2013年全国大学生数学竞赛练习题(一)
2013高教社杯全国大学生数学建模竞赛 A题

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 9 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要高速公路交通事故在给人们带来生命财产损失的同时,也会引发大范围的交通拥堵,增加车辆油耗和废气排放,带来能源消耗和环境污染问题。
高速公路上一旦发生交通事故,部分道路就会被占用或者封闭,事故发生地点通行能力降低,无法满足交通需求,进而导致交通拥堵,增加二次事故发生的可能性。
2013-数一真题大全及答案

2013年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)已知极限0arctan limkx x xc x →−=,其中,c k 为常数,且0c ≠,则( )(A )12,2k c ==−(B )12,2k c ==(C )13,3k c ==−(D )13,3k c ==(2)曲面2cos()0x xy yz x +++=在点(0,1,1)−处的切平面方程为( ) (A )2x y z −+=− (B )2x y z ++= (C )23x y z −+=− (D )0x y z −−=(3)设1()2f x x =−,102()sin (1,2,...)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则9()4S −=( )(A )34 (B )14(C )14−(D )34−(4)设222222221234:1,:2,:22,:22,l x y l x y l x y l x y +=+=+=+=为四条逆时针的平面曲线,记33()(2)(1,2,3,4)63ii l y x I y dx x dy i =++−=⎰,则()i MAX I =( )(A )1I (B )2I (C )3I (D )3I(5)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价(6)矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫ ⎪⎪ ⎪⎝⎭相似的充分必要条件为(A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a(D )为任意常数b a ,2=(7)设123X X X ,,是随机变量,且22123~N(0,1)~N(~(5,3)X N ,X 0,2),X ,{22}(1,2,3),j j P P X j =−≤≤=则( )(A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >>(8)设随机变量~(),~(1,),X t n Y F n 给定(00.5),a a <<常数c 满足{}P X c a >=,则2{}P Y c >=( ) (A )α (B )1α−(C )2α (D )12α−二、填空题:9−14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设函数()f x 由方程(1)x y y x e−−=确定,则1lim (()1)n n f n→∞−= .(10)已知321xxy e xe =−,22xxy e xe =−,23xy xe =−是某二阶常系数非齐次线性微分方程的3个解,该方程的通解为y = .(11)设sin sin cos x t y t t t=⎧⎨=+⎩(t 为参数),则224t d y dx π== .(12)21ln (1)xdx x +∞=+⎰.(13)设ij A (a )=是三阶非零矩阵,|A |为A 的行列式,ij A 为ij a 的代数余子式,若ij ij a A 0(i,j 1,2,3),____A +===则(14)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则{1|}P Y a Y a ≤+>=________。
2013全国数学建模竞赛题目A-B

2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题车道被占用对城市道路通行能力的影响车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。
由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。
如处理不当,甚至出现区域性拥堵。
车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。
视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。
请研究以下问题:1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。
2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。
3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。
4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。
请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。
附件1:视频1附件2:视频2附件3:视频1中交通事故位置示意图附件4:上游路口交通组织方案图附件5:上游路口信号配时方案图注:只考虑四轮及以上机动车、电瓶车的交通流量,且换算成标准车当量数。
附件3视频1中交通事故位置示意图附件4附件5上游路口信号配时方案本题附件1、2的数据量较大,请竞赛开始后从竞赛合作网站“中国大学生在线”网站下载:试题专题页面:/service/jianmo/index.shtml试题下载地址:/service/jianmo/sxjmtmhb/2013/0525/969401.shtml2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题碎纸片的拼接复原破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。
2013年高考数学全国卷1(完整版试题+答案+解析)

2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数球的面积公式24R S π=第Ⅰ卷(选择题 共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数ii++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .1 2.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x xM ,则=M C N R A .)2,1(B .[]2,0C .∅D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .15 5.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为 (1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β (4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC AB OC OB OA -=等于A .1B .2C .3D .4 8.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞ 10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是A .43 B .41 C .83D .8512.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅FN FM ,则a 的值为A .916 B .59 C .925 D .516题图第13第Ⅱ卷(非选择题 共90分)注意事项:1. 请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 3. 第Ⅱ卷共包括填空题和解答题两道大题. 二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其在一个球面上,则该球的表面积为__________.15.地震的震级R 与地震释放的能量E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的 倍. 16.给出下列命题: ①已知,,a b m都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立; ③命题“x R∃∈,使得2210x x -+<”的否定是真命题; ④“1,1≤≤y x 且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)第14题图三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值;(Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的取值范围.18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .已知四棱锥BCDE A -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE∥CD ,F 为AD 的中点. (Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDE A -的体积.20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y 关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.AB CDEF已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x . (Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分)实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3. (Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于C B ,,若AB AC 2=,求直线l 的斜率k .参考答案及评分标准一.选择题(本大题共12小题,每小题5分,共60分.)B D B A D B B D BC C B二.填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915. 2310 16. ①③三.解答题17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6sin(=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x…………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos =A ,∴在ABC ∆中 ∠3π=A …………………………………………8分 21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B …………………………………………10分∴1)6sin(21≤+<πB ,23)(1≤<B f ∴函数)(B f 的取值范围为]23,1( …………………………………………12分18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分 1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴nn n T 3⋅= …………………………………………12分19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC ……………………………4分 (Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥AC 又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BGABCDEF G∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴E F ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V .………………………12分另法:取BC 的中点为O ,连结AO ,则BC AO ⊥,又⊥CD 平面ABC ,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面BCDE ,∴AO 为BCDE A V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCDE A BCDE V S AO . 20.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x 时,;2|1026219|,262192613910134ˆ<-=+⨯=y……………………………………9分 当30=x 时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分 21.(本小题满分12分)解:(Ⅰ)将1-=x 代入切线方程得2-=y ∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分 222)1(2)()1()(x xb ax x a x f +⋅+-+='12424)(22)1(-===-+=-'bb a b a f . …………………………………………4分解得:2,2-==b a∴122)(2+-=x x x f . …………………………………………6分 (Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x 在),1[+∞上恒成立 . …………………………………………8分 设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x ∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分 ∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222mn n m c n m …………………………………………2分解得92=c ,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x ,将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B2013年高考数学全国卷1(完整版试题+答案+解析)- 11 - / 11 由AB AC 2= 得)22(22212-=-x x , 化简得22221=-x x …………………………………………8分 联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12, 得0821682=-+-k kx x ∴k x 8221=+① …………………………………………10分 联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y 得0821632)2168()41(2222=--+-++k k x k k x k ∴22241821622kk k x +-=+② …………………………………………12分 ∴2222418216)228(222221=++---=-kk k k x x 整理得:0)4121)(2416(2=+--k k k ∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。
2013中国大学生数学竞赛预赛试卷参考答案及评分标准

取V x, y, z x2 2 y2 3z2 1 ,曲面 : x2 2 y2 3z2 1 ………
(3 分)
x u
10
0
为求最小值,作变换
y
v
2
,则
x, y, z u,v, w
0
1 2
0 1, 6
z
w
3
大学生数学竞赛(高等数学)
第五届全国大学生数学竞赛预赛试卷
(非数学类)
一、 解答下列各题(每小题 6 分共 24 分,要求写出重要步骤)
n
1.求极限 lim 1 sin 1 4n2 . n
解 因为 sin 1 4n2 sin 1 4n2 2n sin
解 方程两边对 x 求导,得 3x2 6xy 3x2 y 6 y2 y 0 …………………(1 分)
故
y
xx 2y
2y2 x2
,令
y
0 ,得
xx 2y
0
x
0或
x
2 y
………(2
分)
将 x 2 y 代入所给方程得 x 2, y 1,
(2 分)
由于级数
n1
1 n2
收敛,从而由比较判别法的极限形式
n1
f
1 n
收敛。……(3 分)
四、(满分 12 分)设
f
x
,
f x
0a x b ,证明
b
sin
a
f
x dx
2 m
2014年最新全国大学生高等数学竞赛试题及解答

