1-2+2=019.(2018•徐州,19②,5)计算:(2)2222a b a ba b a b-+÷--.【解答过程】原式=()()22a b a b a ba b a b+--⨯-+=22a b-20.(2018•徐州,20①,5)解方程:2210x x-+=;【解答过程】解:把方程左边因式分解得:(2x+1)(x-1)=0,∴x1=12-,x2=1.20.(2018•徐州,20①,5)解不等式组:4281136x xx x>-⎧⎪-+⎨≤⎪⎩.【解答过程】解不等式4x>2x-8,可得x>-4,解不等式1136x x-+≤,得3x≤,所以不等式组的解集为:43x-<≤.21.(2018•徐州,21,7分)不透明的袋中装有1上红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于;(2)从中同时摸出2个球,摸到红球的概率是多少?(用树状图或列表的方法写出分析过程)【解答过程】(1)13;(2)列表如下:红球白球1 白球2红球白球1 +红球白球2+红球白球1 红球+白球1 白球2+白球1 白球2 红球+白球2 白球1 +白球2一共有6种等可能事件,摸到红球的情况有4种,所以(42 63P==摸到红球).22.(2018•徐州,22,7分)在”书香校园“活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:家庭藏书情况统计表类别家庭藏书情况统计表学生人数A 0≤m≤25 20B 26≤m≤100 aC 101≤m≤200 50D m≥201 66根据以下信息,解答下列问题:(1)该样本容量为,a=;(2)在扇形统计图中,“A”对应的扇形的圆心角为;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.【解答过程】(1)200,64;(2)36(3)662000200⨯=660(名)答:家庭藏书200本以上的人数为660名.23.(2018•徐州,23,8分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?【解答过程】(1)∵四边形CGFE 是正方形, ∴EF =CE ,∠EFC =90°, ∴∠FEH +∠CED =90°, ∵FH ⊥AD∴∠FEH +∠EFH =90°, ∴∠EFH =∠CED , 在△FEH 和△ECD 中,EFH CED FHE EDC EF EC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△FEH ≌△ECD , ∴FH =ED .(2)设AE =x ,由(1)可得:FH =DE =(4-x ), ∴2111(4)2222AEF S AE FH x x x x ∆=⨯=-=-+, ∵ 102-<,∴当x =212()2-⨯-=2时, △AEF 的面积最大.24.(2018•徐州,24,8分)徐州至北京的高铁里程约为700km ,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁与“复兴号”高铁B 前往北京.已知A 车的平均速度比B 车的平均速度慢80km /n ,A 车的行驶时间比B 车的行驶时间多40%,两车的行驶时间分别为多少?【解答过程】设B 车行驶的时间为x 小时间,则A 车行驶的时间为(1+40%)x 小时, 根据题意:70070080(140%)x x+=+,解得:x =2.5,经检验x =2.5是分式方程的解. (1+40%)x =3.5小时.答两车行驶时间分别为3.5小时和2.5小时.25.(2018•徐州,25,8分)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎么的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求AD的长.【解答过程】解:(1)连接OD,则OD=OB,∴∠2=∠3,∵BD平分∠ABC,∴∠2=∠1,∴∠1=∠3,∴OD∥BC,321CDOA∵∠C=90°,∴BC⊥CD,∴OD⊥CD,∴CD是⊙O的切线.(2)∵∠CDB=60°,∠C=90°,∴∠2=∠1=∠3=30°,∴∠AOD=∠2+∠3=30°+30°=60°,∵AB=6,∴OA=3,∴603180ADππ=⨯⨯=.26.(2018•徐州,26,8分)如图,1号数在2号楼的南侧,两楼的高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号数在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号数在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共有30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47).【解答过程】解:(1)过点C,D分别作CE⊥PB,DF⊥PB,垂足分别为E,F.则有AB=CE=DF,EF=CD=42.2号楼1号楼FEDCP由题意可知:∠PCE=32.3°,∠PDF=55.7°,在Rt△PCE中,PE=CE⨯tan32.3°=0.63CE;在Rt△PDF中,PF=CE⨯tan55.7°=1.47CE;∵PF-PE=EF,∴1.47CE-0.63CE=42,∴AB=CE=50(m)答:楼间距为50m.(2)由(1)得:PE=0.63CE=31.5(m),∴AC=BP-PE=90-31.5=58.5(m),58.53÷=19.5,∴点C位于第20层答:点C位于第20层.27.(2018江苏徐州,27,10分)如图,在平面直角坐标系中,二次函数y=-x2+6x-5的图像与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l,(1)求点P、C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标,若不存在,请说明理由。
【真题】安徽省2018年中考数学试题含答案解析(Word版)
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1。
的绝对值是()A。
B. 8 C. D。
【答案】B【详解】数轴上表示数—8的点到原点的距离是8,所以—8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635。
2亿科学记数法表示()A。
B。
C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|〈10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635。
2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|〈10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C。
D。
【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得。
【详解】A. ,故A选项错误;B。
,故B选项错误;C。
,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键。
4。
一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得。
【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A。
2018年湖北省武汉市中考数学试题及参考答案案
2018年武汉市初中毕业生学业考试数 学(满分120分,考试时间120分钟)一、选择题(共10小题,每小题3分,共30分)1.(2018湖北武汉中考,1,3分,★☆☆)温度由-4℃上升7℃是( )A .3℃B .-3℃C .11℃D .-11℃2.(2018湖北武汉中考,2,3分,★☆☆)若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2B .x <-2C .x =-2D .x ≠-23.(2018湖北武汉中考,3,3分,★☆☆)计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.(2018湖北武汉中考,4,3分,★☆☆)五名女生的体重(单位:kg )分别为:37,40,38,42,42.这组数据的众数和中位数分别是( ) A .2,40B .42,38C .40,42D .42,405.(2018湖北武汉中考,5,3分,★☆☆)计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +66.(2018湖北武汉中考,6,3分,★☆☆) 点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.(2018湖北武汉中考,7,3分,★★☆)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .68.(2018湖北武汉中考,8,3分,★☆☆)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1,2,3,4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .659.(2018湖北武汉中考,9,3分,★★☆)将正整数1至2018按一定规律排列如下表:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 …平移表中带阴影的方框,方框中三个数的和可能是( ) A .2019B .2018C .2016D .201310.(2018湖北武汉中考,10,3分,★★★)如图,在⊙O 中,点C 在优弧AB 上,将弧BC 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235 D .265 二、填空题(本大题共6个小题,每小题3分,共18分)11.(2018湖北武汉中考,11,3分,★☆☆)计算32)3___________. 12.(2018湖北武汉中考,12,3分,★☆☆)下表记录了某种幼树在一定条件下移植成活情况.移植总数n 400 1500 3500 7000 9000 14000 成活数m325 1336 3203 6335 8073 12628 成活的频率mn(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1). 13.(2018湖北武汉中考,13,3分,★☆☆)计算21m m --211m-的结果是___________. 14.(2018湖北武汉中考,14,3分,★★☆)以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________.15.(2018湖北武汉中考,15,3分,★★☆)飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是y =60t -232t .在飞机着陆滑行中,最后4s 滑行的距离是___________m .16.(2018湖北武汉中考,16,3分,★★☆)如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是__________.三、解答题(共8题,共72分)17.(2018湖北武汉中考,17,8分,★☆☆)解方程组:10216.x y x y +=⎧⎨+=⎩,18.(2018湖北武汉中考,18,8分,★☆☆)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF .19.(2018湖北武汉中考,19,8分,★★☆)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表学生读书数量扇形图阅读量/本学生人数1 152 a3 b4 5(1) 直接写出m,a,b的值;(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(2018湖北武汉中考,20,8分,★★☆)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B 型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数).(1) 求A、B型钢板的购买方案共有多少种?(2) 出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.21.(2018湖北武汉中考,21,8分,★★☆)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB ,PC ,PC 交AB 于点E ,且PA =PB . (1) 求证:PB 是⊙O 的切线. (2) 若∠APC =3∠BPC ,求CEPE的值.22.(2018湖北武汉中考,22,10分,★★☆)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B .(1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C .① 若t =1,直接写出点C 的坐标; ② 若双曲线xy 8=经过点C ,求t 的值. (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m和n 的数量关系.23.(2018湖北武汉中考,23,10分,★★☆)在△ABC 中,∠ABC =90°.(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M ,N ,求证:△ABM ∽△BCN .(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠PAC =552,求tanC 的值. (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值.24.(2018湖北武汉中考,24,12分,★★★)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B .(1) 直接写出抛物线L 的解析式.(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M ,N .若△BMN的面积等于1,求k 的值.(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.2018年武汉市初中毕业生学业考试数学答案全解全析1.答案: A解析:-4+7=3(℃).故选A. 考查内容:有理数的加法命题意图:本题主要考查学生对有理数的加法应用,难度较低. 2.答案: D 解析:∵分式21+x 在实数范围内有意义,∴2x +≠0,即x ≠-2.故选D. 考查内容:分式有意义的条件命题意图:本题主要考查学生对分式有意义的条件的理解,难度较低. 3.答案: B解析: 原式=(3-1)2x =22x .故选B. 考查内容:整式的减法命题意图:本题主要考查学生对合并同类项法则理解,难度较低. 4.答案:D解析: ∵37,40,38,42,42,这组数据共有5个数,其中42出现2次,出现的次数最多,∴这组数据的众数是42;把37,40,38,42,42,按从小到大的顺序排列为37,38,40,42,42,共有5个数据,其中40在中间位置,∴这组数据的中位数是40.故选D. 考查内容: 一组数据众数、中位数的求法命题意图:本题主要考查学生对数据的中位数和众数的求法,难度较低. 5.答案:B解析: (a -2)(a +3)=2326a a a +--=26a a +-.故选B. 考查内容:整式的乘法、整式的加减命题意图:本题主要考查学生对多项式乘多项式法则的理解,难度较低. 6.答案: A解析: ∵点P (,a b )关于x 轴的对称点是1P (,a b -),∴点A (2,-5)关于x 轴对称的点的坐标是(2,5).故选A.考查内容: 两点关于x 轴对称的坐标的关系命题意图:本题主要考查学生对成轴对称的两个点的坐标特征的理解,难度较低.知识拓展:有关点的轴对称的规律如下:(1)点(x ,y )关于x 轴对称的点坐标是(x ,-y ),即横坐标不变,纵坐标互为相反数;(2)点(x ,y )关于y 轴对称的点坐标是(-x , y ),即纵坐标不变,横坐标互为相反数. 7.答案:C解析: 由主视图知,俯视图中在该位置上最多小正方体的个数如图所示 (图中的数字表示在该位置上的小正方体的个数),则这个几何体中正方体的个数最多是2+2+1=5.故选C.第7题答图俯视图122考查内容: 由三视图判断几何体命题意图:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力,难度中考. 8.答案: C 解析: 列表如下1 (1,1)(1,2)(1,3)(1,4)2 (2,1)(2,2)(2,3)(2,4)3 (3,1)(3,2)(3,3)(3,4)4 (4,1)(4,2)(4,3)(4,4)由表可知,共有16种等可能结果,其中两次抽取的卡片上数字之积为偶数的有12种结果,所以P(两次抽取的卡片上数字之积为偶数)=1216=34.故选C.考查内容:用列表或画树状图求等可能事件的概率命题意图:本题主要考查利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,难度较低.一题多解:画树状图为:由树状图可知,共有16种等可能结果,其中两次抽取的卡片上数字之积为偶数的有12种结果,所以P(两次抽取的卡片上数字之积为偶数)=1216=34.故选C.9.答案:D解析:设中间的数为x,则这三个数分别为x-1,x,x+1∴这三个数的和为(x-1)+x+(x+1)=3x,所以和是3的倍数,又2019÷3=673,673除以8的余数为1,∴x在第1列(舍去);2016÷3=672,672除以8的余数为0,∴x在第8列(舍去);2013÷3=671,671除以8的余数为7,∴x在第7列,所以这三数的和是2013,故选答案D.考查内容:整式的加法;数字规律的变化命题意图:本题主要考查学生对整式的加法的运用,分析规律型中数字的变化的能力,难度中等.10.