《四边形》讲义

合集下载

八年级(下)数学 同步讲义 四边形的存在性

八年级(下)数学 同步讲义 四边形的存在性

四边形的存在性内容分析本节包含两部分,平行四边形的存在性及梯形的存在性,常见题型是存在菱形和正方形,根据题目中的条件及特殊的平行四边形的性质构造等量关系,求出相应的点的坐标;常见的梯形的问题中,经常需要添加辅助线,考察学生的分类讨论思想及逻辑思维能力.知识结构模块一平行四边形的存在性知识精讲平行四边形的问题是近几年来考试的热点,考察学生的分类讨论的思想.常见的题型是在平面直角坐标系中已知三点和第四点构成平行四边形,求第四点;或者已知两点,另外两点在某函数图像上,四点构成平行四边形;利用两点间的距离公式和平移的思想,结合题目中的条件构造等量关系进行求解即可.在几何中,平行四边形的判定方法有如下几条:①两组对边互相平行;②两组对边分别相等;③一组对边平行且相等;④对角线互相平分;⑤两组对角相等。

在压轴题中,往往与函数(坐标轴)结合在一起,运用到④⑤的情况较少,更多的是从边的平行、相等角度来得到平行四边形.- 2 -ABCM 1M 2M 31、 知识内容:已知三点后,其实已经固定了一个三角形(平行四边形的一半),如图ABC .第四个点M 则有3种取法,过3个顶点作对边的平行线且取相等长度即可(如图中3个M 点).2、 解题思路:(1) 根据题目条件,求出已知3个点的坐标; (2) 用一点及其对边两点的关系,求出一个可能点; (3) 更换顶点,求出所有可能的点;(4) 根据题目实际情况,验证所有可能点是否满足要求并作答.【例1】 如图所示,在梯形ABCD 中,AD ∥BC ,∠B =90°,AD =24 cm ,BC =26 cm ,动点P 从点A 出发沿AD 方向向点D 以1cm /s 的速度运动,动点Q 从点C 开始沿着CB 方向向点B 以3cm /s 的速度运动.点P 、Q 分别从点A 和点C 同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD 是平行四边形; (2)经过多长时间,四边形PQBA 是矩形.例题解析思路剖析【例2】 如图,在平面直角坐标系中,点A 的坐标为A (3, 0),点B 的坐标为B (0, 4).(1)求直线AB 的解析式;(2)点C 是线段AB 上一点,点O 为坐标原点,点D 在第二象限,且四边形BCOD 为菱形,求点D 坐标;(3)在(2)的条件下,点E 在x 轴上,点P 在直线AB 上,且以B 、D 、E 、P 为顶点 的四边形是平行四边形,请写出所有满足条件的点P 的坐标.【例3】 如图,在平面直角坐标系中,过点(2,3)的直线y =kx +2与x 轴交于点A ,与y 轴交于点B ,将此直线向下平移3个单位,所得到的直线l 与x 轴交于点C . (1)求直线l 的表达式;(2)点D 为该平面直角坐标系内的点,如果以点A 、B 、C 、D 为顶点的四边形是平行 四边形,求点D 的坐标.ABOxyAB Oxy【例4】如图,已知直线l1经过点A(-5,-6)且与直线l2:362y x=-+平行,直线l 2与x轴、y轴分别交于点B、C.(1)求直线l1的表达式及其与x轴的交点D的坐标;(2)判断四边形ABCD是什么四边形.并证明你的结论;(3)若点E是直线AB上一点,平面内存在一点F,使得四边形CBEF是正方形,求点E的坐标,请直接写出答案.【例5】直线364y x=-+与坐标轴分别交与点A、B两点,点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿O B A→→运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式.(3)当485S=时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.xOy- 4 -【例6】 已知:如图,四边形ABCD 是菱形,∠B 是锐角,AF ⊥BC 于点F , CH ⊥AD 于点H , 在AB 边上取点E ,使得AE =AH ,在CD 边上取点G ,使得CG =CF .联结EF 、FG 、GH 、HE .(1)求证:四边形EFGH 是矩形;(2)当∠B 为多少度时,四边形EFGH 是正方形.并证明.【例7】 如图所示,平面直角坐标系中,O 是坐标原点,正比例函数y =kx (x 为自变量)的图像与双曲线2y x=-交于点A ,且点A 的横坐标为2-.(1)求k 的值;(2)将直线y =kx (x 为自变量)向上平移4个单位得到直线BC ,直线BC 分别交x 轴、y 轴于B 、C ,如点D 在直线BC 上,在平面直角坐标系中求一点,使以O 、B 、D 、P 为顶点的四边形是菱形.ABC OxyABCDEFGH- 6 -【例8】 在直角△ABC 中,∠C =90°,∠A =30°,AB =4,将一个30°角的顶点P 放在AB边上滑动,保持30°角的一边平行于BC ,且交边AC 于点E ,30°的另一边交射线BC 于点D ,连ED .(1)如图,当四边形PBDE 为等腰梯形时,求AP 长;(2)四边形PBDE 有可能为平行四边形吗.若可能,求出PBDE 为平行四边形时,AP 的长,若不可能,说明理由;(3)若点D 在BC 边上(不与B 、C 重合),试写出线段AP 的取值范围.ABCDE P梯形的分类讨论题多见于各类压轴题中,由于这类题目都与图形的运动有关,需要学生有一定的想象力、分析力和运算力.梯形的主要特征是两底平行,特殊梯形又可分为等腰梯形和直角梯形两大类.常见题型为在直角坐标平面内已知三点求第四点,抓住梯形两底平行的特征,对应的一次函数的解析式的k 相等而b 不相等.若是等腰梯形,常需添设辅助线,过上底的两个顶点作下底的垂线,构造两个全等的直角三角形.若是直角梯形,则需连接对角线或过上底的一顶点作下底的高构造直角三角形.【例9】 在梯形ABCD 中,AD ∥BC ,AD =12cm ,DC =8cm ,且∠C =60°,动点P 以1cm/s的速度从点A 出发,沿AD 方向向点D 移动,同时,动点Q 以2cm /s 的速度从点C 出发,沿C 出发,沿CB 方向向点B 移动,连接PQ ,(1)得四边形ABQP 和四边形PQCD .若设移动的时间为t 秒(0<t <7),四边形PQCD 的面积为ycm ²,求y 与t 的函数关系式;(2)当t 为何值时,四边形QPCD 是等腰梯形.说明理由; (3)当t 为何值时,四边形PQCD 是直角梯形.模块二 梯形的存在性知识精讲例题解析QPBCDA- 8 -【例10】 如图,一次函数33y x b =+的图像与x 轴相交于点A (53,0)、与y 轴相交于点B . (1)求点B 的坐标及∠ABO 的度数;(2)如果点C 的坐标为(0,3),四边形ABCD 是直角梯形,求点D 的坐标【例11】 如图,在平行四边形ABCD 中,O 为对角线的交点,点G 为BC 的中点,点E 为线段BC 延长线上的一点,且CE =12BC ,过点E 作EF //CA ,交CD 于点F ,联结OF .(1)求证:OF //BC ;(2)如果四边形OBEF 是等腰梯形,判断四边形ABCD 的形状,并给出证明.【例12】 如图,在平面直角坐标系中,直线l 1经过O 、A (1,2)两点,将直线l 1向下平移6AB C OxyABCDEFGO个单位得到直线l 2,交x 轴于点C ,B 是直线l 2上一点,且四边形ABCO 是平行四边形.(1)求直线l 2的表达式及点B 的坐标;(2)若D 是平面直角坐标系内的一点,且以O 、A 、C 、D 四个点为顶点的四边形是等腰梯形,求点D 的坐标.【例13】 已知一次函数142y x =-+的图像与x 轴、y 轴分别相交于点A 、B ,梯形AOBC 的边AC =5.(1) 求点C 的坐标;(2) 如果点A 、C 在一次函数y =kx +b (k 、b 为常数,且k <0)的图像上,求这个一次 函数的解析式【例14】 如图1,在平面直角坐标系中,已知点A (0,2),点P 是x 轴上一动点,以线段APAOC xy为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.(1)求点B的坐标;(2)当点P在x轴上运动(P不与O重合)时,求证:∠ABQ=90°;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形.若存在,请求出点P 的坐标;若不存在,请说明理由.ABOPQ xyABO xy图1备用图- 10 -【例15】 在直角平面内,O 为原点,点A 的坐标为(1,0),点C 的坐标为(0,4),直线CM ∥x 轴(如图所示).点B 与点A 关于原点对称,直线y =x +b (b 为常数)经过点B ,且与直线CM 相交于点D ,连接OD . (1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若△POD 是等腰三角形,求点P 的坐标;(3)若动点P 在x 轴的正半轴上,以每秒2个单位长的速度向右运动;动点Q 在射线CM 上,且以每秒1个单位长的速度向右运动,若P 、Q 分别由O 点、C 点同时出发,问几秒后,以P 、Q 、O 、D 为顶点的四边形可以成为平行四边形;以P 、Q 、O 、D 为顶点的四边形是否可以成为等腰梯形.写出理由.1AO4CxMy- 12 -【习题1】 如图,在平面直角坐标系中,函数y =2x +12的图像分别交x 轴、y 轴于A 、B两点.过点A 的直线交y 轴正半轴于点C ,且点C 为线段OB 的中点. (1)求直线AC 的表达式;(2)如果四边形ACPB 是平行四边形,求点P 的坐标.【拓展】如果以A 、C 、P 、B 为顶点的四边形是平行四边形,求点P 的坐标.【习题2】 如图,在平面直角坐标系中,直线162y x =-+与y 轴交于点A ,与直线12y x =相交于点B ,点C 是线段OB 上的点,且△AOC 的面积为12. (1)求直线AC 的表达式;(2)设点P 为直线AC 上的一点,在平面内是否存在点Q ,使四边形OAPQ 为菱形, 若存在,求点Q 的坐标,若不存在,请说明理由.随堂检测ABCOxy ABO xy【习题3】 如图,已知在梯形ABCD 中,AD//BC ,∠B =90°,AD =24cm ,AB =8cm ,BC =26cm ,动点P 从A 点开始沿AD 边以1cm /s 的速度向D 运动,动点Q 从C 点开始沿CB 边以3 cm /s 的速度向B 运动,P 、Q 分别从A 、C 同时出发,当其中一点到端点时,另一点也随之停止运动.设运动时间为t 秒,当t 为何值时,线段PQ =CD .【作业1】 如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像相交于A 、B两点,点A 的坐标为(2,3),点B 的横坐标为6. (1)求反比例函数与一次函数的解析式;(2)如果点C 、D 分别在x 轴、y 轴上,四边形ABCD 是平行四边形,求直线CD 的表达式.课后作业ABCDQPAB CDABOxy【作业2】已知一条直线y=kx+b在y轴上的截距为2,它与x轴、y轴的交点分别为A、B,且△ABO的面积为4.(1)求点A的坐标;(2)若k<0,在直角坐标平面内有一点D,使四边形ABOD是一个梯形,且AD∥BO,其面积又等于20,试求点D的坐标.【作业3】定义[p,q]为一次函数y=px+q的特征数.(1)若特征数为[3,k-1]的一次函数为正比例函数,求k的值;(2)一次函数y=kx+b的图像与x轴交于点A(3-,0),与y轴交于点B,且与正比例函数43y x=的图像的交点为C (m,4).求过A、B两点的一次函数的特征数;(3)在(2)的条件下,若点D与A、O、C构成的四边形为平行四边形,直接..写出所有符合条件的点D的坐标.A BCO x y- 14 -【作业4】 如图所示,直线y =-2x +12,分别与x 轴、y 轴交于点A 、B ,点C 是线段AB 的中点,点D 在线段OC 上,点D 的纵坐标是4. (1) 求点C 的坐标和直线AD 的解析式;(2) P 是直线AD 上的点,请你找出一点Q ,使得以O 、A 、P 、Q 这四个点为顶点的 四边形是菱形,写出所有满足条件的Q 的坐标.BA Cyx。

