高效液相色谱仪常识

合集下载

高效液相色谱仪的使用注意事项

高效液相色谱仪的使用注意事项

高效液相色谱仪的使用注意事项
1.使用前须确定操作者是否具有色谱仪操作资格,如未具有资格,应在专业人士的指导下使用。

2.首次使用前,应检查仪器性能是否正常,适当调整参数,以达到最佳操作状态。

3.使用过程中,应注意仪器的安全,避免过热、过压及调节参数超出正常范围,避免仪器受损。

4.样品质控,应定期使用标准品或有关物质进行质控,确保测试精度。

5.操作时应熟练掌握仪器操作流程,以防误操作。

6.应及时更换仪器液体及耗材,以确保实验准确。

7.使用后,应将仪器关闭,安全放置,勿放在水源附近或潮湿环境中。

- 1 -。

高效液相色谱法基本知识

高效液相色谱法基本知识

10 高效液相色谱法基本知识(见第7章)u HPLC 法分类与定义正相高效液相色谱法(NP­HPLC )——固定相极性大于流动相极性。

常用色谱柱有硅 胶柱、氰基柱、氨基柱;流动相为烷烃加适量极性溶剂,如正己烷­异丙醇、正己烷­乙醇等。

主要用于分离溶于有机溶剂的极性至中等极性的分子型化合物,如维生素 A 、维生素D 、维 生素 K 1 的含量测定。

反相高效液相色谱法(RP­HPLC )——流动相极性大于固定相极性。

常用色谱柱为十 八烷基硅烷键合硅胶(ODS )柱;流动相主要成分为甲醇­水或乙腈­水(添加适量酸或缓冲 盐),用于大多数非极性、弱极性药物的分离分析。

v 系统适用性试验内容与要求理论板数(n )=16(t R /W ) 2 或 n =5.54(t R /W h /2) 2 ,计算 n 时应指明测定物质。

当 测定结果有异议时,应以峰宽(W )计算结果为准。

分离度(R ) W W t t R R 2 1 )( 2 1 2 + - = 或 ) ( 70 . 1 ) ( 2 2 / , 2 2 / , 1 1 2 h h R R W W t t R + - = ,一般要求待测组分与相邻共存物之间的 R 应大于 1.5。

当测定结果有异议时,应以峰宽(W )计算结果为准。

重复性:用于评价连续进样中,色谱系统响应值的重复性能。

取同一溶液连续进样 5 次,其峰面积的相对标准偏差(RSD )应不大于 2.0%。

拖尾因子(T ) 105 . 0 2d W h = ,峰高法定量时 T 应在 0.95~1.05 之间。

w 测定方法内标法:按规定,取被测物对照品和内标物质一定量,混合,配制成校正因子测定用的 对照溶液,注入高效液相色谱仪,记录色谱峰面积。

根据对照溶液色谱图中对照品和内标物 质的峰面积或峰高,以及对照品和内标物的浓度,按下式计算校正因子(f ):对对 内内 C A C A f / / = 另取被测物适量,加一定量内标溶液,混合,制成供试品溶液,注入高效液相色谱仪, 记录色谱峰面积。

高效液相色谱操作知识

高效液相色谱操作知识

高效液相色谱操作知识(一)高压恒流泵的维护注意事项泵的密封圈是最易磨损的部件,密封圈的损坏可引起系统的许多故障,要注意保养和定期更换。

应采取下列措施以延长使用寿命:绝对不允许在没有流动相的或流动相还没有进入泵头的情况下启动泵而造成柱塞杆的干磨。

每天使用后应将整个系统管路中的缓冲液体冲洗干净,防止盐沉积,整个管路要浸在无缓冲的溶液或有机溶剂中。

长期不用也要定期开泵冲洗整个管路。

要用HPLC级试剂输液管前端要用烧结不锈钢沉子过滤流动相。

要注意防止管路阻塞造成压力过高而损坏仪器。

压力下限应设置在0.5~1MPa,以防止储液器中的流动相被抽干或严重渗漏而引起柱塞的干磨有柱后清洗功能的高压恒流泵还要注意保持清洗液,否则将失去柱后清洗效果。

(二)流动相使用的注意事项必须使用HPLC级或相当于该级别的流动相,并要先经0.45?m薄膜过滤。

过滤后的流动相必须经过充分脱气,以除去其中溶解的气体(如02),如不脱气易产生气泡,增加基线噪声,造成灵敏度下降,甚至无法分析。

几种脱气方法比较:1、氦气脱气法:利用液体中氦气的溶解度比空气低,连续吹氦脱气,效果较好但成本高。

2、加热回流法:效果较好,但操作复杂,且有毒性挥发污染。

3、抽真空脱气法:易抽走有机相4、超声脱气法:一种较为常见的脱气法。

流动相放在超声波容器中,用超声波震荡10~15 分钟,此法效果并不太好但操作简单。

如果管路中使用peek树脂部件,请不要使用下列流动相:浓硫酸、浓硝酸、二氯乙酸、丙酮、四氢呋喃、二氯甲烷、氯仿和二甲基亚砜特别注意HPLC使用过后的系统清洗:含有缓冲盐溶液的流动相的清洗方法:1、先用100%的纯水冲洗,打开排放阀,用3~5ml/min的流量,洗二十分钟左右后停泵。