答案:B解析:连接AC,DC,OD,过C作CE⊥AB于E,过O作OF⊥CE于F,∵BC沿BC折叠,∴∠CDB=∠H,∵∠H+∠A=180°,∴∠CDA+∠CDB=180°,∴∠A=∠CDA,∴CA=CD,∵CE ⊥AD ,∴AE =ED =1,∵OA =,AD =2,∴OD =1,∵OD ⊥AB ,∴OFED 为正方形,∴OF =1,OC =CF =2,CE =3,∴CB =.OHFEDCBA第10题答图考查内容:翻折的性质;圆内接四边形的性质;正方形的性质与判定;等腰三角形的性质与判定.命题意图:本题主要考查学利用折叠的性质、圆内接四边形的性质进行计算,难度较大. 11.解析:.考查内容: 二次根式的加减命题意图:本题主要考查学生对二次根式的加减运算的掌握,难度较低. 12.答案:0.9解析:表中移植的棵树最多的是14000棵,对应的频率是0.902,因此0.902可作为估计值,0.902≈0.9.故答案为0.9. 考查内容:用频率估计概率命题意图:本题主要考查学生对用频率估计概率的认识,难度较低. 13.答案:11m - 解析: 原式=22111m m m +--=1(1)(1)m m m ++-=11m -.故答案为11m -. 考查内容:分式的符号法则;同分母的分式相加减命题意图:本题主要考查学生对分式运算的能力,难度较低. 14.答案:30°或150°解析:如答图(1),∵△ADE 是等边三角形,∴DE =DA ,∠DEA =∠1=60°;∵四边形ABCD 是正方形,∴DC =DA ,∠2=90°;∴∠CDE =150°,DE =DC ,∴∠3=001(180150)2-=15°.同理可求得∠4=15°.∴∠BEC =30°.如答图(2),∵△ADE 是等边三角形,∴DE =DA ,∠1=∠2=60°;∵四边形ABCD 是正方形,∴DC =DA ,∠CDA =90°;∴DE =DC ,∠3=30°,∴∠4=001(18030)2-=75°. 同理可求得∠5=75°.∴∠BEC =360°―∠2―∠4―∠5=150°.故答案为30°或150°.4321ED CBA54321A BCD E第14题答图(1) 第14题答图(2) 考查内容: 正方形的性质;等边三角形的性质.命题意图:本题主要考查学生对正方形的性质、等边三角形的性质的运用,难度中等. 易错警示:此类问题容易出错的地方是:一是未考虑点E 在正方形的内部和外部两种情况导致丢解;二是不能正确画出符合题意的图形,从而不能得到正确答案. 15.答案:24解析: ∵22360t t y -==23(20)6002t --+,∴当t =20时,滑行到最大距离600m 时停止;当t =16时,y =576,所以最后4s 滑行24m . 考查内容:求二次函数顶点坐标;已知自变量的值求函数值命题意图:本题主要考查学生对用二次函数解决实际问题的能力,难度中等. 16.解析: 延长BC 至点F ,使CF =AC ,∵DE 平分△ABC 的周长,AD =BC ,∴AC +CE =BE ,∴BE =CF +CE =EF ,∴DE ∥AF ,DE =12AF ,∠CAF =12∠ACB =30°.作CG ⊥AF ,垂足为G ,则∠AGC =90°,AF =2AG =2AC ×cos ∠CAF =2×1×cos 30°2DE =.GFECBDA考查内容: 三角形的中位线;等腰三角形的性质;直角三角形中的边角关系命题意图:本题主要考查学生对构造等腰三角形,利用三角形中位线解决问题的能力,难度较大.17.分析:②-①可求得y 的值,把x 代入①求得的x 值,得方程组的解. 解析: ②-①,得x =6. 将x =6代入①,得610y +=, y =4. 所以方程组的解是 6.4.x y =⎧⎨=⎩考查内容:加减消元法解二元一次方程组命题意图:本题主要考查学生解二元一次方程组的能力,难度较低.方法规律:解二元一次方程组的基本思路是“消元”,常用的方法是代入消元法和加减消元法.当某一未知数的系数较简单时(如是±1),可选择代入消元法求解;当同一未知数的系数互为相反数或相同时,采用加减消元法更简单些;当两种方法都不能直接用时,需对方程组适当变形,然后再求解.18.分析:如图,由已知条件证得△ABF ≌△DCE ,得∠1=∠2,再根据等腰三角形的判定定理得GE =GF .解析: ∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE . 在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DCE (SASA ),∴∠1=∠2, ∴GE =GF .GDCFEBA21考查内容: 全等三角形的判定与性质;等腰三角形的判定命题意图:本题主要考查了学生对全等三角形的判定与性质的把握,识别出两个三角形全等的条件,难度较低.19.分析:(1)根据阅读1本的学生数及所占的百分比求得随机抽取的学生数m ;根据阅读3本的学生数占随机抽取的学生数的百分比求出b 的值;阅读1本、2本、3本、4本的学生人数的和等于所抽取的学生数,求出a 的值.(2)求出随机抽取的学生平均每人阅读的本数,即可求出估计该年级全体学生在这次活动中课外阅读书籍的总量.解析:(1)m =15÷30%=50(名); b =50×40%=20; a =50―15―20―5=10. (2)1152103204550⨯+⨯+⨯+⨯ ×500=1150(本)考查内容: 条形统计图 ,扇形统计图 ,用样本估计总体命题意图:本题主要考查学生从统计图表中获取信息的能力及用样本估计总体的能力,难度中等.20.分析:(1)设购买A 型钢板x 块,表示出B 型钢板的块数,根据C 型钢板不少于120块,D 型钢板不少于250块列出不等式组,求出x 的取值范围,得到购买方案.(2)用x 表示出出售C 型钢板、D 型钢板获得的利润,根据函数的增减性确定获得最大利润的购买方案.解析:(1)设A 型钢板x 块,则B 型钢板有(100-x )块.2(100)6,3(100)250.x x x x +-≥⎧⎨+-≥⎩解得2025x ≤≤. x =20或21或22或23或24或25,购买方案共有6种. (2)设总利润为W 元,则()()1002100120310014046000w x x x x x =+-++-=-+⎡⎤⎣⎦x =20时,max 140204600043200W =-⨯+=元. 获利最大的方案为购买A 型20块,B 型80块.考查内容: 一元一次不等式组的应用;一次函数的实际应用命题意图:本题主要考查学生运用一元一次不等式组及一次函数等知识解决实际问题的能力,难度中等.归纳总结:列一元一次不等式(组)解决实际问题通常有以下步骤: (1)找出实际问题的不等关系,设定未知数,列出不等式(组); (2)解不等式(组);(3)从不等式组的解集中求出符合题意的答案.21.分析:(1)如图①,连接OB ,OP ,△OAP 与△OBP 三边对应相等,这两个三角形全等,得∠OBP =∠OAP =90°,故PB 是⊙O 的切线.(2)如图②,连接BC ,AB 与OP 交于点H ,易证OP ⊥AB ,∠OPC =∠PCB =∠CPB ,由△OAH ∽△CAB 得12OH CB =;由△HPB ∽△BPO ,求得HP OH ;再由△HPE ∽△BCE ,可得CE PE的值.解析:(1)证明:如图①,连接OB ,OP ,在△OAP 和△OBP 中,,,,OA OB OP OP AP BP =⎧⎪=⎨⎪=⎩∴△OAP ≌△OBP (SSS ).∴∠OBP =∠OAP ,∵PA 是⊙O 的切线,∴∠OBP =∠OAP =90°,∴PB 是⊙O 的切线.图②图①⑵如图②,连接BC ,AB 与OP 交于点H ,∵∠APC =3∠BPC ,设∠BPC =x ,则∠APC =3x ,∠APB =x +3x =4x , 由⑴知∠APO =∠BPO =2x ,∴∠OPC =∠CPB =x , ∵AC 是⊙O 的直径,∴∠ABC =90°,∵易证OP ⊥AB ,∴∠AHO =∠ABC =90°,即OP ∥BC , ∴∠OPC =∠PCB =∠CPB =x ,∴CB =BP ,易证△OAH ∽△CAB ,∴OH CB =OAAC=12,设OH =a ,∴CB =BP =2a ,易证△HPB ∽△BPO ,∴HP BP =BP OP,∴设HP =ya ,∴2ya a =2aa ya +,解得1y =(舍)或2y =,∵OP ∥CB ,易证△HPE ∽△BCE ,∴PE CE =HP CB=2ya a .考查内容: 全等三角形的判定性质;切线的判定;相似三角形的判定性质.命题意图:本题主要考查学生对圆的切线的判定方法的把握,相似三角形的判定与性质的运用,难度中等.22.分析:(1)求出A 、B 两点的坐标,①求出BP 的长即可写出C 点的坐标;②点B 在点P 的右边、点B 在点P 的左边两种情况,分别用t 表示点C 的坐标,代入反比例函数解析式,可求出t 的值.(2)分别用m 、n 表示出2OA 、2OD ,根据旋转的性质知OA OD =,求出m 和n 的数量关系.解析: ⑴将A x =-2代入y =8x 中得:A y =82-=-4,∴A (-2,-4),B (-2,0) ①∵t =1,∴P (1,0),BP =1-(-2)=3.∵将点B 绕点P 顺时针旋转90°至点C ,∴C x =P x =t ,PC =BP =3,∴C (1,3). ②∵B (-2,0),P (t ,0),第一种情况:当B 在P 的右边时,BP =-2-t , ∴C x =P x =t ,PC 1=BP =-2-t ,∴C 1(t ,t +2). 第二种情况:当B 在P 的左边时,BP =2+t , ∴C x =P x =t ,PC 2=BP =2+t ,∴C 2(t ,t +2). 综上:C 的坐标为(t ,t +2).∵C 在y =8x上,∴t (t +2)=8,解得t =2或-4.⑴ ⑵ ⑵作DE ⊥y 轴交y 轴于点E ,将A y =m 代入y =8x 得:A x =8m ,∴A (8m ,m ) ,∴AO 2=OB 2+AB 2=228m +m 2,将D y =n 代入y =8x 得:D x =8n ,∴D (-8n ,n ) ,∴DO 2=DE 2+OE 2=28n ⎛⎫- ⎪⎝⎭+n 2,∴228m +m 2=28n ⎛⎫- ⎪⎝⎭+n 2,228m -228n =n 2-m 2,222264()n m m n -=n 2-m 2, (64-m 2n 2)(n 2-m 2)=0①当n 2-m 2=0时,n 2=m 2,∵m <0,n >0,∴m +n =0; ②当64-m 2n 2=0时,m 2n 2=64,∵m <0,n >0,∴mn =-8. 综合得:m +n =0,或mn =-8.考查内容: 旋转的性质;反比例函数综合题命题意图:本题主要考查学生对反比例函数综合题、旋转变换、待定系数法、全等三角形的判定和性质等知识掌握,会用分类讨论的思想思考问题,会添加辅助线,构造全等三角形解决问题,难度中等.23.分析:(1)由已知得∠M =∠N =90°,易证∠1=∠2,故△ABM ∽△BCN .(2)过P 点作PN ⊥AP 交AC 于N 点,过N 作NM ⊥BC 于M 点,由(1)知△BAP ∽△MPN ,AP BA BPPN MP MN==;∵tan PN PAC PA ∠==,设MN =,PM =,则5BP a =,5AB b =,用b 表示PC ;由已知可证△BAP ∽△BCA ,求得a 与b 的关系,C求得tanC 的值;(3)过A 作AH EB ⊥交EB 于H ,过C 作CK EB ⊥交EB 的延长线于K ,则DE ∥AH ∥CK ,∴25EH DA HK AC ==,设3CK x =,由△AHB ∽△BKC ,求得4HB EH x ==,再求得HK =10x ,便可得tan ∠CEB 的值.解析: 证明: ⑴∵∠ABC =90°,∴∠3+∠2=180°-∠ABC =180°-90°=90°. 又∵AM ⊥MN ,CN ⊥MN ,∴∠M =∠N =90°,∠1+∠3=90°, ∴∠1=∠2.∴△ABM ∽△BCN . 23⑴答题图 (2)过P 点作PN ⊥AP 交AC 于N 点,过N 作NM ⊥BC 于M 点, ∵∠BAP +∠APB =90°,∠APB +∠NPC =90°, ∴∠BAP =∠NPC ,△BAP ∽△MPN ,AP BA BPPN MPMN==,又∵tan PN PACPA ∠==,设MN =,PM =,则5BP a =,5AB b =, 23(2)答题图又∵BAP BCA ∠=∠,∴NPC BCA ∠=∠,∴NP NC =,2PC PM ==. 又△BAP ∽△BCA ,BA BC BP BA=,∴2BABP BC =⋅, ()()2555b aa =⋅+,解得:a =,∴tan MN a C MC b ∠====. (3)过A 作AH EB ⊥交EB 于H ,过C 作CK EB ⊥交EB 的延长线于K ∵AE AB = ∴EH HB =,易知△AHB ∽△BKC ,25EH DA HK AC == 设3CK x =,∵△AHB ∽△BKC ,∴AB HBBC CK=,∴4HB EH x ==. ∴5201022EH x HK x ===,∴3tan 14CK CEB EK ∠==.KCBH AED23(3)答题图考查内容:相似三角形的判定性质 ,锐角三角函数的定义 ,等腰三角形的性质 命题意图:本题主要考查学生综合运用相似三角形的判定性质、锐角三角函数解决问题的能力,难度中等.24.分析:(1)由抛物线L 经过点A 求得c 的值;由抛物线L 的对称轴求得b 的值,得抛物线L 的解析式.(2)设直线y =kx -k +4(k <0)与抛物线L :y =-x 2+bx +c 的对称轴x =1交于点E ,则BMN EBN EBM S S S ∆∆∆=-()()()1111121222N M N M EB x EB x x x =---=⨯-=,用k 表示出N M x x -并代入上式,求得k 的值;(3)设1L 为:22y x x t =-++,∴1m t =-.设P (0,a ),①△PCD ∽△POF 时,3t a =,此时必有一点P 满足条件;②△DCP ∽△POF时,220a at -+=.∵符合条件的点P 恰有两个,分两种情况进行讨论:∴第一种情况:220a at -+=有两个相等的实数根,求出m 的值及相应点P 的坐标;第二种情况:220a at -+=有两个不相等的实数根,且其中一根为3t a =的解,求出m 的值及相应点P 的坐标.解析:(1)∵抛物线L :y =-x 2+bx +c 经过点A (0,1),∴c =1. ∵抛物线L :y =-x 2+bx +c 的对称轴是直线x =1, ∴12(1)b-=⨯-,解得2b =;∴221y x x =-++.(2)∵直线()40y kx k k =-+<,则()14y k x =-+, ∴直线MN 过定点P (1,4),联立24,2 1.y kx k y x x =-+⎧⎨=-++⎩ 得()2230x k x k +--+=,∴2M N x x k +=-,3M N x x k ⋅=-,∴BMN EBN EBM S S S ∆∆∆=-()()()1111121222N M N M EB x EB x x x =---=⨯-=. ∵()()()22242438N M M N M N x x x x x x k k k -=+-=---=-281k -=,∴3k =±. ∵0k <,∴3k =-.(3)设1L 为:22y x x t =-++,∴1m t =-且C (0,t ),D (2,t ),F (1,0),设P (0,a ),①△PCD ∽△POF 时,∴CD CP OF OP =,∴21t aa -=,∴3t a =,此时必有一点P 满足条件;②△DCP ∽△POF 时,∴CD CP OP OF =,∴21t a a -=,∴220a at -+=. ∵符合条件的点P 恰有两个, ∴第一种情况:220a at -+=有两个相等的实数根,0∆=,∴t =±0t >,∴t =11m =,将t =代入3t a =得:1a =1P (0),将t =代入220a at -+=得:2a =,∴2P (0). 第二种情况:220a at -+=有两个不相等的实数根,且其中一根为3t a =的解,∴0∆>,将3t a =代入220a at -+=得:22320a a -+=, ∴1a =±,∵0a >,∴1a =,∴3t =,22m =,将3t =代入220a at -+=得:31a =, ∴3P (0,1); 42a =,∴4P (0,2).综上所述:当11m =时,P (0,3)或P (0 当22m =时,P (0,1)或P (0,2).考查内容: 确定二次函数表达式;一元二次方程的根与系数的关系;一元二次方程根的判别式与方程的根的情况之间的关系;相似三角形的性质命题意图:本题主要考查学生综合运用二次函数与相似三角形的性质解决问题的能力,难度较大.。
山东泰安市2018年中考数学试题(含答案)