北师大版九年级数学(上)《四边形》讲义

北师大版九年级数学(上)《四边形》讲义

1. 菱形的性质学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。

②通过学生间的交流、计论、分析、类比、归纳、运用已学过的知识总结菱形的特征。

教学重点:菱形的概念和菱形的性质,菱形的面积公式的推导。

教学难点:菱形的性质的理解及菱形性质的灵活运用。

学习过程: 活动一:1. 如何从一个平行四边形中剪出一个菱形来?的四边形叫做菱形,生活中的菱形有 。

2. 按探究步骤剪下一个四边形。

①所得四边形为什么一定是菱形?②菱形为什么是轴对称图形? 有 对称轴。

图中相等的线段有: 图中相等的角有:③你能从菱形的轴对称性中得到菱形所具有的特有的性质吗?活动二:对比菱形与平行四边形的对角线 菱形的对角线:平行四边的对角线:活动三:菱形性质的应用1.菱形的两条对角线的长分别是6cm 和8cm ,求菱形的周长和面积。

平行四边形菱形 ?2.如图,菱形花坛ABCD 的边长为20cm ,∠ABC=60°沿菱形的两条对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积。

随堂练习: 一、填空(1)菱形的两条对角线长分别是12cm ,16cm ,它的周长等于 ,面积等于 。

(2)菱形的一条边与它的两条对角线所夹的角比是3:2,菱形的四个内角是 。

(3)已知:菱形的周长是20cm ,两个相邻的角的度数比为1:2,则较短的对角线长是 。

(4)已知:菱形的周长是52 cm ,一条对角线长是24 cm ,则它的面积是 。

二、解答题已知:如图,在菱形ABCD 中,周长为8cm ,∠BAD=1200 对角线AC ,BD 交于点O ,求这个菱形的对角线长和面积。

菱形的性质作业1、菱形具有而一般平行四边形不具有的性质是( )A. 对角相等B. 对边相等C. 对角线互相垂直D. 对角线相等 2、 菱形的周长为100cm ,一条对角线长为14cm ,它的面积是( )A. 168cm 2B. 336cm 2C. 672cm 2D. 84cm 2 3、下列语句中,错误的是( )A. 菱形是轴对称图形,它有两条对称轴B. 菱形的两组对边可以通过平移而相互得到C. 菱形的两组对边可以通过旋转而相互得到D. 菱形的相邻两边可以通过旋转而相互得到4、菱形的两条对角线分别是6 cm ,8 cm ,则菱形的边长为_____,面积为______.5、四边形ABCD 是菱形,点O 是两条对角线的交点,已知AB =5, AO =4,求对角线BD 和菱形ABCD 的面积.A BC D O6、如图,在菱形ABCD中,∠ADC=120°,则BD:AC等于().(A)3:2 (B)3:3 (C)1:2 (D)3:17、菱形ABCD的周长为20cm,两条对角线的比为3∶4,求菱形的面积。

四边形讲义

四边形讲义

四边形(一)多边形1.多边形:一般地,由n 条线段首尾顺次相接组成的平面图形称为n 边形,又称为多边形。

2.对角线:联结多边形不相邻的两个顶点的线段叫做多边形的对角线。

3.正多边形:像正方形这样,各个角都相等,各条边都相等的多边形叫做正多边形。

4.定理: n 边形的内角和为_(n-2)180°,外角和为_360°.例:如果一个多边形的每个内角都相等,它的一个外角等于一个内角的三分之二,这个多变性是几边形? 解:设这个多边形的边数为n.有多边形的内角和与外角和定理,得出这个多边形的 一个内角=(n-2)*180°/n, 一个外角=360°/n.由已知,得360°/n=2/3*[(n-2)*180°]/n 解得n=5(二)平行四边形 1.概念平行四边形:两组对边分别平行的四边形叫做平行四边形。

矩形:有一个角是直角的平行四边形叫做矩形。

菱形:有一组邻边相等的平行四边形叫做菱形。

正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

正方形、矩形、菱形和平行四边形四者之间关系2.平行四边形、菱形、矩形、正方形的有关性质图形 边角对角线平行四边形 对边平行且相等 对角相等 对角线互相平分菱形 对边平行,四条边相等 对角相等两对角线互相垂直平分,每一条对角线平分一组对角矩形对边平行且相等四个角都是直角对角线互相平分且相等 正方形对边平行、四条边都相等四个角都是直角两条对角线互相平分、垂直、相等,每一条对角线平分一组对角对角线相等对角线互相垂直有一个角是直角 一组邻边相等平行四边形矩形菱形正方形2.判断一个四边形是正方形可以有以下几种思路:① 先判定四边形是菱形,再确定这个菱形有一个角是直角 ② 先判定四边形是矩形,再确定这个矩形有一组邻边相等③ 先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角,并且有一组邻边相等 ④ 判定一个四边形是对角线相等,并且互相垂直平分 8.特殊四边形的判定1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°. 2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°. 3.平行四边形的性质:因为ABCD 是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;( 4.平行四边形的判定: 是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫. A BCD 1234ABDOCABDOC5.矩形的性质:因为ABCD 是矩形⇒⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( 6. 矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形. 7.菱形的性质: 因为ABCD 是菱形⇒⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所( 8.菱形的判定:⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. 9.正方形的性质:因为ABCD 是正方形⇒⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所( A BCDO10.正方形的判定:⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.11.等腰梯形的性质:因为ABCD 是等腰梯形⇒⎪⎩⎪⎨⎧.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)(CDBAOCDBAOABCD OAD BCOADBCOCD AB12.等腰梯形的判定:⎪⎭⎪⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321⇒四边形ABCD 是等腰梯形14.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.15.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.7.三角形中位线定理三角形的中位线:联结三角形两边中点的线段,叫做三角形的中位线三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。

第二单元认识三角形和四边形(易错梳理)-四年级下册数学单元复习讲义北师大版

第二单元认识三角形和四边形(易错梳理)-四年级下册数学单元复习讲义北师大版

认识三角形和四边形知识盘点知识点1:图形的分类立体图形圆(由曲线围成) 平面图形 三角形(3条边) 三角形、四边形 平行四边形(由线段围成) 四边形(4条边) 长方形正方形知识点2:三角形的认识1、 直角三角形:三个角都是锐角的三角形是锐角三角形 按角分 锐角三角形:有一个角是直角的三角形是直角三角形 三角形分类 钝角三角形:有一个角是钝角的三角形是钝角三角形 等腰三角形:有两条边相等的三角形是等腰三角形按边分 等边三角形:三条边都相等的三角形是等边三角形任意三角形 2、三角形内角和及三边关系① 任意一个三角形内角和等于180度。

② 三角形任意两边之和大于第三边。

已知两条边的长度,那么第三边的长度要大于已知两边之差小于两边只差。

知识点3:四边形的认识由四条线段围成的封闭图形叫作四边形。

四边形中有两组对边分别平行的四边形是平行四边形。

只由一组对边平行的四边形是梯形。

长方形、正方形是特殊的平行四边形。

正方形是特殊的长方形。

⭐注意易错集合易错点1:四边形的概念典例 判断:由四条线段组成的图形就是四边形。

( ) 解析 误认为只要四条线段组成的图形就是四边形,忽略了四条线段需要首尾相连。

解答 ×✨针对练习1你能解释为什么吗?易错点2:三角形的分类典例 猜一猜被遮挡住的可能是什么三角形?解析 直角三角形和钝角三角形都有两个锐角,可以根据露出的这个角是直角或钝角来判断是直角三角形还是钝角三角形;当露出来的角是锐角时,则无法直接断定是什么三角形。

解答 直角三角形 钝角三角形 可能是锐角三角形或直角三角形或钝角三角形⭐点拨 由四条线段首位顺次连接组成的封闭图形叫作四边形。

⭐点拨 四边形具有不稳定性,三角形具有稳定性。

✨针对练习2将下面的三角形进行分类(填写序号)锐角三角形有( );直角三角形有( );钝角三角形有( ); 等腰三角形有( );等边三角形( )。

易错点3:三角形的内角和问题 典例 求出图中三角形未知角的度数。

四年级下册数学第二单元《认识三角形和四边形》期末备考讲义

四年级下册数学第二单元《认识三角形和四边形》期末备考讲义

北师大版四年级下册数学优选题单元复习讲义第二单元《认识三角形和四边形》1、按照不同的标准给已知图形进行分类①按平面图形和立体图形分;②按平面图形是否由线段围成来分的;③按图形的边数来分。