此举主要是针对吸液系统、泵头、进出口单向阀等体积较大的空间的清洗2、再用5:95的甲醇/水清洗整个系统,关闭排放阀,用1ml/min的流量,洗30~60分钟后停泵。

此举主要是用水清洗整个系统中的盐,用5%的甲醇主要是为了保护色谱柱。

高效液相色谱知识收藏

高效液相色谱知识收藏

高效液相色谱知识收藏1. 分离原理:HPLC利用固定在填料中的固定相和流动相(溶剂)之间的相互作用来分离混合物中的化合物。

固定相通常是多孔填料,而流动相则是溶解样品混合物的溶剂。

在流动相的作用下,样品中的化合物会以不同速率通过固定相,从而实现分离。

2. 设备组成:HPLC主要由溶剂输送系统、样品进样器、固定相柱和检测器组成。

溶剂输送系统用于向柱中输送流动相,样品进样器用于将样品注入HPLC系统,固定相柱用于实现化合物的分离,检测器用于检测分离出的化合物。

3. 应用领域:HPLC广泛应用于药物分析、环境监测、食品安全、生命科学研究等领域。

它可以用于分离和测定各种化合物,包括药物、天然产物、食品添加剂等。

4. 操作要点:在进行HPLC分析时,需要注意溶剂的选择、固定相柱的条件、检测器的调试等细节。

同时,样品的预处理和进样器的设定也会影响分析结果的准确性和稳定性。

5. 数据分析:HPLC分析通常会生成大量的数据,包括色谱图谱、保留时间、峰面积等。

对这些数据进行分析和解释是HPLC分析的关键步骤,可以借助数据处理软件进行数据分析和处理。

总的来说,HPLC是一种高效、准确的分析技术,可广泛应用于化学、生物和医药领域。

了解HPLC的基本原理和操作要点,可以有效提高样品分析的准确性和效率。

HPLC是一种高效、准确的分析技术,可广泛应用于化学、生物和医药领域。

了解HPLC的基本原理和操作要点,可以有效提高样品分析的准确性和效率。

在HPLC分析中,固定相柱是至关重要的部分,不同的固定相柱适用于不同的样品类型和分离要求。

以下是一些常见的固定相类型:1. 反相色谱柱:反相色谱利用极性差异来进行化合物的分离,通常用于水溶性化合物的分离。

反相色谱柱的填料通常是非极性的,比如碳链分子。

常见的反相色谱柱填料包括C18、C8、C4等,它们的碳链长度不同,可以实现对不同极性化合物的分离。

2. 正相色谱柱:正相色谱是基于化合物在极性填料上的分离,适用于非极性化合物的分离。

高效液相色谱法知识汇总大全集(最新最值得收藏的资料整理)

高效液相色谱法知识汇总大全集(最新最值得收藏的资料整理)

高效液相色谱法知识汇总大全集(最新最值得收藏的资料整理)HPLC应用一、样品测定1.流动相比例调整:由于我国药品标准中没有规定柱的长度及填料的粒度,因此每次新开检新品种时几乎都须调整流动相(按经验,主峰一般应调至保留时间为6~15分钟为宜)。

所以建议第一次检验时请少配流动相,以免浪费。

弱电解质的流动相其重现性更不容易达到,请注意充分平衡柱。

2.样品配制:①溶剂;②容器:塑料容器常含有高沸点的增塑剂,可能释放到样品液中造成污染,而且还会吸留某些药物,引起分析误差。

某些药物特别是碱性药物会被玻璃容器表面吸附,影响样品中药物的定量回收,因此必要时应将玻璃容器进行硅烷化处理。

3.记录时间:第一次测定时,应先将空白溶剂、对照品溶液及供试品溶液各进一针,并尽量收集较长时间的图谱(如30分钟以上),以便确定样品中被分析组分峰的位置、分离度、理论板数及是否还有杂质峰在较长时间内才洗脱出来,确定是否会影响主峰的测定。

4.进样量:药品标准中常标明注入10ml,而目前多数HPLC系统采用定量环(10ml、20ml 和50ml),因此应注意进样量是否一致。

(可改变样液浓度)5.计算:由于有些对照品标示含量的方式与样品标示量不同,有些是复合盐、有些含水量不同、有些是盐基不同或有些是采用有效部位标示,检验时请注意。

6.仪器的使用:①流动相滤过后,注意观察有无肉眼能看到的微粒、纤维。

有请重新滤过。

②柱在线时,增加流速应以0.1ml/min的增量逐步进行,一般不超过1ml/min,反之亦然。

否则会使柱床下塌,叉峰。

柱不线时,要加快流速也需以每次0.5ml/min的速率递增上去(或下来),勿急升(降),以免泵损坏。

③安装柱时,请注意流向,接口处不要留有空隙。

④样品液请注意滤过(注射液可不需滤过)后进样,注意样品溶剂的挥发性。

⑤测定完毕请用水冲柱1小时,甲醇30分钟。

如果第二天仍使用,可用水以低流速(0.1~0.3ml/min)冲洗过夜(注意水要够量),不须冲洗甲醇。

分享高效液相色谱基础知识详解!

分享高效液相色谱基础知识详解!

