压力机液压系统
压力机液压系统的电气控制设计
压力机液压系统的电气控制设计压力机液压系统的电气控制设计是现代工业生产中不可或缺的一部分。
它负责对压力机的液压系统进行控制,使其能够按照预定的步骤和要求进行工作。
在实际的电气控制设计中,需要考虑到压力机液压系统的特点和要求,合理选择控制元件和控制方式,确保系统的安全可靠性和工作效率。
首先,在压力机液压系统的电气控制设计中,需要充分考虑系统的安全性。
液压系统具有高压、高温、高能量等特点,如果控制不当,容易造成安全事故。
因此,需要选用具有高可靠性的控制元件和安全保护装置,如液压阀、传感器和安全阀等,以确保系统在异常情况下能够及时停止工作,避免发生事故。
其次,在电气控制设计中,需要考虑到压力机液压系统的工作效率。
为了提高系统的工作效率,可以选用先进的变频控制技术,通过调整电动机的转速和工作负荷,达到节能的目的。
此外,还可以采用并联控制和顺序控制等技术手段,对液压系统进行集中控制,提高系统的整体工作效率。
此外,还应根据压力机的工作特点和要求,合理选择控制方式和控制元件。
对于小型压力机,可以采用手动控制,通过手动操作开启液压阀来实现液压系统的控制。
对于大型压力机,可以采用自动控制,通过PLC(可编程逻辑控制器)或DCS(分散式控制系统)等中央控制器,将系统各个部分进行集中控制和管理。
在电气控制设计中,还需要考虑到压力机液压系统的自动化程度。
随着信息技术的快速发展,压力机液压系统的自动化程度不断提高。
可以利用现代集成电路技术和传感器技术,实现压力、温度、流量等参数的自动检测和调节,提高系统的自动化程度和控制精度。
最后,在电气控制设计中,还应考虑到液压系统的维护和故障排除。
对于大型压力机液压系统,可以设置合适的远程监控和故障诊断系统,通过网络传输故障信息,及时发现和排除故障,提高系统的可靠性和可维护性。
总之,压力机液压系统的电气控制设计是一个复杂而重要的工作,需要考虑到系统的特点和要求,合理选择控制方式和控制元件,确保系统的安全可靠性和工作效率。
压力机液压系统安全操作及保养规程
压力机液压系统安全操作及保养规程压力机是一种常见的工业设备,通常被用于加工件的成形和切割。
在使用压力机时,为了提高工作效率和保护设备,必须遵守一些安全操作和保养规程。
其中液压系统是压力机最关键的部分之一,所以如何安全操作和保养液压系统将直接关系到设备的稳定运行和工作效果。
本文将介绍压力机液压系统的安全操作和保养规程,希望可以帮助压力机操作人员更好地了解和使用压力机。
液压系统安全操作液压系统是压力机最关键的部分之一,主要由油箱、液压泵、液压缸、各种管道、液压控制器等组成。
在操作液压系统之前,需了解以下几个方面的安全操作规程。
1. 熟悉设备在使用液压系统之前,要先了解压力机的结构、性能和特点,特别是与液压系统有关的部分。
这样可以更好地理解液压系统的工作原理,找出并解决一些可能出现的问题。
2. 仔细检查使用液压系统之前,需仔细检查有关部件的连接是否牢固,管道是否漏油、松动、变形等,油箱是否充足,管道中是否有空气等异常情况。
只有检查无误后,才能进行正常操作。
3. 操作规范液压系统的操作人员必须严格按照规定操作,不得随意改变或调整液压系统的各项参数。
在使用时,必须认真阅读压力机和液压系统的使用手册,了解设备的最大工作压力、最高液压油温、运行时噪音等参数。
同时,不可随意添加或更换液压油,也不可随意拆卸或修理液压系统。
4. 环境安全在液压系统运行时,周围环境必须保持安全。
在操作时,必须保护好自己的手、眼睛等敏感部位,并且不要在机器旁边玩耍或走动,以免引起意外事故。
如果有其它人员在旁观看,应该站在机器的安全距离以外,以免被弹射出来的物品打伤。
5. 关机检查与维护液压系统使用后,必须关闭所有的电源和压力源,并彻底检查整个系统的情况,确保各部件处于正常状态。
而且,还应该定期对液压系统中的液压油进行更换和检测,以确保系统的稳定和安全。
液压系统保养规程为了保证压力机的稳定运行和工作效果,液压系统的保养必不可少。
下面介绍一些关于液压系统保养的规程。
工作报告 液压压力机的液压系统分析实训报告
液压压力机的液压系统分析实训报告液压压力机的液压系统分析实训报告液压气动实验报告课程名称:液压与气动实验项目:填写下面给出的实验名称实验时间:xx-12-15、xx-12-16、xx-12-17实验组号:1组:1-10号;2组:11-20号;3组:21-30号;4组:31-40号;5组:41-实验地点:工程215实验报告中的实验过程、实验结果部分写思考题。