2、平行四边形和三角形的性质:三角形具有稳定性,平行四边形具有易变形(不稳定性)的特点。

3、把三角形按照不同的标准分类,并说明分类依据;①按角分,分为:直角三角形、锐角三角形、钝角三角形其本质特征:三个角都是锐角的三角形是锐角三角形;有一个角是直角的三角形是直角三角形;有一个角是钝角的三角形是钝角三角形。

②按边分,分为:等腰三角形、等边三角形、任意三角形。

有两条边相等的三角形是等腰三角形;三条边都相等的三角形是等边三角形。

(等边三角形是特殊的等腰三角形)4、三角形内角和、三角形边的关系① 任意一个三角形内角和等于180度。

② 三角形任意两边之和大于第三边。

已知两条边的长度,那么第三边的长度要大于已知两边之差小于两边只差。

③ 能应用三角形内角和的性质和三角形边的关系解决一些简单的问题。

④ 四边形的内角和是360°⑤ 用2个相同的三角形可以拼成一个平行四边形。

⑥ 用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。

⑦ 用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。

一个大的等腰的直角的三角形。

5、四边形的分类① 由四条线段围成的封闭图形叫作四边形。

四边形中有两组对边分别平行的四边形是平行四边形,只由一组对边平行的四边形是梯形。

② 长方形、正方形是特殊的平行四边形。

正方形是特殊的长方形。

③ 正方形、长方形、等腰梯形、菱形、等腰三角形、等边三角形、圆形是轴对称图形。

a 正方形有4条对称轴。

b 长方形有2条对称轴。

菱形有2条对称轴。

c 等腰梯形有1条对称轴。

d 等边三角形有3条对称轴。

e 圆有无数条对称轴。

1.下面说法错误的是()。

A. 正方形相邻的两条边互相垂直B. 平行四边形不容易变形C. 长方形是特殊的平行四边形D. 只有一组对边平行的四边形叫做梯形【答案】B【解析】【解答】解:平行四边形容易变形。

四边形证明(讲义及答案)

四边形证明(讲义及答案)

四边形证明(讲义)➢课前预习1. 我们在做几何证明题时,如果已知条件中有某个特殊的四边形,往往从其性质着手考虑.而如果要证明某个四边形是特殊的四边形,则需要考虑其判定方法.例如:在四边形ABCD 中,若AB=CD,要证明四边形ABCD 是平行四边形,我们考虑判定方法:对边平行且相等的四边形是平行四边形或两组对边分别相等的四边形是平行四边形.2. 请结合下列情景,将你认为可能用到的判定方法填入相应的横线上:①要证明□ABCD 是菱形,若条件与边有关,我们可以考虑:;若条件与对角线有关,我们可以考虑:.②要证明四边形ABCD 是矩形,若条件与角有关,我们可以考虑:或;若条件与对角线有关,我们可以考虑:.➢知识点睛1➢精讲精练1.如图,在□ABCD 中,BE∥DF,且分别交对角线AC 于点E,F,连接DE,BF.求证:∠1=∠2.2.如图,AE∥BF,AC 平分∠BAD,且交BF 于点C,BD 平分∠ABC,且交AE 于点D,连接CD.求证:四边形ABCD 是菱形.3.如图,在四边形ABCD 中,AD∥BC,∠B=90°.AG∥CD,交BC 于点G,E,F 分别为AG,CD 的中点,连接DE,FG,DG.(1)求证:四边形DEGF 是平行四边形;(2)当点G 是BC 的中点时,求证:四边形ABGD 是矩形;4.如图,在△ABC 中,AB=AC,AD 是△ABC 的角平分线,O为AB 的中点,连接DO 并延长至点E,使OE=DO,连接AE,BE.(1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形?请说明理由.5.如图,在△ABC 中,∠ACB=90°,BC 的垂直平分线DE 交BC于点D,交AB 于点E,点 F 在DE 上,且AF=CE=AE.(1)求证:四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF 是菱形?请说明理由.6.如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F,连接CF.若AB⊥AC,试判断四边形ADCF 的形状,并证明你的结论.7.如图,在正方形ABCD 中,点E,F 分别在BC,CD 边上,且AE=AF.(1)求证:BE=DF;(2)连接AC,交EF 于点O,延长OC 至点M,使OM=OA,连接EM,FM,则四边形AEMF 是什么特殊四边形?请证明你的结论.【参考答案】➢课前预习2. ①有一组邻边相等的平行四边形是菱形对角线互相垂直平分的四边形是菱形②有三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形对角线相等且互相平分的四边形是矩形➢知识点睛➢精讲精练1.证明略提示:先证△ADF≌△CBE,得到DF=BE,从而可得四边形BEDF 是平行四边形;由平行四边形对边平行可得DE∥BF,两直线平行,内错角相等即证得∠1=∠22.证明略提示:角平分线+平行出等腰;先证明AD=AB=BC,再借助一组对边平行且相等的四边形是平行四边形得到四边形ABCD 是平行四边形;结合AD=AB,一组邻边相等的平行四边形是菱形,得到四边形ABCD 是菱形.3.(1)证明略提示:先证四边形AGCD 是平行四边形,得到AG=CD,进而可得EG=DF,则四边形DEGF 是平行四边形(2)证明略提示:先证明四边形ABGD 是平行四边形,再结合∠B=90°,进而可得四边形ABGD 是矩形4.(1)证明略提示:由OE=DO,AO=BO 得,四边形AEBD 是平行四边形,又因为AB=AC,AD 是△ABC 的角平分线,所以AD⊥BC,进而得证(2)当△ABC 是等腰直角三角形,即∠BAC=90°时,矩形AEBD 是正方形,理由略5.(1)证明略提示:先证AC∥EF,∠EAC=∠AEF,又AF=CE=AE,则∠EAF=∠AEC,AF∥CE(2)当∠B=30°时,四边形ACEF 是菱形,理由略6.四边形ADCF 是菱形,证明略7.(1)证明略提示:证明△ABE≌△ADF(2)四边形AEMF 是菱形,证明略。

第十八章四边形章节复习辅导讲义

第十八章四边形章节复习辅导讲义

第十八章、四边形章节复习辅导讲义一、四边形知识框架: 1.四边形的知识结构 2.平行四边形的知识结构 二、四边形1. 定义:有不在同一直线上的四条首尾依次连接的线段构成的封闭图形。

2. 四边形的表示:四边形一般由依次的四个大写的字母表示,如四边形ABCD 等。

3. 四边形的分类:(1) 按照四边形的凹凸性将四边形分为凸四边形和凹四边形。

注意:中学阶段学习的四边形都是凸四边形。

(2) 按照四边形对边的平行性将四边形分为: ① 一般四边形:任何对边都不平行的四边形。

② 梯形:只有一组对边平行的四边形; A. 梯形分类: a .一般的梯形b .等腰梯形:一组对边平行,另一组对边相等的四边形。

c. 直角梯形:有一个内角为直角的梯形。

(3) 平行四边形:两组对边分别平行的四边形。

① 平行四边形的分类: A. 一般的平行四边形 B. 矩形(长方形):有一个较为直角的平行四边形。

C. 菱形:邻边相等的平行四边形。

D. 正方形:四条边都相等,四个内角也相等的四边形。

4. 四边形的内角和与外角和: (1) 四边形的内角和为360度 (2) 四边形的外角和为360度。

5. 四边形的性质:依次连接四边形各边中点所得的四边形称为中点四边形。

不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形【基础练习】1. 顺次连接一个任意四边形四边的中点,得到一个_______四边形. 2.顺次连接对角线相等的四边形的各边中点,所得四边形是_________.3. 如图1,已知:在ABCD 中,AB=4cm ,AD=7cm ,∠ABC 的平分线交AD•于点E ,交CD 的延长线于点F ,则DF=______cm .4. 如图,四边形ABCD 为正方形,△ADE 为等边三角形,AC 为正方形ABCD 的对角线,则∠EAC =___度.5. 四边形ABCD 的对角线AC BD ,的长分别为m n ,,可以证明当AC BD ⊥时(如图1),四边形ABCD 的面积12S mn =,那么当AC BD ,所夹的锐角为θ时(如图2),四边形ABCD 的面积S = .(用含m n θ,,的式子表示)1250°1 2A BC DB F C6.在如图所示的四边形中,若去掉一个50的角得到一个五边形,则12+=∠∠ 度.7.如图,已知AC 平分BAD ∠,12∠=∠,3AB DC ==, 则BC = . 8.已知四边形ABCD 中,90A B C ∠=∠=∠=︒,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是____________.三、平行四边形(一) 平行四边形:1. 定义:两组对边分别平行的四边形。

四边形证明(讲义及答案)

四边形证明(讲义及答案)