分享高效液相色谱基础知识详解!食品实验室服务♚高效液相色谱法概述高效液相色谱法(HPLC)是上个世纪七十年代迅速发展起来的一项高效、快速的分析分离技术,是现代分离测试的重要手段。

色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(station phase)发生作用(吸附、分配、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。

又称为色层法、层析法。

HPLC是在经典的液相色谱法基础上发展起来的,其以液体作为流动相,并采用颗粒极细的高效固定相的柱色谱分离技术。

其分离机制与常规柱色谱相同,但填料更加精细,需高压泵推动,柱效高,分析速度快。

与气相色谱不同的是液相色谱中流动相亦参与组分的分离过程,其组成、比例和pH值可灵活调节,分离模式多样。

在实际操作中主要通过改变流动相的组成来调节样品在色谱柱的保留值和选择性,从而使不同样品得到分离。

高效液相色谱法自20世纪60年代问世以来,由于使用了高压输液泵、全多孔微粒填充柱和高灵敏度检测器,实现了对样品的高速、高效和高灵敏度的分离测定。

高效液相色谱由于吸取了经典液相色谱的研制经验,并引入微处理机技术,极大的提高了仪器的自动化水平和分析精度。

现在用微处理机控制的高效液相色谱仪,其自动化程度很高,既能控制仪器的操作参数(如溶剂梯度洗脱、流动相流量、柱温、自动进样、洗脱液收集、检测器功能等),又能对获得的色谱图进行收缩、放大、叠加,以及对保留数据和峰高、峰面积进行处理等,为色谱分析工作者提供了高效率、功能齐全的分析工具。

高效液相色谱法的应用范围十分广泛,对样品的适用性广,不受分析对象挥发性和热稳定性的限制,几乎所有的化合物包括高沸点、极性、离子型化合物和大分子物质均可用高效液相色谱法分析测定,因而弥补了气相色谱法的不足。

在目前已知的有机化合物中,可用气相色谱分析的约占20% ,而80% 则需用高效液相色谱来分析。

高效液相色谱法知识汇总(全面详细)

高效液相色谱法知识汇总(全面详细)

高效液相色谱法知识汇总(全面详细)1.与气相色谱相比液相色谱的优点与气相色谱法相比,液相色谱法不受样品挥发性和热稳定性及相对分子质量的限制,只要求把样品制成溶液即可,非常适合于分离生物大分子、离子型化合物,不稳定的天然产物以及其他各种高分子化合物等。

此外,液相色谱的流动相不仅起到使样品沿色谱柱移动的作用,而且与固定相一样,与样品分子发生选择性的相互作用,这就为控制和改善分离条件提供了一个额外的可变因素。

而气相色谱法采用的流动相是惰性气体,对组分没有亲和力,仅起运载作用。

2.液相色谱特点高压、高速、高效、高灵敏度、高沸点、热不稳定有机及生化试样的高效分离分析方法。

3.高效液相相色谱仪的组成高压输液系统、进样系统、分离系统、检测系统、数据处理系统。

4.流动相使用前必须脱气常用的脱气方法有:低压脱气法(电磁搅拌、水泵抽空,可同时加热或向溶剂吹氮气)、吹氦气脱气法和超声波脱气法等。

5.梯度洗脱用两种(或多种)不同极性的溶剂,在分离过程中按一定程序连续改变流动相中溶剂的配比和极性,通过流动相中极性的变化来改变被分离组分的分离因素,以提高分离效果。

6.高压梯度(内梯度):特点是先加压后混合,将溶剂用高压泵增压以后输入色谱系统的梯度混合室,加以混合后送入色谱柱。

低压梯度(外梯度):特点是先混合后加压。

在常压下预先按一定的程序将溶剂混合后再用泵输入色谱柱。

7.进样系统要求良好的密封性,最小的死体积,最好的稳定性,进样时对色谱系统压力、流量影响较小。

8.分离系统色谱柱是实现分离的核心部件。

由柱管和固定相组成。

柱管为直型不锈钢管。

一般色谱柱长5~30cm,内径4~5mm,凝胶色谱柱内径3~12mm,而制备色谱柱内径则可达25mm。

一般淋洗溶剂在进入色谱分离柱之前,先通过前置柱。

HPLC 柱的填料颗粒粒径一般约为3~10m,填充常采用匀浆法,色谱柱的发展趋势是减小填料粒度和柱径以提高柱效。

9.检测系统用来连续监测经色谱柱分离后的流出物的组成和含量变化的装置。

高效液相色谱知识大全

高效液相色谱知识大全

高效液相色谱I.概论一、液相色谱理论发展简况色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。

又称为色层法、层析法。

色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。

后来在此基础上发展出纸色谱法、薄层色谱法、气相色谱法、液相色谱法。

液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。

高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。

它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱法(High Pressure Liquid Chromatography,HPLC)。

又因分析速度快而称为高速液相色谱法(High Speed Liquid Chromatography,HSLP)。

也称现代液相色谱。

二、HPLC的特点和优点HPLC有以下特点:高压——压力可达150~300 Kg/cm2。

色谱柱每米降压为75 Kg/cm2以上。

高速——流速为0.1~10.0 ml/min。

高效——可达5000塔板每米。

在一根柱中同时分离成份可达100种。

高灵敏度——紫外检测器灵敏度可达0.01ng。

同时消耗样品少。

HPLC与经典液相色谱相比有以下优点:速度快——通常分析一个样品在15~30 min,有些样品甚至在5 min内即可完成。

分辨率高——可选择固定相和流动相以达到最佳分离效果。

带你学习有关高效液相色谱仪的知识(标准版)