泰安市2018年初中学业水平考试数学试题一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1. 计算:的结果是()A. -3B. 0C. -1D. 3【答案】D【解析】分析:根据相反数的概念、零指数幂的运算法则计算即可.详解:原式=2+1=3.故选D.点睛:本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于1是解题的关键.2. 下列运算正确的是()A. B. C. D.【答案】D【解析】分析:根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.详解:2y3+y3=3y3,故A错误;y2•y3=y5,故B错误;(3y2)3=27y6,故C错误;y3÷y﹣2=y3﹣(﹣2)=y5.故D正确.故选D.点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3. 如图是下列哪个几何体的主视图与俯视图()A. B. C. D.【答案】C【解析】分析:直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.详解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.故选C.点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题的关键.4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5. 某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:3538404244454547,则这组数据的中位数为:=43,=(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6. 夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.【答案】C【解析】分析:首先利用二次函数图象得出a,b的取值范围,进而结合反比例函数以及一次函数的性质得出答案.详解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选C.点睛:本题主要考查了二次函数、一次函数、反比例函数的图象,正确得出a,b的取值范围是解题的关键.8. 不等式组有3个整数解,则的取值范围是()A. B. C. D.【答案】B【解析】分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.9. 如图,与相切于点,若,则的度数为()A. B. C. D.【答案】A【解析】分析:连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA、OB.∵BM是⊙O的切线,∴∠OBM=90°.∵∠MBA=140°,∴∠ABO=50°.∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选A.10. 一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.11. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.【答案】A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.12. 如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D. 8【答案】C【解析】分析:连接OP.由直角三角形斜边上的中线等于斜边的一半,得到OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM,计算即可得到结论.详解:连接OP.∵P A⊥PB,OA=OB,∴OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM==3,∴AB的最小值为2OP=6.故选C.点睛:本题考查了直角三角形斜边上中线的性质以及两点间的距离公式.解题的关键是利用直角三角形斜边上中线等于斜边的一半把AB的长转化为2OP.二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13. 一个铁原子的质量是,将这个数据用科学记数法表示为__________.【答案】【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值<1时,n是负数;n的绝对值等于第一个非零数前零的个数.详解:0.000000000000000000000000093=9.3×10﹣26.故答案为:9.3×10﹣26.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14. 如图,是的外接圆,,,则的直径..为__________.【答案】【解析】分析:连接OB,OC,依据△BOC是等腰直角三角形,即可得到BO=CO=BC•cos45°=2,进而得出⊙O的直径为4.详解:如图,连接OB,OC.∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形.又∵BC=4,∴BO=CO=BC•cos45°=2,∴⊙O的直径为4.故答案为:4.点睛:本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为__________.【答案】【解析】分析:先利用勾股定理求出A'C,进而利用勾股定理建立方程求出AE,即可求出BE,最后用三角函数即可得出结论.详解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°.在Rt△A'CB 中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x.在Rt△CDE中,根据勾股定理得:(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2.在Rt△ABE 中,根据勾股定理得:BE==2,∴sin∠ABE==.故答案为:.点睛:本题主要考查了折叠的性质,勾股定理,锐角三角函数,充分利用勾股定理求出线段AE是解答本题的关键.16. 如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为__________.【答案】【解析】分析:由=,CD=x,得到DE=,CE=,则BE=10-,由ΔDEB 的面积S等于△BDE面积的一半,即可得出结论.详解:∵DE⊥BC,垂足为E,∴tan∠C==,CD=x,∴DE=,CE=,则BE=10-,∴S=S△BED=(10-)•化简得:.故答案为:.点睛:本题考查了动点问题的函数解析式,解题的关键是设法将BE与DE都用含有x的代数式表示.17. 《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.【答案】【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案为:.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)18. 先化简,再求值:,其中.【答案】.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.详解:原式=÷(﹣)=÷=•=﹣=当m=﹣2时,原式=﹣=﹣=﹣1+2=.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】分析:(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.详解:(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.点睛:本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.20. 为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.【答案】(1)估计该校初三等级为的学生人数约为125人;(2)恰有2名女生,1名男生的概率为.【解析】分析:(1)先根据C等级人数及其所占百分比求得总人数,用总人数减去B、C、D的人数求得A等级人数,再用总人数乘以样本中A等级人数所占比例;(2)列出从3名女生和2名男生中随机抽取3人的所有等可能结果,再从中找到恰好抽到2名女生和1名男生的结果数,根据概率公式计算可得.详解:(1)∵所抽取学生的总数为8÷20%=40人,∴该班级等级为A的学生人数为40﹣(25+8+2)=5人,则估计本校初三年级等级为A的学生人数为1000×=125人;(2)设两位满分的男生记为A1、A2、三位满分的女生记为B1、B2、B3,从这5名同学中选3人的所有等可能结果为:(B1,B2,B3)、(A2,B2,B3)、(A2,B1,B3)、(A2,B1,B2)、(A1,B2,B3)、(A1,B1,B3)、(A1,B1,B2)、(A1,A2,B3)、(A1,A2,B2)、(A1,A2,B1),其中恰好有2名女生、1名男生的结果有6种,所以恰好抽到2名女生和1名男生的概率为=.点睛:本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21. 如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值及图象经过、两点的一次函数的表达式;(2)若,求反比例函数的表达式.【答案】(1),;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.详解:(1)∵为的中点,∴.∵反比例函数图象过点,∴.设图象经过、两点的一次函数表达式为:,∴,解得,∴.(2)∵,∴.∵,∴,∴.设点坐标为,则点坐标为.∵两点在图象上,∴,解得:,∴,∴,∴.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.22. 如图,中,是上一点,于点,是的中点,于点,与交于点,若,平分,连接,.(1)求证:;(2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.(3)若,判定四边形是否为菱形,并说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)四边形是菱形,理由见解析. 【解析】分析:(1)由条件得出∠C=∠DHG=90°,∠CGE=∠GED,由F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(2)过点G作GP⊥AB于P,判定△CAG≌△P AG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GPD,依据EC=PD,即可得出AD=AP+PD=AC+EC;(3)由∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AECF是平行四边形,即可得到四边形AEGF是菱形.详解:(1)∵AF=FG,∴∠F AG=∠FGA.∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE.∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED.∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△P AG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△GPD,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形.证明如下:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF是平行四边形,∴四边形AEGF是菱形.点睛:本题属于四边形综合题,主要考查了菱形的判定、全等三角形的判定和性质,线段垂直平分线的判定与性质以及含30°角的直角三角形的性质的综合运用,利用全等三角形的对应边相等,对应角相等是解决问题的关键.23. 如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为,,.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE的面积,运用二次函数分析最值即可;(3)设出点P坐标,分P A=PE,P A=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得:,所以二次函数的解析式为:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,),则点F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴当m=时,△ADE的面积取得最大值为.(3)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求P A=,PE=,AE=,分三种情况讨论:当P A=PE时,=,解得:n=1,此时P(﹣1,1);当P A=AE时,=,解得:n=,此时点P坐标为(﹣1,);当PE=AE时,=,解得:n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.24. 如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF⋅MH.【答案】(1),理由见解析;(2),证明见解析;(3)证明见解析.【解析】分析:(1)先判断出∠DEF=∠EBA,∠AEF=∠EAB,即可得出结论;(2)先判断出∠GAB=∠ABE+∠ADB=2∠ABE,进而得出∠GAB=∠AEO,即可得出结论;(3)先判断出BM=DM,∠ADM=∠ABM,进而得出∠ADM=∠H,判断出△MFD∽△MDH,即可得出结论.详解:(1)∠DEF=∠AEF,理由如下:∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.∵∠EAB=∠EBA,∴∠DEF=∠AEF;(2)△EOA∽△AGB,理由如下:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE.∵∠AEO=∠ABE+∠BAE=2∠ABE.∵∠GAB=∠AEO,∠GAB=∠AOE=90°,∴△EOA∽△AGB;(3)如图,连接DM.∵四边形ABCD是菱形,由对称性可知,BM=DM,∠ADM=∠ABM.∵AB∥CH,∴∠ABM=∠H,∴∠ADM=∠H.∵∠DMH=∠FMD,∴△MFD∽△MDH,∴,∴DM2=MF•MH,∴BM2=MF•MH.点睛:本题是相似形综合题,主要考查了菱形的性质,对称性,相似三角形的判定和性质,判断出△EOA∽△AGB是解答本题的关键.。
2018年天津市中考数学试题含答案解析(Word版)
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ). 【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
最新部编RJ人教版 初中中考数学真题真卷———2018年山东省日照市中考数学试卷含答案解析(Word版)
2018年山东省日照市中考数学试卷相信你能取得好成绩!一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.(3分)|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣2.(3分)在下列图案中,既是轴对称又是中心对称图形的是()A.B.C. D.3.(3分)下列各式中,运算正确的是()A.(a3)2=a5B.(a﹣b)2=a2﹣b2 C.a6÷a2=a4D.a2+a2=2a44.(3分)若式子有意义,则实数m的取值范围是()A.m>﹣2 B.m>﹣2且m≠1 C.m≥﹣2 D.m≥﹣2且m≠15.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9,9 C.9.5,9 D.9.5,86.(3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°7.(3分)计算:()﹣1+tan30°•sin60°=()A.﹣B.2 C.D.8.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO9.(3分)已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3 B.2 C.1 D.010.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O 在格点上,则∠BED的正切值等于()A.B.C.2 D.11.(3分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个12.(3分)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.42018二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程13.(4分)一个角是70°39′,则它的余角的度数是.14.(4分)为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为.15.(4分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是.16.(4分)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为.三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤17.(10分)(1)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x 都成立?(2)化简:(﹣)÷,并从0≤x≤4中选取合适的整数代入求值.18.(10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?19.(10分)(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.20.(12分)如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P 是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=6,求PB的长.21.(13分)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.22.(13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论.拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.2018年山东省日照市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.(3分)|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.【点评】本题主要考查了绝对值和相反数的定义,比较简单.2.(3分)在下列图案中,既是轴对称又是中心对称图形的是()A.B.C. D.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、此图案既不是轴对称图形又不是中心对称图形;B、此图案是轴对称图形,不是中心对称图形;C、此图案既是轴对称图形又是中心对称图形;D、此图案是中心对称图形,不是轴对称图形;故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)下列各式中,运算正确的是()A.