直线的参数方程11459

合集下载

直线的参数方程

直线的参数方程

直线的参数方程直线是平面上最简单的几何图形之一,在数学中直线可以用多种方式来表示,其中一种常用的表示方式是参数方程。

本文将介绍直线的参数方程及其相关概念和性质。

什么是参数方程?参数方程是用参数表示的方程,其中参数是一个变量,可以取不同的值。

对于直线来说,参数方程可以用来描述直线上各点的坐标。

直线的参数方程表示设直线上一点的坐标为(x, y),参数方程可以表示为:x = x0 + aty = y0 + bt其中 (x0, y0) 是直线上一点的坐标,a 和 b 是常数,t 是参数。

直线的参数方程的意义直线的参数方程的意义在于,通过改变参数 t 的取值,我们可以得到直线上不同点的坐标。

参数方程使我们能够更加灵活地描述直线,并进行计算和分析。

值得注意的是,直线的参数方程在某些特殊情况下可能并不唯一。

例如,在平行于坐标轴的直线上,参数方程可以有多种不同的表示方式。

直线的参数方程的性质直线的参数方程具有以下性质:1.直线上的任意两点,都可以通过参数方程表示。

2.参数方程中的参数 t 是一个实数,可以取任意值,因此可以描述出直线上的每一个点。

3.相同的直线可以有不同的参数方程表示,但所有的参数方程都会描述出同一条直线。

直线参数方程的应用直线的参数方程在数学和物理中有广泛应用。

例如,在几何学中,我们可以利用参数方程求直线的长度、直线与其他几何图形的交点等问题。

在物理学中,直线的参数方程可以用来描述物体的运动轨迹。

通过改变参数的取值,我们可以得到物体在不同时刻的位置坐标,从而研究其运动规律。

直线的参数方程是一种常见的表示直线的方法。

通过参数方程,我们可以更加灵活地描述直线上的各个点,进行计算和分析。

直线的参数方程具有多种性质,可以在几何学和物理学等领域中得到广泛的应用。

希望通过本文的介绍,读者对直线的参数方程有了更加深入的理解,能够灵活应用于实际问题的解决中。

直线标准参数方程

直线标准参数方程

直线标准参数方程
x
《直线标准参数方程》
直线的标准参数方程是一种几何形式,用于描述直线的性质,表示直线的位置,方向,长度,以及与其他直线之间的关系。

它可以用一个公式表示,为:
Ax + By + C = 0
其中,A,B和C是实数,A和B不能同时为零。

当A和B都不为0时,以A和B确定直线的斜率,C确定直线与原点的距离。

在这里,A,B,C的取值受到斜率和距离的限制,且有一定的规律:
(1)当A,B和C都不为0时,C的符号取决于斜率是否小于1,即:
①当斜率小于1时,C为正;
②当斜率大于1时,C为负。

(2)当A或B不为0时,当斜率大于或小于1时,A,B及C的符号可能不一定;
(3)当A不为0而B为0时,A为正,C,B及C不一定。

符号及规律只影响参数A,B,C的取值,不影响直线的位置,方向和长度。

因此,直线的标准参数方程可以表示为:Ax + By + C = 0,它
与斜率和距离之间有着紧密的联系,且可根据斜率及距离的不同来决定A,B和C的取值。

直线的标准参数方程

直线的标准参数方程

直线的标准参数方程直线是我们在几何学中经常接触到的一种基本图形,而直线的参数方程是描述直线的一种重要方式。

在本文中,我们将详细介绍直线的标准参数方程及其应用。

首先,我们来看一下直线的标准参数方程是如何定义的。

对于直线上的任意一点P(x, y),我们可以用参数t来表示其坐标,即P(x, y) = P(x(t), y(t))。

而直线的标准参数方程可以表示为:x(t) = x1 + at。

y(t) = y1 + bt。

其中,(x1, y1)是直线上的一点,而a和b分别是直线的方向向量。

这样,我们就可以用参数t来表示直线上的任意一点,这就是直线的标准参数方程。

接下来,我们来看一下直线的标准参数方程的应用。

首先,我们可以通过参数方程方便地表示直线上的点。

当我们知道直线上的一点和方向向量时,直接代入参数t就可以得到直线上的任意一点的坐标。

这在计算直线上的点的坐标时非常方便。

其次,直线的标准参数方程还可以用于表示直线的方程。

我们知道,一般情况下直线的方程可以表示为Ax + By + C = 0,而通过参数方程我们也可以将直线的方程表示为x = x1 + at, y = y1 + bt的形式。

这样,我们就可以用参数方程来表示直线的方程,这对于一些特定问题的求解非常有用。

此外,直线的标准参数方程还可以用于表示直线的向量方程。

我们知道,直线的向量方程可以表示为r = a + tb,其中r是直线上的一点的位置向量,a是直线上的一点的位置向量,b是直线的方向向量。

而直线的标准参数方程正是直线的向量方程的一种特殊形式,通过参数方程我们也可以方便地得到直线的向量方程。

综上所述,直线的标准参数方程是描述直线的一种重要方式,它可以用于表示直线上的点、直线的方程以及直线的向量方程。

通过参数方程,我们可以更方便地进行直线相关问题的求解,这对于我们理解直线的性质和应用也非常有帮助。

总之,直线的标准参数方程是我们在几何学中经常接触到的一个重要概念,它有着广泛的应用价值。

直线方程的参数形式介绍

直线方程的参数形式介绍

直线方程的参数形式介绍直线是平面上最基本的几何图形之一,通过直线方程我们可以描述直线在平面上的位置。

在解析几何中,直线的参数形式是描述直线的一种常用方法。

通过参数形式,我们可以更加直观地理解直线的性质和特点。

1. 参数形式的定义直线的参数形式是指通过一个点和一个方向向量来描述直线的方法。

假设直线上有一点P(x, y)和一个方向向量所组成的表示直线的方程,即可得到直线的参数形式。

2. 参数形式的具体表达设直线上有一点P(x, y)和一个方向向量a=(m, n),其中m和n分别是向量a在x轴和y轴上的分量,则直线的参数方程可以表示为:x = x0 + mty = y0 + nt其中(x0, y0)为直线上任意一点的坐标,t为参数。