带你学习有关高效液相色谱仪的知识(标准版)

带你学习有关高效液相色谱仪的知识
新版LC-10T液相色谱仪是由LC-10Tvp 输液泵和SPD-10Tvp紫外可
变波长检测器加上进样器(手动进样阀或自动进样器)和色谱柱以及色谱数据
工作站组成。

色谱数据工作站建议采用Survey软件。

其采用数字化通信系统,超宽的动态范围,并可在电脑上对液相色谱进行反控。

可广泛应用于医药、
食品、化工、环境等众多分析领域。

高效液相色谱仪使用方法:
1、开机设定参数(检测波长、流速),更换所需流动相,检查色谱柱是否正确。

2、排液置换管路中流动相,冲洗进样阀,洗好进样针。

3、冲洗色谱柱进行平衡,其间可提前进行样品的处理,样品信息的注册。

4、平衡好以后进空白试验,排除系统污染。

5、柱子稳定好以后进样,等待运行结束(其间清洗进样针),积分计算,出具报告。

高效液相色谱仪注意事项:
1)、流动相均需色谱纯度,水用20M的去离子水。

脱气后的流动相要小心
振动尽量不引起气泡。

2)、柱子是非常脆弱的,第一次做的方法,先不要让液体过柱子。

3)、所有过柱子的液体均需严格的过滤。

4)、压力不能太大,最好不要超过2000 psi。

精品资料欢迎下载。

高效液相色谱注意事项

高效液相色谱注意事项

高效液相色谱注意事项高效液相色谱(HPLC)是一种广泛应用于各个领域的分析技术,下面是使用HPLC时需要注意的几点事项。

1. 样品准备:在进行HPLC分析前,需要仔细准备样品。

首先,确保样品是稳定的,不会在分析过程中产生降解或变化,并且准备足够的样品量以避免实验中的误差。

其次,要将样品充分溶解或悬浮于适当的溶剂中,以获得准确和可重复的分析结果。

2. 准备工作:在运行HPLC之前,需要对仪器进行一些准备工作。

首先,根据所需的分析方法,选择合适的柱和流动相,并对其进行装配。

然后,检查仪器的运行状态,如泵的压力和流量、检测器的灵敏度等,确保其正常工作。

最后,对仪器进行校准和标定,以确保分析结果的准确性和可靠性。

3. 流动相控制:在HPLC分析过程中,流动相的选择和控制非常重要。

合理选择流动相的组成和比例,以获得最佳的分离效果。

在分析过程中,要保持流动相的稳定性,避免气泡和颗粒物进入流动相中,以免影响分析结果。

4. 样品注射:样品注射是HPLC分析中关键的一步。

正确地注射样品可以避免样品在进样过程中的损失和变化,并确保准确和可重复的分析结果。

在进行样品注射时,要注意控制注射量和注射速度,以避免过量或不足的样品进入柱中。

5. 分离条件控制:为了获得最佳的分离效果,需要合理控制分离条件。

首先,选择合适的柱和流动相,以达到对于待分析物相容性和选择性的要求。

然后,根据分析方法的要求,调整流速、温度和梯度程度等参数,以优化分离效果。

6. 数据分析:在HPLC分析过程中,要准确记录和分析数据。

首先,记录样品处理、仪器参数和分析条件等操作步骤和参数。

然后,进行数据处理和结果分析,如计算峰面积、定量分析和结果比对等。

最后,对分析结果进行统计学分析,评估分析方法的准确性和可靠性。

总之,使用HPLC进行分析时,需要严格控制实验条件和仪器性能,并进行合理的样品准备和处理。

遵守上述几点注意事项,可以提高HPLC分析的效率和结果的准确性和可靠性。

高效液相色谱仪操作注意事项

高效液相色谱仪操作注意事项

高效液相色谱仪操作注意事项
流动相:
1、流动相应选用色谱纯试剂、高纯水或双蒸水,酸碱液及缓冲液需经过滤后使用,过滤时注意区分水系膜和有机系膜的使用范围,并进行超声除气处理。

2、水相流动相需经常更换(一般不超过2天),防止长菌变质。

样品:
1、采用过滤或离心方法处理样品,确保样品中不含固体颗粒;
2、用流动相或比流动相弱(若为反相柱,则极性比流动相大;若为正相柱,则极性比流动相小)的溶剂制备样品溶液,尽量用流动相制备样品液;
泵:
1、泵在使用过程中不能把气泡泵进入仪器。