2013年全国大学生数学专业竞赛试题及解答一、计算题(1) 求极限 21lim (1)sin n n k k k n n π→∞=+∑解法1 直接化为黎曼和的形式有困难.注意到 3sin ()x x O x =+, 3322611lim 1sin lim 1n n n n k k k k k k k O n n n n n πππ→∞→∞==⎛⎫⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑, 由于 33336611|1()|20,()nn k k k k k O C n n n n ππ==⎛⎫+≤→→∞ ⎪⎝⎭∑∑, 所以2211lim 1sin lim 1n n n n k k k k k k n n n n ππ→∞→∞==⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭∑∑65)(1)(lim 102122πππ=+=+=⎰∑=∞→dx x x n n k n k n k n .解法2 利用31sin 6x x x x -<<,得 3326221sin 6k k k k n n n n ππππ-<<, 332622111111(1)1sin 16n n n n k k k k k k k k k k k k n n n n n n n n ππππ====⎛⎫⎛⎫⎛⎫+-+<+<+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑∑, 由于33336611|1|20,()nn k k k k k n n n n ππ==⎛⎫+≤→→∞ ⎪⎝⎭∑∑, 21lim 1n n k k k n n π→∞=⎛⎫+ ⎪⎝⎭∑65)(1)(lim 102122πππ=+=+=⎰∑=∞→dx x x n n k n k n k n , 所以215lim (1)sin 6n n k k k n n ππ→∞=+=∑ .(2)计算()2222axdydz z a dxdy I x y z ∑++=++⎰⎰, 其中∑为下半球222z a x y =---的上侧,0a >.解法一. 先以()12222x y z a ++=代入被积函数,()2axdydz z a dxdy I a ∑++=⎰⎰ ()21a x d y d z z a d x d y a ∑=++⎰⎰, 补一块有向平面222:0x y a S z -⎧+≤⎨=⎩,其法向量与z 轴正向相反,利用高斯公式,从而得到()()-22+S 1S I axdydz z a dxdy axdydz z a dxdy a -∑⎡⎤=++-++⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰ ()2D 12a z a dxdydz a dxdy a Ω⎡⎤=-+++⎡⎤⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰, 其中Ω为+S -∑围成的空间区域,D 为0z =上的平面区域222x y a +≤, 于是32212323I a a zdxdydz a a a ππΩ⎛⎫=-⋅-+ ⎪⎝⎭⎰⎰⎰ ()222040012a a r a d dr zdz a ππθ--=--⎰⎰⎰32a π=-.解法二. 直接分块积分11I axdydz a ∑=⎰⎰ ()2222yzD a x y dydz =--+⎰⎰, 其中yz D 为yOz 平面上的半圆222y z a +≤,0z ≤. 利用极坐标,得 222310223a I d a r rdr a ππθπ=--=-⎰⎰, ()221I z a dxdy a ∑=+⎰⎰ ()22221xyD a a x y dxdy a ⎡⎤=--+⎢⎥⎣⎦⎰⎰, 其中xy D 为xOy 平面上的圆域,222xy a +≤,用极坐标,得 ()22222200122a I d a a a r r rdr a πθ=---⎰⎰36a π=, 因此3122I I I a π=+=-. (3)现要设计一个容积为V 的圆柱体的容积,已知上下两低的材料费为单位面积a 元,而侧面的材料费为单位面积b 元.试给出最节省的设计方案:即高与上下底面的直径之比为何值时,所需费用最少?解:设圆柱体的高为h ,底面直径为d ,费用为f , 根据题意,可知22d h V π⎛⎫= ⎪⎝⎭,24V d h π= 222d f a b dh ππ⎛⎫=⋅⋅+⋅ ⎪⎝⎭212a d b d h π⎛⎫=+ ⎪⎝⎭ 2111222ad bdh bdh π⎛⎫=++ ⎪⎝⎭ 23132ad bdh bdh π≥⋅⋅ ()2223332ab d h π=⋅2233342V ab ππ⎛⎫=⋅ ⎪⎝⎭, 当且仅当2ad bdh =时,等号成立,h a d b=, 故当h a d b=时,所需要的费用最少. (4)已知()f x 在11,42⎛⎫ ⎪⎝⎭内满足()331sin cos f x x x '=+求()f x . 解:()331sin cos f x dx x x '=+⎰22211sin cos 3sin cos 2sin sin cos cos x x dx x x x x x x +⎛⎫=+ ⎪+-+⎝⎭⎰,111sin cos 2sin 4dx dx x x x π=+⎛⎫+ ⎪⎝⎭⎰⎰114ln tan 22x C π+=+, ()222sin cos sin cos 11sin sin cos cos sin cos 22x x x x dx dx x x x x x x ++=-+-+⎰⎰ ()2sin cos 2sin cos 1x x dx x x +=-+⎰ ()()2sin cos 2sin cos 1d x x x x -=-+⎰ ()22arctan sin cos x x C =-+所以,()()2124ln tan arctan sin cos 3232x f x x x C π+=+-+. 二、 求下列极限.(1)1lim 1n n n e n →∞⎛⎫⎛⎫+- ⎪ ⎪ ⎪⎝⎭⎝⎭; (2)111lim 3n n n n n a b c →∞⎛⎫++ ⎪ ⎪ ⎪⎝⎭,其中0a >,0b >,0c >.解:(1)11lim 1lim 1n x n x n e x e n x →∞→+∞⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1ln 1lim 1x x x e ex ⎛⎫+ ⎪⎝⎭→+∞-=211111ln 11lim 1xx x x x x x x→+∞⎡⎤⎛⎫⎛⎫⎛⎫+++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦=- 211ln 11lim 1x x x e x →+∞⎛⎫+- ⎪+⎝⎭=- ()2311111lim 12x x x x e x→+∞-+++= ()2211lim 12x x e x →+∞-+= 21lim 2211x e e x →+∞=-=-⎛⎫+ ⎪⎝⎭. (2) 111111lim lim 33n x n n n x x x n x a b c a b c →∞→+∞⎛⎫⎛⎫++++⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭111ln 3lim x x x a b c x x e ++→+∞= 111ln3lim 1x x xx a b c x e →+∞++=, 111ln3lim 1x x x x a b c x →+∞++1111112211ln ln ln lim 1x x x x x x x a a b b c c x a b c x →+∞⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭++=-1111111lim ln ln ln x x x x x x x a a b b c c a b c →+∞⎛⎫=++ ⎪⎝⎭++ ()1ln ln ln 3a b c =++3ln abc =, 故1113lim 3n n n n n a b c abc →∞⎛⎫++ ⎪= ⎪ ⎪⎝⎭. 一般地,有1112lim n m n k k m m n a a a a m =→∞⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭∑ ,其中0k a >,1,2,,k m = , 120lim x x nx x x e e e n →⎛⎫+++ ⎪⎝⎭ 2ln 0lim x x nx e e e n x x e +++→= ()2ln ln 0lim x x nx e e e n x x e +++-→= ()22012lim 1x x nx x x nx x e e ne e e e e→++++++= ()11122n n n e e++++== . 三.设()f x 在1x =点附近有定义,且在1x =点可导,()10f =,()12f '=,求()220sin cos lim tan x f x x x x x→++. 解:()220sin cos lim tan x f x x x x x →++()()22220sin cos 1sin cos 1lim tan sin cos 1x f x x f x x x x x x x →⎛⎫+-+- ⎪=⋅ ⎪++-⎝⎭()220sin cos 11lim tan x x x f x x x→+-'=+ 2220sin 2sin 22lim tan x x x x x x →-=+22022sin cos 1222lim sin 11cos x x x x x x x →⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭ 2200sin cos 122lim lim sin 11cos x x x x x x x x→→⎛⎫- ⎪=⋅ ⎪ ⎪+⎝⎭ 2111112-=⋅=+.四、 设()f x 在[)0,∞上连续,无穷积分()0f x dx ∞⎰收敛,求()01lim y y xf x dx y →+∞⎰. 解:设()()0x Fx f t dt =⎰,由条件知,()()F x f x '=, ()()0lim x F x f t dt A +∞→+∞==⎰, 利用分部积分,得 ()()00y yxf x dx xF x dx '=⎰⎰()()0y yF y F x dx =-⎰, ()()()0011y y xf x dx F y F x dx y y =-⎰⎰, ()()0lim lim y y y F x dx F y A y →+∞→+∞==⎰, 于是()()()0011lim lim lim y y y y y xf x dx F y F x dx y y →+∞→+∞→+∞=-⎰⎰0A A =-=.五.设函数()f x 在[]0,1上连续,在()0,1内可微,且()()010f f ==,112f ⎛⎫= ⎪⎝⎭. 证明:(1)存在1,12ξ⎛⎫∈ ⎪⎝⎭,使得()f ξξ=;(2)对于每一λ,存在()0,ηξ∈,使得()()1f f ηληλη'=-+. 证明:(1)令()()F x f x x =-,由题设条件,可知1122F ⎛⎫= ⎪⎝⎭, ()11F =-;利用连续函数的介值定理,得 存在1,12ξ⎛⎫∈ ⎪⎝⎭,使得()0F ξ=,即()f ξξ=.(2)令()()()x G x e f x x λ-=-,由题设条件和(1)中的结果,可知,()00G =,()0G ξ=;利用罗尔中值定理,得存在()0,ηξ∈,使得()0G η'=,由()()()()()1x x G x e f x e f x x λλλ--''=---, 即得()()1f f ηληλη'=-+.六、 试证:对每一个整数2n ≥,成立11!!2n nn n e n +++> . 分析:这是一个估计泰勒展开余项的问题,其技巧在于利用泰勒展开的积分余项.证明:显然0n=时,不等式成立;下设1n ≥. 由于()001!!k n n n n t k n e n t e dt k n ==+-∑⎰, 这样问题等价于证明()0!2n n n t n en t e dt ->-⎰, 即 ()002n n n t n t t e dt e n t e dt +∞-->-⎰⎰, 令u n t =-上式化为 002n n t n u t e dt u e du +∞-->⎰⎰, 从而等价于0n n u n u n u e du u e du +∞-->⎰⎰, 只要证明20n n n u n u n u e du u e du -->⎰⎰, 设()n u f u u e -=,则只要证明()()f n h f n h +≥-,()0h n ≤≤,就有()()00n nf n h dh f n h dh +≥-⎰⎰,()()20n n n f u du f u du >⎰⎰, 则问题得证.以下证明()()f n h f n h +≥-,()0h n ≤≤,成立上式等价于()()n n n h h n n h en h e ---+≥-, 即()()lnln n n h h n n h h +-≥-+, 令()()()ln ln 2gh n n h n n h h =+---, 则()00g =,并且对0h n <<,有2dg n n dh n h n h=+-+- 2222222220n h n h n h=-==>--, 从而当0h n <<时,()0g h >,这样问题得证.注:利用这一结论,我们可以证明如下结论.六、设1n >为整数,()2011!2!!n x tt t t F x e dt n -⎛⎫=++++ ⎪⎝⎭⎰ ,证明方程()2n F x =,在,2n n ⎛⎫ ⎪⎝⎭上至少有一个根. 六、 证明:存在1(,)2a n n ∈,使得001!2k n a x k x e dx n k -==∑⎰. 证明:令()00!k nyx k x f y e dx k -==∑⎰, 则有220002!2n n k n x x x k n x n f e dx e e dx k --=⎛⎫=<= ⎪⎝⎭∑⎰⎰, ()00!k n n x k x f n e dx k -==∑⎰00!kn n n k n e dx k -=>∑⎰ 0122nn n n e e dx ->⋅=⎰, 由连续函数的介值定理,得存在,2n a n ⎛⎫∈ ⎪⎝⎭,使得()2n f a =, 故问题得证. 这里是由于()0!kn x k x g x e k -==∑, ()0!n x x g x e n -'=-<, ()g x 在[)0,+∞上严格单调递减,所以,当0x n <<时,有()()g x g n >.七、 是否存在R 上的可微函数()f x ,使得2435(())1f f x x x x x =++--,若存在,请给出一个例子;若不存在,请给出证明。
2013高教社杯全国大学生数学建模竞赛A题