参数t的取值范围可以是整个实数集。

3. 理解参数形式参数形式可以帮助我们更好地理解直线在平面上的位置和方向。

通过参数t的取值不同,我们可以沿着方向向量a在直线上遍历得到直线上的所有点。

同时,参数形式还可以方便地进行直线的求交点、垂直平分线等相关计算。

4. 参数形式的应用参数形式在解析几何中有广泛的应用。

在计算向量方程、直线之间的夹角、直线的位置关系等问题时,参数形式往往可以简化计算,提高问题的解决效率。

此外,在三维空间中,参数形式也可以用来描述空间中的直线和平面。

5. 参数形式与其他形式的关系参数形式和点斜式、一般式等直线方程之间是可以相互转换的。

通过变换不同的形式,我们可以更灵活地处理不同的问题,提高解析几何的应用水平。

总之,直线的参数形式是解析几何中的一种重要描述方法,通过参数形式,我们可以更好地理解直线的性质和特点,方便进行相关计算和推导。

在学习和研究解析几何问题时,熟练掌握直线的参数形式是非常重要的。

希望以上介绍能够帮助你更好地理解和运用直线的参数形式。

直线的参数方程

直线的参数方程

直线的参数方程
直线是数学中最著名的几何体,在几何学和数学中,几乎没有比直线更重要的几何体。

直线有着许多有趣的性质,这些性质被称为“参数方程”。

参数方程定义了一条直线的性质,并用来解决复杂的数学问题。

参数方程的定义是:一条直线的参数方程是一个二元一次方程,其形式为:Ax + By + C = 0。

其中A,B和C是常数,x和y 为坐标变量。

参数方程的根据直线的特征而定义的。

例如,如果一条直线的斜率是m,那么它的参数方程为:y-y1= m(x-x1)。

其中m=斜率,x1和y1为直线上的某一点的坐标。

如果一条直线经过坐标原点,其参数方程为:y=mx,其中m为斜率。

如果一条直线的斜率为无穷大,则它的参数方程为:x=c,其中c为直线的一个游离参数。

当一条直线的斜率为零时,它的参数方程为:y=c,其中c为直线的另一个游离参数。

因此,参数方程定义了一条直线在坐标系中的位置,并用它可以描述任何一条直线在数学上的特征。

参数方程在许多方面都很有用,它不仅可以描述直线,而且可以帮助定义和解决复杂的几何问题或数学问题。

参数方程可以帮助研究者求解复杂的几何问题,例如求解两条直线的交点、求解两条
直线的位置关系等。

此外,参数方程还可以帮助解决复杂的数学问题,例如求解一元多次方程、求解曲线积分等。

总而言之,参数方程是一种强大而有效的数学工具,它可以帮助研究者解决各类几何和数学问题。

它可以帮助研究者更有效地描述和研究直线的各种性质和特征。

因此,参数方程在几何学和数学中有着十分重要的地位,是几何学和数学研究的重要工具和理论基础。

直线的标准参数方程

直线的标准参数方程

直线的标准参数方程直线是平面几何中最基本的图形之一,它具有许多重要的性质和特点。

在直角坐标系中,直线可以通过不同的方程来描述,其中标准参数方程是一种常用的描述方法。

本文将详细介绍直线的标准参数方程,包括其定义、性质和应用。

一、标准参数方程的定义。

直线的标准参数方程是指通过直线上任意一点到直线上某一固定点的距离与该点到另一固定点的距离之比为常数的方程。

设直线上某一点为P(x,y),直线上固定点为A(x₁,y₁)和B(x₂,y₂),则直线的标准参数方程可以表示为:(x x₁)/(x₂ x₁) = (y y₁)/(y₂ y₁)。

其中(x,y)为直线上任意一点的坐标。

二、标准参数方程的性质。

1. 直线的标准参数方程是直线的一般方程的一种特殊形式,通过标准参数方程可以方便地求出直线的斜率和截距。

2. 标准参数方程中的参数是直线上任意一点的坐标,通过参数的取值范围可以确定直线的位置和方向。

3. 直线的标准参数方程可以方便地表示直线的交点、垂直平分线、角平分线等相关性质。

三、标准参数方程的应用。

1. 在平面几何中,直线的标准参数方程可以用于求解直线的方程和性质,进而解决与直线相关的几何问题。

2. 在工程和物理学中,标准参数方程可以用于描述直线运动的轨迹和方向,为实际问题的分析和求解提供便利。

3. 在计算机图形学和计算机辅助设计领域,标准参数方程可以用于描述和绘制直线,实现图形的生成和变换。

四、总结。

直线的标准参数方程是描述直线的一种重要方法,它具有简洁、直观的特点,适用于多个领域的问题求解。

通过标准参数方程,我们可以方便地求解直线的性质、应用于实际问题的分析和计算,是平面几何和相关学科中不可或缺的重要工具。

以上就是关于直线的标准参数方程的介绍,希望对您有所帮助。

如果您对此有任何疑问或者补充,欢迎留言讨论。

直线的参数方程及应用

直线的参数方程及应用

直线的参数方程及应用基础知识点击: 1、 直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)P 0P=t ∣P 0P ∣=t为直线上任意一点.(2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<02、 直线参数方程的一般式过点P 0(00,y x ),斜率为abk =的直线的参数方程是⎩⎨⎧+=+=bty y atx x 00 (t 为参数)点击直线参数方程:一、直线的参数方程问题1:(直线由点和方向确定)求经过点P 0(00,y x ),倾斜角为α的直线l 的参数方程. ⎩⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t|① 当t>0时,点P 在点P 0的上方;② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线l 的参数方程为⎩⎨⎧=+=00y y tx x④ 当t>0时,点P 在点P 0的右侧;⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是一一对应关系.问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1、t 2 ,则P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t 2-t 1∣问题4:一般地,若P 1、P 2、P 3是直线l 上的点, 所对应的参数分别为t 1、t 2、t 3, P 3为P 1、P 2的中点则t 3=221t t + 基础知识点拨:1、参数方程与普通方程的互化 例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义. 点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义.例2⎩⎨⎧+=+-= t 313y tx (t.2中,参数t 的1l 的参数方程 例301,3),倾斜角yx ,为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211(t为参数)和方程⎩⎨⎧+=+= t 331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.点拨:直线的参数方程不唯一,对于给定的参数方程能辨别其标准形式,会利用参数t 的几何意义解决有关问题.问题5:直线的参数方程⎩⎨⎧+=+= t331y tx 能否化为标准形式?是可以的,只需作参数t 的代换.(构造勾股数,实现标准化)2、直线非标准参数方程的标准化 一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,. 例4:写出经过点M 0(-2,3),倾斜角为43π的直线l 的标准参数方程,并且 求出直线l 上与点M 0相距为2的点的坐标.点拨:若使用直线的普通方程利用两点间的距离公式求M 点的坐标较麻烦, 而使用直线的参数方程,充分利用参数t 的几何意义求M 点的坐标较 容易.例5:直线⎩⎨⎧-=+=20cos 420sin 3t y t x (t 为参数)的倾斜角 .基础知识测试1:1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程.2、 直线l 的方程:⎩⎨⎧+=-=25cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( )A 65°B 25°C 155°D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=ty tx 521511(t 为参数)的斜率和倾斜角分别是( )A) -2和arctg(-2) B) -21和arctg(-21)C) -2和π-arctg2 D) -21和π-arctg 21 4、 已知直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)上的点A 、B 所对应的参数分别为t 1,t 2,点P 分线段BA 所成的比为λ(λ≠-1),则P 所对应的参数是 .5、直线l 的方程: ⎩⎨⎧+=+=bty y atx x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣B 22b a +∣t 1-t 2∣C 2221ba t t +- D ∣t 1∣+∣t 2∣6、 已知直线l :⎩⎨⎧+-=+= t 351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离. 二、直线参数方程的应用 例6:已知直线l 过点P (2,0),斜率为34,直线l和抛物线x y 22=相交于A 、B 两点,设线段AB 的中点为M,求:(1)P 、M 两点间的距离|PM|;(2)M 点的坐标; (3)线段AB 的长|AB| 点拨:利用直线l 的标准参数方程中参数t 的几何意义,在解决诸如直线l 上两点间的距离、直线l 上某两点的中点以及与此相关的一些问题时,比用直线l 的普通方程来解决显得比较灵活和简捷. 例7:已知直线l 经过点P (1,-33),倾斜角为3π,(1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ|;(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积.点拨:利用直线标准参数方程中的参数t 的几何意义解决距离问题、距离的乘积(或商)的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便. 例8:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右, 直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.点拨:(1)(对称性) 由两点A(-1,6)和B(-1,-2)的对称性及抛物线的对称性质,设出抛物线的方程(含P 一个未知量,由弦长AB 的值求得P ).(2)利用直线标准参数方程解决弦长问题.此题也可以运用直线的普通方程与抛物线方程联立后,求弦长。