2、泵自清洗液体应该应经常更换(一般为一周)。

3、仪器在长期不使用时应把泵、流动相过滤器及管路保存在有机相溶剂条件下。

进样阀:
1、使用手动进样器进样时,在进样前和进样后都需用洗针液洗净进样针针,洗针液一般选择与样品液一
致的溶剂,进样前必须用样品液清洗进样针筒3遍以上,并排除针筒中的气泡;
2、手动进样时,进样量尽量小,使用定量管定量时,进样体积应为定量管的2倍以上;
色谱柱:
1、使用前仔细阅读色谱柱附带的说明书,注意适用范围,如pH值范围、流动相类型等;
2、使用符合要求的流动相;
3、使用保护柱;
4、如所用流动相为含盐流动相,必须先用水与有机相相同比例流动相冲洗20分钟以上再换上含盐流动相反相色谱柱使用后,使用后,先用水与有机相相同比例的流动相冲洗,再用纯有机相冲洗。

5、色谱柱在不使用时,应用有机相冲洗,取下后紧密封闭两端保存;
6、不要高压冲洗柱子;
7、不要在高温下长时间使用硅胶键合相色谱柱;
8、使用过程中注意轻拿轻放。

使用高效液相色谱仪的注意事项

使用高效液相色谱仪的注意事项

使用高效液相色谱仪的注意事项
使用高效液相色谱仪的注意事项包括:
1.流动相过滤后要用超声波脱气,脱气后应该恢复到室温后使用。

2.不能用纯乙腈作为流动相,这样会使单向阀粘住而导致泵不进液。

3.使用缓冲溶液时,做完样品后应立即用去离子水冲洗管路及柱子
一小时,然后用甲醇(或甲醇水溶液)冲洗40分钟以上,以充分洗去离子。

对于柱塞杆外部,做完样品后也必须用去离子水冲洗20mL以上。

4.每次做完样品后应该用溶解样品的溶剂清洗进样器。

5.C18柱绝对不能进蛋白样品,血样、生物样品。

6.堵塞导致压力太大,按预柱→混合器中的过滤器→管路过滤器→
单向阀检查并清洗,清洗方法:①以异丙醇作溶剂冲洗;②放在异丙醇中间用超声波清洗;③用10%稀硝酸清洗。

7.气泡会致使压力不稳,重现性差,所以在使用过程中要尽量避免
产生气泡。

8.试管的洁净问题:高效液相色谱分析法是一个很灵敏的分析方法,
如果因使用不洁净的试管,便会影响试验结果的准确性。

例如,在用甲醇作溶剂来溶解样品时,所用的小试管是用橡胶塞来做盖子的,因此,在每次进样时,都有一个保留时间固定的干扰峰存在,后经证实,此干扰峰是由甲醇浸泡橡胶塞而溶下的组分所产生,换用玻璃试管后,干扰峰消除。

总之,高效液相色谱仪使用时需要注意以上问题,以保证仪器的正常运转和实验结果的准确性。

高效液相色谱知识

高效液相色谱知识

HPLC的出现不过三十多年的时间,但这种分离分析技术的发展十分迅猛,应用十分广泛。

其仪器结构和流程多种多样。

典型的高效液相色谱仪结构和流程可用下列方框图表示(See Fig.3-4)。

高效液相色谱仪一般都具备贮液器、高压泵、梯度洗提装置(用双泵)、进样器、色谱柱、检测器、恒温器、记录仪等主要部件。

高效液相色谱更适宜于分离、分析高沸点、热稳定性差、有生理活性及相对分子量比较大的
活性剂,抗氧化剂、杀虫剂、除莠剂的分析等物质的分析。

梯度洗脱
类似于GC中的程序升温。

已成为现代高效液相色谱中不可缺少的部分。

梯度洗提,就是载液中含有两种(或更多)不同极性的溶剂,在分离过程中按一定的程序连续改变载液中溶剂的配比和极性,通过载液中极性的变化来改变被分离组分的分离因素,以提高分离效果。

梯度洗提可以分为两种:
a.低压梯度(也叫外梯度):在常压下,预先按一定程序将两种或多种不同极性的溶剂混合后,再用一台高压泵输入色谱柱。

b.高压梯度( 或称内梯度系统) :利用两台高压输液泵,将两种不同极性的溶剂按设定的比例送入梯度混合室,混合后,进入色谱柱。

色谱柱
色谱柱是色谱仪最重要的部件(心脏)。

通常用厚壁玻璃管或内壁抛光的不锈钢管制作的,对于一些有腐蚀性的样品且要求耐高压时,可用铜管、铝管或聚四氟乙烯管。

柱子内径一般为1~6 mm。

常用的标准柱型是内径为4.6 或3.9mm ,长度为15 ~30cm 的直形不锈钢柱。

填料颗粒度5 ~10μm ,柱效以理论塔板数计大约7000 ~10000。

发展趋势是减小填料粒度和柱径以提高柱效。

高效液相色谱基本常识

高效液相色谱基本常识

被分离组分在柱中的洗脱原理Ⅱ基本概念和理论一、基本概念和术语1.色谱图和峰参数⊕色谱图(chromatogram)--样品流经色谱柱和检测器,所得到的信号-时间曲线,又称色谱流出曲线(elution profile).⊕基线(base line)--流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。

