高考三角函数化简求值

合集下载

数学高考总复习:三角函数的化简与求值知识讲解

数学高考总复习:三角函数的化简与求值知识讲解

数学高考总复习:三角函数的化简与求值编稿:林景飞审稿:张扬责编:严春梅知识网络目标认知考试大纲要求:1、了解任意角的概念,了解弧度制概念,能进行弧度与角度的互化.2、理解任意角三角函数(正弦、余弦、正切)的定义.3、能利用单位圆中的三角函数线推导出,π±的正弦、余弦、正切的诱导公式。

4、理解同角三角函数的基本关系式:。

重点:理解任意角三角函数(正弦、余弦、正切)的定义,掌握诱导公式,能利用诱导公式及同角三角函数的基本关系式进行化简与求值。

难点:利用单位圆中的三角函数线推导出,π±的正弦、余弦、正切的诱导公式知识要点梳理知识点一:任意角1、角的概念的推广:“旋转”形成角一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角,旋转开始时的射线OA叫做角的始边,旋转终止的射线OB叫做角的终边,射线的端点O叫做角的顶点。

记法:角或∠可以简记成。

2、逆时针方向旋转形成的角为正角;顺时针方向旋转形成的角为负角;射线没有旋转形成零角。

3、角的分类:(1)正角、负角、零角;(2)象限角与轴线角象限角:把角放进直角坐标系中,始边与x轴正半轴重合,终边落在哪个象限,就叫哪象限的象限角。

轴线角:终边落在坐标轴上的角4、终边相同的角:与a终边相同的角的集合可记作:或知识点二:度量角的制度角度制与弧度制1、角度制:周角的叫做1度的角,用度做量角单位。

2、弧度制的定义:长度等于半径长的弧所对的圆心角称为1弧度的角,它的单位是rad读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制。

圆心角的弧度数的绝对值:弧度制的意义在于实现了用实数来度量角。

3、角度制与弧度制的换算:(1)基本公式:;。

(2)4、弧度制中的两个公式:弧长公式:(弧长等于弧所对的圆心角(弧度数)的绝对值与半径的积)。

扇形面积公式:(其中l是扇形弧长,R是圆的半径)。

知识点三:任意角的三角函数1、定义:设是一个任意角,角终边上任意一点P的坐标是(x,y),它与原点的距离是|OP|=r (r >0),那么角的三个三角函数定义如下:sin=, cos=, tan=三角函数定义的本质是给“角”这个几何量的代数表达,借助的工具是把角放进直角坐标系中完成的。

三角函数式的化简求值训练

三角函数式的化简求值训练

)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β;(5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β. 2.二倍角的正弦、余弦、正切公式.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(3)T 2α:tan 2α=2tan α1-tan 2α. 3.有关公式的逆用、变形等.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β);(2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin èæøöα±π4. =α+β2-α-β2;α-β2=èæøöα+β2-èæøöα2+β.原则: 用已知表示待求用已知表示待求 (2) 化简技巧:切化弦、“1”的代换等.的代换等. 6 三个变化三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:变名:通过变换函数名称达到减少函数种类的目的,通过变换函数名称达到减少函数种类的目的,通过变换函数名称达到减少函数种类的目的,其手法通常有其手法通常有“切化弦”、“升幂与降幂”等.等.(3)等.等.二 典型题目1 三角函数式的化简【例1】►化简2cos 4x -2cos 2x +122tan èæøöπ4-x sin 2èæøöπ4+x. 【训练1】 化简 (sin cos 1)(sin cos 1)sin 2a a a a a+--+:. 1三角三角函数式函数式的化简求值训练 一.重要公式与方法技巧:1 两角和与差的两角和与差的正弦正弦、余弦、正切公式、余弦、正切公式(1)C (α-β):cos(α-β4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2c os(α-φ),其中φ可由a ,b 的值唯一确定.的值唯一确定. 5两个技巧两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与分解与组合组合”、“配方与配方与平方平方”<π2<α<π,且cos èæøöα-β2=-19,sin èæøöα2-β=23,求cos(α+β)的值.的值.【训练2】 已知α,β∈èæøö0,π2,sin α=45,tan(α-β)=-13,求cos β的值.的值.三 三角函数的求角问题三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β. 【训练3】 已知α,β∈èæøö-π2+33x +4=0的两个根,求α+β的值.的值.四 三角函数的综合应用三角函数的综合应用【例4】►已知函数f (x )=2cos 2x +sin 2x .(1)求f èæø-π62二 三角三角函数式函数式的求值的求值【例2】►已知0<β,π2,且tan α,tan β是方程x 2öπ3的值;(2)求f (x )的最大值和最小值.和最小值.【训练4】 已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;的最小正周期;(2)求f (x )在区间ëéûù,π2上的最大值和最小值.上的最大值和最小值.一、给值求值一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的求另外一些角的三角函数值三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式把所求角用含已知角的式子表示子表示,求解时要注意角的范围的讨论.角的范围的讨论.3【示例】►已知tan èæøöx +π4=2,则tan =12,tan β,π2. (1)求sin θ和cos θ的值;的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.的值.【课后巩固】1.81cos sin =×a a ,且4p <a <2p,则a a sin cos -的值为:的值为:A 、23B 、23-C 、43D 、43-2.已知a a aa a cos 3sin 2cos sin ,2tan +--=则的值是的值是A 、-1 B 、1 C 、-3 D 、3 3.已知=-=+-=-)sin(,21sin cos ,43cos sin a b b a b a 则A 、3219B 、3219-C 、0 D 、1916-4.已知 5.已知3sin(),45x p -=则sin 2x 的值为的值为 ( )A.1925 B.1625 C.1425 D.7256.已知1sin cos 5q q -=,则sin 2q 的值是的值是A 、45B 、45-C 、2425D 、-24257.已知54)cos(-=-b a 54)cos(=+b a ),2(p p b a Î-)2,23(p p b a Î+则cos2a =( ) xtan 2x 的值为________.二、给值求角二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式把所求角用含已知角的式子表示子表示,由所得的函数值结合该函数的单调由所得的函数值结合该函数的单调区间区间求得角.求得角.【示例】►已知tan(α-β)=-17,且α,β∈(0,π),求2α-β的值.的值. ▲三角恒等变换与▲三角恒等变换与向量向量的综合问题的综合问题 两角和与差的两角和与差的正弦正弦、余弦、正切公式作为解题工具,是每年余弦、正切公式作为解题工具,是每年高考高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.高考的一个新考查方向.【示例】► 已知向量a =(sin θ,-2)与b =(1,cos θ)互相互相垂直垂直,其中θ∈èæøö0q tam 和)4(q p-tam 是方程02=++q px x 的两根,则p 、q 间的关系是:间的关系是: A 、01=+-q p B 、01=++q p C 、01=-+q p D 、01=--q p4A 、257-B 、257C 、1-D 、1 8.22cos 75cos 15cos75cos15++ 的值等于(的值等于( ) A 、62 B 、32 C 、54D 、1+349.已知tan(α+β)=52,tan(β-4p )=41,那么tan(α+4p )的值是的值是A .1813 B .223 C .2213 D .18310.若,(0,)2pa b Î,3cos()22ba -=,1sin()22a b -=-,则cos()a b +的值等于 (A )32-(B )12- (C )12(D )32 11、已知tan 2a =,求2212sin cos cos sin a a a a +-12.求tan200+tan400+3tan200tan400的值. 13.已知3110,tan 4tan 3pa p a a<<+=-(Ⅰ)求tan a的值;(Ⅱ)求225sin 8sin cos 11cos 822222sin 2a a a a p a ++-æö-ç÷èø 14.已知40,sin 25pa a <<=(Ⅰ)求22sin sin 2cos cos 2a a a a++的值;(Ⅱ)求5tan()4pa -的值。

