光子角动量_nsfc2013a

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奇异光场中光子角动量的研究

二、报告正文

(一)项目的立项依据与研究内容

1、项目的立项依据

光子角动量是光波中除了强度、相位和偏振以外的另一重要特性。虽然不是任意光束都会存在角动量,但其具有十分重要的研究和应用意义。近年来,对于光子角动量的研究和应用成为光学的许多领域中前沿,例如:量子光学[1,2,8],纳米光学[3,4],衍射光学[5,6],非线性光学[7]等。与经典力学相同,光子角动量被表达为r×p,其中r为光子相对参考点的位置,p为光子线动量,被定义为p=ε0E×B,ε0为电介质常数,E和B分别为电场和磁场振幅。可以看出只有在沿轴向具有电场或磁场分布的光场可以存在角动量。因此,对于理想情况下的平面光波场中不可能存在角动量。但在实际光束的产生和传播过程中,电磁场在受到自身尺寸或光学器件等光瞳的影响,形成沿轴向的分量,从而具有角动量。因此光子角动量广泛存在于光场中。光子角动量可分为两种类型:自旋角动量和轨道角动量。前者指光子微扰自身旋转形成的角动量;后者指光子在传输过程中围绕光轴旋转。

针对这两种角动量,两种典型的光束引起的角动量得到了大量的研究:圆偏振光束中的光子自旋角动量;具有螺旋相位结构的涡旋光束中的轨道角动量。1909年,Poynting首次提出在圆偏振光场中存在以ħ为单位的角动量11,随后被Beth实验上通过圆偏振光旋转双折射物体证实12。自旋角动量存在较简单的两种值+ħ或-ħ,取决于圆偏振光的旋转方向。因此人们针对这种角动量的基础研究基本停止。但对光子自旋角动量的应用研究取得了巨大的进展。除了利用其进行光操控技术外13 14,圆偏振光可以利用光子自旋角动量与自旋材料相互作用控制磁序材料中电子的自旋15。2012年,Heinz课题组在二硫化钼单层材料上利用圆偏振光开创了对valley自由度(valleytronics)的控制的可能性16。

光子轨道角动量真正引起人们注意是在1992年,Allen等理论上预言了具有螺旋相位的光场可以产生以ħ为单位的角动量,并且该角动量可以在实验上实现7。与自旋角动量不同,轨道角动量由于取决于光波场中螺旋相位的拓扑荷值,光子可以携带的轨道角动量没有理论上限,即可以远远大于ħ,例如Fickler利用计算全息技术实现了300ħ的轨道角动量1。实验上实现这种很大的光子轨道角动量在过去的十年中对轨道角动量的应用得到了巨大的发展9。光子轨道角动量由于可以具有较大的值从而在操控微粒时产生较大的扭矩,被大量应用于光镊技术中6,21。Wang等2011年将光子轨道角动量作为一个新的自由度应用与光通信中,通过对轨道角动量的波分复用实现了自由空间中兆兆比特的数据传输17,18。欧洲物理学会的物理世界()揭露了2012年的十大物理突破之一是:缠绕扭曲光束,即利用轨道角动量形成缠绕光子对的新技术实现了对300对缠绕光子的操控19,是以前缠绕光子对的十倍以上。这种角动量的量子缠绕可以被用于量子通讯、量子计算等。更有趣的是,携带有轨道角动量的光束可以用于特殊形貌的微纳加工20、大气通信22和天体研究23等领域。虽然形成这两种角动量的机制不同,但在特定光场中,二者可以相互转化。例如圆偏振光经过特殊衍射元件24,或被强聚焦25后均可以实现自旋和轨道角动量之间的互相转换。这两种角动量之间的转化可以为量子通信、光学操控等提供更多的自由度。

从上述光子角动量的研究进展可以看出人们对其的基础和应用研究在过去的两年内得到了迅猛发展。可以预计在未来的五到十年内将会成为光学领域的研究热点,同时相关研究可以应用到任意其它自然界中存在的波动系统中(包括微波28、物质波29、电子波27等)。迄今为止,国际上许多小组都开展了光子角动量方面的研究,包括美国的普林斯顿大学、加