2013高教社杯全国大学生数学建模竞赛A题2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》。
我们完全明白,在竞赛开始后参赛队员不能以任何方式与队外的任何人研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料,必须按照规定的面的车辆数。
实际通行车流量的采集与处理视频1中出现车辆多种多样,要统计车流量数据,需先统一车流标准,把视频中出现的车辆进行折算,以小轿车做为标准,对各个型号车辆进行折算[2],折算系数如表1所示。
表1 车辆折算系数附件中出现汽车小轿车中型车大客车车辆折算系数在事故发生前,道路的通行能力足以应对上游车流量,当发生事故时,事故点上游共有10辆小轿车与5辆大客车,车流量为20pcu。
之后一分钟(16:42:32-16:43:32),上游又有车流量21pcu,但只通过了21pcu,说明造成了交通拥堵和排队情况。
“附件5”可知,相位时间为30s,红灯时间为30s,即60s为一个周期,进行统计时间周期也为60s,不会造成因交通灯引起的误差。
实际通行流量是指折算后通过事故横断面的车流,上游车流量是指折算后从各个路口驶入事故横断面的车流。
对附件1中事故横断面处的车流量进行统计,得出实际通行车流量情况,并统计横断面上游的车流量,在统计过程中发现视频并不是完全连续的,例如在16:49:40时出现了突变,直接到16:50:04,跳跃间隔为24s,但于堵车情况较重,可以根据车流量守恒原则和车辆追踪,统计出通过横断面处的车流量及上游车流量。
但16:56:04等时间,跳跃时间较长,近2分钟,无法精确统计,如表2处“空缺”所示。
在17:00:07到17:01:20时视频发生跳变,在此期间事故车辆驶离道路,之后为事故恢复时间。
为了描述事故发生开始到车辆离开车道全程的实际通行能力变化情况,将视频中空缺数据通过灰色预测(程序见附录)进行填补,结果如表2所示。
2013年高考理科数学全国卷1(含详细答案)