直线的参数方程

直线的参数方程
'2
t t ( t t ) 4t t
' 1 ' 2 ' 1 ' 2 2 ' ' 1 2
4 17
.
练习
2.动点M作匀速直线运动,它在x轴和y轴方向的 分速度分别是3m/s和4m/s,直角坐标系的长 度单位是1cm,点M的起始位置在点M0(2,1)处, 求点M的轨迹的参数方程.
y
B
A M(x,y)
0
(t是参数)
M0(x0,y0)
0
O
x •t表示有向线段M0P的数量。|t|=| M0M|
若M 0为中点, t 0 t1+t 2 0
•t只有在标准式中才有上述几何意义 设A,B为直线上任意两点,它们所对应的参 数值分别为t1,t2. (1)|AB|= t1 t 2
直线的参数方程
直线的参数方程(标准式)
x x 0 t cos 直线的参数方程 ( t为参数) y y 0 t sin
其中(x 0 , y0 )时直线上的定点, 是倾斜角; 其对应的 普通方程为y y0 k ( x x0 )或x x0。 t表示几何意义: M( (x, y )(不同于点M 0)的 0 x0 , y0 )到直线上的点M 有向线段M 0 P的数量.
(2)M是AB的中点,求M对应的参数
t1 t 2 2
1 x 1 t 2 5.一条直线的参数方程是 (t为参数), y 5 3 t 2 另一条直线的方程是x-y-2 3 0, 则两直线的交点 与点(1,-5)间的距离是
4 3
6.动点M作等速直线运动,它在x轴和y轴方向分 速度分别为9,12,运动开始时,点M位于A(1,1), 求点M的轨迹的参数方程. x 1 9t (t为参数) y 1 12t

关于直线的参数方程

关于直线的参数方程

关于直线的参数方程直线是平面几何中最基础的几何图形之一,其具有简洁的参数方程表示方法,可以方便地描述直线的性质和特征。

本文将详细介绍直线的参数方程及其应用。

一、直线的定义直线是由无数个点组成的一条无宽度的线段,它没有起点和终点,只有一个方向。

直线有着重要的几何性质,例如平行、垂直等。

二、直线的一般方程一般来说,直线的方程可以用直线上的两个点表示。

假设直线上有两个点A(x1,y1)和B(x2,y2),直线AB的斜率为k,那么直线AB的一般方程为:y = mx + b其中m为斜率,b为截距,可以通过两点的坐标计算得到。

三、直线的点斜式方程点斜式方程是直线的另一种表示方式,它由直线上的一个点的坐标和直线的斜率决定。

假设直线上有一个点A(x1,y1)和斜率k,那么直线的点斜式方程为:y-y1=k(x-x1)四、直线的截距式方程截距式方程是直线的第三种表示方式,它由直线在x轴和y轴上的截距决定。

假设直线在x轴上的截距为a,在y轴上的截距为b,那么直线的截距式方程为:x/a+y/b=1参数方程是直线的一种特殊表示方式,它由直线上的一个点的坐标和直线的方向向量决定。

假设直线上有一个点A(x1,y1)和方向向量v=(a,b),那么直线的参数方程为:x = x1 + aty = y1 + bt其中t为参数,可以取任意实数。

六、参数方程的特点与应用1.参数方程表示直线的形式简洁,可以直观地描述直线的位置和方向。

2.通过调节参数t的值,可以在直线上获取任意一点的坐标。

3.参数方程可以方便地描述直线的运动轨迹,例如在平面内做匀速直线运动的物体。

七、例题分析1.用参数方程表示过点A(2,3)且以向量v=(1,2)为方向的直线。

解:直线的参数方程为:x=2+t(1)y=3+t(2)或者简化为:x=2+ty=3+2t2.已知直线的点斜式方程为y-4=-2(x-1),求直线的参数方程。

解:将点斜式方程转化为参数方程,得到:x-1=ty-4=-2t即:x=1+ty=4-2t八、总结直线的参数方程是一种便于描述直线性质和应用的表示方法。

直线的参数方程及其应用

直线的参数方程及其应用

直线的参数方程及其应用x = x0 + aty = y0 + btz = z0 + ct其中(x0,y0,z0)是直线上的一点,a、b、c是直线的方向向量的分量,t是参数。

这样,通过调整参数t的值,就可以得到直线上的所有点。

一、几何中直线的参数方程的应用:1.直线的方向向量:2.直线的长度:直线的长度可以通过参数方程中的两点之间的距离公式来计算。

假设起始点为(x0,y0,z0),终止点为(x1,y1,z1),直线的长度为L,则公式为L=√((x1-x0)^2+(y1-y0)^2+(z1-z0)^2)3.直线与平面的交点:如果有一个平面的参数方程a1x + b1y + c1z + d1 = 0,直线的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct。