四边形证明(讲义)知识点睛菱形精讲精练1.如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:四边形ABCD是菱形.OA EB C FD2.如图,在四边形ABCD中,AD∥BC,∠B=90°.AG∥CD,交BC于点G,E,F分别为AG,CD的中点,连接DE,FG,DG.(1)求证:四边形DEGF是平行四边形;(2)当点G是BC的中点时,求证:四边形ABGD是矩形.3.如图,在△ABC中,AB=AC,AD是∠BAC的平分线,O为AB的中点,连接DO并延长至点E,使OE=DO,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形?请说明理由.O ED C BAA DFEB G C4. 如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于点D ,交AB 于点E ,点F 在DE 上,且AF =CE =AE .(1)求证:四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF 是菱形?请说明理由.FED CBA5. 如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.FEDCB6. 如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 边上,且AE =AF .(1)求证:BE =DF ;(2)连接AC ,交EF 于点O ,延长OC 至点M ,使OM =OA ,连接EM ,FM ,则四边形AEMF 是什么特殊四边形?请证明你的结论.MOFED C B A7. 如图,在△ABC 中,O 是AC 边上的一动点(不与点A ,C 重合),过点O 作直线MN ∥BC ,直线MN 与∠BCA 的平分线相交于点E ,与∠DCA (△ABC 的外角)的平分线相交于点F . (1)当点O 运动到何处时,四边形AECF 是矩形?请证明你的结论.(2)在(1)的条件下,∠ACB 的大小为多少时,四边形AECF 为正方形(不要求说明理由)?ABCDE F NMOABC D四边形证明(习题)巩固练习1. 如图,在四边形ABCD 中,AD ∥BC ,点E ,F 在边BC 上,且AB ∥DE ,AF ∥DC ,四边形AEFD 是平行四边形. (1)AD 与BC 有何等量关系?请说明理由.(2)当AB =DC 时,求证:平行四边形AEFD 是矩形.2. 如图,在矩形ABCD 中,O 是对角线AC ,BD 的交点,过点O 的直线分别交AB ,CD 的延长线于点E ,F .(1)求证:△BOE ≌△DOF ;(2)当EF 与AC 满足什么关系时,以A ,E ,C ,F 为顶点的四边形是菱形?证明你的结论.F DC OEB AFE DCBA3. 如图,在△ABC 中,D 是AB 的中点.E 是CD 的中点,过点C 作CF ∥AB ,交AE 的延长线于点F ,连接BF . (1)求证:DB =CF ;(2)若AC =BC ,试判断四边形CDBF 的形状,并证明你的结论.4. 如图,在矩形ABCD 中,M ,N 分别是AD ,BC 的中点,P ,Q 分别是BM ,DN 的中点.(1)求证:△MBA ≌△NDC ;(2)四边形MPNQ 是什么样的特殊四边形?请说明理由.5. 如图,在△ABC 中,O 是AC 边上的一动点,过点O 作直线MN ∥BC ,直线MN 与∠ACB 的平分线相交于点E ,与∠DCA(△ABC 的外角)的平分线相交于点F . (1)求证:OE =OF ;(2)若CE =12,CF =5,求OC 的长;(3)当点O 运动到何处时,四边形AECF 是矩形?请证明你的结论.FE DC BAQPN MBCDAA B C D E F N M O AB C D。

平行四边形的判定--讲义

平行四边形的判定--讲义

平行四边形的判定主讲教师:傲德重难点易错点辨析题一:如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是( ) A.AD=BC B.OA=OCC.AB=CD D.∠ABC+∠BCD=180°B考点:平行四边形的判定金题精讲题一:在四边形ABCD中,AC与BD相交于点O,要使四边形ABCD是平行四边形应符合下列条件中的( ) A.AB∥CD,BC=AD B.AB=CD,OA=OCC.AB∥CD,OA=OC D.AB=CD,AC=BD考点:平行四边形的判定[:题二:已知,平面直角坐标系内有A、B、C三点,坐标分别为A(2,2),B(3,0),C(1,0),若四边形ABCD 为平行四边形,则点D的坐标是.[:考点:平行四边形的判定题三:如图,四边形ABCD中,AD=BC,AE⊥BD,CF⊥BD,垂足为E、F,AE=CF,求证:四边形ABCD是平行四边形.B C考点:平行四边形的判定题四:如图,平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.考点:平行四边形的判定思维拓展题一:如图所示,△ABC是边长为4cm的等边三角形,P是△ABC内的任意一点,过点P作EF∥AB分别交AC、BC于点E、F,作GH∥BC分别交AB、AC于点G、H,作MN∥AC分别交AB、BC于点M、N.试求EF+GH+MN的值.BF N考点:平行四边形的判定[:[:数理化][:平行四边形的判定讲义参考答案重难点易错点辨析题一:C.金题精讲题一:C.题二:(6,2)、(2,2)、(0,2).题三:略.题四:略.思维拓展题一:8.。

2021北京中考四边形的中等题讲义

2021北京中考四边形的中等题讲义

于点 M,连接 BD 并延长到 E ,使 DE BD ,作 EF AB ,交 BA 的延长线于点 F .
(1)求 MB 的长;(2)求 AF 的长.
2.(2020 海淀一模)如图,在□
中,∠
连接 .
(1)求证:△ 是等边三角形;
(2)若∠ = 45°, = 2,求 的长度
= 60°, ∠
的平分线交 于点 ,交 的延长线于点 ,
是正方形.
第 5 页 共 39 页
一对一辅导
所有正确结论的序号是
.
3.(2020 海淀一模)如果四边形有一组对边平行,且另一组对边不平行,那么称这样的四边形为梯形,若
梯形中有一个角是直角,则称其为直角梯形.
下面四个结论中,
①存在无数个直角梯形,其四个顶点分别在同一个正方形的四条边上;
②存在无数个直角梯形,其四个顶点在同一条抛物线上;
一对一辅导
6.(2020 西城一模)如图,在□ABCD 中,对角线 AC,BD 交于点 O,OA=OB,过点 B 作 BE⊥AC 于点 E. (1)求证:□ABCD 是矩形; (2)若 AD 2 5 , cos ABE 2 5 , 求 AC 的长.
5
7.(2020 丰台一模)如图,在□ABCD 中,AC,BD 交于点 O,且 AO=BO. (1)求证:四边形 ABCD 是矩形; (2)∠ADB 的角平分线 DE 交 AB 于点 E,当 AD=3,tan∠CAB= 3 时,求 AE 的长.
多边形的外角和定理:任意多边形的外角和等于 360°。 6、多边形的对角线条数的计算公式设多边形的边数为 n,则多边形的对角线条数为 n(n -3)➗2 7、平行四边形的性质 (1)平行四边形的邻角互补,对角相等。 (2)平行四边形的对边平行且相等。 推论:夹在两条平行线间的平行线段相等。 (3)平行四边形的对角线互相平分。 8、平行四边形的判定 (1)定义:两组对边分别平行的四边形是平行四边形 (2)定理 1:两组对角分别相等的四边形是平行四边形 (3)定理 2:两组对边分别相等的四边形是平行四边形 (4)定理 3:对角线互相平分的四边形是平行四边形 定理 4:一组对边平行且相等的四边形是平行四边形 9 矩形的概念:有一个角是直角的平行四边形叫做矩形。 10 矩形的性质: (1)具有平行四边形的一切性质; (2)矩形的四个角都是直角; (3)矩形的对角线相等; (4)矩形是轴对称图形。 11 矩形的判定 (1)定义:有一个角是直角的平行四边形是矩形

平行四边形的性质和判定讲义(教师版)

平行四边形的性质和判定讲义(教师版)