数学试卷 第1页(共48页)数学试卷 第2页(共48页)数学试卷 第3页(共48页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合20{}|2A x x x =->,{|55}B x x <<=-,则( )A .AB =R B .A B =∅C .B A ⊆D .A B ⊆ 2.若复数z 满足(34i)|43i|z -=+,则z 的虚部为( )A .4-B .45-C .4D .453.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.已知双曲线C :22221(0,0)x y a b a b-=>>的离心率为5,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±5.执行如图的程序框图,如果输入的[1,3]t ∈-,则输出的s 属于 ( )A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球 面恰好接触水面时测得水深为6cm ,如果不计容器的 厚度,则球的体积为( )A .3866πcm 3 B .3500πcm 3 C .31372πcm 3D .32048πcm 37.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=,则m =( )A .3B .4C .5D .68.某几何体的三视图如图所示,则该几何的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+9.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m =( )A .5B .6C .7D .810.已知椭圆E :22221(0)x y a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 11.已知函数22,0,()ln(1),0.x x x f x x x ⎧-+=⎨+>⎩≤若|()|f x ax ≥,则a 的取值范围是 ( )A .(,1]-∞B .(,0]-∞C .[2,1]-D .[2,0]-12.设n n n A B C △的三边长分别为n a ,n b ,n c ,n n n A B C △的面积为n S ,1,2,3,n =.若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )A .{}n S 为递增数列B .{}n S 为递减数列C .21{}n S -为递增数列,2{}n S 为递减数列D .21{}n S -为递减数列,2{}n S 为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b .若0=b c ,则t =________.14.若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a =________. 15.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________.16.设函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,在ABC △中,90ABC ∠=,3AB =,1BC =,P 为ABC △内一点,90BPC ∠=.(Ⅰ)若12PB =,求PA ; (Ⅱ)若150APB ∠=,求tan PBA ∠.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共48页)数学试卷 第5页(共48页) 数学试卷 第6页(共48页)18.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果3n =,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果4n =,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立. (Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.20.(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求||AB .21.(本小题满分12分)设函数2()f x x ax b =++,()e ()xg x cx d =+.若曲线()y f x =和曲线()y g x =都过点(0,2)P ,且在点P 处有相同的切线42y x =+.(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若2x -≥时,()()f x kg x ≤,求k 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB DC =;(Ⅱ)设圆的半径为1,3BC =,延长CE 交AB 于点F ,求BCF △外接圆的半径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程; (Ⅱ)求1C 与2C 交点的极坐标(0,02π)ρθ≥≤<.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+. (Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a ->,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围.=|2A B x{A B=R,故选【提示】根据一元二次不等式的解法,求出集合,再根据的定义求出A B和A B.【考点】并集及其运算,一元二次不等式的解法【答案】D4i)34=+,故z的虚部等于i553/ 16故选A.=,解得1)1245 / 16故选A .(2)(2+1)7!!!(+1)!m m m m m m =⨯,即13,再利用组合数的计算公式,解方程综上可知:[,0]2a∈-.(步骤4)67 / 16【提示】由1n n a a +=可知n n n A B C △的边n n B C 为定值1a ,由111112(2)2n n n n b c a b c a +++=+--及1112b c a +=得12n n b c a +=,则在n n n A B C △中边长1n n B C a =为定值,另两边n n n n A C A B 、的长度之和12n n b c a +=为定值,由此可知顶点n A 在以n n B C 、为焦点的椭圆上,根据111()2n n n n b c b c ++=---,得1111()2n n n b c b c -⎛⎫=- ⎪⎝⎭-,可知n →+∞时n n b c →,据此可判断n n n A B C △的边n n B C 的高n h 随着n 的增大而增大,再由三角形面积公式可得到答案. 【答案】2t =【解析】∵(1)c ta t b =-+,∴2(+1)||b t b ab t =-.(步骤又∵||||1a b ==,且a 与b 夹角为60,b c ⊥,∴0|cos6|||0+t a b =︒2【提示】由于0b c =,对式子(1)c ta t b =-+两边与b 作数量积可得|cos6|||0+a b ︒【考点】平面向量的数量积.85)(22,--+)(25,-+5)单调递增,在5)2-+单调递增,在9 / 161OCOA O =,所以1OAC 平面两两相互垂直.为坐标原点,OA的方向为|OA|为单位长,建立如图所示的空间直角坐标系则(1,0,BC=,11(1,BB AA==-,(0,3,AC=-设,,()n x y z=10,0,n BCn BB⎧=⎪⎨=⎪⎩即可取,1(3,n=-10cos,5||||n ACn ACn AC=-〈〉=BB1C1C所成角的正弦值为51111得1AB AC⊥;(Ⅱ)易证OA,1OA,OC两两垂直.以O为坐标原点,OA的方向为x轴的正向,||OA为单位长,建立坐标系,可得BC,1BB,AC的坐标,设,,()n x y z=10,0,n BCn BB⎧=⎪⎨=⎪⎩,可解得,1(3,n=-,n AC〈〉,即为所求正弦值.1011 / 1622)()A B ,411161616⨯+1【提示】(Ⅰ)设动圆的半径为R ,由已知动圆P 与圆M 外切并与圆N 内切,可得1212()()|+|+++4PM PN R r r R r r ==-=||,而||2NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,求出即可;(Ⅱ)设曲线C 上任意一点,()P x y ,由于||2222PM PN R ≤|-|=-,所以2R ≤,当且仅当圆P 的圆心为所以可设l :4)+(y k x =,与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【考点】圆的标准方程及其性质,椭圆的的定义及其几何性质,直线与双曲线的位置关系.21.【答案】(Ⅰ)4a =2b =2c =2d =(Ⅱ)2[1,]e【解析】(Ⅰ)由已知得(0)2f =,(0)2g =,(0)4f '=,(0)4g '=.(步骤1)而+()2f x x a =',((+))+x g x e cx d c '=,故2b =,2d =,4a =,+4d c =.(步骤2)从而4a =,2b =,2c =,2d =.(步骤3)13 / 16(Ⅱ)由(Ⅰ)知,2()+4+2f x x x =,()21)+(x g x e x =.设函数2()()()2()+142x F x kg x f x ke x x x =-=---,则()2+()2242+1(2())x x F x ke x x x ke '=--=-.由题设可得(0)0F ≥,即1k ≥(步骤4)令()0F x '=得1ln x k =-,22x -=.(步骤5)①若21k e ≤<,则120x <≤-.从而当12(),x x ∈-时,()0F x '<;当1(),+x x ∈∞时,()0F x '>.即()F x 在1()2,x -单调递减,在1(),+x ∞单调递增.故()F x 在[)2,+-∞的最小值为1()F x .(步骤6)而1111211()2+24+0)22(F x x x x x x =--=-≥-.故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤7)②若2k e =,则2222+()()()2x F e x e e x -'=-.从而当2x >-时,)0(F x '>,即F (x )在()2,+-∞单调递增.而()20F -=,故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤8)③若2k e >,则22222+220()()F ke e k e ---=-=-<-.从而当2x ≥-时,()()f kg x x ≤不可能恒成立.综上,k 的取值范围是2[1,]e .(步骤9)【提示】(Ⅰ)对()f x ,()g x 进行求导,已知在交点处有相同的切线及曲线()y f x =和曲线()y g x =都过点(0,2)P ,从而解出a ,b ,c ,d 的值;(Ⅱ)由(Ⅰ)得出()f x ,()g x 的解析式,再求出()F x 及它的导函数,通过对k 的讨论,判断出()F x 的90,由勾股定理可得,故DG 60.30,所以CF ⊥BF ,故60.从而30.得到15 / 16【提示】(Ⅰ)对于曲线1C 利用三角函数的平方关系式22sin cos 1t t +=即可得到圆1C 的普通方程;再利用极坐标与直角坐标的互化公式即可得到1C 的极坐标方程;(Ⅱ)先求出曲线2C 的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标3⎝⎦21||23|2|x x y x +-=---,画出函数y 的图象,数形结合可得结论.。
2013年高考数学全国卷1(完整版试题+答案+解析)