实验一液压泵拆装一、实验目的理解常用液压泵的结构组成及工作原理;掌握的正确拆卸、装配及安装连接方法;掌握常用液压泵维修的基本方法。
二、实验工具实习用液压泵:齿轮泵。
工具:内六方扳手,固定扳手、螺丝刀、卡簧钳等。
三、思考题1.齿轮泵由哪几部分组成?各密封腔是怎样形成?2.齿轮泵的困油现象的原因及消除措施。
3.齿轮泵中存在几种可能产生泄漏的途径?为了减小泄漏,该泵采取了什么措施?4.齿轮、轴和轴承所受的径向液压不平衡力是怎样形成的?如何解决?5.单作用叶片泵与双作用叶片泵有什么区别?实验二液压阀拆装一、实验目的1.了解方向阀、压力阀、流量阀等的结构特点;2.熟悉各阀的主要零部件;3.熟悉各种液压阀的工作原理。
二、实验器材直动式溢流阀、直动式顺序阀、先导式溢流阀、干式电磁换向阀、手动换向阀、单向阀等各种液压阀,拆装工具等。
三、实验过程1.拆开液压阀,取出各部件;2.分辨各油口,分析工作原理;3.比较各种阀的异同;4.按拆卸的相反顺序装配各阀。
四、思考题1.画图并说明直动式溢流阀的工作原理。
2.如果先导式溢流阀主阀芯阻尼孔堵塞,液压系统会出现什么故障?为什么?3.比较直动式溢流阀、直动式顺序阀的异同。
实验三液压基本回路演示一、实验目的1.了解小型基本回路实验台的构造和各元件的连接关系;2.阅读分析液压原理图;3.阅读分析各回路原理图,熟悉各回路的组合。
二、实验器材实验室小型基本回路实验台。
实验原理如下图所示。
三、实验过程1.了解小型基本回路实验台的构造;2.分析各回路原理,并与实物相对应;3.分析系统总原理图,并与实物相对应;4.启动操作,观察换向回路、调压回路、调速回路工作过程。
压力机液压系统
卸载阀芯开口泄回上位油箱, 压力逐渐降低。
– 当主缸上腔压力泄到一定值 后,阀12 回到下位,阀11关 闭,泵1 压力升高,阀14完 全打开,此时进油路:泵1 -阀6左位-阀9-主缸下腔。 回油路:主缸上腔-阀14- 上位油箱15。实现主缸快速 回程。
6、主缸原位停止
– 当主缸滑块上升至触动行程开 关1S,2Y失电,阀6 处于中位, 液控单向阀9将主缸下腔封闭, 主缸原位停止不动。泵1 输出 油液经阀6、21中位卸载。
下压时下缸活塞被迫随之下行,下缸下腔油液经节流器19 和背压阀20 回油箱, 使下缸下腔保持所需的压边压力,调整阀20 即可改变浮动压边压力。下缸上 腔则经阀21中位从油箱补油。溢流阀18 为下缸下腔安全阀。
通用液压机液压系统特点
1、系统采用高压、大流量恒功率变量泵 供油和利用上滑块自重加速、充液阀14 补 油的快速运动回路,功率利用合理。
于右位,控制油经阀8 使液控 单向阀9 开启。
▪ 进油路:泵1-阀6右位-阀
13-主缸上腔。
▪ 回油路:主缸下腔-阀9-阀
6右位-阀21中位-油箱。
▪ 主缸滑块在自重作用下迅速
下降,泵1 虽处于最大流量状 态,仍不能满足其需要,因 此主缸上腔形成负压,上位 油箱15 的油液经充液阀14 进 入主缸上腔。
4、保压 当主缸上腔压力达到预定值时,压力继电器7发信号, 使1Y失电,阀6回中位,主缸上下腔封闭,单向阀13 和充液阀 14 的锥面保证了良好的密封性,使主缸保压。保压时间由时间
继电器调整。保压期间,泵经阀6、21的中位卸载。
5、泄压,主缸回程
– 保压结束,时间继电器发出 信号,2Y 得电,阀6 处于左 位。由于主缸上腔压力很高, 液动滑阀12 处于上位,压力 油使外控顺序阀11 开启,泵 1输出油液经阀11 回油箱。 泵1 在低压下工作,此压力 不足以打开充液阀14 的主阀 芯,而是先打开该阀的卸载
液压压力机工作原理
液压压力机工作原理
液压压力机工作原理是利用液体的压力来实现机械加工或变形工作的设备。
液压压力机主要由液压系统、工作台、液压缸和控制系统等组成。
液压系统是液压压力机的核心部分,它由液压油箱、液压泵、液压阀、液压管路和液压缸等组成。
液压泵通过驱动液压油将液压系统中的液压油压入液压缸中,产生压力。
液压阀用于控制液压油的流量和压力,确保系统工作的稳定和安全。
工作台是液压压力机用于夹紧工件和传递压力的部分。
工作台一般由坚固的底座、夹具和上下滑块等组成。