高中数学专题:三角函数的化简与求值

高中数学专题:三角函数的化简与求值

2+3,
则常数 a=________.
解析
1+2cos2x-1 f(x)= 2cos x +sin
x+a2sinx+π4
=cos x+sin x+a2sinx+π4
= 2sinx+4π+a2sinx+π4 =( 2+a2)sinx+4π. 依题意有 2+a2= 2+3, ∴a=± 3.
答案 ± 3
α
=2
2sin
α=-2
5
5 .
答案 A
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
4.已知f(x)=sin2
x+4π,若a=f(lg
5),b=f(lg
1 5
),则(
)
A.a+b=0
B.a-b=0
C.a+b=1
D.a-b=1
解析 a=f(lg 5)=sin2(lg 5+4π)
1-cos2lg
2 .
又∵cosπ4-β2= 33,-2π<β<0, ∴sinπ4-β2= 36,
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
∴cosα+2β=cosπ4+α-π4-β2 =cosπ4+αcosπ4-β2+sinπ4+αsinπ4-β2 =13× 33+232× 36=593. 答案 C
=-41+34+1=23.
点评 熟练运用诱导公式和基本关系式,并确定相应三角 函数值的符号是解题的关键.另外,切化弦是常用的规律 技巧.
变式训练2 (1)(四川)已知sin α+2cos α=0, 则2sin αcos α-cos2α的值是________. 解析 ∵sin α+2cos α=0, ∴sin α=-2cos α, ∴tan α=-2, 又∵2sin αcos α-cos2α=2sinsiαn2cαo+s αc-osc2αos2α

高考题集三角函数,化简求值通用步骤.doc

高考题集三角函数,化简求值通用步骤.doc

高考题集三角函数,化简求值通用步骤求解三角函数的性质通常情况下需利用三角函恒等变换公式将函数的解析式转化为y=Asin(wx+φ)+B的形式,然后根据基本三角函数y=sinx的性质结合整体代换的思想求解,这点大家还是很熟悉了,下面一起来看下
解三角函数化简步骤:诱导公式(π,2π,,,)→和差角公式(π/6,π/4,π/6)→正弦二倍角逆用公式(sinxcosx,)→降幂公式(sin²x,cos²x)→辅助角公式(asinx+bcosx)→y=Asin(wx+φ)+B
在化简过程中这个步骤非常好用,括号里的就是题目条件中会给到的常见的数学公式符号特征,只要按照相应公式展开即可,快速又简便
题中sin(x-π/6),就是特征,按正弦差角公式展开,由于π/6的正余弦值知晓,所以就化简一层了,接着乘法张开,就发现降幂公式使用以后,就化成同角正余弦了,最后直接用辅助角公式即可化成y=Asin(wx+φ)+B,然后根据基本三角函数y=sinx的性质结合整体代换的思想求解。

方法还是非常独特的思路,利用和差角公式,凑出y+z,y-z,再加减消元,y即求出,只是这个方法考试的时候还是需要慎用,因为一不小心算不出来,找不到关系,就意味着要重新计算,耽误时间,心里压力又加大,老生常谈的话就是用你最拿手的办法,解你自己的题,不管别人如何解,走
自己的路让别人说去吧。

方法3就是凑角,恒等变换求结果
三角函数这部分的知识,化简恒等变换就是重点,是求性质的前提,所以把化简步骤记忆掌握就尤其重要了,解题往往是在前往通法的道路上,找到适合此题的又独特解法,方法是死的,人是活的,脑子是活的,你想怎么用,想先用哪个都随你心,加油哦。

考点15 三角函数式的化简与求值(答案)

考点15 三角函数式的化简与求值(答案)

,故选 B.
3.【2017
届广西玉林市、贵港市高中毕业班质量检测】若
cos

3sin
=
0
,则
tan

4
=


−1
1
A. 2
B.-2
C. 2
D.2
【答案】A
【解析】由 cos
− 3sin
=
0
tan
,知
=
1 3
,则
tan
− 4
=
tan −1 1+ tan
=

1 2
,故选 A

4.【山西省孝义市 2017 届高三下学期高考考前质量检测三(5 月)】已有角 的顶点与坐标原点重合,
+ cos2
sin ”;(3)化正弦、余弦为正切,即 cos
=
tan

tan = sin
(4)化正切为正弦、余弦,即
cos ;( 5 ) 正 弦 、 余 弦 和 ( 差 ) 与 积 的 互 化 , 即
(sin cos )2 =1 2sin cos .
tan = 3
1− sin 2 =
【变式 1】【例题中的条件不改变,所求三角函数式改变】若
【解析】
16 8 ,选 D.
【方法技巧归纳】二倍角公式的正用、逆用、变形用是公式的种主要应用手段,特别是二倍角的余弦 公式,其变形公式在求值与化简中有广泛的应用,在综合使用两角和与差、二倍角公式化简求值时,要注 意以下几点:(1)熟练掌握公式的正用、逆用和变形使用;(2)擅于拆角、配角;(3)注意二倍角的相对性; (4)注意角的范围;(5)熟悉常用的方法和技巧,如切化弦、异名化同名、异角化同角等.

三角函数化简求值的技巧

三角函数化简求值的技巧

三角函数化简求值的技巧
一、三角函数的重要性质:
1、正弦函数sin x、余弦函数cos x、正切函数tanx和其逆函数的
关系:
sin x=1/cos x,cos x=1/sin x,tan x=1/cot x,cot x=1/tan x,cos x=1/csc x,csc x=1/cos x。

2、三角函数的基本性质:
sin2x+cos2x=1,sin2x=2sin(x/2)cos(x/2),cos2x=cos2(x/2)
-sin2(x/2),2sin xcos x=sin2x+cos2x=2sin2(x/2)=2cos2(x/2)。

3、三角函数的对称性:
sin(-x)=-sin x,cos(-x)=cos x,tan(-x)=-tan x,cot(-x)=-cot x,csc(-x)=-csc x。

二、用三角函数化简求值的常用方法:
1、用公式和定义:
用三角函数的基本公式来把表达式中的各个项拆分开明确每个项的意义,然后把各个项的值累加求值。

2、用对称性:
对变量进行绝对值化,然后利用三角函数的对称性变换变量或表达式,从而达到化简的目的。

3、用反函数求值:
把表达式中的三角函数换成其对应的反函数,然后利用反函数的性质进行化简,获得原函数的表达式。

四、利用三角函数化简求值的实例:
例1:求Sin(60°)
解:
1、用公式求值:
可以用公式sin 2x=2sin xcos x来求值。

2025版高考数学总复习第4章三角函数解三角形第3讲第2课时三角函数式的化简与求值课件

2025版高考数学总复习第4章三角函数解三角形第3讲第2课时三角函数式的化简与求值课件

23πsin x

sin
π 3
- 2sin
π 3

3 cos
23-
3+
3×12cos x=0.