将直线的参数方程代入平面方程,解方程组可以求得直线与平面的交点坐标。

二、物理中直线的参数方程的应用:1.运动学中的直线运动:物体在直线上进行匀速直线运动时,可以通过参数方程来描述物体的位置。

其中(t)表示时间,直线的方向向量(a,b,c)表示物体的运动方向和速度。

2.振动运动的直线模型:在物理的振动运动中,例如简谐振动,可以使用直线的参数方程来表示振动的轨迹。

参数t可以表示时间,(x0,y0,z0)表示振动的平衡位置,(a,b,c)表示振动的幅度和方向。

三、计算机图形学中直线的参数方程的应用:1.直线的绘制:在计算机图形学中,直线常常使用参数方程来绘制。

通过给定起点和终点的坐标,使用参数方程可以描绘出直线的轨迹。

2.直线的旋转:在计算机图形学的3D建模中,直线可以经过旋转来创建复杂的几何体。

旋转直线可以使用参数方程中的旋转矩阵来实现。

3.直线的相交:在计算机图形学中,判断两条直线是否相交是一个常见的需求。

可以通过比较两条直线的参数方程来判断它们是否相交。

4.直线的裁剪:在计算机图形学中,通过直线的参数方程可以实现直线的裁剪。

直线的参数方程

直线的参数方程

直线的参数方程直线是平面上的一种线形图形,由无数个点组成。

在平面直角坐标系下,直线通常可以用线段的两个端点来确定,或者可以用点斜式和斜截式来表示。

另外,还有一种常见的表示直线的方法是使用参数方程。

参数方程是一种通过引入一个参数作为自变量来表示一个二维曲线的方法。

x=x₀+a·t,y=y₀+b·t,其中(x₀,y₀)是直线上的一个点,t是参数,a和b是与直线的方向相关的参数。

参数方程的优点之一是可以直接通过给定的参数值来求解直线上的任意一点的坐标。

另外,参数方程还可以方便地描述直线的方向和倾斜角度。

下面将分别介绍直线的参数方程以及如何根据已知信息确定参数值的方法。

1.斜率-截距形式的直线方程假设直线方程为y = mx + c,我们可以将x表示为t的函数:x=t,y = mt + c.这样,我们就得到了直线的参数方程。

其中,t是参数,(x,y)是直线上的任意一点。

参数方程的参数a和b分别为1和m。

2.两点间的直线方程首先,我们可以求出直线的方向向量,即从点A到点B的向量。

该向量的分量为:a=x₂-x₁,b=y₂-y₁.然后,我们可以选择一个点作为原点,例如A点,将该点的坐标作为参数方程中的参数值:x₀=x₁,y₀=y₁.最后x=x₀+a·t=x₁+(x₂-x₁)·t,y=y₀+b·t=y₁+(y₂-y₁)·t.3.一般直线方程的参数方程假设直线方程为Ax+By+C=0,我们可以将x表示为t的函数:x=x₀+a·t,y=y₀+b·t.在这种情况下,参数方程的参数a和b可以表示为:a=-B,b=A.其中,(x₀,y₀)是直线上的一个点,t是参数。

总结起来,直线的参数方程可以用以上三种常见形式表示。

在给定直线的已知信息之后,我们可以根据特定的情况选择合适的参数方程形式,并确定参数值。

通过确定参数值,我们可以方便地求解直线上的任意一点的坐标,也可以直观地描述直线的方向和倾斜角度。

直线的参数方程及弦长公式

直线的参数方程及弦长公式

直线的参数方程及弦长公式一、直线的参数方程:设直线上有两个点A(x1,y1)和B(x2,y2),通过引入一个参数t,可以将直线上的所有点的坐标表示为参数的函数。

直线的参数方程可以表示为:x=x1+(x2-x1)ty=y1+(y2-y1)t其中,参数t可以取任意实数,当t取0时,得到点A的坐标;当t取1时,得到点B的坐标。

二、推导直线的弦长公式:1.弦长的概念:弦是指在圆上连接两个点的线段。

在直线中,我们将两点之间的线段称为弦。

2.求解直线的弦长:设直线上有两个点A(x1,y1)和B(x2,y2),我们需要求解这两点之间的弦长。

首先,我们可以利用两点间的距离公式求解两点间的距离d:d=√((x2-x1)^2+(y2-y1)^2)然后,我们引入参数方程,假设x=x(t)和y=y(t)为直线的参数方程,则有:x(t)=x1+(x2-x1)ty(t)=y1+(y2-y1)t接下来,我们需要通过参数消元来求解参数t与直线上的点(x,y)之间的关系。

由x(t)=x1+(x2-x1)t,可以得到:t=(x-x1)/(x2-x1)由y(t)=y1+(y2-y1)t,可以得到:t=(y-y1)/(y2-y1)将这两个结果相等起来,可以得到:(x-x1)/(x2-x1)=(y-y1)/(y2-y1)进一步化简,可以得到:(x-x1)(y2-y1)-(y-y1)(x2-x1)=0化简后的这个等式实际上是直线的一般方程,即Ax+By+C=0。

其中A=y2-y1,B=x1-x2,C=x2y1-x1y2然后,我们将两点间的距离公式d中的x和y分别代入直线的一般方程Ax+By+C=0中,可以得到:d=√((x2-x1)^2+(y2-y1)^2)=√((x2-x1)^2+(-(A/B)(x2-x1))^2)进一步化简,可以得到:d=√(1+(A/B)^2)*,x2-x1由于A=y2-y1,B=x1-x2,所以A/B=(y2-y1)/(x1-x2)。