(a3)2=a5B.(a﹣b)2=a2﹣b2 C.a6÷a2=a4D.a2+a2=2a4【分析】根据同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式一一判断即可;【解答】解:A、错误.(a3)2=a5;B、错误.(a﹣b)2=a2﹣2ab+b2;C、正确.D、错误.a2+a2=2a2故选:C.【点评】本题考查同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(3分)若式子有意义,则实数m的取值范围是()A.m>﹣2 B.m>﹣2且m≠1 C.m≥﹣2 D.m≥﹣2且m≠1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:∴m≥﹣2且m≠1故选:D.【点评】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件,本题属于基础题型.5.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9,9 C.9.5,9 D.9.5,8【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决.【解答】解:由表格可得,该班学生一周读书时间的中位数和众数分别是:9、8,故选:A.【点评】本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.6.(3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°【分析】根据平行线的性质可得∠A=∠FDE=45°,再根据三角形内角与外角的性质可得∠1的度数.【解答】解:∵AB∥CD,∴∠A=∠FDE=45°,又∵∠C=30°.∴∠1=∠FDE﹣∠C=45°﹣30°=15°,故选:D.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.7.(3分)计算:()﹣1+tan30°•sin60°=()A.﹣B.2 C.D.【分析】根据实数的运算,即可解答.【解答】解:()﹣1+tan30°•sin60°=2+=2+=故选:C.【点评】本题考查了实数的运算,解决本题的关键是熟记实数的运算.8.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO【分析】根据菱形的定义及其判定、矩形的判定对各选项逐一判断即可得.【解答】解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;当∠ABO=∠CBO时,由AD∥BC知∠CBO=∠ADO,∴∠ABO=∠ADO,∴AB=AD,∴四边形ABCD是菱形;当AC=BD时,可判定四边形ABCD是矩形;故选:B.【点评】本题主要考查菱形的判定,解题的关键是掌握菱形的定义和各判定及矩形的判定.9.(3分)已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3 B.2 C.1 D.0【分析】根据反比例函数的性质,可得答案.【解答】解:①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y随x的增大而增大,错误;④k=﹣8<0,每一象限内,y随x的增大而增大,若0>x>﹣1,﹣y>8,故④错误,故选:B.【点评】本题考查了反比例函数的性质,熟记反比例函数的性质是解题关键.10.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O 在格点上,则∠BED的正切值等于()A.B.C.2 D.【分析】根据同弧或等弧所对的圆周角相等来求解.【解答】解:∵∠DAB=∠DEB,∴tan∠DAB=tan∠DEB=.故选:D.【点评】此题主要考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.11.(3分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个【分析】观察图象判断出a、b、c的符号,即可得出结论①正确,利用对称轴公式x<﹣1,可得结论②正确;判断出﹣b<a+c<b,可得结论③正确,利用图象法可以判断出④错误;【解答】解:∵抛物线开口向上,∴a>0,∵﹣<0,∴b>0,∵抛物线交y轴于负半轴,∴c<0,∴abc<0,故①正确,∵﹣<﹣1,a>0,∴b>2a,∴2a﹣b<0,故②正确,∵x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∵x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∴b2>(a+c)2,故③正确,∵点(﹣3,y1),(1,y2)都在抛物线上,观察图象可知y1<y2,故④错误.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3分)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.42018【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为:=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.【点评】本题主要考查了数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程13.(4分)一个角是70°39′,则它的余角的度数是19°21′.【分析】依据余角的定义列出算式进行计算即可.【解答】解:它的余角=90°﹣70°39′=19°21′.故答案为:19°21′.【点评】本题主要考查的是余角的定义以及度分秒的换算,掌握相关概念是解题的关键.14.(4分)为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为x(x+40)=1200.【分析】先表示出矩形场地的长,再根据矩形的面积公式即可列出方程.【解答】解:由题意可得,x(x+40)=1200,故答案是:x(x+40)=1200.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.15.(4分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是4πcm2.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2,故答案为:4πcm2,【点评】考查学生对三视图掌握程度和灵活运用能力,关键是由主视图和左视图确定是柱体,锥体还是球体.16.(4分)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为﹣2≤m<﹣1.【分析】根据题意可知抛物线在第四象限内的部分,然后根据反比例函数y=(m <0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,可以得到不等式组,从而可以求得m的取值范围.【解答】解:∵y=x2﹣4,∴当x=0时,y=﹣4,当y=0时,x=±2,当x=1时,y=﹣3,∴抛物线y=x2﹣4在第四象限内的部分是(0,﹣4)到(2,0)这一段曲线部分,∵反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,∴,解得,﹣2≤m<﹣1.【点评】本题考查反比例函数的性质、二次函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤17.(10分)(1)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x 都成立?(2)化简:(﹣)÷,并从0≤x≤4中选取合适的整数代入求值.【分析】(1)根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.(2)根据分式的减法和除法可以化简题目中的式子,然后在0≤x≤4的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1)根据题意可得不等式组,解不等式①,得:x>2,解不等式②,得:x≤4,所以不等式组的解集为2<x≤4,则整数x的值为3、4;(2)原式=[﹣]•=[﹣]•=•=•=,∵,∴x≠0且x≠2、x≠4,∴在0≤x≤4中,可取的整数为x=1、x=3,当x=1时,原式=1;当x=3时,原式=1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法与解一元一次不等式组的步骤.18.(10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为20km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?【分析】(1)根据OA段的速度,可得结论;(2)当1.5≤x≤2.5时,设y=20x+b,利用待定系数法即可解决问题;【解答】解:(1)在OA段,速度==20km/h,故答案为20.(2)当1.5≤x≤2.5时,设y=20x+b,把(1.5,10)代入得到,10=20×1.5+b,解得b=﹣20,∴y=20x﹣20,当x=2.5时,解得y=30,∴乙地离小红家30千米【点评】本题考查一次函数的应用,解题的关键是读懂图象信息,属于中考常考题型.19.(10分)(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.【分析】(1)根据加权平均数分别计算三人的平均成绩,比较大小即可得;(2)①根据概率公式即可得;②列表得出所有等可能的情况数,找出两位同学抽到同一实验的情况数,即可求出所求概率.【解答】解:(1)==77(分),==86.5(分),==84.5(分),因为乙的平均成绩最高,所以应该录取乙;(2)①小厉参加实验D考试的概率是,故答案为:;②解:列表如下:所有等可能的情况有16种,其中两位同学抽到同一实验的情况有AA,BB,CC,DD,4种情况,所以小王、小张抽到同一个实验的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(12分)如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P 是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=6,求PB的长.【分析】(1)连接DE,OA.想办法证明OA⊥BF即可;(2)作OH⊥PA于H,只要证明△AOH∽△PAB,可得=,即可解决问题.【解答】(1)证明:连接DE,OA.∵PD是直径,∴∠DEP=90°,∵PB⊥FB,∴∠DEP=∠FBP,∴DE∥BF,∵=,∴OA⊥DE,∴OA⊥BF,∴直线l是⊙O的切线.(2)解:作OH⊥PA于H.∵OA=OP,OH⊥PA,∴AH=PH=3,∵OA∥PB,∴∠OAH=∠APB,∵∠AHO=∠ABP=90°,∴△AOH∽△PAB,∴=,∴=,∴PB=.【点评】本题考查相似三角形的判定和性质、垂径定理、切线的判定等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.21.(13分)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入求得a 的值即可;(2)过点P作PD⊥x,交BC与点D,先求得直线BC的解析式为y=﹣x+1,设点P(x,﹣x2+x+1),则D(x,﹣x+1),然后可得到PD与x之间的关系式,接下来,依据△PBC的面积为1列方程求解即可;(3)首先依据点A和点C的坐标可得到∠BQC=∠BAC=45°,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,依据勾股定理可求得⊙M的半径,然后依据外心的性质可得到点M为直线y=﹣x与x=1的交点,从而可求得点M的坐标,然后由点M的坐标以及⊙M的半径可得到点Q 的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1.设点P(x,﹣x2+x+1),则D(x,﹣x+1)∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,=OB•DP=×3×(﹣x2+x)=﹣x2+x.∴S△PBC=1,又∵S△PBC∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.∵A(﹣1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),∴Q的坐标为(1,﹣1﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、三角形的外心的性质,求得点M的坐标以及⊙M的半径的长度是解题的关键.22.(13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为BE=CE.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论BE=DE.拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.【分析】探究结论:(1)只要证明△ACE是等边三角形即可解决问题;(2)如图2中,结论:ED=EB.想办法证明EP垂直平分线段AB即可解决问题;(3)结论不变,证明方法类似;拓展应用:利用(2)中结论,可得CO=CB,设C(1,n),根据OC=CB=AB,构建方程即可解决问题;【解答】解:探究结论(1)如图1中,∵∠ACB=90°,∠B=30°,∴∠A=60°,∵AC=AB=AE=EB,∴△ACE是等边三角形,∴EC=AE=EB,故答案为EC=EB.(2)如图2中,结论:ED=EB.理由:连接PE.∵△ACP,△ADE都是等边三角形,∴AC=AD=DE,AD=AE,∠CAP=∠DAE=60°,∴∠CAD=∠PAE,∴△CAD≌△PAE,∴∠ACD=∠APE=90°,∴EP⊥AB,∵PA=PB,∴EA=EB,∵DE=AE,∴ED=EB.(3)当点D为边CB延长线上任意一点时,同法可证:ED=EB,故答案为ED=EB.拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA.∵A(﹣,1),∴∠AOH=30°,由(2)可知,CO=CB,∵CF⊥OB,∴OF=FB=1,∴可以假设C(1,n),∵OC=BC=AB,∴1+n2=1+(+2)2,∴n=2+,∴C(1,2+).【点评】本题考查三角形综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018年广西钦州中考数学试卷和答案(word打印版)
2018年广西北部湾经济区六市同城初中毕业升学统一考试(六市: 南宁、北海、钦州、防城港、崇左和来宾市)数学(考试时间: 120分钟满分: 120分)一、选择题(本大题共12小题, 每小题3分, 共36分。
在每小题给出的四个选项中只有一项是符合要求的)1. -3的倒数...................................... ... )A. -.........B. .........C........D..2.下列美丽的壮锦图案是中心对称图形的.............................. )A B C D3. 2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行, 该球场可容纳81000名观众, 其中数据81000用科学记数法表示................................ ... )A.81×10...........B.8.1×10......C.8.1×10.......D.0.81×10.4.某球员参加一场篮球比赛, 比赛分4节进行, 该球员每节得分如折线统计图所示, 则该球员平均每节得.A.7.........B.8............................... ... )C.9.........D.10...........................5.下列运算正确的.................................... ... )A.a(a+1..a2+....B.(a2)..a......C.3a2+a=4a.....D.a5÷a..a36.如图, ∠ACD是△ABC的外角, CE平分∠ACD, 若∠A=60°, ∠B=40°, 则∠ECD等....... ... )A. 40...........B. 45............C. 50...........D. 55...........................................7.若m>n, 则下列不等式正确的................................. )A.m-2<n-.......B........C.6m<6.......D.-8m>-8n8.从-2, -1.2这三个数中任取两个不同的数相乘, 积为正数的概率............... ... )A.........B........C........D.9.将抛物线向左平移2个单位后, 得到新抛物线的解析式........... ... )A....B...C.....D..10.如图, 分别以等边三角形ABC的三个顶点为圆点, 以边长为半径画弧, 得到封闭图形是莱洛三角形。
(完整版)上海市2018年中考数学试题及解析
hing at a time and All things in their being are good for somethin
2018 年上海市中考数学试卷
参考答案与试题解析
一、选择题(本大题共 6 题,每题 4 分,满分 24 分。下列各题的四个选项中,
有且只有一个选项是正确的)
1.(4 分)下列计算 ﹣ 的结果是( )
25.(14 分)已知⊙O 的直径 AB=2,弦 AC 与弦 BD 交于点 E.且 OD⊥AC,垂足 为点 F.