3
cos
x = 12+1-

3
2
sin
x+
解 法 二 : 原 式 = sin x+π3 - 3 cos π-x+π3 + 2sin x-π3 = 2sin x+π3+π3 + 2sin x-π3 = 2sin x+23π + 2sin x-π3 = 2sin π+x-π3 + 2sinx-π3=-2sin x-π3+2sinx-π3=0.
[误区警示] 本题极易求得两解,问题出在∠B 上,因为由 sin B=153, 可得两个 B 值,考虑 A 的因素,只有一个适合,因此 sin C 只有一个结果.
2.(2024·河北唐山一中质检)在△ABC中,若sin(A-B)=1+2cos(B +C)sin(A+C),则△ABC的形状一定是( D )
tan(α+5β)=( B )
A.151
B.121
C.121
D.151
[解析] 因为 tan(α+2β)=3, 所以 tan 2(α+2β)=1-2tatannα2+α+2β2β=1-6 9=-34, 所以 tan(α+5β)=tan[2(α+2β)-(α-β)] =1t+anta2nα2+α2+β2-βt·atannαα--ββ =1+--34-34×2 2=121.故选 B.
∴12sin
α+
3 2 cos
α=13,
∴cosα-π6=13,
∴sin2α+π6=sin2α-π6+2π =cos 2α-π6 =2cos2α-π6-1 =2×132-1=-79.

三角函数化简求值的技巧

三角函数化简求值的技巧
三角函数化简与求值常用技巧
三角函数化简与求值常用技巧
三角函数在高考中通常以中低档题型出现,难度不大,但由 于三角公式的特殊性,解题中往往也涉及一些小的变换技 巧,如果处理得当,往往可以事半功倍,快速而准确地得到 正确结论.通常情况下,三角变换应从“角度、函数、常数、 次数、结构”等几方面着手解决.
一、三角变换,角为先锋 三角函数作为一种特殊函数,其“角”的特殊性不容忽视,因此我们在三角函数恒等变换 中,应该首先注意角的形式,从统一角的角度出发,往往能够达到事半功倍的效果.
【例 1】已 知α、 β为 锐角,cos α=
3 5
,tan (α−β)=−
1 3
,则
tan β=(
)
A、
1 3
B、 3
【变式演练】已知 sin
x-π
4
=3,则
sin
2x 的值为(
)
5
A.- 7 25
B. 7 25
C. 9 25
D.16 25
【解析】法一、sin 2x=cos(2x- π )=1-2sin2(x- π )=1-2×(3)2= 7 ,选 B.
2
4
5 25
法二、依题意得 2(sin x-cos x)=3,1(sin x-cos x)2= 9 ,1-sin 2x=18,sin 2x= 7 ,选
C、
9 13
D、
13 9
【例
1】已 知α、 β为 锐角,cos α=
3 5
,tan (α−β)=−
1 3
,则
tan β=(
)
A、
1 3
B、 3
C、
9 13
D、
13 9
【分析】依题意,可求得 tan α=

如何解三角函数化简求值问题

如何解三角函数化简求值问题

i( csa ) 20 2o 2~1 (CS
1( )复角化单角)
下略 。 解 法 二 : 式 一 s s + ( ~ s 2 ) 1 原 i ai n n 1 i 口 ( 一 n
s 2) (—2i a(一Zi ( if 一÷ 1 s 2)1 s 异名化同名) n 1 n n

2, 故欲求 A+B的值 , 考虑在 ~2 要 范围内对 A +B取正弦还是取余 弦合适 , 由余 弦值在 ~2 上 符号的唯一性 , 可知需求 csA+B) o( 的值 , 进而求 出
差 异 , 题 思 路 就 能 自然 浮 出水 面 。 解 三 、 见 意 识 预 解 三 角 函数 化 简 题 时 , 于解 题 思 路 多 , 多 学 由 许 生 没 有 养 成解 题 前 对 各 种 思路 进 行 比较 、 优 的 习 选
cS彻 s 。 02
分 析 : 题 可 以从 复 角 化 单 角 、 名 化 同 名 、 本 异 平 方降次等思路人手 , 从而得如下三种解法 。 解 法 一 : 式 = s Zs 2 + CSfO。 一 原 i ai f n nl O CS

考试指导
如 何 解 三 角 函 数化 简求 值 问题
■ 李 建军
三角 函数式的化简求 值题是高考 的热点 题型 , 题 目 般排在试卷的第 1 5至 1 8题位 置 , 难度定 其 位虽属基础题或中档题 , 但仍有许 多同学在高考 中 不能完整地拿到这一题 型的分数 。究 其原 因, 固然 与这 一 块 内容 涉 及 的公 式 多 、 法 多 有 关 , 而 , 方 然 更 多 的是 与 教 师 教 学 的不 到 位 有 关 。教 师 教 学 时 , 若 只满足于对题 目一招一式 的拆解 , 学生很可 能尽管 做 了大量题 目, 是“ 还 只见树木 , 见森林 ” 只是凭 不 , 感觉 、 凭运气做题 , 准确率难 以得到保证 。在三角 函 数 化 简 求 值 的 解题 教 学 中 , 笔者 认 为 , 学生 灌 输 一 对 些相关的解题 意识 , 可做到观念先行 , 观念指导下 在 的解题 , 以有效避免解题的盲 目性 , 可 提高解题的准 确性与解题效 率 , 有利于学生数学素养的提高 , 有利 于学生对数学 美的体验 。下面列举三角 函数化简 中 需具备的几种意识 。 算法意识 算法通常是指对 一类 问题 都有效 , 只要 按部就 班地做 , 总能得 出结果 的程序 或步骤 。几乎 所有 的 三 角 函数 式 的 化 简 , 要 遵 循 “ 方 降 次 、 切 化 弦 、 都 平 遇 异名化同名 、 复角化单角 , 用三角公式转 化出现特殊 角 ”等 规律 , 就 是 一 种 算 法 意 识 。学 生 拥 有 了 这 这 种意识 , 解题 时就会 多一些程序 性 、 规范性 的思路 , 不至 于做起题 目来随心所欲 , 不讲章法 。 例 1 化 简 :s 2s + CSOO 一 i ai n n O CS t

三角函数化简求值常用技巧

三角函数化简求值常用技巧

三角函数化简求值常用技巧三角函数式的化简和求值是高考考查的重点内容之一。

掌握化简和求值问题的解题规律和一些常用技巧,以优化我们的解题效果,做到事半功倍。

这也是解决三解函数问题的前提和出发点。

一、切割化弦例1、已知 )2(cot tan22≥=+m m x x ,求xx 4cos 14cos 3-+的值。

解: 24cos 14cos 34cos 1)4cos 3(24cos 12cos 444cos 1)2cos 1(484cos 12sin 48)4cos 1(812sin 2112sin 412sin 2112sin 41cos sin 2)cos (sin cos sin cos sin sin cos cos sin 2cot tan 2222222222222244222222m x x m x x x x x x x x x x x x x x x x x x x x x x x x x x x =-+∴=-+=-+=---=--=--=-=-+=+=+∴=+Θ 点评:由已知式与待求式的差异知,若选择“从已知到未知”,必定要“切切割化弦”;利用降幂公式实现已知与未知的统一。