平行四边形的性质和判定【知识梳理】一、什么是平行四边形?两组对边分别平行的四边形就是平行四边形.如图四边形ABCD ,AB CD AD BC ∥,∥,四边形ABCD 就是平行四边形二、平行四边形的性质:平行四边形的的边:平行四边形的对边平行且对边相等平行四边形的角:平行四边形的对角相等,邻角互补.平行四边形的对角线:平行四边形的对角线互相平分平行四边形的对称性平行四边形是中心对称图形平行四边形的周长与面积周长:邻边之和的2倍面积:底乘高(常利用面积相等来求线段的长)三、平行四边形的判定判定一:两组对边分别平行的四边形是平行四边形判定二:两组对边分别相等的四边形是平行四边形判定三:一组对边平行且相等的四边形是平行四边形判定四:两组对角分别相等的四边形是平行四边形判定五:对角线互相平分的四边形是平行四边形四、三角形中位线性质:三角形的中位线平行且等于第三边长的一半判定:点E 是三角形ABC △的中点,且DE BC ∥,则点D 为AB 中点【诊断自测】1.下列说法错误的是()A .对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形2.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件(写一个即可),使四边形ABCD是平行四边形.3.四边形ABCD中,AB=7cm,BC=5cm,CD=7cm,当AD=cm时,四边形ABCD 是平行四边形.4.如图所示,DE∥BC,DF∥AC,EF∥AB,图中共有个平行四边形.【考点突破】类型一:平行四边形的性质例1、如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A.13B.17C.20D.26答案:B解析:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=6,BC=AD=8,∴△OBC的周长=OB+OC+AD=3+6+8=17.故选:B.例2、如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为.答案:50°.解析:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案是:50°.例3、如图,▱ABCD中,AC=8,BD=6,AD=a,则a的取值范围是.答案:1<a<7.解析:如图所示:∵四边形ABCD是平行四边形,∴OA=AC=4,OD=BD=3,在△AOD中,由三角形的三边关系得:4﹣3<AD<4+3.即1<a<7;故答案为:1<a<7.例4、如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.答案:见解析解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.类型二:平行四边形的判定例5、如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A 出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为()A.4s B.3s C.2s D.1s答案:B解析:设运动时间为t秒,则CP=12﹣3t,BQ=t,根据题意得到12﹣3t=t,解得:t=3,故选B.例6、四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①∠ABC=∠ADC,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC,其中一定能判定这个四边形是平行四边形的条件有()A.4组B.3组C.2组D.1组答案:B解析:如图,①∵AD∥BC,∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形;②∵AB=CD,AD=BC,∴四边形ABCD是平行四边形;③∵AO=CO,BO=DO,∴四边形ABCD是平行四边形;④∵AB∥CD,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.∴其中一定能判定这个四边形是平行四边形的条件有3组.故选B.例7、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.答案:见解析解析:证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.例8、如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.答案:见解析解析:证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.类型三:平行四边形的性质和判定例9、如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.答案:见解析解析:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.例10、如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.(1)求证:四边形CMAN是平行四边形.(2)已知DE=4,FN=3,求BN的长.答案:见解析解析:(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵AM⊥BD,CN⊥BD,∴AM∥CN,∴CM∥AN,AM∥CN,∴四边形AMCN是平行四边形.(2)∵四边形AMCN是平行四边形,∴CM=AN,∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴DM=BN,∠MDE=∠NBF,在△MDE和△NBF中,,∴△MDE≌△NBF,∴ME=NF=3,在Rt△DME中,∵∠DEM=90°,DE=4,ME=3,∴DM===5,∴BN=DM=5.例11、如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.答案:见解析解析:证明:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.类型三:中位线定理例12、如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE答案:B解析:∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵,∴△ADE≌△CFE(AAS),∴DE=FE.故选B.例13、如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).答案:见解析解析:证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,∴∠G=∠ACG,∴AG=AC,∵BM=CM.EM∥CG,∴BE=EG,∴BE=BG=(BA+AG)=(AB+AC).【易错精选】1.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°2.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.63.已知:A(﹣2,1),B(﹣3,﹣1),C(0,﹣1).点D在坐标平面内,且以A、B、C、D四个点构成的四边形是平行四边形,则这样的D点有个.4.如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当=时,四边形ADFE是平行四边形.【精华提炼】一、平行四边形的性质:平行四边形的的边:平行四边形的对边平行且对边相等平行四边形的角:平行四边形的对角相等,邻角互补.平行四边形的对角线:平行四边形的对角线互相平分平行四边形是中心对称图形二、平行四边形的判定判定一:两组对边分别平行的四边形是平行四边形判定二:两组对边分别相等的四边形是平行四边形判定三:一组对边平行且相等的四边形是平行四边形判定四:两组对角分别相等的四边形是平行四边形判定五:对角线互相平分的四边形是平行四边形【本节训练】训练【1】如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC ⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm训练【2】已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A.OE=DCB.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE训练【3】如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC 为对角线的平行四边形ADCE中,DE的最小值是.训练【4】在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.基础巩固一.填空题1.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE 的面积为cm2.2.如图,在△ABC中,点D、E、F分别是AB、BC、CA的中点,若△ABC的周长为10cm,则△DEF的周长是cm.3.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是.4.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.5.如图,EF为△ABC的中位线,△AEF的周长为6cm,则△ABC的周长为cm.二、选择题1.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()A.5B.7C.9D.112.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm3.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30B.36C.54D.724.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE 的长为1100m,则隧道AB的长度为()A.3300m B.2200m C.1100m D.550m5.如图,在▱ABCD中,AB=3,AD=5,AM平分∠BAD,交BC于点M,点E,F分别是AB,CD的中点,DM与EF交于点N,则NF的长等于()A.0.5B.1C.D.2三、简答题1.如图,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=2DE,连接CF.判断四边形BCFE的形状,并证明.2.在△ABC中,点M是边BC的中点,AD平分∠BAC,BD⊥AD,BD的延长线交AC于点E,AB=12,AC=20.(1)求证:BD=DE;(2)求DM的长.巅峰突破1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为.2.如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.3.如图,在平行四边形ABCD中,AD=2AB,AH⊥CD于H,M为AD的中点,MN ∥AB,连接NH,如果∠D=68°,则∠CHN=.4.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动到C点返回,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形;(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?(3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.5.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.参考答案【诊断自测】1、D解:A、两条对角线互相平分的四边形是平行四边形,故本选项说法正确;B、两组对边分别相等的四边形是平行四边形,故本选项说法正确;C、一组对边平行且相等的四边形是平行四边形,故本选项说法正确;D、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如:等腰梯形,故本选项说法错误;故选:D.2、解:可以添加:AD∥BC(答案不唯一).3、5.解:当AD=5cm时,四边形ABCD是平行四边形,∵AB=7cm,BC=5cm,CD=7cm,AD=5cm,∴四边形ABCD是平行四边形,故答案为:5.4、3个.解:由两组对边分别平行的四边形是平行四边形,可得图中的平行四边形有▱ADFE、▱BFED、▱CFDE三个.故答案为:3个【易错精选】1、C解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.2、C解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵CF平分∠BCD,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故选:C.3、3解:如图,D点共有3个,故答案为:3.4、.解:当=时,四边形ADFE是平行四边形.理由:∵=,∴∠CAB=30°,∵△ABE为等边三角形,EF⊥AB,∴EF为∠BEA的平分线,∠AEB=60°,AE=AB,∴∠FEA=30°,又∠BAC=30°,∴∠FEA=∠BAC,在△ABC和△EAF中,,∴△ABC≌△EAF(AAS);∵∠BAC=30°,∠DAC=60°,∴∠DAB=90°,即DA⊥AB,∵EF⊥AB,∴AD∥EF,∵△ABC≌△EAF,∴EF=AC=AD,∴四边形ADFE是平行四边形.故答案为:.【本节训练】1、B解:∵▱ABCD的周长为26cm,∴AB+AD=13cm,OB=OD,∵△AOD的周长比△AOB的周长多3cm,∴(OA+OD+AD)﹣(OA+OB+AB)=AD﹣AB=3cm,∴AB=5cm,AD=8cm.∴BC=AD=8cm.∵AC⊥AB,E是BC中点,∴AE=BC=4cm;故选:B.2、D解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB∥DC,又∵点E是BC的中点,∴OE是△BCD的中位线,∴OE=DC,OE∥DC,∴OE∥AB,∴∠BOE=∠OBA,∴选项A、B、C正确;∵OB≠OC,∴∠OBE≠∠OCE,∴选项D错误;故选:D.3、4解:∵四边形ADCE是平行四边形,∴BC∥AE,∴当DE⊥BC时,DE最短,此时∵∠B=90°,∴AB⊥BC,∴DE∥AB,∴四边形ABDE是平行四边形,∵∠B=90°,∴四边形ABDE是矩形,∴DE=AB=4,∴DE的最小值为4.故答案为4.4、2解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.基础巩固一、填空题1、解:∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12﹣3=9cm2,故答案为:9.2、解:∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.3、解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=3,∴CE==2,∴AB=,故答案为:.4、解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=()2=,故答案为.5、解:∵EF为△ABC的中位线,△AEF的周长为6cm,∴BC=2EF,AB=2AE,AC=2AF,∴BC+AB+AC=2(EF+AE+AF)=12(cm).故答案为:12.二、选择题1、解:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7.故选B.2、解:∵▱ABCD的周长为26cm,∴AB+AD=13cm,OB=OD,∵△AOD的周长比△AOB的周长多3cm,∴(OA+OD+AD)﹣(OA+OB+AB)=AD﹣AB=3cm,∴AB=5cm,AD=8cm.∴BC=AD=8cm.∵AC⊥AB,E是BC中点,∴AE=BC=4cm;故选:B.3、解:作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=BC=AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF==,∴S▱ABCD=BC•FD=10×=72.故选D.4、解:∵D,E为AC和BC的中点,∴AB=2DE=2200m,故选:B.5、解:过点M作MG∥AB交AD于点G,∵AD∥BC,AB∥MG,∴四边形ABMG是平行四边形,∴∠AGM=∠ABM.∵AM平分∠BAD,∴∠GAM=∠MAB,∴∠AMB=∠AMG.在△AGM与△ABM中,,∴△AGM≌△ABM,∴AB=AG=3,∴四边形ABMG是菱形,∴MC=5﹣3=2.∵EF∥BC,点E,F分别是AB,CD的中点,∴NF是△DCM的中位线,∴NF=MC=1.故选B.三、简答题1、证明:连接DE,FG,∵BD、CE是△ABC的中线,∴D,E是AB,AC边中点,∴DE∥BC,DE=BC,同理:FG∥BC,FG=BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.2、(1)证明:∵AD平分∠BAC ∴∠BAD=∠DAE∵AD⊥BD∴∠ADB=∠ADE=90°在△ADB与△ADE中∴△ADB≌△ADE∴BD=DE(2)∵△ADB≌△ADE∴AE=AB=12∴EC=AC﹣AE=8∵M是BC的中点,BD=DEDM=EC=4巅峰突破1、解:第①是1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.2.解:∵BD=AD,BE=EC,∴DE=AC=4cm,DE∥AC,∵CF=FA,CE=BE,∴EF=AB=3cm,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=14cm.故答案为14.3.解:连接MH,∵AH⊥CD于H,M为AD的中点,∴MH=AD=DM,∴∠D=∠MHD=68°,∵MN∥AB,∴∠NMH=∠MHD=68°,又∵MN=AB=AD,∴MN=MH,∴∠MHN=(180°﹣68°)÷2=56°,∴∠CHN=180°﹣∠DHM﹣∠MHN=56°.故答案为:56°4.解:(1)∵四边形PQDC是平行四边形∴DQ=CP当P从B运动到C时,∵DQ=AD﹣AQ=16﹣t,CP=21﹣2t∴16﹣t=21﹣2t解得t=5当P从C运动到B时,∵DQ=AD﹣AQ=16﹣t,CP=2t﹣21∴16﹣t=2t﹣21,解得t=,∴当t=5或秒时,四边形PQDC是平行四边形;(2)若点P、Q分别沿AD、BC运动时,即解得t=9(秒)若点P返回时,CP=2(t﹣),则解得t=15(秒).故当t=9或15秒时,以C ,D ,Q ,P 为顶点的梯形面积等60cm 2;(3)当PQ=PD 时作PH ⊥AD 于H ,则HQ=HD∵QH=HD=QD=(16﹣t )由AH=BP 得解得秒;当PQ=QD 时QH=AH ﹣AQ=BP ﹣AQ=2t ﹣t=t ,QD=16﹣t ,∵QD 2=PQ 2=t 2+122∴(16﹣t )2=122+t 2解得(秒);当QD=PD 时DH=AD ﹣AH=AD ﹣BP=16﹣2t ,∵QD 2=PD 2=PH 2+HD 2=122+(16﹣2t )2∴(16﹣t )2=122+(16﹣2t )2即3t 2﹣32t+144=0∵△<0,∴方程无实根,当点P 从C 向B 运动时,观察图象可知,只有PQ=PD ,由题意:2t ﹣26=(16﹣t ),t=.综上可知,当秒或秒或秒时,△PQD是等腰三角形.5.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.第31/31页。