工件夹紧在夹具上,通过液压缸的作用,使上下滑块进行压力传递,对工件进行加工或变形。
液压缸是液压压力机的执行元件,是将液压能转化为机械能的重要部分。
液压缸内部有活塞和密封件,并通过液压油的作用,使活塞产生往复运动,从而实现夹紧工件和施加压力的目的。
控制系统是液压压力机的智能部分,它通过传感器和电气元件等,对液压系统的各个部分进行控制和监测。
控制系统可以实现对液压泵、液压阀、液压油量的调控,以及对压力、速度、时间等参数的调整,保证液压压力机的正常运行和安全性。
总之,液压压力机工作原理是利用液压系统中的液压油压力,通过液压泵、液压阀和液压缸等设备的相互配合,实现对工件的加工或变形,从而满足不同工业领域的加工需求。
压力机的组成及工作原理
压力机的组成及工作原理压力机是一种常见的工业设备,用于对物体施加压力以实现加工、成型、压缩等工艺目的。
一般而言,压力机由以下几个主要部分组成:1. 机架:承载和支撑整个压力机的主要框架结构,通常由坚固的钢材制成。
2. 液压系统:压力机的主要动力来源,通过液压系统提供高压力的液体,驱动缸体及工作台进行运动。
液压系统包括压力油箱、液压泵、液压阀、液压缸等部件。
3. 电气控制系统:负责监控和控制压力机的运行状态以及各种动作的执行。
主要包括电控柜、电控线路、传感器等。
4. 拉杆机构:将液压系统提供的线性运动转换成压缩或拉伸力的机构。
常见的拉杆机构包括摇臂式、螺旋式、摩擦式等。
5. 工作台:用于安放待加工物体的平台,通常由坚固的钢板制成。
工作台上还可以固定模具,以实现特定的加工目的。
压力机的工作原理是利用液压系统提供的高压力液体产生大的力,通过拉杆机构将力传递给待加工物体,从而实现加工的目的。
具体工作过程如下:1. 准备阶段:打开压力机的电源,开启液压泵。
液压泵开始工作,将液压油从油箱中抽取并提供给液压系统。
电气控制系统对压力机进行监控和控制。
2. 送压阶段:将待加工的物体放置在工作台上,调整工作台的位置和方向。
通过电气控制系统控制液压泵工作,提供高压力的液压油进入液压缸。
液压油作用在液压缸的活塞上,活塞开始向外移动。
拉杆机构将活塞的直线运动转化为大的压缩或拉伸力作用在待加工物体上。
3. 加工阶段:压力机施加的力将物体进行加工,使其形成所需的形状、尺寸或压缩度。
待加工物体在压力的作用下发生形变或压缩。
4. 释放阶段:完成加工后,关闭液压泵。
液压油停止流动,液压缸的活塞停止运动。
通过手动或自动操作将工作台上的物体移除,准备进行下一轮的加工。
需要注意的是,压力机的具体结构和工作原理可能会因不同类型和用途的压力机而有所不同,以上是一般压力机的常见组成和工作原理。
压力机液压系统的组成
压力机液压系统的组成压力机液压系统是由多个组成部分构成的,主要包括以下几个组成部分:1.液压液体(HydraulicFluid):液压系统中的工作介质,通常为特定的液压油。
液压液体具有良好的黏度、抗氧化性能和耐高温性能,以确保系统正常运行和传递压力。
2.液压泵(HydraulicPump):液压系统的动力源,用于提供流体的压力和流量。
液压泵将液压液体从储液器中吸入,并通过增加压力将其推送到系统中的其他元件。
3.液压储液器(HydraulicReservoir):用于储存液压液体的容器。
液压储液器可以平衡液压系统的液位、冷却油温并吸收液体中的气体。
4.液压阀(HydraulicValves):用于控制液压系统中的压力、流量和方向的设备。
液压阀可以根据需要打开或关闭流通路径,实现液压系统中的各种功能,如压力调节、流量控制、方向控制等。
5.液压缸(HydraulicCylinder):将液压能转化为机械能的设备。
液压缸由活塞、缸体和密封件组成,根据液压系统的压力作用,使活塞在缸体内做直线运动,产生推力或拉力。
6.液压马达(HydraulicMotor):将液压能转化为旋转机械能的装置。
液压马达根据液压系统提供的液压流量和压力,在其内部产生旋转运动,从而驱动相应的机械设备。
7.液压管道(HydraulicPipework):用于输送液压液体的管道系统。
液压管道连接液压泵、阀门、缸体等液压元件,以确保液体的流通和传递。
8.过滤器和冷却器(FiltersandCoolers):用于保护液压系统免受污染和过热的设备。
过滤器可以过滤掉液压液体中的杂质和固体颗粒,保持系统的清洁。