二、统一配凑例2、已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值. 解:注意到2α= (α-β)+(α+β),于是可用配凑法求解。

∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π, ∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).6556)53(1312)54(135-=-⨯+-⨯=点评:本题以凑角的形式来实现未知与已知的统一,这是三角函数化简求值的常用技巧之一。

三、异角化同例3、已知cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值. 752853)54(257)4cos()4sin(2sin sin cos cos )cos (sin sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 54)4sin(,2435,471217.257)4(2cos 2sin ,53)4cos(:22=-⨯=++=-+=-+=-+-=+∴<+<∴<<=+-=∴=+x x x x x x x x x x x x x x x x x x x x x x x ππππππππππ又解Θ 点评:本题求解关键是将如何将已知条件中的角与目标关系式中的角统一起来。

【高考风向标】高考数学一轮复习 第六章 第6讲 三角函数的求值、化简与证明课件 文

【高考风向标】高考数学一轮复习 第六章 第6讲 三角函数的求值、化简与证明课件 文

设 φ(t)=t+4t ,由(1)知 t∈[1, 2], ∴φ′(t)=1-t42<0, 即函数 φ(t)在区间[1, 2]上是减函数, 其最小值为 φ( 2)= 2+ 42=3 2. 即 x=π4时,函数 f(x)的最小值为 3 2. 【失误与防范】认清二次函数问题是解决问题的关键,例如: 若 sinα+cosα 是“一次”,则 sinαcosα 是“二次”;若 1+k是“一 次”,则 2k+1 是“二次”等.
∵x∈0,2π,∴x+π4∈π4,34π. ∴ 2sinx+π4∈[1, 2]. ∴sinx+cosx 的取值范围是[1, 2]. (2)设 t=sinx+cosx,则 t2=(sinx+cosx)2=1+2sinxcosx,2sinxcosx=t2-1. 则 f(x)=2ssiinnxxc+oscxo+sx5=t2+t 4=t+4t .
=-2sicno2s05°0s°in70°=-2sicno2s05°0c°os20°
=-cossin5400°°=-cocso5s05°0°=-1.
切化弦和边角统一都是基本方法.关于三角形中的 三角函数问题,边角的统一是问题的切入点,等式右边的分子分 母均为 a,b,c 的二次齐次式,所以考虑使用余弦定理.
易错、易混、易漏 11.三角函数中的二次函数问题,忽视了自变量范围的研究 例题:已知函数 f(x)=2ssiinnxxc+oscxo+sx5,x∈0,2π.
(1)求 sinx+cosx 的取值范围; (2)求函数 f(x)的最小值.
正解:(1)sinx+cosx=
2
22sinx+
2
2
cosx
= 2cos4πsinx+sinπ4cosx= 2sinx+π4.
2.三角公式的三大作用 (1)三角函数式的化简. (2)三角函数式的求值. (3)三角函数式的证明. 3.求三角函数最值的常用方法 (1)配方法. (2)化为一个角的三角函数. (3)数形结合法. (4)换元法. (5)基本不等式法等.

三角函数的化简求值

三角函数的化简求值

三角函数的化简求值一.主要公式:1.诱导公式:=-)sin(απ =-)c o s (απ =+)s i n (απ=+)cos(απ =-)s i n (α =-)cos(α=-)2sin(απ =-)2c o s (απ =+)2sin(απ =+)2c o s (απ2.和、差角公式: =+)sin(βα =-)s i n (βα ; =+)cos(βα =-)c o s (βα ; =+)tan(βα =-)t a n (βα ; 3.二倍角公式:=α2sin =α2c o s = = =α2tan ; 4.降幂公式: =2sin 2α=2c o s2α=2t a n2α;5.半角公式sin 2α= c o s 2α= t a n 2α= ;6.升幂公式:=+αcos 1 ,=-αcos 1 ;=+αsin 1 ,=-αsin 1 。

7.万能公式:=αsin =αcos =αtan ; 8.三角形ABC 中的相关公式:=+)sin(B A =+)cos(B A =+)t a n (B A =+2sinBA =+2cosB A =+2tan B A ; 9.常用公式结论:=+ααcot tan =ααcos sin =-α2sin 1 =+α2sin 1 =+βαtan tan =-βαt a n t a n ;sin 3α= cos3α= 1tan 1tan αα+=-10.辅助角公式:=+ααcos sin = =+ααcos 3sin ==+x b x a cos sin = 。

二、例题分析:例1已知02πβαπ<<<<,且129cos()βα-=-,223sin()αβ-=,求cos()αβ+的值.例2.已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan的值.((Ⅱ)求β. ( π3β=)例3.已知51cos sin ,02=+<<-x x x π. (I )求sin x -cos x 的值;(Ⅱ)求xx x x x x cot tan 2cos 2cos 2sin 22sin 322++-的值.例 4.是否存在锐角,αβ,使得①223παβ+=;②22tantan αβ=同时成立?若存在,求出,αβ;若不存在,说明理由。

高考数学二轮复习第1讲三角函数的化简与求值课件

高考数学二轮复习第1讲三角函数的化简与求值课件

.
5
5
答案 2 4
25
解析 两式平方相加得13-12sin αcos β-12cos αsin β= 3 7 , 则12sin(α+β)=13-3 7
25
25
= 2 8 8 ,sin(α+β)= 2 4 .
25
25
12/11/2021
x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=
例1 (2018高考数学模拟)如图,在直角坐标系xOy中,角α的顶点是原点,始边
与x轴正半轴重合,终边交单位圆于点A,且α∈
6
,.将2 角α的终边按逆时针
方向旋转 ,交单位圆于点B,记A(x1,y1),B(x2,y2). 3
12/11/2021
(1)若x1=
1 3
,求x2;
(2)分别过A,B作x轴的垂线,垂足依次为C,D,记△AOC的面积为S1,△BOD的面
1tan2αtan(αβ) 1 1
12/11/2021
【方法归纳】 解决三角函数的给值求角问题的关键是角的变换和三角公 式的选择,对于角的变换,若已知角与所求角之间有2倍的关系,则利用二倍角 公式求解,在此过程中,要注意同角三角函数的基本关系式sin2α+cos2α=1与tan α= s i n 的α 应用;若已知角与所求角之间是和或差的形式,则先用已知角和特
3
5
(1)求cos 2α的值;
(2)求tan(α-β)的值.
12/11/2021
解析 (1)因为tan α= s i n =α 4 ,所以sin α= 4
cosα 3
3
因为sin2α+cos2α=1,所以cos2α= 9 ,