直线的参数方程及弦长公式

直线的参数方程及弦长公式

直线的参数方程及弦长公式直线是几何学中非常基础的概念,常用于描述两点之间的最短路径。

在数学中,直线可以通过参数方程来表示。

本文将介绍直线的参数方程以及计算直线上两点之间的弦长公式。

直线的参数方程直线的参数方程可以通过一个参数来表示。

一条直线可以平行于 x 轴、y 轴或者斜率不为零,这里我们以斜率不为零的情况进行讨论。

对于一条斜率不为零的直线,我们可以通过两个参数 x 和 y 来表示,其中 x 是直线上的任一点横坐标,y 是对应的纵坐标。

假设直线上已知一点坐标为(x₁, y₁),斜率为 k。

我们通过以下步骤可以求得直线的参数方程:1.利用斜率公式k = (y₂ - y₁) / (x₂ - x₁),选择另外一个已知点坐标(x₂,y₂)。

2.将斜率公式变形得到 y = k * (x - x₁) + y₁,即为直线的参数方程。

在参数方程中,x 是一个自变量,y 是一个关于 x 的函数。

弦长公式弦长是指直线上两点之间的距离,可以通过两点的坐标来计算。

对于直线的参数方程,我们可以通过给定的参数值来计算两点的坐标,从而得到弦长。

假设我们有直线的参数方程为:x = f(t),y = g(t)。

我们可以进行如下步骤计算弦长:1.选择两个参数值t₁ 和t₂。

2.根据参数方程计算得到两点坐标为(x₁, y₁) 和(x₂, y₂)。

3.计算两点之间的距离d = √((x₂ - x₁)² + (y₂ - y₁)²)。

根据上述步骤,我们可以得到直线上任意两点之间的弦长。

通过本文,我们了解了直线的参数方程以及求解直线上两点之间弦长的公式。

直线的参数方程可以通过选择斜率不为零的点以及斜率,通过参数方程,我们可以方便地描述直线上的任意一点。

而弦长公式则可以用于计算直线上任意两点之间的距离,提供了一个有效的方法进行数学计算和几何分析。

需要注意的是,本文的讨论主要针对斜率不为零的直线情况,对于平行于 x 轴和 y 轴的直线,可以使用不同的参数方程来表示。

直线的参数方程

直线的参数方程

直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M 得到的参数方程⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)的直线,参数方程为⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.1.已知直线l 的方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),则直线l 的倾斜角为( )A .65°B .25°C .155°D .115°解析:选D.方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),化为标准形式⎩⎪⎨⎪⎧x =1+t cos 115°,y =2+t sin 115°(t为参数),倾斜角为115°.故选D.2.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1 C.22D .-22解析:选B.直线l 的普通方程为x +y -1=0,斜率为-1.故选B.3.以t 为参数的方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t表示( )A .过点(1,-2)且倾斜角为π3的直线B .过点(-1,2)且倾斜角为π3的直线C .过点(1,-2)且倾斜角为2π3的直线D .过点(-1,2)且倾斜角为2π3的直线解析:选C.化参数方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t (t 为参数)为普通方程得y +2=-3(x -1).直线过定点(1,-2),斜率为-3,倾斜角为2π3,故选C.4.过抛物线y 2=4x 的焦点F 作倾斜角为π3的弦AB ,则弦AB 的长是________.解析:由已知焦点F (1,0),又倾斜角为π3,cos π3=12,sin π3=32.所以弦AB 所在直线的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),代入抛物线的方程y 2=4x ,得⎝ ⎛⎭⎪⎫32t 2=4⎝ ⎛⎭⎪⎫1+12t .整理得3t 2-8t -16=0.设方程两根分别为t 1,t 2,则有⎩⎪⎨⎪⎧t 1+t 2=83,t 1·t 2=-163.由参数t 的几何意义得|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫832+643=163.答案:163根据直线的参数方程求直线的倾斜角、斜率已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin αy =-2+t cos α,(t 为参数),其中实数α的取值范围是⎝ ⎛⎭⎪⎫π2,π.求直线l 的倾斜角. [解] 设直线l 的倾斜角为θ,则由题意知tan θ=cos αsin α=1tan α=tan ⎝ ⎛⎭⎪⎫3π2-α,所以θ=3π2-α.所以直线l 的倾斜角为3π2-α.由直线的参数方程求倾斜角与斜率的方法已知直线l 的参数方程(1)若是标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),则可直接得出倾斜角即方程中的α,否则需化成标准式再求α.(2)若是一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt ,则当a ≠0时,斜率k =b a ,再由tan α=ba 及0≤α<π求出α,当a =0时,显然直线与x 轴垂直,倾斜角为α=π2. (3)若是其他形式,则通过消参化成普通方程,再求斜率及倾斜角.1.若直线的参数方程为⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数),则此直线的斜率为( )A. 3 B .- 3 C .33D .-33解析:选B.直线的参数方程⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数)可化为标准形式⎩⎪⎨⎪⎧x =3+⎝ ⎛⎭⎪⎫-12(-t )y =3+32(-t ),(-t 为参数). 所以直线的斜率为- 3.2.若直线的参数方程为⎩⎪⎨⎪⎧x =2-3ty =1+t ,(t 为参数),求直线的斜率.解:法一:把直线的参数方程⎩⎪⎨⎪⎧x =2-3ty =1+t ,消去参数t 得x +3y -5=0, 所以其斜率k =-13.法二:由⎩⎪⎨⎪⎧x =2-3t y =1+t ,得⎩⎪⎨⎪⎧x -2=-3ty -1=t ,所以k =y -1x -2=t -3t =-13. 直线参数方程中参数几何意义的应用已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t2,y =-1+t2(t 为参数),与圆x 2+y 2=4交于A ,B 两点,求|AB |及|AM |·|BM |.[解] l 的参数方程为⎩⎪⎨⎪⎧x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′为参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.因为Δ>0,可设t 1′,t 2′是方程的两根,由根与系数的关系得t 1′+t 2′=32,t 1′t 2′=1.由参数t ′的几何意义得|MA |=|t 1′|,|MB |=|t 2′|,所以|MA |·|MB |=|t 1′·t 2′|=1,|AB |=|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′=14.(1)在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.本题易错的地方是:将题目所给参数方程直接代入圆的方程求解,忽视了参数t 的几何意义.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;③设弦M 1M 2中点为M ,则点M 对应的参数值t M =t 1+t 22(由此可求|M 1M 2|及中点坐标).在极坐标系中,已知圆心C ⎝⎛⎭⎪⎫3,π6,半径r =1.(1)求圆的直角坐标方程;(2)若直线⎩⎪⎨⎪⎧x =-1+32t ,y =12t(t 为参数)与圆交于A ,B 两点,求弦AB 的长.解:(1)由已知得圆心C ⎝ ⎛⎭⎪⎫332,32,半径为1,圆的方程为⎝⎛⎭⎪⎫x -3322+⎝ ⎛⎭⎪⎫y -322=1,即x 2+y 2-33x -3y +8=0.(2)由⎩⎪⎨⎪⎧x =-1+32t ,y =12t (t 为参数)得直线的直角坐标方程x -3y +1=0,圆心到直线的距离d =⎪⎪⎪⎪⎪⎪332-332+12=12,所以⎝ ⎛⎭⎪⎫|AB |22+d 2=1,解得|AB |= 3. 直线参数方程的综合应用已知直线l 过定点P (3,2)且与x 轴和y 轴的正半轴分别交于A ,B 两点,求|PA |·|PB |的值为最小时的直线l 的方程.[解] 设直线的倾斜角为α,则它的方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数).由A ,B 是坐标轴上的点知y A =0,x B =0,所以0=2+t sin α, 即|PA |=|t |=2sin α,0=3+t cos α,即|PB |=|t |=-3cos α,故|PA |·|PB |=2sin α·⎝ ⎛⎭⎪⎫-3cos α=-12sin 2α. 因为90°<α<180°,所以当2α=270°,即α=135°时, |PA |·|PB |有最小值.所以直线方程为⎩⎪⎨⎪⎧x =3-22t ,y =2+22t (t 为参数),化为普通方程为x +y -5=0.利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. 所以x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)法一:直线l 的普通方程为y =-x +3+5,与圆C :x 2+(y -5)2=5联立,消去y ,得x 2-3x +2=0,解之得⎩⎨⎧x =1y =2+5或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5). 又点P 的坐标为(3,5), 故|PA |+|PB |=8+2=3 2.法二:将l 的参数方程代入x 2+(y -5)2=5,得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0,① 由于Δ=(32)2-4×4=2>0. 故可设t 1,t 2是①式的两个实根. 所以t 1+t 2=32,且t 1t 2=4. 所以t 1>0,t 2>0.又直线l 过点P (3,5),所以由t 的几何意义,得|PA |+|PB |=|t 1|+|t 2|=3 2.1.对直线参数方程标准形式中参数t 的理解从参数方程推导的过程中可知参数t 应理解为直线l 上有向线段M 0M →的数量,它的几何意义可以与数轴上点A 的坐标的几何意义作类比,|t |=|M 0M →|代表有向线段M 0M →的长度.