一般应平行于时间轴。

⊕噪音(noise)――基线信号的波动。

通常因电源接触不良或瞬时过载、检测器不稳定、流动相含有气泡或色谱柱被污染所致。

⊕漂移(drift)基线随时间的缓缓变化。

主要由于操作条件如电压、温度、流动相及流量的不稳定所引起,柱内的污染物或固定相不断被洗脱下来也会产生漂移。

⊕色谱峰(peak)--组分流经检测器时相应的连续信号产生的曲线。

流出曲线上的突起部分。

正常色谱峰近似于对称性正态分布曲线(高斯Gauss曲线)。

不对称色谱峰有两种:前延峰(leading peak)和脱尾峰(tailing peak ).前者少见。

⊕拖尾因子(tailing factor,T)--T=B/A,用以衡量色谱峰的对称性。

也称为对称因子(symmetry factor)或不对称因子(asymmetry factor)《中国药典》规定T应为0.95~1.05。

T<0.95为前延峰,T>1.05为拖尾峰。

⊕峰底――基线上峰的起点至终点的距离。

⊕峰高(Peak height,h)――峰的最高点至峰底的距离。

⊕峰宽(peak width,W)--峰两侧拐点处所作两条切线与基线的两个交点间的距离。

W=4σ。

⊕半峰宽(peak width at half-height,Wh/2)--峰高一半处的峰宽。

W h/2=2.355σ。

⊕标准偏差(standard deviation, σ)--正态分布曲线x=±1时(拐点)的峰宽之半。

正常峰宽的拐点在峰高的0.607倍处。

标准偏差的大小说明组分在流出色谱柱过程中的分散程度。

高效液相色谱仪使用中应注意的几个问题

高效液相色谱仪使用中应注意的几个问题

高效液相色谱仪使用中应注意的几个问题
使用高效液相色谱仪时,需要注意以下几个问题:
1. 柱温控制:高效液相色谱仪通常需要在一定的温度下进行分析。

因此,使用过程中需要确保柱温控制系统稳定,并按照要求设置适当的柱温。

2. 流速控制:在使用高效液相色谱仪时,需要准确控制流速以保证分离效果。

不同的分析条件有不同的最佳流速范围,因此在实验前要进行流速校正并按需调节。

3. 样品准备:样品准备是影响分析结果的重要环节。

首先需要确保样品充分溶解,可以使用适当的溶剂和溶解条件。

其次,在样品准备过程中要注意避免造成杂质的污染。

4. 柱的选择和保养:根据分析目标,要选择适合的色谱柱。

不同的柱具有不同的分离能力和选择性,因此要根据样品特性选择适合的柱。

同时,注意柱的保养和更换周期,定期进行柱的清洗和调整。

5. 检测器选择和参数设置:高效液相色谱仪通常配备有不同类型的检测器,如紫外检测器、荧光检测器等。

根据分析目标选择合适的检测器,并设置合理的检测参数。

6. 质量控制和数据分析:使用高效液相色谱仪分析时,要注意进行质量控制以确保分析结果的准确性和可靠性。

此外,对于分析数据要进行合理的统计和分析,以得出有意义的结论。

这些问题都是在使用高效液相色谱仪时需要注意的关键点,正确操作和维护设备可以提高分析的准确性和可靠性。

高效液相色谱知识

高效液相色谱知识

根据GB15346-94《化学试剂包装及标志》,化学试剂按照门类分为三种:通用试剂、基准试剂(深绿色)和生物染色剂(玫红色)。

通用试剂按纯度分为三个等级:优级纯(CR深绿色)、分析纯(AR金光红色)和化学纯(CP中蓝色)。

我们所说的化学试剂一般是指通用试剂。

优级纯试剂纯度很高,用于精确的分析研究工作。

分析纯试剂纯度较高,用于一般的分析及研究。

化学纯试剂纯度较差,用于工业分析及化学试验。

除上述三个等级外,还有各种专门用途的高纯试剂,比如:光谱纯、色谱纯、电子纯等;纯度更低的则有实验试剂(LR)、工业纯等。

应根据分析任务、分析方法、对分析结果准确度的要求等,选用不同等级的化学试剂,但不应选用低于分析纯的试剂。

Agilent1100高压液相色谱仪基本操作步骤Agilent1100液相基本操作步骤Agilent1100高压液相色谱仪维护保养知识保养事项:高压液相色谱HPLC常见故障及排除方法液相色谱柱使用及保养高压液相色谱HPLC培训教程(一)高压液相色谱HPLC培训教程(七)高效液相色谱仪中反相HPLC柱子的清洁和再生HPLC对流动相的基本要求高效液相色谱Waters 600E-2487 HPLC系统SOPWaters高效液相色谱系统操作规程高效液相色谱仪(Agilent 1100)操作注意事项色谱扫盲班Agilent1100高压液相色谱仪基本操作步骤Agilent1100液相基本操作步骤(一)、开机:1、打开计算机,进入Windows NT (或Windows 2000)画面,并运行Bootp Server程序。