高考数学知识点:简单的三角恒等变换

高考数学知识点:简单的三角恒等变换

高考数学知识点:简单的三角恒等变换一、半角公式(不要求记忆)
典型例题1:
二、三角恒等变换的常见形式
三角恒等变换中常见的三种形式:一是化简;二是求值;三是三角恒等式的证明.
1、三角函数的化简常见的方法有切化弦、利用诱导公式、同角三角函数关系式及和、差、倍角公式进行转化求解.
2、三角函数求值分为给值求值(条件求值)与给角求值,对条件求值问题要充分利用条件进行转化求解.
3、三角恒等式的证明,要看左右两侧函数名、角之间的关系,不同名则化同名,不同角则化同角,利用公式求解变形即可.典型例题2:
三、三角函数式的化简要遵循“三看”原则
1、一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;
2、二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;
3、三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.
典型例题3:
四、三角函数求值有三类
1、“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.
2、“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.
3、“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.
典型例题4:
三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y=Asin(ωx+φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.典型例题5:
【作者:吴国平】。

三角函数中的化简求值(经典版)

三角函数中的化简求值(经典版)

一、题型选讲
题型一灵活运用和与差的正弦、余弦和正切、二倍角等公式化简求值
通过两角和与差的正弦、余弦和正切以及二倍角公式或者公式的变形进行化简求值。

在应用同角三角函数的关系或两角和与差的三角函数公式求值时,需要注意解题的规范性,一要注意角的范围对三角函数值的符号的影响;二要注意“展示”三角函数的公式.否则,就会因为不规范而导致失分.
求tan()
αβ
-的值.
题型二探究角度之间的关系
在三角函数的化简求值中,往往出现已知角与所求角不同,此时要观察两个角度之间的关系,寻求角度之间的特殊性,通过二倍角、互补、互与余等公式进行转化。

应用三角公式解决问题的三个变换角度
(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.
(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.
(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代
换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.

题型三、运用构造法化简与求值
2、(2018南京、盐城一模)已知锐角α,β满足(tanα-1)(tanβ-1)=2,则α+β的值为________.。

高考数学 典型例题16 三角函数式的化简与求值 试题

高考数学 典型例题16 三角函数式的化简与求值 试题

卜人入州八九几市潮王学校高考数学典型例题详解三角函数化简与求值三角函数式的化简和求值是高考考察的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍. ●难点磁场(★★★★★)2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________. ●案例探究 [例1]不查表求sin 220°+cos 280°+3cos20°cos80°的值.★★★★级题目. 知识依托:熟知三角公式并能灵敏应用.错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进展等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.解法一:sin 220°+cos 280°+3sin 220°cos80° =21(1-cos40°)+21(1+cos160°)+3sin20°cos80° =1-21cos40°+21cos160°+3sin20°cos(60°+20°) =1-21cos40°+21(cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 220° =1-43cos40°-43(1-cos40°)=41 解法二:设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°-3cos20°sin80°,那么x +y =1+1-3sin60°=21,x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0 ∴x =y =41,即x =sin 220°+cos 280°+3sin20°cos80°=41. [例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考察三角函数的有界性,对区间的分类易出错. 技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.解:由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得: f (a )⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2( 12a a a a a a ∵f (a )=21,∴1-4a =21⇒a =81∉[2,+∞) 故-22a -2a -1=21,解得:a =-1,此时, y =2(cos x +21)2+21,当cos x =1时,即x =2k π,k ∈Z ,y max =5. [例3]函数f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x(1)求函数f (x )的最小正周期;(2)求f (x )的最小值及获得最小值时相应的x 的值;(3)假设当x ∈[12π,127π]时,f (x )的反函数为f -1(x ),求f --1(1)的值.★★★★★级题目.知识依托:熟知三角函数公式以及三角函数的性质、反函数等知识.错解分析:在求f --1(1)的值时易走弯路.技巧与方法:等价转化,逆向思维.解:(1)f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x =2cos x (sin x cos3π+cos x sin 3π)-3sin 2x +sin x cos x =2sin x cos x +3cos2x =2sin(2x +3π) ∴f (x )的最小正周期T =π(2)当2x +3π=2k π-2π,即x =k π-125π(k ∈Z )时,f (x )获得最小值-2. (3)令2sin(2x +3π)=1,又x ∈[27,2ππ], ∴2x +3π∈[3π,23π],∴2x +3π=65π,那么 x =4π,故f --1(1)=4π. ●锦囊妙计本难点所涉及的问题以及解决的方法主要有:1.求值问题的根本类型:1°给角求值,2°给值求值,3°给式求值,4°求函数式的最值或者值域,5°化简求值.2.技巧与方法:1°要寻求角与角关系的特殊性,化非特角为特殊角,纯熟准确地应用公式.2°注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用.3°对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的打破口,很难入手的问题,可利用分析法.4°求最值问题,常用配方法、换元法来解决.●歼灭难点训练一、选择题1.(★★★★★)方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈ (-2,2ππ),那么tan 2βα+的值是() A.21 B.-2 C.34 D.21或者-2 二、填空题2.(★★★★)sin α=53,α∈(2π,π),tan(π-β)=21,那么tan(α-2β)=_________. 3.(★★★★★)设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=53,sin(43π+β)=135,那么sin(α+β)=_________.三、解答题4.不查表求值:.10cos 1)370tan 31(100sin 130sin 2︒+︒+︒+︒5.cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值. 6.(★★★★★)α-β=38π,且α≠k π(k ∈Z ).求)44(sin 42sin 2csc )cos(12βπαααπ-----的最大值及最大值时的条件.7.(★★★★★)如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积.8.(★★★★★)cos α+sin β=3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10432log 21++x x 的最小值,并求获得最小值时x 的值.参考答案难点磁场解法一:∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π,∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)解法二:∵sin(α-β)=135,cos(α+β)=-54, ∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572 sin2α-sin2β=2cos(α+β)sin(α-β)=-6540 ∴sin2α=6556)65406572(21-=-- 歼灭难点训练一、1.解析:∵a >1,tan α+tan β=-4a <0.tan α+tan β=3a +1>0,又α、β∈(-2π,2π)∴α、β∈(-2π,θ),那么2βα+∈(-2π,0),又tan(α+β)=342tan 12tan 2)tan(,34)13(14tan tan 1tan tan 2=β+α-β+α=β+α=+--=βα-β+α又a a , 整理得2tan 222tan 32-β+α+β+α=0.解得tan 2β+α=-2. 答案:B2.解析:∵sin α=53,α∈(2π,π),∴cos α=-54 那么tan α=-43,又tan(π-β)=21可得tan β=-21, 答案:247 3.解析:α∈(43,4ππ),α-4π∈(0,2π),又cos(α-4π)=53. 答案:6556 三、4.答案:2π≠αk 〔k ∈Z 〕,322322π-π≠π-α∴k 〔k ∈Z 〕 ∴当,22322π-π=π-αk 即34π+π=αk 〔k ∈Z 〕时,)322sin(π-α的最小值为-1.7.解:以OA 为x 轴.O 为原点,建立平面直角坐标系,并设P 的坐标为(cos θ,sin θ),那么 |PS |=sin θ.直线OB 的方程为y =3x ,直线PQ 的方程为y =sin θ.联立解之得Q (33sin θ;sin θ),所以|PQ |=cos θ-33sin θ. 于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2θ)=33(23sin2θ-22cos 1θ-)=33(23sin2θ+21cos2θ-21)=33sin(2θ+6π)-63. ∵0<θ<3π,∴6π<2θ+6π<65π.∴21<sin(2θ+6π)≤1. ∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6π,点P 为的中点,P (21,23). 8.解:设u =sin α+cos β.那么u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4.∴u 2≤1,-1≤u ≤D =[-1,1],设t =32+x ,∵-1≤x ≤1,∴1≤t ≤5.x =232-t .。