2013 年高考数学全国卷1(完整版试题 +答案 +解析 )2013 年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 6 页.考试时间120 分钟.满分150 分.答题前,考生务必用0.5 毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ 卷答题卡和第Ⅱ 卷答题纸规定的位置.参考公式:样本数据x1 , x2 ,x n的标准差( x1x) 2(x2x) 2( x n x)2s n其中 x 为样本平均数球的面积公式S 4 R2第Ⅰ卷(选择题共 60 分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数12i(i是虚数单位)的虚部是1 iA .31C.3 D .1 B.222. 已知R是实数集,M x 21 , N y y x 1 1 ,则N C R M xA.(1,2)B.0,2 C.D.1,23.现有 10 个数,其平均数是 4 ,且这 10 个数的平方和是 200 ,那么这个数组的标准差是A.1B.2C.3D.44.设 S n为等比数列 { a n } 的前 n 项和, 8a2a50,则S4 S2A.5B.8C.8D. 155.已知函数 f ( x)sin(2x) ,若存在a(0,) ,使得 f (x a) f (x a) 恒成立,则 a6的值是A .B .3C .4 D .626. 已知 m 、 n 表示直线, , , 表示平面,给出下列四个命题,其中真命题为( 1) m,n , nm, 则( 2) , m,n,则 nm( 3) m , m , 则 ∥( 4) m, n, mn,则A .( 1)、(2)B .(3)、( 4)C .(2)、( 3)D .(2)、( 4)7. 已知平面上不共线的四点O, A, B, C ,若 OA 3OB2OC,则| AB |等于|BC |A . 1B . 2C . 3D . 48. 已知三角形ABC 的三边长成公差为 2 的等差数列,且最大角的正弦值为3,则这个三2角形的周长是A . 18B . 21C . 24D . 159. 函数 f ( x)lg x1的零点所在的区间是xA . 0,1B . 1,10C . 10,100D . (100, )10. 过直线 yx 上一点 P 引圆 x 2y 26x 7 0 的切线,则切线长的最小值为23210 D . 2A .B .2C .2211. 已知函数 f ( x)x 2 ax 2b . 若 a,b 都是区间 0,4 内的数,则使 f (1)0 成立的概率是3B .13 5A .4C .D .48812. 已知双曲线的标准方程为x 2 y 2 1 ,F 为其右焦点, A 1 , A 2 是实轴的两端点, 设 P 为9 16双曲线上不同于A 1 , A 2 的任意一点, 直线 A 1 P, A 2 P 与直线 xa 分别交于两点 M , N , 若FM FN0 , 则 a 的值为16B .925 16A .5C .D .995第Ⅱ卷(非选择题共90分)注意事项:1.请用 0.5 毫米的黑色签字笔将每题的答案填写在第Ⅱ 卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2.不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效.3.第Ⅱ 卷共包括填空题和解答题两道大题.二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.开始13. 如图所示的程序框图输出的结果为__________.a2, i 1 否14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为__________.i 10是1a1输出 aa111第14 题图i i1结束第13题图15. 地震的震级 R 与地震释放的能量 E 的关系为R 2(lg E 11.4).2011 年 3 月 11日,日3本东海岸发生了9.0 级特大地震, 2008 年中国汶川的地震级别为8.0 级,那么 2011年地震的能量是 2008年地震能量的倍.16.给出下列命题:①已知都是正数,且a1a,则a b;1bb②已知 f ( x) 是 f ( x) 的导函数,若x R , f (x) 0 ,则 f (1) f (2)一定成立;③命题“x R ,使得x2 2 x 1 0 ”的否定是真命题;④“ x1, 且 y 1 ”是“ x y 2 ”的充要条件.其中正确命题的序号是.(把你认为正确命题的序号都填上)三、解答题:本大题共6小题,共 74 分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分 12 分)已知向量 a(1, cos x ) 与 b ( 3 sin x cos x, y) 共线,且有函数 yf ( x) .2 2 2(Ⅰ)若 f ( x) 1,求 cos(22x) 的值;3(Ⅱ)在ABC 中,角 A, B, C ,的对边分别是 a, b, c ,且满足 2a cosC c 2b ,求函数f ( B) 的取值范围 .18.(本小题满分 12 分)已知等差数列a n的前 n 项和为n ,公差d 0,且3 5 1413 成等比数列.SS S50, a , a , a(Ⅰ)求数列a n 的通项公式;(Ⅱ)设b n 是首项为 1,公比为 3 的等比数列,求数列b n 的前 n 项和 T n .a n19.(本小题满分 12 分)已知四棱锥A BCDE ,其中AB BC AC,2,CD面ABC ,BE 1CD BE∥CD,F 为 AD的中点.D(Ⅰ)求证:EF ∥面 ABC ;(Ⅱ)求证:面ADE面ACD ;F( III)求四棱锥 A BCDE 的体积.EC AB20. (本小题满分 12 分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x之间对应的一组数据:时间 x (秒)51015203040深度 y (微米)61010131617现确定的研究方案是:先从这 6 组数据中选取 2 组,用剩下的 4 组数据求线性回归方程,再对被选取的 2 组数据进行检验.(Ⅰ)求选取的 2 组数据恰好不相邻的概率;(Ⅱ)若选取的是第 2 组和第 5 组数据,根据其它 4 组数据,求得y 关于x的线性回归方程 y?4 x 139,规定由线性回归方程得到的估计数据与所选出的检验数据的误1326差均不超过 2 微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.21.(本小题满分 12 分)已知函数ax b1, f ( 1)) 的切线方程为x y 3 0 .f (x)2在点 (x1(Ⅰ)求函数 f ( x) 的解析式;(Ⅱ)设 g ( x) ln x ,求证: g (x) f ( x) 在 x [1, ) 上恒成立.22. (本小题满分14 分)实轴长为 4 3 的椭圆的中心在原点,其焦点F1,, F2在x轴上.抛物线的顶点在原点O ,对称轴为 y 轴,两曲线在第一象限内相交于点 A ,且AF1AF2,△ AF1 F2的面积为3.(Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点 A 作直线 l 分别与抛物线和椭圆交于B,C ,若 AC 2 AB ,求直线l的斜率k.yAF1 B o F2xC参考答案及评分标准一.选择题(本大题共12 小题,每小题 5 分,共 60 分.)BDBADBBDBC CB二.填空题(本大题共4 小题,每小题 4 分,共 16 分.)313. 214.1915. 10216. ①③3三.解答题17.(本小题满分 12 分)解:(Ⅰ)∵ a 与 b 共线1cos x∴xy 23 sin x cos2 2y3 sin x cosxcos 2x3sin x1(1 cos x) sin( x) 1 ⋯⋯⋯⋯ 3 分22 2226 2∴ f ( x)sin( x ) 1 1 ,即 sin(x) 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分62 2 cos(26 12x) cos2( x) 2cos 2 ( x) 1 2sin 2 ( x ) 1 33 3 62⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分(Ⅱ)已知2a cosC c2b由正弦定理得:2sin A cosC sin C2sin B 2 sin( A C )2sin A cosC sin C2sin A cosC2 cos Asin C∴ cosA1 ,∴在ABC 中 ∠ A231f (B)sin(B)26 25 ∵∠ A∴ 0 B ,B3 3 666∴1sin(B) 1, 1 f ( B) 32623∴函数f (B) 的取值范围为 (1, ]⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分10 分12 分2013 年高考数学全国卷1(完整版试题 +答案 +解析 )18.