州理工、康奈尔大学、旧金山州立大学,以色列的以色列理工大学,澳洲的澳大利亚国家大学,英国圣安德鲁斯大学等。在国内,南开大学的王慧田教授和袁晓聪教授课题组分别对角动量在微纳尺度展开了十分深入的研究,并开展了光操控应用26,26a,26b;南京大学固体微结构物理国家重点实验室针对金属等离子体艾里光束进行了实验研究16;浙江大学的赵道木教授和华南师范大学的郭旗教授对艾里光束进行了大量的理论研究。

本项目主要根据课题组前期对一些新型奇异光场的研究基础上提出对奇异光场中光子角动量的进一步深入研究。奇异光场是指光场的相位或偏振等存在无法定义或无穷大的奇异点,例如涡旋光束30、柱对称矢量光束31、艾里光束32、贝塞尔光束33,33a等。光场中的奇点引入了不均匀的偏振态和相位分布,导致一些新的效应和现象。光子角动量便是这些效应中的典型结果。在不均匀的偏振或相位分布下,光场在传输过程中其线动量出现沿轴向的分量,对应了角动量的形成。涡旋光束由于其螺旋相位结构而存在轨道角动量已经得到充分认识,并得到大量的研究9。本课题组最近对于柱对称矢量光束和艾里光束等一系列奇异光束通过掩模板遮挡、强聚焦等方法实现了复杂轨道和自旋角动量分布的产生和调控34。

虽然这些奇异光场中可能存在角动量,但要对其进行应用并发展为比较成熟的技术仍存在需要解决的问题,包括如何对其进行准确测量以及对其产生和调控。正如上面所提到的,早在1992年轨道角动量被提出时便已经被证实了其值与光学涡旋的拓扑荷m有关,且具有特定的比例关系。但在实际工程中所形成涡旋光场的拓扑荷值不一定准确,且由于轨道角动量与能流密度也有关系,但光强分布不均匀时,其值不能利用拓扑荷直接得到。最近,对于光学涡旋轨道角动量的实验测量,Padgett等人利用棱镜结合干涉光路得到了较好的结果35。同时山东师范大学的国承山小组利用傅里叶变换有效测得了角动量与拓扑荷之间的比例关系36。但是,对于其它非涡旋光场的角动量如何测量仍未得到解决。而轨道角动量虽然很多光场中均存在,但只能取较为离散值,不适合于实际应用,同时这些光场在实验上通常只能利用激光器的输出模式或利用效率较低的腔外被动方法产生。因此,为利用轨道角动量仍需解决所产生的光场具有任意取值的轨道角动量且该值容易调节,同时光场要具有较高的效率。而对于存在与偏振奇异光场中的与偏振有关的光子自旋角动量的测量仍然没有得到有效解决。南开大学王慧田教授利用光场与微粒的相互作用,通过观察其中微粒的运动实现了角动量的测量26。

奇异光场由于角动量的存在而在传输过程中存在一系列特殊的演化特性。例如具有相位奇点的涡旋光束在线性介质中,光场中当其强度分布沿相位梯度方向分布不均匀时由光电角动量驱动的旋转光波能流使其强度分布发生明显改变,同时光场的轨道角动量会发生相应改变。例如对于非中心对称的涡旋光场,其在传输过程中整个光场会发生旋转37。而对于具有多个相位奇点的光场,其轨道角动量也会随着多个涡旋之间的相互作用而发生改变38。这些轨道角动量的演化均呈现出较为迷人的特性,但光场在传输过程中这种角动量的变化无法得到有效测量。另外,柱对称矢量光束在线性传输过程中,经过强聚焦、散射或反射后均可以表现自旋和轨道角动量之间的相互转换34。在非线性光学中,光子与非线性介质相互作用丰富了角动量的演化特性。在自聚焦非线性介质中,轨道角动量使涡旋光束受到强烈的方位角调制非稳从而形成一系列具有角动量的亮斑39。相似地,携带有自旋角动量的柱对称矢量光束在Kerr自聚焦介质中也会坍塌为多个亮斑40。这种奇异光束的演化过程虽然可以利用其光强分布来表示,但是角动量的作用以及其演化过程没有引起重视。事实上,测量光子演化的角动量,可以从更深层次来理解光子与物质作用机制。另外,轨道角动量与非线性周期波导阵列的相互作用也引起了广泛关注。当非线性与周期势场对角动量的调制可以达到平衡时,角动量可以保持稳定并支持孤波态41。否则,光子与周期波导间发生直接角动量的转换42。因此,研究奇异光场与非线性介质的相互作用可以为产生和调控光子角动量提供一种有

相关文档
最新文档