厚积薄发-高考数学41讲之第05讲- 三角函数的化简和求值

厚积薄发-高考数学41讲之第05讲- 三角函数的化简和求值
2
∴ cos 2 ϕ = sin 2 ϕ = 1 − cos 2 ϕ ,
,
又 0<φ <
π
2
, ∴
2 cos ϕ = 2
归纳总结:本题考查同角三角函数公式及 两角差的余弦,注意角的范围.
例6
π sin( − θ ) 2 已知2 sin θ − = 2, θ ∈ (0, π ),求θ的值. cos( π + θ )
x
x
(2)三角函数值的符号规律: 正弦:一、二象限正,三、四象限负; 余弦:一、四象限正,二、三象限负; 正切:一、三象限正,二、四象限负.
2.同角三角函数的基本关系式: (1)平方关系: 2 α + cos2 α = 1 ; sin
sin α tan (2)商的关系: α = . cos α
3.诱导公式:
kπ ± α ( k ∈ Z) 中 2
k 的奇偶性;“符号”是把
任意角看成锐角时原函数值的符号.
三、典型问题选讲:
(一)考查三角函数定义 例1 角 的终边经过点P(1,-2),则tanα的 α 的终边经过点P(1,-2),则 值是( ). 分析:本题可由三角函数的定义求得 tanα的值是-2. 的值是-
1 π 解:(Ⅰ)由 cos α = , 0 < α < , 7 2
4 3 1 sin α = 1 − cos α = 1 − = . 7 7 sin α 4 3 7 tan α = = × =4 3 . cos α 7 1
2

2

(Ⅱ)由 0 < β < α <
,得 0 < α − β < 2 . 2 又∵ cos (α − β ) = 13 ,

三角函数的化简与求值

三角函数的化简与求值
a2 b2sin(α+φ)(其中cos
φ=
2
a
2
a b
,sin φ=
b
2
a b2
).
二、二倍角公式
sin 2α=2sin αcos α;
高考第一轮复习用书· 数学(理科)
第四章 4.2 三角函数的化简与求值
cos 2α=cos α-sin α=1-2sin α=2cos α-1; tan 2α=
7 2 = sin( -x).
第四章 4.2 三角函数的化简与求值
题型1 三角函数式的化简
例1 (1)化简sin(3x+ )cos(x- )+cos(3x+ )cos(x+ );
3
6
3
3
(2)化简
tan α tan2α tan2α tan α
+ 3 (sin α-cos α).
2
2
高考第一轮复习用书· 数学(理科)
第四章 4.2 三角函数的化简与求值
三、半角公式 sin =±
2 θ
1 cos θ , 2
cos =±
2
θ
1 cos θ , 2
tan =±
2
θ
1 cos θ , 1 cos θ
θ 其中符号“±”的选取由 角的范围确定. 2
用正余弦来表示正切的半角公式: tan =
α 2
s in α 1 cos α = 1 cos α s in α
= 1 m2
m
2 ,tan 5 = 1 ta n 2 5
2 ta n 5
=
1 m m 2 1 1 m
2
m
2

数学专题1-三角函数式的化简与求值

数学专题1-三角函数式的化简与求值

三角函数式的化简与求值知识网络三角函数式化简与求值的理论依据—三角公式体系,主要由两个系列组成:三角函数坐标定义的推论系列;公式的推论系列一、高考考点以三角求值为重点,同时对三角式的化简具有较高要求,主要考查:1、同角三角函数基本关系式与诱导公式的应用.运用诱导公式的“准确”;运用同角公式的“灵活”:正用、反用、变用。

2、两角和与差的三角函数与倍角公式的应用:正用、反用;有关公式的联合运用,主要应用于无附加条件的三角式的化简或求值(以选择题、填空题为主);带有附加条件的三角式的求值问题(以解答题为主);比较简单的三角恒等式的证明(多为解答题,不同某一小题)。

3、等价转化思想以及三角变换的基本技能。

二、知识要点(一)三角函数坐标定义的推论1、三角函数值的符号2、特殊角的三角函数值3、同角三角函数的基本关系式(同角公式)(1)课本中的公式:(2)同角公式“全家福”①平方关系: .②商数关系: .③倒数关系:4、诱导公式:(1)认知与记忆:对使三角函数有定义的任意角①k²360°+(k∈Z),-,180°±,360°-(共性:偶数³90°±形式)的三角函数值,等于的同名函数值,前面放上一个把看作锐角时原函数值的符号;②90°±,270°±(共性:奇数³90°±)的三角函数值,等于的相应余函数值,前面放上一个把看作锐角时原函数值的符号。

①②两类诱导公式的记忆:奇变偶不变,符号看象限。

(2)诱导公式的引申;;.(二)两角和与差的三角函数1、两角和的三角函数两角差的三角函数令=2、倍角公式;==;3、倍角公式的推论推论1(降幂公式):;;. 推论2(万能公式):;. 推论3(半角公式):;;.其中根号的符号由所在的象限决定.三、经典例题例1、填空:(1)已知的取值范围为(2)已知的取值范围为分析:(1)从已知条件分析与转化入手①又②∴由①、②得,∴应填(2)首先致力于左右两边的靠拢:左边=①右边=②∴由左边=右边得,∴应填点评:解本题,极易出现的错解是由①、②得,这种由忽略分子而产生的错误很值得大家吸取经验教训.例2.化简或求值:(1)(2)分析:(1)注意到分母为单一的非特殊角的余弦,需设法在分子变换出cos20°.为此,将10°变为30°-20°后运用差角公式。