(本小题满分12 分)解:(Ⅰ)依题意得3a132d5a1455022d⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分( a13d ) 2a1 ( a112d )解得 a13,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分d2a n a1,即2n 1. 6 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( Ⅱ) bn3n1, bn a n3n1(2n 1) 3n 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分a nT n353732(2n 1) 3n 13T n 3 3 5327 33(2n 1) 3n 1(2n 1) 3n⋯⋯⋯⋯⋯⋯⋯⋯9分2T n 3 2 3 2 32 2 3n 1(2n1)3n32 3(13n 1 )( 2n 1)3n132n 3n∴ T n n 3n⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分19.(本小题满分12 分)解:(Ⅰ)取AC 中点 G,连结 FG、 BG,∵F,G分别是 AD,AC的中点D1∴FG∥ CD,且 FG= DC=1 .2∵ BE∥ CD ∴ FG 与 BE 平行且相等F∴ EF∥ BG.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分EEF 面 ABC, BG面 ABC GC ∴ EF ∥面 ABC A⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(Ⅱ)∵△ ABC 为等边三角形∴ BG⊥ AC B 又∵ DC⊥面 ABC,BG面 ABC∴ DC⊥ BG2013 年高考数学全国卷1(完整版试题 +答案 +解析 )∴ BG 垂直于面 ADC 的两条相交直线AC,DC,∴ BG⊥面 ADC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵EF∥ BG∴EF⊥面 ADC∵ EF面 ADE,∴面 ADE⊥面 ADC .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分(Ⅲ)连结 EC,该四棱锥分为两个三棱锥E-ABC和 E- ADC .V A BCDE V E ABC V E ACD131113333.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分34321264另法:取 BC 的中点为 O ,连结AO ,则 AO BC ,又 CD平面ABC ,∴CD AO, BC CD C , ∴AO平面,∴AO为V A BCDE的高,BCDEAO 3, S BCDE(12)1 3 ,V A BCDE1333.222322420.(本小题满分12 分)解:(Ⅰ)设 6 组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A,从 6组数据中选取 2 组数据共有15 种情况:( 1,2 )( 1,3 )(1,4 )( 1,5 )( 1,6 )( 2,3 )( 2,4 )( 2,5 )( 2,6 )( 3,4 )( 3,5 )( 3,6 )( 4,5)( 4,6)( 5,6),其中事件A包含的基本事件有10种.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分所以P( A)102.所以选取的 2 组数据恰好不相邻的概率是2.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分1533( Ⅱ )当 x10时, ?413921921910 |2;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分26261326当x30时, ?413937937916 |2;2626132612 分所以,该研究所得到的回归方程是可靠的.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21.(本小题满分12 分)解:(Ⅰ)将 x 1 代入切线方程得y2∴ f ( 1)b a2 ,化简得 b a 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分11f ( x)a( x21)(ax b) 2 x(1x 2 ) 22013 年高考数学全国卷1(完整版试题 +答案 +解析 )f ( 1)2a2(b a)2b b1 .442解得: a2, b2∴ f ( x)2x2x 2.12x2(Ⅱ)由已知得ln x在 [1,) 上恒成立x21化简得 ( x21) ln x2x2即 x2 ln x ln x 2 x20在 [1,) 上恒成立.设 h(x)x 2 ln x ln x 2x 2 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分6分8分h (x)2xln x x 12x1∵ x 1∴ 2x ln x0,2,即 h ( x) 0 .10 分x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯x∴ h(x) 在 [1,) 上单调递增, h( x)h(1) 0∴ g(x) f (x) 在 x[1,) 上恒成立.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分22.(本小题满分 14分)解( 1)设椭圆方程为x2y21 (a b 0) , AF1 m, AF2 n a2b2m 2n24c2由题意知m n 4 3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分mn 6解得 c 29 ,∴ b 212 9 3 .∴椭圆的方程为x 2y2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分1213∵ y A c3,∴ y A1,代入椭圆的方程得x A 2 2 ,将点 A 坐标代入得抛物线方程为x 28 y .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分( 2)设直线l的方程为y 1 k ( x 2 2 ) , B(x1, y1 ), C (x2 , y2 )---2013 年高考数学全国卷1(完整版试题 +答案 +解析 )由 AC 2AB得 x22 22( x 2 2),1化简得 2x1x222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分联立直线与抛物线的方程y1k( x 2 2),x 28 y得 x28kx162k80∴ x1 2 28k ①⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分联立直线与椭圆的方程y1k( x2 2 )x 24y 212得2)2(8 1622)32216 28 0k x k x k kk∴ x2 2 2162k 28k②⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分14k2∴ 2x1x22(8k2 2 )162k 28k2 2 2 214k 2整理得: (16k42)(112k)0 4k 2∴ k2,所以直线 l的斜率为2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 14 分44-11-/11。
历届全国大学生数学竞赛预赛历年考试