冷却器则用于降低液压液体的温度,以防止系统过热。
以上是压力机液压系统的主要组成部分,它们相互配合,共同实现液压能的转换和传递,以完成各种工作任务。
每个组成部分都起着重要的作用,缺一不可。
液压压力机工作原理
液压压力机工作原理
液压压力机是利用液压传动原理实现的一种机械设备。
其工作原理如下:
1.液压系统:液压压力机主要由液压系统组成,液压系统由液压泵、液压站、液压缸、油管等组成。
液压泵通过输送液压油将能量转化为液压能,液压站则对液压油进行过滤、冷却和压力调节等处理。
2.液压缸:液压压力机利用液压缸产生力来实现工作。
液压缸由液压缸筒、活塞等组成。
当液压泵通过供油系统将液压油输送到液压缸中时,液压油将推动活塞产生力,将力传递给工作件。
3.强制偶合系统:液压压力机通过强制偶合系统,将液压缸产生的力传递给工作件。
强制偶合系统由输油管、阀门等组成,通过控制阀门控制液压缸的动作,使其根据需要对工作件施加相应的压力。
4.控制系统:液压压力机的工作通过控制系统实现。
控制系统由电气控制柜、控制按钮等组成。
操作人员通过控制按钮对液压压力机进行控制,包括控制液压缸的前进、后退、停止等动作。
总结起来,液压压力机的工作原理就是通过液压系统产生的液压能转化为液压缸的力,再通过强制偶合系统实现对工作件的
压力施加,最终通过控制系统对液压压力机进行控制。
液压压力机具有结构简单、工作稳定等特点,适用于各种加工场合。
浅谈2500吨压力机液压系统设计
浅谈2500吨压力机液压系统设计摘要:主要介绍碳素厂2500吨油压机液压系统的组成、工作原理及设计特点等内容。
该液压系统的研制成功,对我国碳素行业水压机、油压机的改造和推广有着重要的实际意义。
关键词:液压系统;回路;充液阀;插装阀;换向阀1、2500吨压力机简介碳素产品的应用遍布各行各业,尤其对水利、电力、冶金、航空航天等部门有着举足轻重的作用,但我国碳素厂家却存在产品进一步增长受设备落后制约的现象。
吉林碳素为建国初期前苏联援建项目,由于原水压机工艺落后、设备陈旧、使用年限过长,表现出生产能力低、生产质量不稳定、设备和材料的消耗大、劳动强度高等缺点,因此采用新型油压机液压系统取代水压机系统成为必然。
2500吨油压机液压系统为碳素厂碳棒挤压成形生产主机系统,在整个生产流程中属核心设备。
压机的生产能力、工作稳定性及设备运行可靠性对全部生产起到关键作用。
该系统具有压力高、系统流量大、控制精度高等特点。
本次设计的2500吨压力机主要包括:主机系统,同步剪切系统,的主机液压系统原理及其执行元件的动作顺序。
2、制定系统方案明确了设计任务和对资料的研究、理解后,针对2500吨压力机的几大液压系统控制回路等做出如下设计方案:(1)主缸阀组控制回路主缸工进需要有快进反行减压,主缸前进进油比例调速,压力传感。
其换向用两通插装阀控制,油缸前进速度用比例调速发实现。
(2)卡箍挡板阀组控制回路卡箍缸前进反行。
用普通三位四通电磁换向阀控制。
挡板缸和旋板缸需要保压锁紧,节流。
分别用三位四通换向阀,节流阀和液控单向阀来控制。
(3)切刀阀组控制回路需切刀缸同步前进,同步返回,而且可以随意调节油缸运动速度。
所以换向需大流量的两通插装阀换向,其速度用单项节流阀控制。
(4)同步剪切阀组小车缸需前进和反行。
用普通三位四通电磁阀控制换向。
翻版缸的前进与反行,需调节油缸动作速度。
需用普通三位四通换向阀及双单向节流阀控制。
大车缸需保压和节流功能。
小型压力机的液压系统设计说明书
毕业设计(论文)题目小型压力机的液压系统设计系别专业班级学号姓名指导教师完成时间评定成绩教务处制年月日摘要作为现代机械设备实现传动与控制的重要技术手段,液压技术在国民经济各领域得到了广泛的应用。
与其他传动控制技术相比,液压技术具有能量密度高﹑配置灵活方便﹑调速范围大﹑工作平稳且快速性好﹑易于控制并过载保护﹑易于实现自动化和机电液一体化整合﹑系统设计制造和使用维护方便等多种显著的技术优势,因而使其成为现代机械工程的基本技术构成和现代控制工程的基本技术要素。
液压压力机是压缩成型和压注成型的主要设备,适用于可塑性材料的压制工艺。
如冲压、弯曲、翻边、薄板拉伸等。
也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。