(1)如图 1,如果 AC=BD,求弦 AC 的长; (2)如图 2,如果 E 为弦 BD 的中点,求∠ABD 的余切值; (3)联结 BC、CD、DA,如果 BC 是⊙O 的内接正 n 边形的一边,CD 是⊙O 的内 接正(n+4)边形的一边,求△ACD 的面积.
hing at a time and All things in their being are good for somethin
在这组数据中,29 出现的次数最多, ∴这组数据的众数是 29, 故选:D. 5.(4 分)已知平行四边形 ABCD,下列条件中,不能判定这个平行四边形为矩 形的是( ) A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC 【分析】由矩形的判定方法即可得出答案. 【解答】解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个 平行四边形为矩形,正确; B、∠A=∠C 不能判定这个平行四边形为矩形,错误; C、AC=BD,对角线相等,可推出平行四边形 ABCD 是矩形,故正确; D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确; 故选:B. 6.(4 分)如图,已知∠POQ=30°,点 A、B 在射线 OQ 上(点 A 在点 O、B 之间) ,半径长为 2 的⊙A 与直线 OP 相切,半径长为 3 的⊙B 与⊙A 相交,那么 OB 的 取值范围是( )
2018年四川成都中考数学试卷(含解析)
2018年四川省成都市初中毕业、升学考试数学(满分150分,考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)1.(2018四川省成都市,1,3)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d【答案】D【解析】解:数轴上表示的实数,右边的数总比左边的大,d在最右边,所以d最大,故选择D.【知识点】数轴;2.(2018四川省成都市,2,3)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×106【答案】B【解析】解:40万=400000=4×105.故选择B.【知识点】科学计数法3.(2018四川省成都市,3,3)如图所示的正六棱柱的主视图是()【答案】A【解析】解:因为主视图是从正面看物体,如图所示的正六棱柱从正面可以看到中间一个大的矩形和两侧的两个等大的小矩形.故选择A.【知识点】三视图;主视图4.(2018四川省成都市,4,3)在平面直角坐标系中,点P(-3,-5)关于原点对称的点的坐标是()A.(3,-5)B.(-3,5)C.(3,5)D.(-3,-5)【答案】C【解析】解:因为关于原点对称的点的坐标特点是横纵坐标均为互为相反数,即P(x,y)关于原点对称的点P’(-x,-y),所以P(-3,-5)关于原点对称的点坐标为(3,5),故选择C.【知识点】中心对称;关于原点对称的点的坐标5.(2018四川省成都市,5,3)下列计算正确的是()A.2x+2x=4x B.()2x y-=2x-2y C.()32x y=6x y D.()23x x-g=5x【答案】D【解析】解:因为2x+2x=22x,故A错误;()2x y-=2x-2xy+2y,故B错误;()32x y=63x y,故C错误;()23x x-g=5x,D正确.故选择D.【知识点】整式乘法;乘法公式;合并同类项6.(2018四川省成都市,6,3)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【答案】C【解析】解:因为∠ABC=∠DCB,加上题中的隐含条件BC=BC,所以可以添加一组角或是添加夹角的另一组边,可以证明两个三角形全等,故添加A、B、D均可以使△ABC≌△DCB.故选择C.【知识点】三角形全等的判定;7.(2018四川省城都市,7,3)如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃【答案】B【解析】解:∵由图象提供的信息可知最高气温为30℃,最低气温为20℃,温差为10℃,A错误;一周中有两天日最高气温都是28℃,出现次数最多,所以众数是28℃,B正确;将20℃,28℃,28℃,24℃,26℃,30℃,22℃按从小到大排列后,居中的是26℃,所以中位数是26℃,C错误;七个数据的平均数是(20+28+28+24+26+30+22)÷7≈25.4℃,D错误.故选择B.【知识点】众数;中位数;极差;平均数8.(2018四川省成都市,8,3)分式方程1xx++12x-=1的解是()A.x=1 B.x=-1 C.x=3 D.x=-3【答案】A【解题过程】解:1x x ++12x -=1,去分母(x -2)(x +1)+x =x (x -2),解得x =1,检验:把x =1代入x (x -2)≠0,∴x =1是原方程的解.故选择A .【知识点】分式方程;分式方程的解法 9.(2018四川省成都市,9,3)如图,在 ABCD 中,∠B =60°,⊙C 的半径为3,则图中阴影部分的面积是( ) A .π B .2π C .3π D .6π【答案】C【解题过程】解:∵四边形ABCD 为平行四边形,AB ∥CD ,∴∠B +∠C =180°,∵∠B =60°,∴∠C =120°,∴阴影部分的面积=21203360π⨯=3π.故选择C .【知识点】平行四边形的性质;扇形面积10.(2018四川省成都市,10,3)关于二次函数y =22x +4x -1,下列说法正确的是( )A .图像与y 轴的交点坐标为(0,1)B .图像的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-3 【答案】D【解题过程】解:因为当x =0时,y =-1,所以图像与y 轴的交点坐标为(0,-1),故A 错误;图像的对称轴为x =2ba-=-1,在y 轴的左侧,故B 错误;因为-1<x <0时,在对称轴的右侧,开口向上,y 的值随x 值的增大而增大,故C 错误;y =22x +4x -1=()221x +-3,开口向上,所以有最小值-3,D 正确.故此选择D . 【知识点】二次函数的性质第Ⅱ卷(非选择题,共70分)二、填空题(每小题4分,共16分) 11.(2018四川省成都市,11,4)等腰三角形的一个底角为50° ,则它的顶角的度数为 . 【答案】80° 【解析】解:∵等腰三角形的一个底角为50° ,且两个底角相等,∴顶角为180°-2×50°=80°. 【知识点】等腰三角形性质,三角形的内角和 12.(2018四川省成都市,12,4)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是 .【答案】6【解析】解:设盒子中装有黄色乒乓球的个数为a 个,因为摸到黄色乒乓球的概率为38,所以16a =38,得a =6.【知识点】概率13.(2018四川省成都市,13,4)已知6a =5b =4c,且a +b -2c =6.则a 的值为 . 【答案】12 【解析】解:设6a =5b =4c=k ,则a =6k ,b =5k ,c =4k ,∵a +b -2c =6,∴6k +5k -8k =6,3k =6,解得k=2,∴a =6k =12.【知识点】比例;一元一次方程 14.(2018四川省成都市,14,4)如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E ,若DE =2,CE =3,则矩形的对角线AC 的长为 .【答案】30【思路分析】因为由作图可知MN 为线段AC 的垂直平分线,则有AE =CE =3,在Rt △ADE 中,由勾股定理可以求出AD 的长,然后再在Rt △ADC 中用勾股定理求出AC 即可.【解析】解:连接AE ,由作图可知MN 为线段AC 的垂直平分线,∴AE =CE =3,在Rt △ADE 中,2AE =2AD +2DE ,∴AD =22AE DE -=5,在Rt △ADC 中,2AC =2AD +2CD ,∵CD =DE +CE =5,∴AC =()2255+=30.【知识点】尺规作图;线段垂直平分线的性质;勾股定理三、解答题(本大题共6个小题,满分54分,解答应写出文字说明、证明过程或演算步骤) 15.(2018四川省成都市,15,6)(1)22-+38-2sin60°+|-3|【思路分析】结合负整数指数幂的运算法则、立方根、特殊角的三角形函数值,以及绝对值的性质进行运算, 【解析】解:22-+38-2sin60°+|-3|=14+2-2×32+3=94【知识点】幂的运算;立方根;特殊角三角形函数值;绝对值;15.(2018四川省成都市,15,6)(2)(1-11x +)÷21x x - 【思路分析】根据运算法则,先算括号内的,通分变成同分母的分式进行加减运算,然后再算乘除法.最后利用因式分解进行约分化成最简的形式.【解题过程】解:(1-11x +)÷21x x -=(111x x +-+)×21x x -=1xx +×()()11x x x +-=x -1. 【知识点】;分式的通分和约分; 因式分解;分式的混合运算;16.(2018四川省成都市,16,6)若关于x 的一元二次方程:2x -(2a +1)x +2a =0有两个不相等的实数根, 求a 的取值范围.【思路分析】利用根的判别式△=24b ac -,当△>0时方程有两个不相等的实数根,代入得到关于a 的不等式,解这个不等式便可求出a 的取值范围.【解题过程】解:由题意可知,△=()221a -+⎡⎤⎣⎦-4×1×2a =()221a +-42a =4a +1.∵方程有两个不相等的实数根,∴△>0,即4a +1>0,解得a >-14. 【知识点】一元二次方程;根的判别式; 17.(2018四川省成都市,17,8)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度” 的调查,并根据调查结果绘制成如下不完整的统计图表.6541260544842363024181260人数满意度不满意比较满意满意非常满意n m 5%40%10%65412不满意比较满意满意非常满意人数满意度所占百分比根据图表信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值为 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定. 【思路分析】(1)根据非常满意的人数和它所占的百分比,就可以求出调查的总人数;用满意的人数除以总人数就可以求出所占的百分比;(2)用总人数减去表中已知的数据,就可以得出比较满意的人数;或者用比较满意人数所占的百分比乘以总人数也可以得出比较满意的人数,然后在图中画出即可;(3)根据表格信息,能够知道“非常满意”和“满意”的人数之和,用它去除以总人数便可以得出所占的百分比,然后用每天接待的游客数乘以这个百分比,就可以知道每天得到多少游客的肯定了. 【解题过程】解:(1)∵12÷总人数×100%=10%,∴总人数=120(人);m =54÷120×100%=45%.(2)比较满意人数为:120×40%=48(人),图如下.486541260544842363024181260人数满意度不满意比较满意满意非常满意(3)3600×12+54120=1980(人). 答:该景区服务工作平均每天得到1980人的肯定. 【知识点】条形统计图 18.(2018四川省成都市,18,8)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务,如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B 处,测得小岛C 位于它的北偏东37°方向,如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75) 东北37°70°CDBA【思路分析】在Rt ΔADC 中已知一个锐角和斜边,可以利用锐角三角函数中的余弦函数求出CD 的长,然后在Rt ΔBDC 中,已知直角边CD 和锐角∠BCD ,利用三角形函数中的正切函数求出BD 的长. 【解题过程】解:由题意得,∠ACD =70°,∠BCD =37°,AC =80.在Rt ΔADC 中,cos ∠ACD =CDAC,∴CD =AC ·cos70°≈80×0.34=27.2(海里).在Rt ΔBDC 中,tan ∠BCD =BDCD,∴BD =CD ·tan37°≈27.2×0.75=20.4(海里).答:还需航行的距离BD 的长为20.4海里. 【知识点】方向角;锐角三角函数; 19.(2018四川省成都市,19,10)如图,在平面直角坐标系xOy 中,一次函数y =x +b 的图象经过点A (-2,0),与反比例函数y =kx(x >0)的图象交于B (a ,4). (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作MN ∥x 轴,交反比例函数y =kx(x >0)的图象于点N ,若A ,O ,M ,N 为顶点的四边形为平行四边形,求点M 的坐标.yxO BA【思路分析】(1)因为一次函数y =x +b 的图象经过点A (-2,0),所以把A 点坐标代入就可求出b ,即可得到一次函数解析式,因为B (a ,4)是一次函数和反比例函数y =kx (x >0)的交点,所以把y =4代入一次函数中可以求B 点坐标,代入到y =kx求出k 得到反比例函数解析式;(2)因为MN ∥x 轴,A ,O ,M ,N 为顶点的四边形为平行四边形,则有MN =AO =2,又M 在直线AB 上,所以可以设M 的横坐标为m ,纵坐标用m 的代数式表示出来,由MN ∥x 轴可知M 与N 的纵坐标相等,代入y =kx,又可以将N 的横坐标也用m 的代数式表示出来,然后|M N x x -|=2,可以求出m 的值,即可求出M 的坐标. 【解题过程】解:设M (m ,m +2),N (82m +,m +2),∵MN ∥x 轴,∴当MN =OA 时,A ,O ,M ,N 为顶点的四边形为平行四边形.∵MN =|M N x x -|,∴|m -82m +|=2,当m -82m +=2时,解得1m =23,2m =-23,经检验都是方程的根,因为m >0,∴m =23;当m -82m +=-2时,解得1m =-2+22,2m =-2-22,经检验都是方程的根,因为m >0,∴m =-2+22,∴M 的坐标为(23,23+2)或(-2+22,22).NMNMyxO BA【知识点】一次函数;反比例函数;平行四边形的性质 20.(2018四川省成都市,21,10)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G . (1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sin B =513,求DG 的长.F ABCDEGO【思路分析】(1)连接OD ,根据同圆半径相等,及角平分线条件得到∠DAC =∠ODA ,得OD ∥AC ,切线得证;(2)连接EF ,DF ,根据直径所对圆周角为直角,证明∠AFE =90°,可得EF ∥BC ,因此∠B =∠AEF ,再利用同弧所对圆周角相等可得∠B =∠ADF ,从而证明△ABD ∽△ADF ,可得AD 与AB 、AF 关系;(3)根据∠AEF =∠B ,利用三角函数,分别在Rt △DOB 和Rt △AFE 中求出半径和AF ,代入(2)的结论中,求出AD ,在利用两角对应相等,证明△OGD ∽△FGA ,再利用对应边成比例,求出DG :AG 的值,即可求得DG 的长. 【解题过程】解:(1)连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵AD 平分∠BAC ,∴∠OAD =∠DAC ,∴∠DAC =∠ODA ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∵OD 为⊙O 半径,BC 是⊙O 的切线. (2)连接EF ,DF .∵AE 为⊙O 直径,∴∠AFE =90°,∴∠AFE =∠C =90°,∴EF ∥BC ,∴∠B =∠AEF ,又∵∠ADF =∠AEF ,∴∠B =∠ADF ,又∠OAD =∠DAC ,∴△ABD ∽△ADF ,∴AB AD =ADAF,∴AD 2=AB ·AF ,∴AD =xy .(3)设⊙O 半径为r ,在Rt △DOB 中sin B =OD OB =513,∴8r r +=513,解得r =5,∴AE =10,在Rt △AFE 中sin ∠AEF =sin B =AF AE,∴AF =10×513=5013,∴AD =xy =501813⨯=301313.∵∠ODA =∠DAC ,∠DGO =∠AGF ,∴△OGD ∽△FGA ,∴DG AG =OD AF =1310,∴DG =301323.OGEDCBAF【知识点】切线的判定;相似三角形;圆的有关性质;锐角三角函数B 卷(共50分)四、填空题(本大题共4小题,每小题6分,共24分) 21.(2018四川省成都市,21,4)x +y =0.2,x +3y =1,则代数式x 2+4xy +4y 2的值为 . 【答案】0.36【思路分析】将已知x +y =0.2,x +3y =1,相加化简求出x +2y 的值,利用完全平方公式即可求值.