平行四边形的性质及判定(四边形)讲义

平行四边形的性质及判定(四边形)讲义

EOABD C平行四边形的性质及判定一、知识提要1.定义有两组对边分别平行的四边形叫做平行四边形.平行四边形用“□”表示,平行四边形ABCD记作□ABCD.2.平行四边形的性质:对边相等,对角相等,对角线互相平分.3.三角形的中位线平行于三角形的第三边,且等于第三边的一半.4.两条平行线间的任何两条平行线段都是相等的,其中,两条平行线间最短的线段长度叫做平行线间的距离.5.平行四边形的判定:共5个①两组对边分别平行的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.二、精讲精练1.(2011广东)已知□ABCD的周长为32,AB=4,则BC=()A. 4B. 12C. 24D. 282.在平行四边形中,四个角之比可以成立的是( )A.1:2:3:4 B.2:2:3:3 C.2:3:3:2 D.2:3:2:33.(2011江苏)在四边形ABCD中,AB∥CD,AD∥BC,AC、BD相交于点O.若AC=6,则线段AO的长度等于________.4.(2011山东)如图,在□ABCD中,AC,BD相交于点O,点E是AB的中点,3OE cm,则AD的长是__cm.5.(2011湖南)如图所示,在□ABCD中,对角线AC、BD相交于点O,且AB≠AD,则下列式子不.正确..的是( )A.AC⊥BD B.AB=CDC.BO=OD D.∠BAD=∠BCD6.在平行四边形ABCD中,∠B-∠A=20°,则∠D的度数是_______.7.平行四边形的两邻边分别为3,4,那么其对角线必( )A.大于1 B.大于1且小于7C.小于7 D.大于7或小于1A DCOB8. 以长为5cm, 4cm, 7cm 的三条线段中的的两条为边,另一条为对角线画平行四边形,可以画出形状不同的平行四边形的个数是 ( ) A. 1 B. 2 C. 3 D. 49. 已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______.10. 在□ABCD 中,AB =3,BC =5,∠B 的平分线AE 交AD 于点E ,则DE 的长为__________.11. 在平面内和直线l 距离为8 cm 的直线有______条. 12. 平行四边形的一组对角的平分线( )A .一定相互平行B .一定相交C .可能平行也可能相交D .平行或共线13. (2011湖南)如图.下列四组条件中.不能..判定四边形ABCD 是平行四边形的是( )A .AB =DC , AD =BCB .AB ∥DC ,AD ∥BC C .AB ∥DC ,AD =BCD .AB ∥DC ,AB =DC14. 如图,平行四边形ABCD 中,AE =CG , DH =BF ,连结E ,F ,G ,H ,E ,则四边形EFGH 是_____.15. 如图,平行四边形ABCD 中,E ,F 是对角线AC 上的两点,且AE =CF ,则四边形BEDF 是___________.16. 如图,平行四边形ABCD 中,E ,F 分别为边BC ,AD 的中点,则图中共有平行四边形的个数是( ) A . 3 B . 4 C . 5 D . 617. (2011天津)如图,点D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,连接DE 、EF 、FD .则图中平行四边形的个数为__________.18. 已知四边形ABCD ,有以下四个条件,①AB ∥CD ;②AB =CD ;③BC ∥AD ;④BC =AD .从这四个条件中,任选两个,能使四边形ABCD 成为平行四边形的选法共有( ) A .3 B .4 C .5 D .6FEDCBA DCBAHGA BCDEFF EDCBA FA BCDEABECFD 19. 如图,在△ABC 中,∠ACB =90°,点E 为AB 中点,连结CE ,过点E 作ED ⊥BC 于点D ,在DE 的延长线上取一点F ,使AF =CE .求证:四边形ACEF 是平行四边形.20. (2011湖北)如图,在平行四边形ABCD 中,E 为CD 中点,BE 的延长线与AD 的延长线相交于点F . (1)证明:∠DFE =∠CBE ; (2)证明:△DFE ≌△CBE .21. 如图,四边形ABCD 是平行四边形,AD =12,AB =13,BD ⊥AD ,求BC ,CD及OB 的长.22. (2011四川)如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,E 、F 在AC 上,G 、H 在BD 上,且AF =CE ,BH =DG ,求证:EG ∥HF .OD CBAH G O E DCBA F E DCB A F三、测试提高【板块一】平行四边形的性质1. (2011重庆)如图,在平行四边形 ABCD 中(AB ≠BC ),直线EF 经过其对角线的交点O ,且分别交AD 、BC 于点M 、N ,交BA 、DC 的延长线于点E 、F ,下列结论:①AO =BO ;②OE =OF ; ③△ODM ≌△OBN ; ④△EAO ≌△CNO ,其中正确的是( ) A. ①② B. ②③ C. ②④ D. ③④2. (2011辽宁)如图,在□ABCD 中,点E 、F 分别在边AD 、BC 上,且BE ∥DF ,若∠EBF =45°,则∠EDF 的度数是( ) A .30° B .45° C .55° D .75°3. (2011浙江)如图,已知E 、F 是□ABCD 对角线AC 上的两点,且BE ⊥AC ,DF ⊥AC ,对角线AC ,BD 相交于点O ,则图中有几对全等三角形( ) A .3 B .4 C .5 D .64. 如图,EF 过平行四边形ABCD 对角线的交点O ,并交AD 于点E ,交BC 于F ,若AB =4,BC =6,OE =2,那么四边形EFCD 的周长是( ) A .16 B .14 C .12 D .10N MFE ODC BAFEDCBA O ABCDE FF E ODCB A【板块二】平行四边形的判定5. (2011广西)如图,在平行四边形ABCD 中,EF ∥AD , HN ∥AB ,则图中的平行四边形的个数共有( ) A .12个 B .9个 C .7个 D .5个四、课后作业1. 在□ABCD 中,∠A = 2∠B ,则∠C =________.2. 在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( ). A.1∶2∶3∶4 B.1∶2∶2∶1 C.1∶1∶2∶2 D.2∶1∶2∶13. 已知平行四边形ABCD 的周长是100cm, AB :BC =4:1,则AB 的长是__________.4. 在平行四边形ABCD 中,∠A :∠B =3:2,则∠C =_______度,∠D =____度.5. 用20米长的一铁丝围成一个平行四边形,使长边与短边的比为3:2,则它的短边长为____.6. 平行四边形ABCD 的周长32, 5AB =3BC ,则对角线AC 的取值范围为_______.7. 在平行四边形ABCD 中,∠A =65°,则∠D 的度数是_______8. 由等腰三角形底边上任一点(端点除外)作两腰的平行线,则所成的平行四边形的周长等于等腰三角形的 ( ).A.周长B. 一腰的长C.周长的一半D. 两腰的和 9. 能够判定一个四边形是平行四边形的条件是 ( ). A. 一组对角相等 B. 两条对角线互相平分 C. 两条对角线互相垂直 D. 一对邻角的和为180°10. 关于四边形ABCD :①两组对边分别平行②两组对边分别相等③有两组角相等④对角线AC 和BD 相等.以上四个条件中,可以判定四边形ABCD 是平行四边形的有______个.11. 四边形ABCD 中,AD ∥BC ,要判定ABCD 是平行四边形,那么还需满足 ( ). A. ∠A +∠C =180° B. ∠B +∠D =180° C. ∠A +∠B =180° D. ∠A +∠D =180°12. 已知平行四边形ABCD 中,AB = 12,AB 边上的高为3,BC 边上的高为6,则平行四边形ABCD 的周长为 .NHE D CBA F13.已知:如图,△ABC中,AB=AC,DE//AC,DF//AB.求证:DE+DF=AB14.如图,在□ABCD中,O是对角线AC、BD的交点,E,F是BD上的点,BE⊥EC,DF⊥AF,垂足分别为E、F.那么OE与OF是否相等?为什么?15.(2010江苏)如图,在□ABCD中,点E,F是对角线AC上两点,且AE=CF.求证:∠EBF=∠FDE.16.(2011福建)如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.FAB C DE OEDCB AFC ABD EFB DAFCE。

(完整)平行四边形全部讲义

(完整)平行四边形全部讲义

平行四边形1、平行四边形的性质考点一、平行四边形的概念(1)定义:两组对边分别平行的四边形叫做平行四边形.(2) "表示,平行四边形ABCD ABCD”,读作“平行四边形ABCD”。

平行四边形一定按顺时针或逆时针依次注明各顶点。

(3)平行四边形定义的作用:平行四边形的定义既是判定,又是性质.①由定义知平行四边形两组对边分别平行;②由定义可以得出只要四边形中两组对边分别平行,那么这个四边形就是平行四边形。

(4)平行四边形的基本元素:边、角、对角线。

例1中,EF∥AB,GH∥BC,EF、GH相交于点P,写出图中的平行四边形.A E DG P HB F C考点二、平行四边形的性质(1)边的性质:平行四边形的对边平行且相等。

(2)角的性质:平行四边形的邻角互补,对角相等。

(3)对角线性质:平行四边形的对角线互相平分。

例2中,∠A+∠C=160°,求∠A、∠B、∠C、∠D的度数.A BC D 考点三、平行四边形的对角线的性质(1)平行四边形的对角线互相平分.例3中,对角线AC 、BD 相交于O 点,若AC=14,BD=8,AB=10,则△OAB 的周长为_______。

练习题 一、感受理解1.已知 ABCD 的对角线交点,AC=10cm ,BD=18cm ,AD=•12cm ,•则△BOC•的周长是_______.2的对角线AC,BD 交于点O,△AOB 的面积为2,那么平行四边形ABCD 的面积为_____.3.已知平行四边形的两邻边之比为2:3,周长为20cm ,•则这个平行四边形的两条邻边长分别为___________.4.平行四边形的周长为30,两邻边的差为5,则其较长边是________. 5.平行四边形具有,而一般四边形不具有的性质是( ) A .外角和等于360° B .对角线互相平分 C .内角和等于360° D .有两条对角线6.如图,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1。

四边形之模型结构(讲义及答案)

四边形之模型结构(讲义及答案)