高考 三角函数的化简 求值

高考 三角函数的化简 求值

高考 三角函数式的化简与求值三角函数式的化简和求值是高考考查的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍.●难点磁场(★★★★★)已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________.●案例探究[例1]不查表求sin 220°+cos 280°+3cos20°cos80°的值.命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高.属于★★★★级题目.知识依托:熟知三角公式并能灵活应用.错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.解法一:sin 220°+cos 280°+3sin 220°cos80°=21 (1-cos40°)+21(1+cos160°)+ 3sin20°cos80°=1-21cos40°+21cos160°+3sin20°cos(60°+20°)=1-21cos40°+21(cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 220°=1-43cos40°-43(1-cos40°)= 41解法二:设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°-3cos20°sin80°,则x +y =1+1-3sin60°=21,x -y =-cos40°+cos160°+3sin100°=-2sin100°sin60°+3sin100°=0∴x =y =41,即x =sin 220°+cos 280°+3sin20°cos80°=41.[例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.命题意图:本题主要考查最值问题、三角函数的有界性、计算能力以及较强的逻辑思维能力.属★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考查三角函数的有界性,对区间的分类易出错.技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.解:由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得:f (a )⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2( 12a a a a a a ∵f (a )=21,∴1-4a =21⇒a =81∉[2,+∞)故-22a -2a -1=21,解得:a =-1,此时,y =2(cos x +21)2+21,当cos x =1时,即x =2k π,k ∈Z ,y max =5.[例3]已知函数f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x (1)求函数f (x )的最小正周期;(2)求f (x )的最小值及取得最小值时相应的x 的值;(3)若当x ∈[12π,127π]时,f (x )的反函数为f -1(x ),求f --1(1)的值.命题意图:本题主要考查三角公式、周期、最值、反函数等知识,还考查计算变形能力,综合运用知识的能力,属★★★★★级题目.知识依托:熟知三角函数公式以及三角函数的性质、反函数等知识.错解分析:在求f --1(1)的值时易走弯路.技巧与方法:等价转化,逆向思维.解:(1)f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x =2cos x (sin x cos 3π+cos x sin 3π)-3sin 2x +sin x cos x=2sin x cos x +3cos2x =2sin(2x +3π)∴f (x )的最小正周期T =π(2)当2x +3π=2k π-2π,即x =k π-125π (k ∈Z )时,f (x )取得最小值-2.(3)令2sin(2x +3π)=1,又x ∈[27,2ππ],∴2x +3π∈[3π,23π],∴2x +3π=65π,则x =4π,故f --1(1)= 4π. ●锦囊妙计本难点所涉及的问题以及解决的方法主要有:1.求值问题的基本类型:1°给角求值,2°给值求值,3°给式求值,4°求函数式的最值或值域,5°化简求值.2.技巧与方法:1°要寻求角与角关系的特殊性,化非特角为特殊角,熟练准确地应用公式. 2°注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用.3°对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,很难入手的问题,可利用分析法.4°求最值问题,常用配方法、换元法来解决. ●歼灭难点训练 一、选择题1.(★★★★★)已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈ (-2,2ππ),则tan2βα+的值是( ) A.21 B.-2C.34 D.21或-2 二、填空题2.(★★★★)已知sin α=53,α∈(2π,π),tan(π-β)= 21,则tan(α-2β)=_________.3.(★★★★★)设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=53,sin(43π+β)=135,则sin(α+β)=_________.三、解答题4.不查表求值:.10cos 1)370tan 31(100sin 130sin 2︒+︒+︒+︒5.已知cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值.6.(★★★★★)已知α-β=38π,且α≠k π(k ∈Z ).求)44(sin 42sin2csc )cos(12βπαααπ-----的最大值及最大值时的条件.7.(★★★★★)如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS 是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积.8.(★★★★★)已知cos α+sin β=3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10432log 21++x x 的最小值,并求取得最小值时x的值.参考答案难点磁场解法一:∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π, ∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β) .6556)53(1312)54(135-=-⨯+-⨯= 解法二:∵sin(α-β)=135,cos(α+β)=-54,∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572sin2α-sin2β=2cos(α+β)sin(α-β)=-6540∴sin2α=6556)65406572(21-=--歼灭难点训练一、1.解析:∵a >1,tan α+tan β=-4a <0.tan α+tan β=3a +1>0,又α、β∈(-2π,2π)∴α、β∈(-2π,θ),则2βα+∈(-2π,0),又tan(α+β)=342tan 12tan2)tan(,34)13(14tan tan 1tan tan 2=β+α-β+α=β+α=+--=βα-β+α又a a , 整理得2tan 222tan 32-β+α+β+α=0.解得tan 2β+α=-2. 答案:B2.解析:∵sin α=53,α∈(2π,π),∴cos α=-54则tan α=-43,又tan(π-β)=21可得tan β=-21,247)34()43(1)34(432tan tan 1tan tan )2tan(.34)21(1)21(2tan 1tan 22tan 222=-⨯-+---=β⋅α+β-α=β-α-=---⨯=β-β=β答案:2473.解析:α∈(43,4ππ),α-4π∈(0, 2π),又cos(α-4π)=53. 6556)sin(.655613554)1312(53)43sin()4sin()43cos()4cos()]43()4cos[(]2)43()4sin[()sin(.1312)43cos(,135)43sin().,43(43).4,0(,54)4sin(=β+α=⨯+-⨯-=β+π⋅π-α+β+π⋅π-α-=β+π+π-α-=π-β+π+π-α=β+α∴-=β+π∴=β+πππ∈β+π∴π∈β=π-α∴即 答案:6556 三、4.答案:2752853)54(257)4cos()4sin(2sin sin cos cos )cos (sin sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 54)4sin(,2435,471217.257)4(2cos 2sin ,53)4cos(:.522=-⨯=++=-+=-+=-+-=+∴<+<∴<<=+-=∴=+x x x xx xx x x x x x x x x x x x x x x x x ππππππππππ又解 2)322sin(22)21()322sin(4.32243824,3822cos 2sin 42)2sin 2(sin 2)2sin 2121(42cos 2cos 22sin 2)22cos(142sin 1)cos 1(2sin )44(sin 42sin 2csc )cos(1:.62222-π-α-=--⨯π-α=∴π-α=π-α=β-α∴π=β-α-β-αβ+α=-β+α=β--αα⋅α=β-π--α-α+α=β-π-α-αα-π-=t t 令解 π≠αk (k ∈Z ),322322π-π≠π-α∴k (k ∈Z ) ∴当,22322π-π=π-αk 即34π+π=αk (k ∈Z )时,)322sin(π-α的最小值为-1.7.解:以OA 为x 轴.O 为原点,建立平面直角坐标系,并设P 的坐标为(cos θ,sin θ),则|PS |=sin θ.直线OB 的方程为y =3x ,直线PQ 的方程为y =sin θ.联立解之得Q (33sin θ;sin θ),所以|PQ |=cos θ-33sin θ. 于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2θ)=33(23sin2θ-22cos 1θ-)=33(23sin2θ+21cos2θ-21)= 33sin(2θ+6π)-63.∵0<θ<3π,∴6π<2θ+6π<65π.∴21<sin(2θ+6π)≤1.∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6π,点P 为的中点,P (21,23). 8.解:设u =sin α+cos β.则u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4.∴u 2≤1,-1≤u ≤1.即D =[-1,1],设t =32+x ,∵-1≤x ≤1,∴1≤t ≤5.x =232-t ..21,232,2,258log 2log 82log ,0log .82,2,42.8224142142104325.05.05.0min 5.0max 2-==+==-==∴>=====≤+=+=++=∴x x t y M M y M t t t tt t t x x M 此时时时是减函数在时即当且仅当。