2、打开1100 LC 各模块电源。

3、待各模块自检完成后,双击Instrument 1 Online图标,化学工作站自动与1100LC通讯,进入的工作站画面。

4、从“View”菜单中选择“Method and Run control”画面, 单击”View”菜单中的“Show Top Toolbar”,“Show status toolbar”,“System diagram”,”S amp ling diagram”,使其命令前有“√”标志,来调用所需的界面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效液相色谱仪理论常识
被分离组分在柱中的洗脱原理
Ⅱ 基本概念和理论
一、基本概念和术语
1.色谱图和峰参数
⊕色谱图(chromatogram)--样品流经色谱柱和检测器,所得到的信号-时间曲线,又称色谱流出曲线(elution profile).
⊕基线(base line)--流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。一般应平行于时间轴。
⊕拖尾因子(tailing factor,T)--T=B/A,用以衡量色谱峰的对称性。也称为对称因子(symmetry factor)或不对称因子(asymmetry factor)《中国药典》规定T应为0.95~1.05。T<0.95为前延峰,T>1.05为拖尾峰。
⊕峰底――基线上峰的起点至终点的距离。
4.相平衡参数(distribution coefficient,K)--在一定温度下,化合物在两相间达到分配平衡时,在固定相与流动相中的浓度之比。K=[xs]/[xm]
Cs-溶质在固定相中的浓度
Cm-溶剂在流动相中的浓度
分配系数与组分、流动相和固定相的热力学性质有关,也与温度、压力有关。在不同的色谱分离机制中,K有不同的概念:吸附色谱法为吸附系数,离子交换色谱法为选择性系数(或称交换系数),凝胶色谱法为滲透参数。但一般情况可用分配系数来表示。
⊕保留时间(retention time,tR)--从进样开始到某个组分在柱后出现浓度极大值的时间。
⊕保留体积(retention volume,VR)--从进样开始到某个组分在柱后出现浓度极大值时流出溶剂的体积。又称洗脱体积。VR=F*tR .
⊕调整保留时间(adjusted retention time,tR’)--扣除死时间后的保留时间。也称折合保留时间(reduced retention time)。在实验条件(温度、固定相等)一定时,tR’只决定于组分的性质,因此,tR’(或tR)可用于定性。TR’=tR-t0
⊕噪音(noise)――基线信号的波动。通常因电源接触不良或瞬时过载、检测器不稳定、流动相含有气泡或色谱柱被污染所致。
由于操作条件如电压、温度、流动相及流量的不稳定所引起,柱内的污染物或固定相不断被洗脱下来也会产生漂移。
⊕色谱峰(peak)--组分流经检测器时相应的连续信号产生的曲线。流出曲线上的突起部分。正常色谱峰近似于对称性正态分布曲线(高斯Gauss曲线)。不对称色谱峰有两种:前延峰(leading peak)和脱尾峰(tailing peak ).前者少见。
要使两组分得到分离,必须使α≠1。α与化合物在固定相和流动相中的分配性质、柱温有关,与柱尺寸、流速、填充情况无关。从本质上来说,α的大小表示两组份在两相间的平衡分配热力学性质的差异,即分子间相互作用力的差异。
5.分离参数
⊕分离度(resolution,R)--相邻两峰的保留时间之差与平均峰宽的比值。也叫分辨率,表示相邻两峰的分离程度。R=(tR2-tR1)/[(W1+W2)/2],当W1=W2时,R=。当R=1时,称为4σ分离,两峰基本分离,裸露锋面积为95.4%,内测峰基重叠约2%。R=1.5时,称为6σ分离,裸露锋面积为99.7%。R≥1.5称为完全分离。《中国药典》规定R应大于1.5。
⊕容量因子(capacity factor,K)--化合物在两相间达到平衡时,在固定相与流动相中的量之比。K=(tR-t0)/t0=tR’/t0(或溶质在固定相中的量/溶质在流动相中的量)。因此,容量因子也称质量分配系数。
{K=Cs/Cm=K’Vm/Vs k=(tR-t0)/t0=K*Vs/Vm Vs:色谱柱中固定相的体积; Vm:色谱柱中流动相的体积。}
在条件(流动相、固定相、温度和压力等)一定,样品浓度很低时(Cs 、Cm很小)时,K只取决于组分的性质,而与浓度无关。这只是理想状态下的色谱条件,在这种条件下,得到的色谱峰为正常峰;在许多情况下,随着浓度的增大,K减少,这时色谱峰为拖尾峰;而有时随着溶质浓度的增大,K也增大,这时色谱峰为前延峰。因此,只有尽可能较少进样量,使组份在柱内浓度降低,K恒定时,才能获得正常峰。
⊕峰高(Peak height,h)――峰的最高点至峰底的距离。
⊕峰宽(peak width,W)--峰两侧拐点处所作两条切线与基线的两个交点间的距离。W=4σ。
⊕半峰宽(peak width at half-height,Wh/2)--峰高一半处的峰宽。W h/2=2.355σ。