【解题过程】解:∵x +y =0.2①,x +3y =1②,①+②得:2x +4y =1.2,∴x +2y =0.6,∴x 2+4xy +4y 2=(x +2y )2=0.36.【知识点】完全平方公式;整式加减 22.(2018四川省成都市,22,4)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .【答案】1213【思路分析】利用四个直角三角形面积的和除以正方形面积即可求解.【解题过程】解:∵两直角边之比均为2:3,∴直角三角形的斜边平方=正方形的面积=22+32=13,∵四个直 角三角形面积和=4×12×2×3=12,∴针尖落在阴影区域的概率=1213. 【知识点】概率23.(2018四川省成都市,23,4)已知a >0,S 1=1a,S 2=-S 1-1,S 3=21S ,S 4=-S 3-1,S 5=41S ,…(即当n 为大于1的奇数时,S n =11n S -;当n 为大于1的偶数时,S n =-S n -1-1),按此规律S 2018= .(用含a 的代数式表示 )【答案】-1aa+ 【思路分析】分别用a 表示出S 1、S 2、S 3、…、直到发现循环规律,即可求解.【解题过程】解:∵S 1=1a ,∴S 2=-S 1-1=-1a -1=-1aa +,∴S 3=21S =-1a a +,∴S 4=-S 3-1=1a a+-1=-11a +,∴S 5=41S =-1-a ,∴S 6=-S 5-1=a ,∴S 7=61S =1a =S 1,故此规律为7个一循环,∵2018÷7=336余2,∴S 2018=-1aa+. 【知识点】整式运算;规律题 24.(2018四川省成都市,24,4) 如图,在菱形ABCD 的中,tan A =43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段AB 的对应线段EF 经过顶点D .当EF ⊥AD 时,BNCN的值为 .M NCF DB EA A EBDF CNHM【答案】27【思路分析】延长NF 交DC 于H .根据翻折得∠A =∠E ,∠B =∠DFN ,利用菱形中邻角互补,可得到∠A =∠DFH ,且∠DHF =90°,在Rt △EDM 中,根据tan A =tan E =43,得到△EDM 三边的关系,求出菱形边长,在解Rt △DHF 和Rt △NHC ,求出CN ,BN ,即可求出BNCN的值. 【解题过程】解:∵四边形ABCD 为菱形,∴AD ∥BC ,∴∠A +∠B =180°,∵∠DFN +∠DFH =180°,又∵∠B =∠DFN ,∴∠A =∠DFH ,∵AB ∥CD ,∴∠A +∠ADC =180°,又∵∠ADF =90°,∴∠A +∠FDC =90°,∴∠DFH +∠FDC =90°,∴∠DHF =90°,∵∠A =∠E ,∴tan A =tan E =DM DE=43,设DM =4x ,DE =3x ,∴EM =22DE DM =5x ,∴AM =5x ,∴AD =AM +DM =9x ,∵EF =AB =AD =9x ,∴DF =EF -DE =6x ,在Rt △DFH 中∠A =∠DFH ,∴tan A =tan ∠DFH =DH FH =43,∴DH =45DF =245x ,∴CH =DC -DH =215x ,在Rt △CHN 中∠A =∠C ,∴tan A =tan C =HN HC =43,∴CN =53CH =7x ,∴BN =BC -CN =2x ,∴BNCN =27. 【知识点】菱形性质;锐角三角函数;翻折变换25.(2018四川省成都市,25,4) 设双曲线y =kx(k >0)与直线y =x 交于A 、B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于P 、Q 两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”.当双曲线y =kx(k >0)的眸径为6时,k 的值为 . xyOQPBA【答案】32【思路分析】由眸径为6得OP =3,求得P 点坐标,根据y =kx与直线y =x 交于A 、B 两点,求出A 、B 两点坐标根据平移规律得到P 的对应点坐标,代入双曲线y =kx解析式中,即可求得k 的值. 【解题过程】解:连接P A ,作BP ´∥AP .则四边形P ABP ´为平行四边形,且P ´在双曲线y =k x 上.∵y =k x与直线y =x 交于A 、B 两点,∴x =kx,解得x =±k ,∴A (-k ,-k ),B (k ,k ),根据题意可得OP =3,∴P (-322,322),∵四边形P ABP ´为平行四边形,∴PP ´∥AB ,PP ´=AB ,∴P ´(-322+2k ,322+2k ),代入y =kx 中,得(-322+2k )(322+2k )=k ,解得k =32.yP´xO QPBA【知识点】反比例函数;平移;五、解答题(本大题共3小题,共30分) 26.(2018四川省成都市,26,8)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x ≤300和x >300时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉种植面积共1200m 2,若甲种花卉的种植面积不少于200m 2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植面积总费用最少?最少费用为多少元?5500039000500300O (m 2)(元)y x【思路分析】(1)根据函数图象把(300,39000),(500,55000)分别代入y =k 1x 与y =k 2x +b 中即可求得解析式.(2)设甲种花卉的种植面积为a m 2,则乙种花卉的种植面积为(1200-a )m 2,结合(1)中的函数关系式,分别求出甲、乙两种花卉的费用求和,再结合函数的增减性进行讨论,即可求出最小值. 【解题过程】解:(1)当0≤x ≤300时,设函数关系式为y =k 1x ,过(300,39000),则39000=300k 1,解得k 1=130,∴当0≤x ≤300时,y =130x ,当x >300时,设函数关系式为y =k 2x +b ,过(300,39000)和(500,55000)两点,∴223900030055000500k b k b =+⎧⎨=+⎩,解得2801500k b =⎧⎨=⎩,y =80x +1500.综上y =130(0300)801500(300)x x x x ⎧⎨+⎩≤≤>.(2)设甲种花卉的种植面积为a m 2,则乙种花卉的种植面积为(1200-a )m 2. 根据题意得2002(1200)a a a ⎧⎨-⎩≥≤,解得200≤a ≤800.当200≤a ≤300时,总费用W 1=130a +100(1200-a )=30a +120000,当a =200时,总费用最少为W min =30×200+120000=126000(元); 当300≤a ≤800时,总费用W 2=80a +15000+100(1200-a )=-20a +135000,当a =800时,总费用最少为W min =-20×800+135000=119000,∵119000<126000,∴当a =800时,总费用最少为119000,此时1200-a =400, ∴当甲种、乙两种花卉面积分别为800 m 2和400 m 2时,种植面积总费用最少,最少费用为119000元. 【知识点】解不等式组;一次函数;一次函数图象的性质;27.(2018四川省成都市,27,10)在Rt △ABC 中,∠ACB =90°,AB =7,AC =2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A ´B ´C ´(点A 、B 的对应点分别为A ´、B ´),射线CA ´、CB ´分别交直线m 于点P ,Q .(1)如图1,当P 与A ´重合时,求∠ACA ´的度数;(2)如图2,设A ´B ´与BC 的交点为M ,当M 为A ´B ´的中点时,求线段PQ 的长; (3)在旋转过程中,当点P ,Q 分别在CA ´,CB ´的延长线上时,试探究四边形P A ´B ´Q 的面积是否存在最小值.若存在,求出四边形P A ´B ´Q 的最小面积;若不存在,请说明理由. 【思路分析】(1)当P 与A ´重合时,解Rt △A ´BC ,求出∠BA ´C 的度数,即为∠ACA ´的度数;(2)当M 为A ´B ´的中点时,利用直角三角形斜边中线等于斜边一半,得∠MA ´C =∠BCA ,解Rt △PBC 求出PB ,利用同角余角相等,得∠BQC =∠PCB ,解Rt △CBQ 求出BQ ,根据PQ =PB +BQ 即可求得PQ ;(3)作Rt △PCQ 斜边中线CM ,由S 四边形P A ´B ´Q =S △PCQ -S △P A ´B ´=12PQ ·BC -S △P A ´B ´=CM ·BC -S △P A ´B ´,根据垂线段最短,当CM ⊥PQ 时,S 四边形P A ´B ´Q 最小,求出其最小值即可. C 备用图mABBQAP A´m 图2B´C C B´图1MmA´(P )AQB【解题过程】解:(1)∵∠ACB =90°,AB =7,AC =2,∴BC =22AB AC -=3,当P 与A ´重合时,A ´C =AC =2,在Rt △A ´BC 中,sin ∠BA ´C =BCA C'=32,∴∠BA ´C =60°,∵m ∥AC ,∴∠ACA ´=∠BA ´C =60°.(2)∵∠A ´CB ´=90°,M 为A ´B ´的中点时,∴A ´M =CM ,∴∠MA ´C =∠A ´CM =∠A ,∵在Rt △ABC 中,tan ∠A =BC AC =32,∴在Rt △PBC 中,tan ∠A ´CB =PB BC =32,∴PB =32.∵∠PCB +∠BCQ =∠BCQ+∠BQC =90°,∴∠BQC =∠PCB ,∴tan ∠BQC =tan ∠A ´CB =32,∴BQ =tan BC BQC ∠=2,∴PQ =PB+BQ =72. (3)取PQ 的中点M ,连接CM .∵S △CA ´B ´=12A ´C ·B ´C =12×2×3=3,S △PCQ =12PQ ·BC =32PQ ,∴S 四边形P A ´B ´Q =S △PCQ -S △CA ´B ´=32PQ -3,∵M 为PQ 的中点,∠PCQ =90°,∴PQ =2CM ,∴S 四边形P A ´B ´Q=S △PCQ -Q -S △CA ´B ´=3CM -3,当CM 最小时,S 四边形P A ´B ´Q 最小.∵CM ≤BC =3,∴当CM =3时,S 四边形P A ´B ´Q 的最小值= 3CM -3=3-3.P Q M A´B´CmA B【知识点】解直角三角形;直角三角形斜边中线等于斜边一半;旋转28.(2018四川省成都市,28,12)如图,在平面直角坐标系中xOy 中,以直线x =52为对称轴的抛物线y =ax 2+bx +c 与直线l :y =kx +m (k >0)交于A (1,1),B 两点,与y 轴交于点C (0,5),直线l 交于点D . (1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F ,G 是抛物线上位于对称轴右侧的一点,若AF FB =34,且△BCG 与△BCD 的面积相等,求点G 的坐标;(3)若在x 轴上有且只有一点P ,使∠APB =90°,求k 的值.备用图lOCD BAx yFFyx ABD COl【思路分析】(1)设抛物线解析式为y =ax 2+bx +c ,结合对称轴,及A (1,1), C (0,5),即可求得抛物线解析式;(2)过点B 作BH ⊥x 轴于H ,过点A 作AM ⊥BH 轴于M ,交抛物线对称轴于N ,过点G 作GP ∥y 轴交直线BC 于点Q ,则BM =1.利用△AEN ∽△ABM ,求出B 的坐标,求出直线AB 、BC 的解析式,可求出S △BCD ,设 G (p ,p 2-5p +5) ,再利用铅锤底水平宽表示S △BCG ,根据S △BCG =S △BCD ,列出关于p 的一元二次方程,求解即可;(3)过点A 作AE ⊥x 轴于E ,过点B 作BT ⊥x 轴于T ,连接P A 、PB .设P (x ,0),根据直线AB 过点A (1,1),求出直线AB 的解析式y =kx +1-k ,根据∠APB =∠AEP =∠PTB =90°,通过证明△AEP ∽△PTB ,∴AEPT=EPBT,列出关于x 的一元二次方程,结合已知在x 轴上有且只有一点P ,可得△=0,即可求出k 的值. 【解题过程】(1)设抛物线解析式为y =ax 2+bx +c ,根据题意得52215b a a b c c⎧-=⎪⎪=++⎨⎪=⎪⎩,解得155a b c =⎧⎪=-⎨⎪=⎩,∴抛物线解析式为y =x 2-5x +5.(2)过点B 作BH ⊥x 轴于H ,过点A 作AM ⊥BH 轴于M ,交抛物线对称轴于N ,过点G 作GP ∥y 轴交直线BC 于点Q ,则BM =1.∵FN ∥BM ,∴△AEN ∽△ABM ,∴AF AB =AN AM ,∵AF FB =34,∴AFAB=AN AM =37,∵抛物线y =x 2-5x +5=(x -52)2-54,∴抛物线的对称轴为x =52,∴AN =52-1=32,AM =73×32=72,点B 的横坐标为72+1=92,代入y =x 2-5x +5中,得y =114,∴B (92,114),设直线AB 的解析式为y =kx +b ,则119421k b k b ⎧=+⎪⎨⎪=+⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为y =12x +12,∴D (0,12),设直线BC 的解析式为y =mx +n ,则511942n m n =⎧⎪⎨=+⎪⎩,解得125m n ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为y =-12x +5,∴CD =5-12=92,∴S △BCD =12×92×92=818.设 G (p ,p 2-5p +5) ,则Q (p ,-12p +5),∴GQ =|p 2-5p +5-(-12p +5)|=|p 2-112p |,∵S △BCG =12QG ×92,又∵△BCG 与△BCD 的面积相等,∴12|p 2-112p |×92=818,当p 2-112p =92时,p 1=32,p 2=3,∵G 是抛物线上位于对称轴右侧的一点,∴p 2=3,∴G (3,-1);当p 2-112p =-92时,解得p 3=93174+,p 4=93174-,∵G 是抛物线上位于对称轴右侧的一点,∴p 3=93174+,∴G (93174+,673178-);综上G (3,-1) 或(93174+,673178-). Q GNHM FyxAB D COl(3)过点A 作AE ⊥x 轴于E ,过点B 作BT ⊥x 轴于T ,连接P A 、PB .直线AB 的解析式为y =kx +b ,过A (1,1),1=k +b ,∴b =1-k ,∴直线AB 的解析式为y =kx +1-k ,∴ kx +1-k =x 2-5x +5,整理得x 2-(5+k )x +4+k =0,x 1=1,x 2=4+k ,∴B (4+k ,k 2+3k +1),设p (x ,0),∵∠APB =90°,∠AEP =∠PTB =90°,∴∠APE +∠EAP =∠APE +∠BPT =90°,∴∠EAP =∠BPT ,∴△AEP ∽△PTB ,∴AE PT =EP BT ,∴14k x+-=2131x k k -++,∴x 2-(5+k )x +k 2+4k +5=0,∵在x 轴上有且只有一点P ,∴△=(5+k )2-4×1×(k 2+4k +5)=0,,即3 k 2+6k -5=0,解得k =3263-±,∵k >0,∴k = 3263-+. TE PlOCD BA x yF【知识点】二次函数的表达式;二次函数的性质;一次函数的表达式;三角形面积公式;相似三角形的判定与性质;。
2018年河北省中考数学试题及参考答案案