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考 三角函数式的化简与求值三角函数式的化简和求值是高考考查的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍.●难点磁场(★★★★★)已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________.●案例探究[例1]不查表求sin 220°+cos 280°+3cos20°cos80°的值.命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高.属于★★★★级题目.知识依托:熟知三角公式并能灵活应用.错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.解法一:sin 220°+cos 280°+3sin 220°cos80°=21 (1-cos40°)+21(1+cos160°)+ 3sin20°cos80°=1-21cos40°+21cos160°+3sin20°cos(60°+20°)=1-21cos40°+21(cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 220°=1-43cos40°-43(1-cos40°)= 41解法二:设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°-3cos20°sin80°,则x +y =1+1-3sin60°=21,x -y =-cos40°+cos160°+3sin100°=-2sin100°sin60°+3sin100°=0∴x =y =41,即x =sin 220°+cos 280°+3sin20°cos80°=41.[例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.命题意图:本题主要考查最值问题、三角函数的有界性、计算能力以及较强的逻辑思维能力.属★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考查三角函数的有界性,对区间的分类易出错.技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.解:由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得:f (a )⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2( 12a a a a aa ∵f (a )=21,∴1-4a =21⇒a =81∉[2,+∞)故-22a -2a -1=21,解得:a =-1,此时,y =2(cos x +21)2+21,当cos x =1时,即x =2k π,k ∈Z ,y max =5.[例3]已知函数f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x (1)求函数f (x )的最小正周期;(2)求f (x )的最小值及取得最小值时相应的x 的值;(3)若当x ∈[12π,127π]时,f (x )的反函数为f -1(x ),求f --1(1)的值.命题意图:本题主要考查三角公式、周期、最值、反函数等知识,还考查计算变形能力,综合运用知识的能力,属★★★★★级题目.知识依托:熟知三角函数公式以及三角函数的性质、反函数等知识.错解分析:在求f --1(1)的值时易走弯路.技巧与方法:等价转化,逆向思维.解:(1)f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x =2cos x (sin x cos3π+cos x sin 3π)-3sin 2x +sin x cos x =2sin x cos x +3cos2x =2sin(2x +3π)∴f (x )的最小正周期T =π(2)当2x +3π=2k π-2π,即x =k π-125π (k ∈Z )时,f (x )取得最小值-2.(3)令2sin(2x +3π)=1,又x ∈[27,2ππ],∴2x +3π∈[3π,23π],∴2x +3π=65π,则x =4π,故f --1(1)= 4π.●锦囊妙计本难点所涉及的问题以及解决的方法主要有:1.求值问题的基本类型:1°给角求值,2°给值求值,3°给式求值,4°求函数式的最值或值域,5°化简求值.2.技巧与方法:1°要寻求角与角关系的特殊性,化非特角为特殊角,熟练准确地应用公式. 2°注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用.3°对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,很难入手的问题,可利用分析法.4°求最值问题,常用配方法、换元法来解决. ●歼灭难点训练 一、选择题1.(★★★★★)已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈ (-2,2ππ),则tan2βα+的值是( ) A.21 B.-2C.34 D.21或-2 二、填空题2.(★★★★)已知sin α=53,α∈(2π,π),tan(π-β)= 21,则tan(α-2β)=_________.3.(★★★★★)设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=53,sin(43π+β)=135,则sin(α+β)=_________.三、解答题4.不查表求值:.10cos 1)370tan 31(100sin 130sin 2︒+︒+︒+︒5.已知cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值.6.(★★★★★)已知α-β=38π,且α≠k π(k ∈Z ).求)44(sin 42sin2csc )cos(12βπαααπ-----的最大值及最大值时的条件.7.(★★★★★)如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS 是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积.8.(★★★★★)已知cos α+sin β=3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10432log 21++x x 的最小值,并求取得最小值时x的值.参考答案难点磁场解法一:∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π, ∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β) .6556)53(1312)54(135-=-⨯+-⨯= 解法二:∵sin(α-β)=135,cos(α+β)=-54,∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572sin2α-sin2β=2cos(α+β)sin(α-β)=-6540∴sin2α=6556)65406572(21-=--歼灭难点训练一、1.解析:∵a >1,tan α+tan β=-4a <0.tan α+tan β=3a +1>0,又α、β∈(-2π,2π)∴α、β∈(-2π,θ),则2βα+∈(-2π,0),又tan(α+β)=342tan 12tan2)tan(,34)13(14tan tan 1tan tan 2=β+α-β+α=β+α=+--=βα-β+α又a a , 整理得2tan 222tan 32-β+α+β+α=0.解得tan 2β+α=-2. 答案:B2.解析:∵sin α=53,α∈(2π,π),∴cos α=-54 则tan α=-43,又tan(π-β)=21可得tan β=-21,247)34()43(1)34(432tan tan 1tan tan )2tan(.34)21(1)21(2tan 1tan 22tan 222=-⨯-+---=β⋅α+β-α=β-α-=---⨯=β-β=β答案:2473.解析:α∈(43,4ππ),α-4π∈(0, 2π),又cos(α-4π)=53. 6556)sin(.655613554)1312(53)43sin()4sin()43cos()4cos()]43()4cos[(]2)43()4sin[()sin(.1312)43cos(,135)43sin().,43(43).4,0(,54)4sin(=β+α=⨯+-⨯-=β+π⋅π-α+β+π⋅π-α-=β+π+π-α-=π-β+π+π-α=β+α∴-=β+π∴=β+πππ∈β+π∴π∈β=π-α∴即 答案:6556 三、4.答案:2752853)54(257)4cos()4sin(2sin sin cos cos )cos (sin sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 54)4sin(,2435,471217.257)4(2cos 2sin ,53)4cos(:.522=-⨯=++=-+=-+=-+-=+∴<+<∴<<=+-=∴=+x x x xx xx x x x x x x x x x x x x x x x x ππππππππππ又解Θ2)322sin(22)21()322sin(4.32243824,3822cos 2sin 42)2sin 2(sin 2)2sin 2121(42cos 2cos 22sin 2)22cos(142sin 1)cos 1(2sin )44(sin 42sin 2csc )cos(1:.62222-π-α-=--⨯π-α=∴π-α=π-α=β-α∴π=β-α-β-αβ+α=-β+α=β--αα⋅α=β-π--α-α+α=β-π-α-αα-π-=t t Θ令解 π≠αk Θ(k ∈Z ),322322π-π≠π-α∴k (k ∈Z ) ∴当,22322π-π=π-αk 即34π+π=αk (k ∈Z )时,)322sin(π-α的最小值为-1.7.解:以OA 为x 轴.O 为原点,建立平面直角坐标系,并设P 的坐标为(cos θ,sin θ),则|PS |=sin θ.直线OB 的方程为y =3x ,直线PQ 的方程为y =sin θ.联立解之得Q (33sin θ;sin θ),所以|PQ |=cos θ-33sin θ. 于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2θ)=33(23sin2θ-22cos 1θ-)=33(23sin2θ+21cos2θ-21)= 33sin(2θ+6π)-63.∵0<θ<3π,∴6π<2θ+6π<65π.∴21<sin(2θ+6π)≤1.∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6π,点P 为的中点,P (21,23). 8.解:设u =sin α+cos β.则u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4.∴u 2≤1,-1≤u ≤1.即D =[-1,1],设t =32+x ,∵-1≤x ≤1,∴1≤t ≤5.x =232-t ..21,232,2,258log 2log 82log ,0log .82,2,42.8224142142104325.05.05.0min 5.0max 2-==+==-==∴>=====≤+=+=++=∴x x t y M M y M t t t tt t t x x M 此时时时是减函数在时即当且仅当Θ。

相关文档
最新文档