另外,将直线的点斜式方程y -y 0=k (x -x 0)改写成y -y 0sin α=x -x 0cos α,其中k =tan α,α为直线倾斜角,则t =y -y 0sin α=x -x 0cos α,则有⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α,从中不难看出直线的普通方程(点斜式)与参数方程(标准式)的联系.2.化直线的参数方程一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t 为参数)为标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),由⎩⎪⎨⎪⎧x =x 0+aty =y 0+bt 变形为⎩⎪⎨⎪⎧x =x 0+a a 2+b 2·a 2+b 2ty =y 0+b a 2+b2·a 2+b 2t,令cos α=aa 2+b2,sin α=b a 2+b2,t ′=a 2+b 2 t ,则可得标准式⎩⎪⎨⎪⎧x =x 0+t ′cos αy =y 0+t ′sin α(t ′为参数),其中α为直线的倾斜角,k =tan α=ba 为直线的斜率.1.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α,(α为参数,0≤α<π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)解析:选A.由参数方程可知该直线是过定点(1,-2),倾斜角为α的直线.2.已知直线l 1:⎩⎪⎨⎪⎧x =1+3ty =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t,代入2x -4y =5,得t =12,则B ⎝ ⎛⎭⎪⎫52,0.而A (1,2),得|AB |=52.答案:523.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l的参数方程是⎩⎪⎨⎪⎧x =-1+4ty =3t ,(t 为参数),则直线l与曲线C 相交所截得的弦长为________.解析:曲线C 的直角坐标方程为x2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4ty =3t ,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85. 答案:85[A 基础达标]1.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1B .10C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0), 所以d =(2-5)2+(-1-0)2=10.2.若⎩⎪⎨⎪⎧x =x 0-3λ,y =y 0+4λ(λ为参数)与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)表示同一条直线,则λ与t 的关系是( )A .λ=5tB .λ=-5tC .t =5λD .t =-5λ解析:选C.由x -x 0,得-3λ=t cos α,由y -y 0,得4λ=t sin α,消去α的三角函数,得25λ2=t 2,得t =±5λ,借助于直线的斜率,可排除t =-5λ,所以t =5λ.3.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧x =1+12t ,y =5-32t(t 为参数)B .⎩⎪⎨⎪⎧x =1-12t ,y =5+32t (t 为参数)C.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t(t 为参数)D .⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数)解析:选D.该直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π3,y =5+t sin π3(t 为参数),即⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数),选D.4.若直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)与直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)互相垂直,那么a 的值等于( )A .1B .-13C .-23D .-2解析:选D.直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)的斜率为y +12x =-a2,直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)的斜率为y -1x -1=-1,由两直线垂直得-a2×(-1)=-1得a =-2.故选D. 5.对于参数方程⎩⎪⎨⎪⎧x =1-t cos 30°y =2+t sin 30°和⎩⎪⎨⎪⎧x =1+t cos 30°y =2-t sin 30°,下列结论正确的是( )A .是倾斜角为30°的两平行直线B .是倾斜角为150°的两重合直线C .是两条垂直相交于点(1,2)的直线D .是两条不垂直相交于点(1,2)的直线 解析:选B.因为参数方程⎩⎪⎨⎪⎧x =1-t cos 30°,y =2+t sin 30°可化为标准形式⎩⎪⎨⎪⎧x =1+t cos 150°,y =2+t sin 150°,所以其倾斜角为150°.同理,参数方程⎩⎪⎨⎪⎧x =1+t cos 30°,y =2-t sin 30°,可化为标准形式⎩⎪⎨⎪⎧x =1+(-t )cos 150°,y =2+(-t )sin 150°,所以其倾斜角也为150°.又因为两直线都过点(1,2),故两直线重合.6.若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t ,(t 为参数)与直线4x +ky =1垂直,则常数k =________.解析:由直线的参数方程可得直线的斜率为-32,由题意得直线4x +ky =1的斜率为-4k ,故-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案:-67.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,以M 0M →的数量t 为参数,则直线l 的参数方程为____________.解析:因为直线的斜率为-1, 所以直线的倾斜角α=135°. 所以cos α=-22,sin α=22. 所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数).答案:⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数)8.已知直线l的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析:直线l 的普通方程为y =x +2,曲线C 的直角坐标方程为x 2-y 2=4(x ≤-2),故直线l 与曲线C 的交点为(-2,0),对应极坐标为(2,π).答案:(2,π)9.已知曲线C :ρ=2cos θ,直线l :⎩⎪⎨⎪⎧x =2-t ,y =32+34t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任一点P 作与l 夹角为45°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α,(α是参数).直线l 的普通方程为3x +4y -12=0.(2)曲线C 上任意一点P (1+cos α,sin α)到l 的距离为d =15|3cos α+4sin α-9|,则|PA |=d sin 45°=2⎪⎪⎪⎪⎪⎪sin(α+φ)-95,且tan φ=34. 当sin(α+φ)=-1时,|PA |取得最大值1425; 当sin(α+φ)=1时,|PA |取得最小值425. 10.(2016·高考全国卷甲)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153. [B 能力提升]11.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为( )A .1B .2C .3D .4 解析:选C.直线l :⎩⎪⎨⎪⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1. 又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.12.给出两条直线l 1和l 2,斜率存在且不为0,如果满足斜率互为相反数,且在y 轴上的截距相等,那么直线l 1和l 2叫做“孪生直线”.现在给出4条直线的参数方程如下:l 1:⎩⎪⎨⎪⎧x =2+2t ,y =-4-2t (t 为参数); l 2:⎩⎪⎨⎪⎧x =3-22t ,y =4-22t (t 为参数); l 3:⎩⎪⎨⎪⎧x =1+t ,y =1-t (t 为参数); l 4:⎩⎪⎨⎪⎧x =6+22t ,y =8+22t (t 为参数). 其中能构成“孪生直线”的是________.解析:根据条件,两条直线构成“孪生直线”意味着它们的斜率存在且不为0,且互为相反数,且在y 轴上的截距相等,也就是在y 轴上交于同一点.对于本题,首先可以判断出其斜率分别为-1,1,-1,1,斜率互为相反数条件很明显.再判断在y 轴上的截距,令x =0得出相应的t 值,代入y 可得只有直线l 3和直线l 4在y 轴上的截距相等,而其斜率又恰好互为相反数,可以构成“孪生直线”.答案:直线l 3和直线l 413.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ;直线⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数)化为普通方程为y =x -2. (2)将⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,代入y 2=2ax 得 t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ),因为|MN |2=|PM |·|PN |,所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0,故8(4+a )2-40(4+a )=0,解得a =1或a =-4(舍去).故所求a 的值为1.14.(选做题)以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C的极坐标方程ρ=2cos θsin 2θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x .(2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α, 所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α, 当α=π2时,|AB |取得最小值2.。