2018年河北省初中毕业生升学文化课考试数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分.每小题给出的四个选项中,只有一项是符合题目要求的)1.(2018河北中考,1,3分,★☆☆)下列图形具有稳定性的是( )A.B.C.D.2.(2018河北中考,2,3分,★☆☆)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A.4B.6C.7D.103.(2018河北中考,3,3分,★☆☆)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A.l1B.l2C.l3D.l44.(2018河北中考,4,3分,★☆☆)将9.52变形正确的是( )A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.525.(2018河北中考,5,3分,★☆☆)图中三视图对应的几何体是( )A.B.C.D.6.(2018河北中考,6,3分,★☆☆)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.(2018河北中考,7,3分,★☆☆)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是( )A.B.C.D.8.(2018河北中考,8,3分,★☆☆)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C9.(2018河北中考,9,3分,★☆☆)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x 乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是( )A.甲B.乙C.丙D.丁10.(2018河北中考,10,3分,★☆☆)图中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个B.3个C.4个D.5个11.(2018河北中考,11,2分,★★☆)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为( )A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.(2018河北中考,12,2分,★★☆)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按如图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( )A.4cm B.8cm C.(a+4)cm D.(a+8)cm13.(2018河北中考,13,2分,★★☆)若2n+2n+2n+2n=2,则n=( )A.﹣1B.﹣2C.0D.1 414.(2018河北中考,14,2分,★★☆)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.(2018河北中考,15,2分,★★★)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.(2018河北中考,16,2分,★★★)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值.”甲的结果是c=1,乙的结果是c=3或4,则( )A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(2018河北中考,17,3分,★☆☆)计算:123--= .18.(2018河北中考,18,3分,★☆☆)若a,b互为相反数,则a2﹣b2= .19.(2018河北中考,19,4分,★★☆)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而902︒=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(2018河北中考,20,8分,★☆☆)嘉淇准备完成题目:化简(x2+6x+8)-(6x+5x2+2).发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(2018河北中考,21,9分,★☆☆)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22.(2018河北中考,22,9分,★★☆)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试 (1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(2018河北中考,23,9分,★★☆)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.24.(2018河北中考,24,10分,★★★) 如图,直角坐标系,xOy 中,一次函数y =-21x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式; (2)求S △AO C -S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值.25.(2018河北中考,25,10分,★★★)如图,点A 在数轴上对应的数为26,以原点O为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且tan ∠AOB =43,在优弧AB 上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连结OP .(1)若优弧AB 上一段AP 的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.26.(2018河北中考,26,11分,★★★)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5;M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.2018年河北省初中毕业生升学文化课数学试卷试题答案全解全析1.答案:A解析:因为三角形具有稳定性,四边形和其他多边形具有不稳定性,故选A.考查内容:三角形的稳定性.命题意图:本题主要考查了学生对三角形具有稳定性和四边形具有不稳定性的识记,难度较低.2.答案:B解析:∵8.1555×1010=81 555 000 000,∴81 555 000 000中“0”的个数为6个.故选B.一题多解:10次幂相当于把8.1555的小数点向右移动10位,然后可以发现结果为6个0.考查内容:科学记数法.命题意图:本题考查了学生把用科学记数法表示的数还原成原数的能力,难度较低.3.答案:C解析:根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析可得,该图形的对称轴是直线l3,故选C.考查内容:轴对称图形对称轴的判断.命题意图:本题主要考查了学生对轴对称图形和其对称轴的理解,难度较低.4.答案:C解析:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选C.考查内容:完全平方公式.命题意图:本题考查了学生应用完全平方公式进行计算的能力,难度较低.5.答案:C解析:首先可画出各个图形的三视图,然后对照给出的三视图,观察图形可知选项C符合三视图的要求,故选C.考查内容:由三视图判断几何体.命题意图:本题主要考查了学生由三视图判断几何体的能力,难度较低.6.答案:D解析:Ⅰ是过直线外一点作这条直线的垂线;Ⅱ是作线段的垂直平分线;Ⅲ是过直线上一点作这条直线的垂线;Ⅳ是作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选D.考查内容:尺规作图—基本作图.命题意图:本题主要考查了学生对这四种基本尺规作图方法的掌握,难度较低.7.答案:A解析:设的质量为x,的质量为y,的质量为Z,假设A正确,则x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选A.考查内容:等式的性质.命题意图:本题是代数式和方程的结合,考查学生对代数式和方程的实际应用能力,难度较低.8.答案:B解析:∵PA=PB,∴△APB是等腰三角形.在等腰三角形中,顶角的平分线、底边上的中线、底边上的高线重合(即“三线合一”),故作其中的任何一线均可使结论得到证明.A项中作的是顶角平分线,C项中作的是底边的中线,D项中作的是底边的高线,B项中的作法使点C同时满足两个条件:①是AB的中点;②PC⊥AB,不一定能实现,故B项错误.故选B.考查内容:等腰三角形性质的应用.命题意图:本题主要考查学生对等腰三角形的性质(三线合一)的掌握情况,同时考查运用全等三角形的判定来加以证明的能力,难度不大.9.答案:D解析:∵x乙=x丁>x甲=x丙,∴乙、丁的麦苗比甲、丙要高,∵s 甲2=s 丁2<s 乙2=s 丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐, 综上,麦苗又高又整齐的是丁.故选D . 考查内容:算术平均数;方差.命题意图:本题主要考查了学生对方差的意义的理解和应用掌握,难度较小. 10.答案:B解析:①﹣1的倒数是﹣1,原题错误,该同学判断正确; ②|﹣3|=3,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误; ④20=1,原题正确,该同学判断正确;⑤2m 2÷(﹣m )=﹣2m ,原题正确,该同学判断正确.故选B . 考查内容:绝对值;倒数;整式的除法;零指数幂;众数.命题意图:本题主要考查学生对倒数的定义、绝对值的性质、众数的定义、零指数幂的定义及单项式除以单项式的法则的掌握和运用,难度较小. 11.答案:A解析:如图.∵AP ∥BC ,∴∠EBF =∠DAB =50°.∴∠FBG =∠EBG ﹣∠EBF =80°﹣50°=30°,此时的航行方向为北偏东30°,故选A .考查内容:方位角的知识.命题意图:本题主要考查学生对方位角的辨识和运用,难度适中. 12.答案:B解析:∵原正方形的周长为acm , ∴原正方形的边长为4acm , ∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(4a+2)cm , 则新正方形的周长为4(4a+2)=a +8(cm ),因此需要增加的长度为a +8﹣a =8cm .一题多解:将小正方形的各边分别延长,交大正方形的各边于一点,在各个顶点处形成边长为1的正方形,原正方形周长为a cm ,所以新正方形的周长为(a +8)cm ,所以需增加8cm . 考查内容:正方形的周长; 列代数式.命题意图:本题主要考查学生根据图形的数量关系列代数式的能力,难度适中. 13.答案:A解析:∵2n +2n +2n +2n =2,∴4×2n =2,∴2×2n =1,∴21+n =1,∴1+n =0,∴n =﹣1.故选A . 考查内容:同底数幂的乘法.命题意图:本题考查了学生对同底数幂的乘法的理解和运用,难度适中. 14.答案:D解析::∵221x x x --÷21x x -=221x x x --•21xx - =221x x x --•()21x x-- =()21x x x --•()21x x --=()2x x--=2x x-, ∴出现错误是在乙和丁,故选D . 考查内容:分式的乘除法.命题意图:本题主要考查学生运用分式的乘除法法则进行运算,难度适中. 15.答案:B解析::如图,连接AI 、BI .∵点I 为△ABC 的内心,∴AI 平分∠CAB ,∴∠CAI =∠BAI ,由平移得:AC ∥DI ,∴∠CAI =∠AID ,∴∠BAI =∠AID ,∴AD =DI , 同理可得:BE =EI ,∴△DIE 的周长=DE +DI +EI =DE +AD +BE =AB =4, 即图中阴影部分的周长为4,故选B .考查内容:三角形的内切圆与内心、平移的性质.命题意图:本题主要考查了学生对三角形内心的定义、平移的性质及角平分线的定义等知识的掌握和运用,难度较大. 16.答案:D解析:对于抛物线L :y =-x (x -3)+c (0≤x ≤3),当x =0时,y =c ;当x =3时,y =c .如图(1),当L 与l 相切时,则关于x 的一元二次方程-x (x -3)+c =x +2,即x 2-2x +2-c =0有两个相等的实数根,即△=(-2)2-4×(2-c )=0,解得c =1.如图(2),当直线l 恰好经过点(0,c )时,则c =0+2=2;如图(3),当直线l 恰经过点(3,c )时,则c =3+2=5,故当2<c ≤5时,L 与l 相交,且有唯一公共点.综上可知,满足条件的c 的值为1,3,4,5,即甲、乙的结果合在一起也不正确.故选D .考查内容:一次函数图象上点的坐标特征;二次函数图象上点的坐标特征.命题意图:本题主要考查了学生对二次函数图象上点的坐标特征和一次函数图象上点的坐标特征和一元二次方程的根的判别式等知识点的灵活运用,难度较大. 17.答案:2 123--4=2. 考查内容:算术平方根的求法.命题意图:本题主要考查学生对算术平方根的理解和掌握,难度较小.18.答案:0解析:∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0.考查内容:相反数;运用公式法进行因式分解.命题意图:本题主要考查了学生运用公式法分解因式的能力以及对相反数的定义的理解和运用,难度较低.19.答案:1421解析:图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:3601802x-=18090x-,以∠APB为内角的正多边形的边数为:360x,∴图案外轮廓周长是=18090x-﹣2+360x﹣2+360x﹣2=18090x-+720x﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时的图案定为会标,∴会标的外轮廓周长是=1809030-+72030﹣6=21.考查内容:正多边形和圆.命题意图:本题主要考查了学生阅读理解问题的能力和对正多边形的边数与内角、外角的关系理解和运用,难度较大.20.解析:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6.(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得,a=5.考查内容:整式的加减运算.命题意图:本题主要考查学生对整式的加减运算的掌握,难度较低.21.解析:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24﹣5﹣6﹣4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率=1024=512;(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.故答案为3.考查内容:扇形统计图;条形统计图;中位数;概率公式.命题意图:本题主要考查了学生对统计与概率的掌握与运用,难度较低.22.解析:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.考查内容:图形的变化规律型问题.命题意图:本题主要考查了学生对图形的变化规律的探究能力,难度适中.23.解析:(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,∵,,,A BAPM BPNPA PB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.考查内容:三角形全等的判定及性质;三角形外接圆.命题意图:本题主要考查学生解决三角形和圆的综合题的能力,难度适中.24.解析:(1)把C(m,4)代入一次函数y=﹣12x+5,可得4=﹣12m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=﹣12x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC﹣S△BOC=12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=32;当l2,l3平行时,k=2;当11,l3平行时,k=﹣12;故k的值为32或2或﹣12.考查内容:三角形全等的判定及性质;三角形外接圆.命题意图:本题主要考查学生对一次函数的综合应用的掌握,难度较大.25.解析:(1)如图1中,由26180nπ⋅⋅=13π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB=43=OPOQ,∴OQ=392,∴x=392.(2)如图当直线PQ与⊙O相切时时,x的值最小.在Rt△OPQ中,OQ=OP÷45=32.5,此时x的值为﹣32.5.(3)分三种情况:①如图2中,作OH⊥PQ于H,设OH=4k,QH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5.此时x的值为31.5.②如图3中,作OH⊥PQ交PQ的延长线于H.设OH=4k,QH=3k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5+3k)2,整理得:k2+3k﹣20.79=0,解得k=﹣6.3(舍弃)或3.3,∴OQ=5k=16.5,此时x的值为﹣16.5.③如图4中,作OH⊥PQ于H,设OH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k 2﹣3k ﹣20.79=0, 解得k =6.3或﹣3.3(舍弃), ∴OQ =5k =31.5不合题意舍弃. 此时x 的值为﹣31.5.综上所述,满足条件的x 的值为﹣16.5或31.5或﹣31.5. 考查内容:几何综合.命题意图:本题主要考查学生对几何知识的综合应用能力,同时考查学生对分类讨论思想的应用,难度较大.26.解析:(1)由题意,点A (1,18)代入y =k x ,得18=1k,∴k =18. 设h =at 2,把t =1,h =5代入,得a =5,∴h =5t 2. (2)∵v =5,AB =1, ∴x =5t +1. ∵h =5t 2,OB =18, ∴y =﹣5t 2+18.由x =5t +1,则t =()115x -, ∴y =﹣2211289(1)185555x x x -+=-++.当y =13时,13=﹣21(1)185x -+,解得x =6或﹣4. ∵x ≥1, ∴x =6. 把x =6代入y =18x,得y =3, ∴运动员在与正下方滑道的竖直距离是13﹣3=10(米). (3)把y =1.8代入y =﹣5t 2+18,得t 2=8125, 解得t =1.8或﹣1.8(负值舍去), ∴x =10,∴甲坐标为(10,1.8)恰号落在滑道y =18x上, 此时,乙的坐标为(1+1.8v 乙,1.8).由题意:1+1.8v乙﹣(1+5×1.8)>4.5,∴v乙>7.5.考查内容:二次函数和反比例函数的综合.命题意图:本题主要考查二次函数和反比例函数的待定系数法以及函数图象上的临界点问题,难度较大.- 21 -。