全国大学生数学竞赛预赛试卷(非数学类)2009年 第一届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,共20分)1.计算()ln(1)d d 1Dyx y x x y x y++=--⎰⎰____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足220()3()d 2f x x f x x =--⎰,则()f x =____________.3.曲面2222x z y =+-平行平面022=-+z y x 地切平面方程是__________.4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d x y________________. 二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定地正整数. 三、(15分)设函数)(x f 连续,10()()g x f xt dt =⎰,且A xx f x =→)(l i m 0,A 为常数,求()g x '并讨论)(x g '在0=x 处地连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 地正向边界,试证:(1)⎰⎰-=---Lx y Lx yx ye y xe x ye y xed d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly yx ye y xe.五、(10分)已知xxe xe y 21+=,xxexe y -+=2,xx x e e xe y --+=23是某二阶常系数线性非齐次微分方程地三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形地面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成地旋转体地体积V 最小.b5E2R 。
2013高教社杯全国大学生数学建模真题

问题2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒 葡萄进行分级。
从附件2可以得知影响酿酒葡萄的因素比较多,分析起来数据比较繁琐,为了结果 的准确性,抓住最主要的因素,之后进行分析,得到简化,从而可以更有力的说明 问题,故我们采用了主成分分析法.得到了主要因子,简化了过程,然后利用各个 所占的比例进行评分。一般情况下,我们可以采用5分制评分标准(见表1)进行 赋值,其中等级程度是相对而言的,最后得到每一个样品的分数。
1 3 5 7 9 11 13 15 17 19 21 23 25 27 样品
红葡萄酒1 红葡萄酒2
通过比较两种葡萄酒的方差,发现红葡萄酒2比较稳定
图2
标准差
红葡萄酒标准差比较
12 10 8 6 4 2 0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 样品
红葡萄酒1 红葡萄酒2
表2 主要因子
5分 5 4 3 2 1 制
因子 氨 蛋 还 PH 黄
基白原
酮
酸质糖
醇
5分制54321因子氨基酸蛋白质还原糖PH黄酮醇利用 Excel计算,画图分析可以得出:
分数 分数
红葡萄酒评分
4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1
4 3.9
1 3 5 7 9 11 13 15 17 19 21 23 25 27 样品
利用附件2、3,在每一种理化指标的数据中,有多组数据 的时候,要采用平均值,然后根据对应的含量值建立模型, 就红葡萄酒中的“单宁”为例,令葡萄酒中的含量为,酿 酒葡萄中的含量为,和取表中的平均值,建立模型,其中 是与单位、溶解度、挥发性、沸点等物理化学性质相关的 系数。利用spss软件曲线拟合得出、的值,其他物质含量 可以与此同样的方法得出关系。最后再根据酿酒葡萄与葡 萄酒各个理化指标平均值,求出其线性关系。
2013-数一真题大全及答案

2013年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)已知极限0arctan limkx x xc x →−=,其中,c k 为常数,且0c ≠,则( )(A )12,2k c ==−(B )12,2k c ==(C )13,3k c ==−(D )13,3k c ==(2)曲面2cos()0x xy yz x +++=在点(0,1,1)−处的切平面方程为( ) (A )2x y z −+=− (B )2x y z ++= (C )23x y z −+=− (D )0x y z −−=(3)设1()2f x x =−,102()sin (1,2,...)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则9()4S −=( )(A )34 (B )14(C )14−(D )34−(4)设222222221234:1,:2,:22,:22,l x y l x y l x y l x y +=+=+=+=为四条逆时针的平面曲线,记33()(2)(1,2,3,4)63ii l y x I y dx x dy i =++−=⎰,则()i MAX I =( )(A )1I (B )2I (C )3I (D )3I(5)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价(6)矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫ ⎪⎪ ⎪⎝⎭相似的充分必要条件为(A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a(D )为任意常数b a ,2=(7)设123X X X ,,是随机变量,且22123~N(0,1)~N(~(5,3)X N ,X 0,2),X ,{22}(1,2,3),j j P P X j =−≤≤=则( )(A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >>(8)设随机变量~(),~(1,),X t n Y F n 给定(00.5),a a <<常数c 满足{}P X c a >=,则2{}P Y c >=( ) (A )α (B )1α−(C )2α (D )12α−二、填空题:9−14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设函数()f x 由方程(1)x y y x e−−=确定,则1lim (()1)n n f n→∞−= .(10)已知321xxy e xe =−,22xxy e xe =−,23xy xe =−是某二阶常系数非齐次线性微分方程的3个解,该方程的通解为y = .(11)设sin sin cos x t y t t t=⎧⎨=+⎩(t 为参数),则224t d y dx π== .(12)21ln (1)xdx x +∞=+⎰.(13)设ij A (a )=是三阶非零矩阵,|A |为A 的行列式,ij A 为ij a 的代数余子式,若ij ij a A 0(i,j 1,2,3),____A +===则(14)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则{1|}P Y a Y a ≤+>=________。
2013全国大学生数学建模比赛B题-答案

2013全国大学生数学建模比赛B 题-答案2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆邮电大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2013 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要本文研究的是碎纸片的拼接复原问题。
由于人工做残片复原虽然准确度高,但有着效率低的缺点,仅由计算机处理复原,会由于各类条件的限制造成误差与错误,所以为了解决题目中给定的碎纸片复原问题,我们采用人机结合的方法建立碎纸片的计算机复原模型解决残片复原问题,并把计算机通过算法复原的结果优劣情况作为评价复原模型好坏的标准,通过人工后期的处理得到最佳结果。
面对题目中给出的BMP格式的黑白文字图片,我们使用matlab软件的图像处理功能把图像转化为矩阵形式,矩阵中的元素表示图中该位置像素的灰度值,再对元素进行二值化处理得到新的矩阵。
题目每一个附件中的碎纸片均为来自同一页的文件,所以不需考虑残片中含有未知纸张的残片以及残片中不会含有公共部分。
2013年全国高考理科数学试题及答案-全国1

绝密★启用前2013年普通高等学校招生全国统一考试(新课标I 卷)数学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的. (1)已知集合{}022>-=x x x A ,{}55B <<-=x x ,则(A )A B =ΦI (B )A B =R U (C )A B ⊆ (D )B A ⊆ (2)若复数z 满足()i 34i 43+=-z(A )4- (B )54-(C )4 (D )54 (3)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是 (A )简单的随机抽样 (B )按性别分层抽样 (C )按学段分层抽样 (D )系统抽样(4)已知双曲线C :)0,0(12222>>=-b a by a x 的离心率为25,则C 的渐近线方程为(A )x y 41±= (B )x y 31±= (C ) x y 21±= (D )x y ±= (5)执行右面的程序框图,如果输入的[]31t ,-∈,则输出的s 属于 (A )[]43,- (B )[]25,- (C )[]34,- (D )[]52,-(6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6 cm ,如不计容器的厚度,则球的体积为(A )3cm 3500π (B )3cm 3866π (C )3cm 31372π (D )3cm 32048π(7)设等差数列{}n a 的前n 项和为n S ,若21-=-m S ,0=m S ,31=+m S ,则=m(A )3 (B )4 (C )5 (D )6 (8)某几何体的三视图如图所示,则该几何体的体积为 (A )8π16+ (B )8π8+ (C )π6116+ (D )16π8+(9)设m 为正整数,()my x 2+展开式的二项式系数的最大值为a ,()12++m y x 展开式的二项式系数的最大值为b ,若b a 713=,则m =(A )5 (B )6 (C )7 (D )8(10)已知椭圆E :)0(12222>>=+b a by a x 的右焦点为)03(,F ,过点F 的直线交椭圆E 于A 、B 两点。
2013年全国数学竞赛试题详细参考答案