直线的参数方程公式

直线的参数方程公式

直线的参数方程公式直线是我们在几何学中经常遇到的一种特殊的几何图形,它具有很多独特的性质和特点。

在平面几何中,直线是由无数个点组成的,它没有宽度和厚度,只有长度。

而直线的参数方程公式则是描述直线上的每一个点与某个参考点之间的关系的一种数学表达式。

直线的参数方程公式可以表示为:x = x0 + aty = y0 + bt其中,x和y分别表示直线上某一点的横坐标和纵坐标,x0和y0分别表示直线上某一参考点的横坐标和纵坐标,a和b分别表示直线在x轴和y轴上的斜率,t表示参数。

通过这个参数方程公式,我们可以通过给定的参考点和斜率来确定直线上的任意一点。

具体来说,当我们给定一个参数t的值时,我们就可以通过代入公式计算出对应的x和y的值,从而确定直线上的一个点。

在直线的参数方程公式中,斜率a和b的值决定了直线的方向和倾斜程度。

当a和b都为0时,直线将变成一个点,即只有参考点本身。

当a为0而b不为0时,直线将与y轴平行,其斜率为无穷大。

当b为0而a不为0时,直线将与x轴平行,其斜率为0。

当a和b都不为0时,直线将具有一定的倾斜程度。

我们还可以通过参数方程公式来求解两条直线的交点。

如果给定两条直线的参数方程公式分别为:x1 = x10 + a1ty1 = y10 + b1tx2 = x20 + a2ty2 = y20 + b2t我们可以通过联立这两个方程组来求解交点的坐标。

具体来说,我们可以将x1和x2相等,y1和y2相等,并解得参数t的值。

然后再将这个参数t代入其中一个方程中,求解出交点的具体坐标。

除了参数方程公式外,直线还可以用一般方程公式或斜截式方程公式来表示。

一般方程公式可以表示为Ax + By + C = 0,其中A、B和C为常数。

斜截式方程公式可以表示为y = kx + b,其中k为斜率,b为截距。

直线的参数方程公式在几何学中有着广泛的应用。

它不仅可以用来描述直线上的每一个点与参考点之间的关系,还可以用来求解两条直线的交点以及计算直线之间的夹角等问题。

直线的参数方程及应用

直线的参数方程及应用

直线的参数方程及应用直线的参数方程及应用一、直线的参数方程1.定义:若为直线l的倾斜角,则称e (cos ,sin )为直线l的(一个)方向向量.2.求证:若P,Q为直线l上任意两点,e (cos ,sin )为l的方向向量,则有PQ//e.证明:3.设直线l过点M0(x0,y0)的倾斜角为,求它的一个参数方程.归纳小结二、弦长公式、线段中点参数值证明:例1 已知直线l:x y 1 0与抛物线y x2交于A,B两点,求线段AB 的长和点M( 1,2)到A,B两点的距离之积.x2y2例2 经过点M(2,1)作直线l,交椭圆1于A,B两点.如果点M恰好为线段AB的中点,164求直线l的方程.练习1.设直线l经过点M0(1,5),倾斜角为3. (1)求直线l的参数方程;(2)求直线l和直线x y 0的交点到点M0的距离;(3)求直线l和圆x2 y2 16的两个交点到点M0的距离的和与积.2.已知经过点P(2,0),斜率为43的直线l和抛物线y2 2x相交于A,B两点,设线段AB的中点为M.求点M的坐标.3.经过点M(2,1)作直线l交双曲线x2 y2 1于A,B两点,如果点M 为线段AB的中点,求直线AB的方程.4.经过抛物线y2 2px(p 0)外的一点A( 2, 4)且倾斜角为45 的直线l与抛物线分别相交于M1,M2.如果|AM1|,|M1M2|,|AM2|成等比数列,求p的值.5.已知曲线C1:x 4 cost, x 8cos ,(t为参数),曲线C2: ( 为参数).y 3 sint.y 3sin .(1)化C1、C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t 2,Q为C2上的动点,求PQ中点M到直线x 3 2t,C3: (t为参数)距离的最小值.y 2 t.解:练习:1.直线l的方程为x 1 2t,(t为参数),则l上任一点到点(1,2)的距离是y 2 3t.A.tB.|t| Ct| Dt|x tsin20 3,2.直线(t为参数)的倾斜角是y tcos20.A.20B.70C.110D.160 x x0 tcos ,3.已知直线(t为参数)上的点A、B所对应的参数分别为t1、t2,点P分AB所y y0 tsin .成的比为,则点所对应的参数是A.t1 t2t tt t2t t1B.12C.1D.2 21 1 1x 2cos ,的位置关系是y 2sin .4.直线3x 4y 9 0与圆A.相交但直线不过圆心B.相交且直线过圆心C.相切D.相离 5.下列参数方程都表示过点M0(1,5),斜率为2的直线,其中有一个方程的参数的绝对值表示动点M和M0的距离,这个参数方程是x 1 x 1 t,A. B. y 5 2t. y 51, x 1 x 1 t,C. D. 2 y 5 . y 5 t. ,6.直线x 3 acos , x 2 bsin ,(a为参数)与直线(b是参数)的位置关系为Cy 2 asin .y 3 bcos .A.关于y轴对称B.关于原点对称C.关于直线y x对称D.互相垂直x 2 cos ,y7.曲线C的参数方程为(为参数,0 2 ),则的取值范围是x y sin .A.[B.( , )C.[8. 参数方程) D.( , x 2cos ,()所表示的曲线是22 y 2sin .x 29.直线y 3,(t为参数)上到点M(2,3)M下方的点的坐标.是 .10.点(1,5)与两直线x 1 t,(t是参数)及x y 0的交点的距离是 .y 511.两圆x 3 2cos , x 3cos ,(是参数)与(是参数)的位置关系是 .y 4 2sin .y 3sin .12.已知直线l经过点P(1,0),倾斜角为(1)写出直线l的参数方程;6.(2)设直线l与椭圆x2 4y2 4相交于两点A、B,求点P到A、B两点的距离之积. B.化一般参数方程x x0at,为标准参数方程y y bt.【巩固与应用】例将下列直线的一般参数方程化成标准参数方程形式: x 4 x 4 2t,(1) (t为参数) (2)y 3 t. y 3x 4结果(1)y 3(t 为参数) (2)x 4y 3,x x0 at,(t为参数) (3) (t为参数)y y bt.0 .,(t 2t为参数) .(3)令x x0 cos t, cos a,则于是(cos )2 (sin )2 2 a2 b2,取sin b.y y sin t 0则cos ,sin ,t ,x x0于是得直线的标准参数方程为(t 为参数).y y0x 4例求直线l1:y 3,(t为参数)与直线l2:x y 2 0的交点到定点(4,3)的距离 .题型三:参数方程【知识链接】x x0 at,中参数t具有几何意义的条件y y0 bt.【巩固与应用】1 x2 t, 2 x cos ,例4 求直线l:(t为参数)被曲线(为参数)所截得的弦长.y . y .编排本题意图:通过两种解法说明“非标准参数方程中,只要参数t系数平方和为1,则参数t就有几何意义”这个事实.y2解一:消参得直线与椭圆的普通方程分别为:y x2 1,联立消元,整理得3x2 x 0,于是两交点为A(0,,B(1,0),故|AB| 2.解二:椭圆的普通方程为:y2x2 1,将直线参数方程代入并整理得,t2 6t 8 0,解得t1 2或t2 4,故|AB| |t1 t2| |2 4| 2.3。