2018年湖北省咸宁市中考数学试题含答案(Word版)
湖北省咸宁市2018年初中毕业生学业考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.咸宁冬季里某一天的气温为- 3 ℃〜2 ℃ ,则这一天的温差是( ) A .1℃ B .-1℃ C .5℃ D .-5℃2. 如图,已知l b a ,//与 b a ,相 交 ,若 701=∠,则2∠ 的度数等于( )A . 120B . 110C . 100D . 703.2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP 约123 500 000 000元 ,增速在全省17个市州中排名第三.将123 500 000 000用科学记数法表示为( ) A .910123.5⨯ B .101012.35⨯ C .8101.235⨯ D . 11101.235⨯ 3. 用4个完全相同的小正方体搭成如图所示的几何体,该几何体的( )A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视阁相同D.三种视图都相同5.下列计算正确的是( )A .3332a a a =⋅B .422a a a =+ C. 326a a a =÷D .632-82-a a =)( 6.已知一元二次方程01222=-+x x 的两个根为21,x x ,且21x x <,下列结论正确的是( )A .121=+x xB .-121=⋅x x C. 21x x < D .21221=+x x 7.如图,已知⊙O 的半径为5,弦CD AB ,所对的圆心角分别是,AOB ∠COD ∠,若AOB ∠与COD ∠互补,弦6=CD ,则弦AB 的长为( )A .6B .8 C.25 D .358. 甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4 分钟.在整个步行过程中,甲 、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论: ①甲步行的速度为60米/分; ②乙走完全程用了32分钟;③乙用 16分钟追上甲; ④乙到达终点时,甲离终点还有300米 其中正确的结论有( )A .1个B .2个 C. 3个 D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分24分,将答案填在答题纸上)9.如果分式21-x 有意义,那么实数x 的取值范围是__________. 10.因式分解:=-a ab 2_____________________.11.写出一个比2大比3小的无理数(用含根号的式子表示)________________.12.—个不透明的口袋中有3个完全相同的小球,它们的标号分別为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球.两次摸出的小球标号相同的概率是_________________.13.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为45,测得底部C 的俯角力60,此时航拍无人机与该建筑物的水平距离AD 为m 110,那么该建筑物的高度BC 约为___________m .(结果保留整数, 1.733≈).14. 如图,将正方形OEFG 放在平而直角坐标系中,O 是坐标原点,点E 的坐标为(()3,2),则点F 的坐标为_______________________.15.按一定顺序排列的一列数叫做数列,如数列:,,,,, 2011216121则这个数列的前2018个数列的和为____________________________.16.如图,已知 120=∠MON ,点B A ,分別在ON OM ,上,且,a OB OA ==将射线OM 绕点O 逆时针旋转得到'OM ,旋转角为1200(<<αα且) 60≠α,作点A 关于直线'OM 的对称点C ,画直线BC 交'OM 于点D ,连接.,AD AC 有下列结论:①;CD AD =②ACD ∠的大小随着α的变化而变化;③ 当30=α时,四边形OADC 为荽形;④ACD ∆面积的最大值为23a .其中正确的是________________.(把你认为正确结论的序号都填上)三、解答题 (本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17. (1)计算:2-38-123+;(2)化简:()()().123---+a a a a 18. 已知:AOB ∠.求作:,'''B O A ∠使=∠'''B O A AOB ∠ 作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OB OA ,于点D C ,;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ; (3)以点'C 为圆心,D C ,长为半径画弧,与第2 步中所画的弧交于点'D ; (4)过点 'D 画射线'OB ,则 AOB B O A ∠=∠'''. 根据以上作图步骤,请你证明AOB B O A ∠=∠'''.19. 近年来,共享单车逐渐成为高校学生喜爱的“绿色出行” 方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.(1)这天部分出行学生使用共享单车次数的中位数是____________,众数是____________ 该中位数的意义是____________;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3 次)的学生有多少人?20.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为()2,4,直线2521+-=x y 与边BC AB ,分别相交于点N M ,,函数)0(>=x xky 的图象过点.M(1) 试说明点N 也在函数)0(>=x xky 的图象上; (2) 将直线MN 沿y 轴的负方向平移得到直线''N M ,当直线''N M 与函数)0(>=x xky 的图象仅有一个交点时,求直线''N M 的解析式.21.如图,以ABC ∆的边AC 为直径的⊙O 恰为ABC ∆的外接圆,ABC ∠的平分线交⊙O 于点D ,过 点D 作AC DE // 交BC 的延长线于点E .(1) 求证DE 是⊙O 的切线;(2) 若,5,52==BC AB 求DE 的长.22.为拓宽学生视野,引导学生主动适应社会,促进书木知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4 个学生,现有甲、乙两种大客车,它们的载客量和租金如下表所示:学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1) 参加此次研学旅行活动的老师和学生各有多少人?(2) 既要保证所有师生都有车坐,又要保证每辆客车上至少要有2 名老师,可知租用客车总数为_____辆;(3) 你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.23. 定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知ABC Rt ∆在正方形网格中,请你只用无刻度的直尺......在网格中找到一点D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(保留画图痕迹,找出3个即可); (2)如图2,在四边形ABCD 中,140,80=∠=∠ADC ABC ,对角线BD 平分ABC ∠. 求证:BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,30=∠=∠HFG EFH .连接EG ,若 EFG ∆的面积为32,求FH 的长. 24.如图,直线 343+-=x y 与x 轴交于点A ,与y 轴交于点B ,抛物线c bx x y ++-=283。
湖南省株洲市2018年中考数学试卷含答案
12431第9题图BA 2018株洲市初中毕业学业考试数学试卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1、9的算术平方根是( A ) A 、3B 、9C 、±3D 、±92、下列运算正确的是( D )A 、235ab abB 、22()ab a bC 、248a aaD 、63322a aa3、如图,25的倒数在数轴上表示的点位于下列两个点之间( C )A 、点E 和点FB 、点F 和点GC 、点F 和点GD 、点G 和点H4、据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( B ) A 、73610B 、83.610C 、90.3610D 、93.6105、关于x 的分式方程230xxa 解为4x ,则常数a 的值为( D )A 、1aB 、2aC 、4a D 、10a6、从105,,6,1,0,2,3这七个数中随机抽取一个数,恰好为负整数...的.概率为...( . A . ).A 、27B 、37C 、47D 、577、下列哪个选项中的不等式与不等式582x x 组成的不等式组的解集为853x .( C )A 、50xB 、210xC 、315x D 、5x 8、已知二次函数的图像如下图,则下列哪个选项表示的点有可能在反比例函数a yx的图象上( C )A 、(-1,2)B 、(1,-2)C 、(2,3)D 、(2,-3)9、如图,直线12,l l 被直线3l 所截,且12l l ,过1l 上的点A 作AB ⊥3l 交3l 于点B ,其中∠1<30°,则下列一定正确的是( D )[来源:学§科§网Z §X §X §K]A 、∠2>120°B 、∠3<60°C 、∠4-∠3>90°D 、2∠3>∠4第3题图4321-1E F G H I xy第8题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018中考数学模拟试卷(2)
一.选择题(共12小题)
1.下列各组数中,互为相反数的是()
A.﹣2 与2 B.2与2 C.3与D.3与
2.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是()
A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨
3.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()
A.B.C.D.
4.下列计算正确的是()
A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6
5.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐
弯的角度可能是()
A.第一次左拐30°,第二次右拐30°
B.第一次右拐50°,第二次左拐130°
C.第一次右拐50°,第二次右拐130°
D.第一次向左拐50°,第二次向左拐120°
6.下列曲线中不能表示y是x的函数的是()
A.B.C.D.
7.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对
方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利B.对小亮有利
C.游戏公平D.无法确定对谁有利
8.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()
A.B.C.D.
9.已知不等式组,其解集在数轴上表示正确的是()A.B.C.
D.
10.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()
A.350元B.400元C.450元D.500元
11.如图为某大楼一、二楼水平地面间的楼梯台阶位置图,共20阶水平台阶,每台阶的高度均为a公尺,宽度均为b公尺(a≠b).求图中一楼地面与二楼地面的距离为多少公尺?()
A.20a B.20b C.×20 D.×20
12.已知二次函数y=ax2+bx+c的图象如图所示.下列结论:
①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2
其中正确的个数有()
A.1 B.2 C.3 D.4
二.填空题(共4小题)
13.分解因式:3m3﹣18m2n+27mn2=.
14.用6块相同的长方形地砖拼成一个矩形,如图所示,那么每个长方形地砖的面积是cm2.
15.如图,矩形ABCD中,BC=6,∠BAC=30°,E点为CD的中点.点P为对角线AC上的一动点.则①AC=;②PD+PE的最小值等于.
16.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,….通过观察,用你所发现的规律确定22009的个位数字是.
三.解答题(共8小题)
17.先化简,再求值:()÷(x+1),其中x=tan60°+1.
18.如图,A、B、C在同一直线上,且△ABD,△BCE都是等边三角形,AE交BD 于点M,CD交BE于点N,求证:
(1)∠BDN=∠BAM;
(2)△BMN是等边三角形.
19.为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:
(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;
(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.
20.2013年9月23日强台风“天兔”登陆深圳,伴随着就是狂风暴雨.梧桐山山
坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,
树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=3m.求这棵大树折断前的高度.(结果保留根号)
21.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.
(1)求证:△AOE与△BOF的面积相等;
(2)求反比例函数的解析式;
(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.
22.在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D 地的数量比运往E地的数量的2倍少10立方米.
(1)求运往两地的数量各是多少立方米?
(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?
(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:
A地B地C地
运往D地(元/立方米)222020
运往E地(元/立方米)202221
在(2)的条件下,请说明哪种方案的总费用最少?
23.如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD ⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.
(1)求证:CD是⊙O的切线.
(2)若,求∠E的度数.
(3)连接AD,在(2)的条件下,若CD=,求AD的长.
24.如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上.
(1)求m的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x 之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
2018年04月25日春华秋实的初中数学组卷
参考答案
一.选择题(共12小题)
1.A;2.C;3.D;4.D;5.A;6.C;7.C;8.C;9.B;10.B;11.A;12.D;
二.填空题(共4小题)
13.3m(m﹣3n)2;14.200;15.12;9;16.2;
三.解答题(共8小题)
17.;18.;19.10000;4500;36000;20.;21.;22.;23.;24.;。