(第3题)一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)1.已知实数x y ,满足 42424233y y x x -=+=,,则444y x+的值为( ).(A )7 (B )12+ (C )72+ (D )5 【答】(A )解:因为20x >,2y ≥0,由已知条件得21x ==2y ==, 所以444y x +=22233y x ++- 2226y x=-+=7. 另解:由已知得:2222222()()30()30x xy y ⎧-+--=⎪⎨⎪+-=⎩,显然222y x -≠,以222,y x -为根的一元二次方程为230t t +-=,所以 222222()1,()3y y x x-+=--⨯=- 故444y x +=22222222[()]2()(1)2(3)7y y x x-+-⨯-⨯=--⨯-= 2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( ).(A )512 (B )49 (C )1736(D )12【答】(C )解:基本事件总数有6×6=36,即可以得到36个二次函数. 由题意知∆=24m n ->0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P =. 3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( ).(A )6条 (B ) 8条 (C )10条 (D )E12条【答】(B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4.已知AB 是半径为1的圆O 的一条弦,且1AB a =<.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为( ). (A(B )1 (C (D )a 【答】(B )解:如图,连接OE ,OA ,OB . 设D α∠=,则 120ECA EAC α∠=︒-=∠.又因为()1160180222ABO ABD α∠=∠=︒+︒-120α=︒-,所以ACE △≌ABO △,于是1AE OA ==. 另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 作⊙B ,因为AB =BC =BD ,则点A ,C ,D 都在⊙B 上,由11603022F EDA CBA ∠=∠=∠=⨯︒=︒所以2301AE EF sim F sim =⨯∠=⨯︒=5.将1,2,3,4,5三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).(A )2种 (B )3种 (C )4种 (D )5种 【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要(第4题)(第8题)接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件: 2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1. 二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,,解得,0a >,或1a <-.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则 s y x =-66. ① 每隔3分钟从迎面驶来一辆18路公交车,则s y x =+33. ② 由①,②可得 x s 4=,所以4=xs. 即18路公交车总站发车间隔的时间是4分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 . 【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB . 又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,所以 12FN MN AB ==. 因此 1122FC FN NC AB AC =+=+=9.(第8题答案)(第9题答案)另解:如图,过点C 作AD 的平行线交BA 的延长线为E ,延长MF 交 AE 于点N.则E BAD DAC ACE ∠=∠=∠=∠所以11AE AC ==. 又//FN CE ,所以四边形CENF 是等腰梯形, 即11(711)922CF EN BE ===⨯+=9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为 .【答】163. 解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r , BC 边上的高为a h ,则11()22a ABC ah S abc r ==++△, 所以a r ah a b c=++. 因为△ADE ∽△ABC ,所以它们对应线段成比例,因此a a h r DEh BC-=, 所以 (1)(1)a a a h r r a DE a a a h h a b c -=⋅=-=-++()a b c a b c+=++, 故 879168793DE ⨯+==++().另解:ABC S rp ∆===(这里2a b cp ++=)所以12r ==2ABC a S h a ===△ 由△ADE ∽△ABC ,得23a a h r DE BC h -===, 即21633DE BC === 10.关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213⨯, 其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<.所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.于是62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;,因此 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,另解:因为222(104)(104)210421632x y -++=⨯= 则有2(104)21632,y +≤ 又y 正整数,所以 143y ≤≤令22|104|,|104|,21632a x b y a b =-=++= 则 因为任何完全平方数的个位数为:1,4,5,6,9由2221632a b +=知22,a b 的个位数只能是1和1或6和6; 当22,a b 的个位数是1和1时,则,a b 的个位数字可以为1或9但个位数为1和9的数的平方数的十位数字为偶数,与22a b +的十位数字为3矛盾。
全国大学生数学竞赛赛试题(1-9届)

一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(__ ,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(yy f e xe=确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy_____.二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 25d d π⎰≥--L y y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u xn n n, 且n eu n =)1(, 求函数项级数∑∞=1)(n n x u 之和. 八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.一、(25分,每小题5分) (1)设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭。
2013全国大学生数学建模竞赛A题参考答案

2013全国大学生数学建模竞赛A题参考答案第一篇:2013全国大学生数学建模竞赛A题参考答案2013高教社杯全国大学生数学建模竞赛A题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
本题的难点在于通过视频资料获得车流数据,并以此为基础建立数学模型,分析部分车道被占用后,道路拥塞程度与上游来车量的关系。
评阅时请关注如下方面:建模的准备工作(视频中车流数据的提取,包括视频缺失及错误的处理),模型的建立、求解和分析方法,结果的表述,模型的合理性分析及其模型的拓广。
问题1.1.1.道路被占用后,实际的通行能力需要通过视频中的车流数据得到,不能仅由交通道路设计标准估计;1.2.应该根据视频信息给出不同时段、不同情况下车流量的变化,需要给出通行能力的计算方法、理由的陈述或分析;1.3.在被占用道路没有车辆排队时,通行能力等同于单车道情形,但当被占用道路有车辆排队时,由于被占用道路车辆的变道抢行,会使道路的通行能力下降,好的结果应该明确指出这一点。
问题2.2.1.对于视频2 的分析同视频1,需要通过视频2与视频1的数据对比给出通行能力的差异及原因分析;2.2.由于事故横断面下游交通流方向需求不同,会导致上游每条车道分配到的车辆数不同,使两种情况事故所处道路横断面形成多车道排队的机率不同,从而影响实际通行能力。
如果在模型中注意到这一点则更好。
问题3.3.1.建立数学模型,给出交通事故所引起的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系;3.2.模型的形式可以多样,但需要包含上述各种因素。
关键考察模型假设的合理性、参数确定的原则、及模型的可计算性。
问题 4.4.1.本问题是问题1 及问题 3 的扩展,可利用问题1 得到的通行能力及问题3 的模型计算结果;4.2.和问题1、3不同,当事故横断面离红绿灯路口较近时,司机无充分时间调整车道,会增大多车道占用情形,影响通行能力,模型计算中应考虑这一点;4.3.附件中给出了上游路口信号灯的控制方案,会影响上游来车的流量分布,如果学生能够利用附件给出上游路口信号灯配时方案和交通组织方案则更好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国大学生数学竞赛练习题(一)
1.(第一届全国大学生数学竞赛初赛题)求极限2lim ()0
e x x nx e e e x n x +++→ 2.(第二届初赛题)设22(1)(1)...(1),n n x a a a =+++其中1a <,求lim n n x →∞
. 3.(第一届决赛题)设()f x 在1x =点附近有定义,且在1x =
点可导,(1)0,(1)2f f '==,求220(sin cos )lim tan x f x x x x x
→++. 4.(第二届决赛题)设函数f(x)在x=0的某邻域内具有二阶连续导数, 且()(0),0,(0)f f f '''均不为0,证明:存在唯一一组实数123,,k k k ,使得 ()()()()1232
0230lim 0h k f h k f h k f h f h →++-=。
5.设()f x 在0x =的某邻域内有二阶导数, 且1
0()lim 13x x f x x x →⎡
⎤++=⎢⎥⎣⎦
,试求(0)f ,(0)f ',(0)f '' 6. (1)若函数()f x 在x 附近有连续的二阶导数,
且()0f x ''≠,则∃θ由中值定理,,使得:0
()=()(),lim ;h f x h f x hf x h →'+++θθ求 (2)若函数()f x 在x 附近有连续的非零n+1阶导数, 则0n ∃θ≠,使得:()()=()()+(),!n n n h f x h f x hf x f x h n θ'+++
+0lim n h θ→求。
7.()lim[lim cos (!)]n m n f x m x π→∞→∞=求函数
(x R ∈)的表达式
8. (刘丛志题)
当0x →时,估计无穷小量()f x 关于x 的阶.
9.求()lim (1)(0)k k n n n k →∞+-> 10.(刘丛志题)设
()lim 20131n n
n n αββ=→∞--,求,αβ的值。
11. (刘丛志题)求lim sin n ⎛
⎝→∞
12.证明:lim sin n n →∞∃ 13.0110,0,(),lim 2n n
n n n
a a
a a a a a +→∞>>=+设求 14.设(1n n a
b =+,其中,n n a b 为正整数,求lim
n n n a b →∞. 15.(1)证明:(斯托尔兹定理) 12n +++lim lim n n n a a a a a a n
→∞→∞=若=,则 (2)设11(0,1),(1)n n n x x x x +∈=-,试利用斯托尔兹定理证明lim 1n n nx →∞=
(3)(第三届初赛题)若存在正整数p ,使得lim )n p n n a a λ+→∞-=(,试利用斯托尔兹定理证明lim n n a n p λ→∞=。