⊕标准偏差(standard deviation, σ)--正态分布曲线x=±1时(拐点)的峰宽之半。正常峰宽的拐点在峰高的0.607倍处。标准偏差的大小说明组分在流出色谱柱过程中的分散程度。σ小,分散程度小、极点浓度高、峰形瘦、柱效高;反之,σ大,峰形胖、柱效低。
2.色谱流出曲线方程及定量参数(峰高h和峰面积A)
根据塔板理论,流出曲线可用下述正态分布方程来描述;
C=e 或 C=e
由色谱流出曲线方程可知;当t=tR时,浓度C有极大值,Cmax=.Cmax就是色谱峰的峰高。因此上式说明;①当实验条件一定时(即σ一定),峰高h与组分的量C0(进样量)成正比,所以正常峰的峰高可用于定量分析。
⊕峰面积(peak area,A)――峰与峰底所包围的面积。A=×σ×h=2.507σh=1.064Wh/2h
2.定性参数(保留值)
⊕死时间(dead time,t0)--不保留组分的保留时间。即流动相(溶剂)通过色谱柱的时间。在反相HPLC中可用苯磺酸钠来测定死时间。
⊕死体积(dead volume,V0)――由进样器进样口到检测器流动池未被固定相所占据的空间。它包括4部分:进样器至色谱柱管路体积、柱内固定相颗粒间隙(被流动相占据,Vm)、柱出口管路体积、检测器流动池体积。其中只有Vm参与色谱平衡过程,其他3部粉只起峰扩展作用。为防止峰扩展,这3部分体积应尽量减小。V0=F×t0(F为流速)
H=2λdp++\s\up5(2p+\s\up 5(2p+\s\up 5(2f
2.影响柱效的因素
1)涡流扩散(eddy diffusion).由于色谱柱内填充剂的几何结构不同,分子在色谱柱中的流速不同而引起的峰展宽。涡流扩散项A=2λdp,dp为填料直径,λ为填充不规则因子,填充越不均匀λ越大。HPLC常用填料粒度一般为3~10 um,最好3~5um,粒度分布RSD≤5%。但粒度太小难于填充均匀(λ大),且会使柱压过高。大而均匀(球形或近球形)的颗粒容易填充规则均匀,λ越小。总的说来,应采用而均匀的载体,这种有助于提高柱效。毛细管无填料,A=0。
⊕基本分离方程――分离度与三个色谱基本参数有如下关系:
R=1/4(а-1)×N0.5×[k’/(1+k’)]
其中N称为柱效项,α为柱选择项,k’为柱容量项。柱效项与色谱过程动力学特性有关,后两项与色谱过程热力学因素有关。
从基本分离方常可看出,提高分离度有三种途径:①增加塔板数。方法之一是增加柱长,但这样会延长保留时间、增加柱压。更好的方法是降低塔板高度,提高柱效。②增加选择性。当α=1时,R=0,无论柱效有多高,组分也不可能分离。一般可以采取以下措施来改变选择性:a.改变流动相的组成及PH值;b.改变柱温;c.改变固定相。③改变容量因子。这常常是提高分离度的最容易方法,可以通过调节流动相的组成来实现。k2趋于0时,R也趋于0;k2增大,R也增大。但k2 不能太大,否则不但分离时间延长,而且峰形变宽,会影响分离度和检测灵敏度。一般k2 在1~10范围内,最好为2~5,窄径柱可更小些。
容量因子与分配系数的不同点是:K取决于组分、流动相、固定相的性质及温度,而与体积Vs、Vm无关;k除了与性质及温度有关外,还与Vs、Vm有关。由于tR’、t0较Vs、Vm易于测定,所以容量因子比分配系数应用更广泛。
⊕选择性因子(selectivity factor,α)--相邻两组份的分配系数或容量因子之比。α==(设k2>k1)。因k=tR’/t0,则α=k2/k1,所以α又称为相对保留时间(《美国药典》)。
二、塔板理论
1.塔板理论的基本假设
塔板理论是Martin和Synger首先提出的色谱热力学平衡理论。它把色谱柱看作分馏塔,把组分在色谱柱内的分离过程看成在分馏塔中的分馏过程,即组分在塔板间隔内的分配平衡过程。塔板理论的基本假设为:
1)色谱柱内存在许多塔板,组分在塔板间隔(即塔板高度)内完全服从分配定律,并很快达到分配平衡。
2)样品加在第0号塔 板上,样品沿色谱柱轴方向的扩散可以忽略。
3)流动相在色谱柱内间歇式流动,每次进入一个塔 板体积。
4)在所有塔 板上分配系数相等,与组分的量无关。
虽然以上假设与实际色谱过程不符,如色谱过程是一个动态过程,很难达到分配平衡;组分沿色谱柱轴方向的扩散是不可避免的。但是塔板理论导出了色谱流出曲线方程,成功地解释了流出曲线的形状、浓度极大点的位置,能够评价色谱柱柱效。
在同一色谱条件下,样品中K值大的组份在固定相中滞留时间长,后流出色谱柱;K值小的组份则滞留时间短,先流出色谱柱。混合物中各组份的分配系数相差越大,越容易分离,因此,混合物中各组份的分配系数不同是色谱分离的前提。
在HPLC中,固定相确定后,K主要受流动相的性质影响。实践中主要靠调整流动相的组成配比及PH值,以获得组分间的分配系数差异及适宜的保留时间,达到分离的目的。
三、速率理论(又称随机模型理论)
1.液相色谱速率方程
1956年荷兰学者Van Deemter等人吸收了塔板理论的概念,并把影响塔板理论高度的动力学因素结合起来,提出了色谱过程的动力学理论――速率理论。它把色谱过程看作一个动态非平衡过程,研究过程中的动力学因素对峰展宽(即柱效)的影响。
后来Giddings和Snyder等人在Van Deemter方程(H=A+B/u+Cu,后称气相色谱速率方程)的基础上,根据液体与气体的性质差异,提出了液相色谱速率方程(即Giddings方程):
相关文档
最新文档