四边形之模型结构(讲义)➢ 知识点睛1. 四边形分析思路(1)按照边、角、对角线的顺序,从四边形的定义、性质、判定切入进行分析;(2)转化为熟悉图形进行分析研究.60°DCBAFE D C BA E DCBA含60°角菱形转 梯形转化为①矩形+直角三角形; 化为等边三角形②平行四边形+三角形CBD A CBD ADCBA筝形转化为①一对全等三角形;②两个等腰三角形注:对角线相互垂直的四边形面积为对角线乘积的一半. 2. 四边形与轴对称性、中心对称性(1等(完全重合)的两部分(2MPDCB A3. 正方形中的常见结构F'FED C B AOF EDCBA特征:①正方形;特征:①正方形; ②∠EAF =12∠BAD②BE =CF结论:△DAF 绕点A 顺时 结论:△OBE ≌△OCF 针旋转至AD 与AB 重合, (△OBE 可看作△OCF 绕 可证△F′AE ≌△F AE点O 顺时针旋转90°得到)FEDCBA××G FEDCBA特征:①正方形; 特征:①正方形;②BE =CF ②EF ⊥AE ,且与正方形一 结论:AE =BF 且 个外角的角平分线交于点F AE ⊥BF结论:△AGE ≌△ECF特征:直角三角形的斜边为正方形的边长(或等腰直角三角形的直角边),考虑补全弦图结论:①四个全等的直角三角形;②两个正方形共中心➢ 精讲精练1. 已知菱形ABCD ,边长为4,∠BAD =120°.点E ,F 分别是AB ,AD 边上的动点,且满足BE =AF ,则下列结论:①△BEC ≌△AFC ;②△ECF 为等边三角形;③∠AGE =∠AFC ;④若F 为AD 中点,则CE ⊥AB ;⑤设AF =x ,则 S △AEF=2x .其中正确的有___________. GF E DCBAF第1题图 第2题图2. 如图,在菱形ABCD 中,AB =4 cm ,∠ADC =120°,点E ,F 同时从A ,C 两点出发,分别沿AB ,CB 方向向点B 匀速运动(到点B 为止),点E 的速度为1 cm/s ,点F 的速度为2 cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为( )A .1B .13C .12D .433. 如图,在四边形ABCD 中,AD ∥BC ,∠ABC =30°,∠BCD =60°,若AD =4,AB=BC 的长为____________.60°30°D CB A4. 如图,在四边形ABCD 中,AD ∥BC ,AB =CD ,则以下结论:①∠B =∠C ;②若AD =4,BC =12,AB =8,则∠ABC =60°;③若AC =BC +AD ,则∠ACB =60°.其中正确的有________.DCB A5. 如图,在四边形ABCD 中,AB =AD ,BC =DC ,∠A =60°,点E 为AD 边上一点,连接BD ,CE ,CE 与BD 交于点F ,且CE ∥AB ,若AB =8,CE =6,则BC 的长为__________.FEDCBAFED CBA第5题图 第6题图6. 如图,四边形ABCD 中,AD =DC ,AB =DE =12CD ,∠BAD =∠ADC =90°,DF ⊥BC 于点F ,连接EF ,AF ,AE .下列结论:①AE 垂直平分DF ;②AF =AD ;③S 四边形ADEF =23S 四边形ABCD ;④∠CEF =∠DAF .其中正确的有____________. 7. 如图,在□ABCD 中,AC ,BD 为对角线,BC =6,BC 边上的高为4,则图中阴影部分的面积为( ) A .3B .6C .12D .24第7题图 第8题图8. 如图,在平面直角坐标系中,已知多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分成面积相等的两部分,则下列各点在直线l 上的是( )A .(4,3)B .(5,2)C .(6,2)D .(0,103) 9. 在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P 是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P 的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是( ) A.BC.2DAB CDP MN第9题图 第10题图10. 如图,在菱形ABCD 中,∠DAB =60°,AC =12,P 是菱形的对角线AC 上的动点.(1)若M ,N 是菱形ABCD 的边AB ,BC 的中点,PM +PN 的最小值为_______; (2)若N 是菱形ABCD 的边BC 上的动点(可与端点B ,C 重合),BP +PN 的最小值为_______;(3)若M ,N 是菱形ABCD 的边AB ,BC 上的动点,PM +PN 的最小值为_______.11. 如图,四边形ABCD 是正方形且边长为2,以CD 为边作等边三角形CDE ,连接AC ,M 是线段AC 上一点.当DM +EM 最小时,∠AMB 的角度为_______,此时DM 的长为_______.ABCDMEFE D C B A第11题图 第12题图12. 如图,已知正方形ABCD 的边长为5,点E ,F 分别在BC 和CD 边上,分别连接AE ,AF ,EF ,若∠EAF =45°,则△CEF 的周长是( ) A.6B .8.5C .10D .1213. 如图,在△ABC 中,∠ACB =90°,AC =BC =1,E ,F 为线段AB 上两个动点,且∠ECF =45°,过点E ,F 分别作BC ,AC 的垂线相交于点M ,垂足分别为H ,G .现有以下结论:①ABE 与点B 重合时,MH =12;③AF 2+BE 2=EF 2.其中正确的结论为( ) A .①②③ B .①② C .①③ D .②③M GHFECBA14. 如图,在△ABC 中,AB =AC=BAC =120°,点D ,E 都在边BC 上,∠DAE =60°.若BD =2CE ,则DE 的长为 _________.ABCD E15. 如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点C ,D 重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G .以下结论:①连接AH ,则HA 平分∠DHG ;②连接AH ,AG ,则∠HAG =45°;③△CHG 的周长为2CD .其中正确的是_____________.HG FED CBA16.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.以下结论:①GF=GC;②DE=EH;③BH;④若AE=1,AD=3,则DH=其中正确的有_________.HEA17.如图,在正方形ABCD中,AC,BD相交于点O,E,F分别为BC,CD上的两点,BE=CF,AE,BF分别交BD,AC于M,N两点,连OE,OF.下列结论:①AE=BF;②AE⊥BF;③CE+CF=BD;④S四边形OECF =14S正方形ABCD.其中正确的是_________.NMOAB CDEF【参考答案】1.①②③④⑤2. D3.124.①②③5.6.①②③④7. C8. B9. D10.(1)(2)6;(3)6.11.60°12.C13.A14.315.①②③16.①②③④17.①②④。

四边形的内角和讲义公开课获奖课件百校联赛一等奖课件

四边形的内角和讲义公开课获奖课件百校联赛一等奖课件

B
C
A E
B
D 4×180°- 360°
C
= 360°
A
B E
D 3×180°- 180°
C
= 360°
A B
E
D 3×180°- 180°
C
= 360°
小结
E
E E
四边形旳内角和
辅助线 转化
三角形旳内角和
思索:一种五边形旳内角和是多少呢?
一种五边形能够提成三个三角形,它旳内 角和就有3个180°,就是540°了。
——歌德
多边形旳内角和=180º×边数-360º。
180º×4-360º 180º×5-360º
=360º
=540º
6
180º×6
-360º
=720º
7
180º×7
-360º
=900º
知识旳应用
这两种不同旳分 法得出旳结论相 多同边吗形?旳内角和=180º×(边数 -2)
多边形旳内角和=180º×边数-360º
任意四边形
旳内角和是
请同学们动手量一量四边形旳四个内角。 你发觉了什么?
动动手
1
2
4
3
41 32
拼成了一种周角 四边形旳内角和是360°
梯形内角和
梯形旳内角和怎么求呢?
我能够将梯形剪成两个三 角形, 得到梯形旳内角和为 180°+180°=360°
那么不规则四边形 内角和又怎么求? 我们能够用求梯形内角和旳方法, 将不规则四边形剪成两个三角形, 一样能得到不规则四边形旳内角和 为360°
做一做 你能想方法求出这个多边形旳内角和吗?
180º×(6-2)=720º
知识旳应用

四边形讲义

四边形讲义

.
(填一个即可)
3
上海中小学课外辅导专家
图 11 图 12 12.如图 12,四边形 ABCD 是正方形,P 在 CD 上,△ADP 旋转后能够与△ABP′重合,若 AB=3,DP= 1,则 PP′=___. 13.已知菱形的一条对角线长为 12cm,面积为 30cm2,则这个菱形的另一条对角线长为__________cm。 14.用两个全等的三角形,能拼成一个平行四边形,这样的平行四边形的周长取值最多有________个。 15. 若梯形的两底长分别为 4cm 和 9cm ,两条对角线长分别为 5cm 和 12cm ,则该梯形的面积为 ________cm2。 16.在等腰梯形 ABCD 中,AD∥BC,•AD=•6cm,•BC=•8cm,•∠B=•60•°,•则 AB=_______cm. 17.如图,矩形 ABCD 中,AB=3,BC=4,P 是边 AD 上的动点,PE⊥AC 于点 E,PF⊥BD 于点 F,则 PE +PF 的值为:_________。 18.下面图 1 的梯形符合_____________条件时,可以经 过旋转和翻折成图案 2.
D P F C Q E B
1 C. PQ∥AB 且 PQ = AB 2
A
D.随□ABCD 的形状大小变化而变化 二.填空题(每小题 3 分,共 24 分) 11.如图 11,BD 是平行四边形 ABCD 的对角线,点 E、F 在 BD 上,要使四边形 AECF 是平行四边形,还需要增加的一个条件是
泽仕学堂教务处
教学内容
一、平行四边形定义:两组对边分别平行的四边形叫做平行四边形。 平行四边形的性质:(1)平行四边形是中心对称图形,对角线的交点是它的对称中心; (2)平行四边形的对边平行且相等; (3)平行四边形的对角相等,邻角互补; (4)平行四边形的对角线互相平分. 平行四边形的判定:

四边形复习讲义

四边形复习讲义

四边形习题课例1:任意n 边形有( )条对角线.( ) A .2)1(-n n B .2)2(-n n C .2)3(-n n D .2)4(-n n 例2:若n 边形恰好有n 条对角线,则n 为 ( ) A .4 B .5 C .6 D .7 例3:若一个多边形的每一个内角都与它相邻的外角相等,则这个多边形是 ( ) A .三角形 B .正方形 C .五边形 D .不能确定 例4: 一个四边形最多可以有( )个钝角 ( ) A .一 B .两 C .三 D .四 例5:某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是( ) A .360° B .720° C .1960° D .180180° 例6:如果一个多边形的内角和是它的外角和的m 倍,则这个多边形的边数是( )A .mB .2m -2C .2mD .2m+2【常见误区】1.在求n 边形对角线的数目时,常认为有n (n-3)条,实际上过每个点有(n-3)条,n 个点有n (n-3)条,但由于重复了一半,所以任意n 边形有2)3(-n n 条对角线. 2.有的时候认为n 边形的外角和是一个变化的量,一定要记住无论是几边形,它的外角和总是等于360º的. 例1:在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是 ( )A .1:2:3:4B .1:2:2:1C .1:1:2:2D .2:1:2:1例2:在□ABCD 中,∠A 、∠B 的度数之比为5:4,则∠C 等于 ( )A .60°B .80°C .100°D .120°例3:如图,在平行四边形ABCD 的各边AB 、BC 、CD 、DA 上,分别取点K 、L 、M 、N ,使AK =CM 、BL =DN ,求证:四边形KLMN 是平行四边形.例4:已知如图:在平行四边形ABCD 中,延长AB 到E ,延长CD 到F ,使BE =DF ,则线段AC 与EF 是否互相平分?说明理由.例5:已知如图:在平行四边形ABCD 中,BE =DF ,求证:四边形AECF 是平行四边形.A EB FCD O【常见误区】1.平行四边形的性质比较多,不要无中生有,如不要出现平行四边形的对角线相等;2.平行四边形的判定方法比较多,对于利用“一组对边平行,一组对边相等的四边形是平行四边形”是错误的,如这样的四边形是等腰梯形.例1:在菱形ABCD中,∠BAD=2∠B,则△ABC是()A.钝角三角形B.直角三角形C.等边三角形D.不确定例2:菱形具有而矩形不一定具有的性质是()A.对角相等且互补 B.对角线互相平分C.一组对边平行,另一组对边相等D.对角线互相垂直例3:已知菱形的周长为40 cm,两对角线长的比是3∶4,则两对角线长分别是()A.6 cm,8 cm B.3 cm,4 cm C.12 cm,16cm D.24 cm,32 cm例4:若菱形的两条对角线长分别为6和8,则这个菱形的面积是_____________.例5:已知菱形的边长和一条对角线长相等,那么菱形较大的内角度数是;如果这条对角线长为4cm,那么菱形的周长为.例6:菱形的一条对角线长与一条边长相等,则这个菱形相邻两个内角的度数分别为__ __.【常见误区】1.菱形的性质比较多,但不能混淆,菱形具有的性质平行四边形都具有是错误的,应该是平行四边形具有的性质菱形都具有.2.在判定一个四边形是菱形的时候方法比较多,但不能乱用,如不能利用“有两组邻边相等的四边形是菱形”,而应该是“四条边相等的四边形是菱形”,因为有两组邻边相等,并不是代表四条边相等.3.菱形的面积可以利用底与高的乘积,也可以利用对角线乘积的一半,而不是对角线的乘积.例1:在□ABCD中,增加下列条件中的一个,这个四边形就是矩形,则增加的条件是()A.∠A+∠C=180°B.AB=ACC.对角线互相垂直D.AC=3AB例2:如图,在矩形ABCD中,AB=4cm,AD=12cm,P点在AD边上以每秒1 cm的速度从A向D运动,点Q在BC 边上,以每秒4 cm的速度从C点出发,在CB间往返运动,二点同时出发,待P点到达D点为止,在这段时间内,线段PQ有()次平行于AB。

四边形概念讲义

四边形概念讲义

平行四边形的性质及判定中考要求知识点睛1.平行四边形的性质平行四边形的边:平行四边形的对边平行且对边相等.平行四边形的角:平行四边形的对角相等,邻角互补.平行四边形的对角线:平行四边形的对角线互相平分.平行四边形的对称性:平行四边形是中心对称图形.平行四边形的周长:一组邻边之和的2倍.平行四边形的面积:底乘以高.2.平行四边形的判定两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.两条对角线互相平分的四边形是平行四边形.两组对角分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形.矩形的性质及判定中考要求知识点1.矩形的定义:有一个角是直角的平行四边形叫做矩形.2.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:①边的性质:对边平行且相等.②角的性质:四个角都是直角.③对角线性质:对角线互相平分且相等.④对称性:矩形是中心对称图形,也是轴对称图形.直角三角形斜边上的中线等于斜边的一半.直角三角形中,30 角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得.3.矩形的判定判定①:有一个角是直角的平行四边形是矩形.判定②:对角线相等的平行四边形是矩形.判定③:有三个角是直角的四边形是矩形.重、难点重点:掌握矩形的性质,并学会应用.难点:理解矩形的特殊性.关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.1.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且四边相等. ② 角的性质:邻角互补,对角相等.③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④ 对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形.4.三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线.以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中位线,再用中位线的性质.定理:三角形的中位线平行第三边且长度等于第三边的一半.中点中点中点平行知识点睛中考要求菱形的性质 及判定1.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形. 2.正方形的性质正方形是特殊的平行四边形、矩形、菱形.它具有前三者的所有性质: ① 边的性质:对边平行,四条边都相等. ② 角的性质:四个角都是直角.③ 对角线性质:两条对角线互相垂直平分且相等,•每条对角线平分一组对角. ④ 对称性:正方形是中心对称图形,也是轴对称图形. 平行四边形、矩形、菱形和正方形的关系:(如图)3.正方形的判定判定①:有一组邻边相等的矩形是正方形. 判定②:有一个角是直角的菱形是正方形.1. 掌握正方形的定义和性质,弄清正方形与平行四边形、菱形、矩形的关系2. 掌握正方形的判定方法并能在解题中选择恰当的方法。

数学竞赛讲义-第7讲完全四边形

数学竞赛讲义-第7讲完全四边形

创知路 竞赛数学讲义
平面几何第十讲 完全四边形
【例1】(西姆松定理)过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足点共线,此线称为西姆松线.西姆松线平分该点于三角形垂心的连线.其逆定理也成立,即如果一点P在三角形ABC三边上的射影共线,则P在三角形ABC的外接圆上.
【例2】完全四边形中四个三角形的外接圆交于一点,称为完全四边形的密克尔点.如图,当BCEF四点共圆于圆O时,密克尔点为O到直线AD的垂足M;当ABDF四点共圆于圆O时,密克尔点为O到直线CE的垂足M.
C
【例3】完全四边形的三条对角线的中点共线(牛顿线)
C
【例4】完全四边形的三条对角线为直径的圆共轴,且完全四边形的四个三角形的垂心在这条轴上
【例5】四边形ABCD内接于圆O,其边AB与DC的延长线交于点P,AD与BC的延长线交于点Q,过Q作圆O的两条切线,切点分别为E、F,求证:P、E、F三点共线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学讲义
第19章 四边形 知识脉络:
两组对边平行
四边行
一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四
边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.
二 公式:
1.S 菱形 =
2
1
ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)
三 常识: ※1.若n 是多边形的边数,则对角线条数公式是:2
)3n (n -.
2.规则图形折叠一般“出一对全等,一对相似”.
3.如图:平行四边形、矩形、菱形、正方形的从属关系.
n 边形的的性质: (1)n 边形的内角和等于
180)2(⋅-n . (2)任意多边形的外角和等于
360 (3)n 边形共有
2
)
3(-n n 条对角线 (4)在平面内,内角都相等且边都相等的多边形叫做正多边形。

(5)正多边形的每个内角等于
n
n 180
).2(- 平行四边形矩
形菱形正方

图1
F
E
D C
B
A 图2
F
E D C
B
A
四边形:
四边形的内角和等于360°, 外角和等于360°
1、四边形内角中最多有三个钝角,四个直角,三个锐角;
2、四边形外角中最多有三个钝角、四个直角、三个锐角,
最少没有钝角,没有直角,没有锐角;
3、四边形内角与同一个顶点的一个外角互为邻补角. 平行四边形的性质:
(1)平行四边形的邻角互补,对角相等. (2)平行四边形的对边平行且相等. (3)夹在两条平行线间的平行线段相等. (4)平行四边形的对角线互相平分. 平行四边形的判定:
(1)定义:两组对边分别平行的四边形是平行四边形. (2)定理1:两组对角分别相等的四边形是平行四边形. (3)定理2:两组对边分别相等的四边形是平行四边形. (4)定理3:对角线互相平分的四边形是平行四边形. (5)定理4:一组对边平行且相等的四边形是平行四边形.
两条平行线的距离
两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离.平
行线间的距离处处相等 平行四边形的面积:
ABCD
S
=BC·AE=CD·BF
同底(等底)同高(等高)的平行四边形面积相等.
ABCD
S
=BCFE
S
矩形的性质:
(1)对边平行且相等。

(2)矩形的四个角都是直角. (3)矩形的对角线相等.
(4)矩形是轴对称、中心对称图形. (5) 矩形面积=长×宽 矩形的判定:
(1)定义:有一个角是直角的平行四边形是矩形. (2)定理1:有三个角是直角的四边形是矩形. (3)定理2:对角线相等的平行四边形是矩形.
菱形的性质
(1)具有平行四边形的一切性质. (2)菱形的四条边都相等.
(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角. (4)菱形是轴对称、中心对称图形. (5) 菱形面积=底×高=对角线乘积的一半 菱形的判定
(1)定义:有一组邻边相等的平行四边形叫做菱形. (2)定理1:四边都相等的四边形是菱形. (3)定理2:对角线互相垂直的平行四边形是菱形. 正方形的性质
(1)正方形具有四边形、平行四边形、矩形、菱形的一切性质. (2)正方形的四个角都是直角,四条边都相等.
(3)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角. (4)正方形是轴对称图形,有4条对称轴.
(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个小的全等的等腰直角三角形.
(6)正方形一条对角线上一点和另一条对角线的两端距离相等.
(7)正方形的面积:若正方形的边长为a ,对角线长为b ,则2
2
2
b a S ==
正方形的判定:
(1)判定一个四边形为正方形主要根据定义,途径有两种: ①先证它是矩形,再证它有一组邻边相等. ②先证它是菱形,再证它有一个角为直角. (2)判定正方形的一般顺序: ①先证明它是平行四边形; ②再证明它是菱形(或矩形);
③最后证明它是矩形(或菱形). 4.中位线
三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

(三角形有三条中位线)
三角形中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半。

1
2
4.面积公式
平行四边形:底×高 菱形:(1)底×高(2)对角线乘积的一半 矩形:邻边相乘 正方形:(1)2
a S (2)对角线乘积的一半。

相关文档
最新文档