直线的标准参数方程

直线的标准参数方程

直线的标准参数方程直线是平面几何中最基本的几何元素之一,它具有许多重要的性质和特点。

在平面直角坐标系中,我们可以通过不同的方式来表示一条直线,其中标准参数方程是一种常用的表示方法。

本文将介绍直线的标准参数方程的定义、推导过程和应用示例,帮助读者更好地理解和运用这一概念。

一、标准参数方程的定义。

直线的标准参数方程是指通过参数方程形式来表示直线的方程。

设直线上一点的坐标为(x, y),直线的参数方程可表示为:x = x0 + at。

y = y0 + bt。

其中(x0, y0)为直线上一点的坐标,a和b为参数,t为参数变量。

二、标准参数方程的推导。

我们来推导一下直线的标准参数方程。

设直线上一点的坐标为(x1, y1),直线的方向向量为(a, b)。

则直线上任意一点的坐标可以表示为:(x, y) = (x1, y1) + t(a, b)。

展开得到:x = x1 + at。

y = y1 + bt。

这就是直线的标准参数方程。

三、标准参数方程的应用示例。

现在我们通过一个具体的示例来应用直线的标准参数方程。

假设有一条直线,过点A(1, 2),方向向量为(2, 3),求直线的标准参数方程。

解:直线的标准参数方程为:x = 1 + 2t。

y = 2 + 3t。

其中t为参数。

通过这个示例,我们可以看到直线的标准参数方程的具体应用过程。

四、总结。

通过本文的介绍,我们了解了直线的标准参数方程的定义、推导过程和应用示例。

直线的标准参数方程是一种常用的表示直线的方法,通过参数方程形式可以清晰地描述直线的性质和特点。

在实际问题中,我们可以通过标准参数方程来解决直线相关的计算和分析问题,具有重要的应用价值。

五、延伸阅读。

如果读者对直线的参数方程表示方法还有疑惑,可以继续深入学习相关知识,例如直线的对称式方程、一般式方程等。

同时,也可以结合具体的例题来加深对直线参数方程的理解和掌握。

六、参考资料。

1. 《高等数学》。

2. 《线性代数》。

直线的参数方程及弦长公式概要

直线的参数方程及弦长公式概要

直线的参数方程及弦长公式概要x=ty = kt + b其中,t为参数,可以取任意实数。

参数方程的优点在于可以很方便地表示直线上的每一个点的位置坐标,同时也可以方便地求出直线的弦长。

弦长是指直线上两个点之间的距离。

假设直线上两个点的位置坐标分别为(x1,y1)和(x2,y2),则直线的弦长公式为:L=√((x2-x1)²+(y2-y1)²)其中,L为弦长。

接下来,我们将详细讲解直线的参数方程和弦长公式。

1.直线的参数方程对于直线y = kx + b,我们可以给x赋予任意实数作为参数,然后利用斜率k和截距b来求出对应的y坐标。

这样,我们就可以表示直线上的每一个点的位置坐标。

例如,对于直线y=2x+3来说,可以通过参数方程表示为:x=ty=2t+3这里的t可以取任意实数,通过取不同的t值,我们就可以得到直线上的不同点的位置坐标。

2.弦长公式弦长是指直线上两个点之间的距离。

对于直线上的两个点(x1,y1)和(x2,y2),我们可以利用勾股定理求出两点之间的距离,并用弦长公式进行表示。

弦长公式为:L=√((x2-x1)²+(y2-y1)²)其中,L为弦长,也就是两个点之间的距离。

例如,对于直线上的两个点A(1,2)和B(5,6),可以利用弦长公式求出两点之间的距离:L_AB=√((5-1)²+(6-2)²)=√(4²+4²)=√(16+16)=√32因此,点A和点B之间的距离为√323.参数方程与弦长公式的关系参数方程和弦长公式是在不同应用场景下的数学工具,它们之间没有直接的关系。

参数方程用于表示直线上的每一个点的位置坐标,而弦长公式用于计算直线上两个点之间的距离。

然而,在一些情况下,参数方程可以为求解弦长提供便利。

例如,当直线的两个端点的位置坐标已知,并且通过参数方程可以表达出直线上的其他点的位置坐标时,我们可以利用参数方程求解弦长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档