本文根据小型压力机的用途﹑特点和要求,利用液压传动的基本原理,拟定出合理的液压系统图,再经过必要的计算来确定液压系统的参数,然后按照这些参数来选用液压元件的规格和进行系统的结构设计。
小型压力机的液压系统呈长方形布置,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。
该机并设有脚踏开关,可实现半自动工艺动作的循环。
关键词:液压系统; 过载保护; 机电液一体化Hydraulic system design of small pressesABSTRACTAs one of the modern machinery equipment transmission and control important technical means, hydraulic technology in the field of national economy has been widely used. Compared with other transmission control technology, hydraulic technology has high energy density, flexible and convenient configuration, large speed range, rapid and smooth work ability, easy to be controlled and overload protection, easily realized automation and electromechanical integration ,system integration design ,easy maintenance in manufacturing operation and other significant advantages in technology , which make it become the basic technology of modern mechanical engineering and the basic technologyof modern control engineering.The hydraulic press and pressure machine is the main equipment for molding plastic injection and repressing material formation, such as stamping, bending, flanging, metal sheet drawing, etc. Also it can be engaged in the adjustment, the mounting indentation, the grinding wheel formation, the swaging metal parts formation, the plastic products and the powder products suppressed formation. This article according to the usage, characteristics and requirements of the purposes of the YB32-150 type hydraulic pressure press machine uses the basic principle of hydraulic transmission, draws up a reasonable hydraulic system and undergoes the necessary calculation to determine the parameters of hydraulic system which determine to choose hydraulic components and system structure of the specification. The hydraulic system of YB32-150 hydraulic pressure press Machine is rectangular arrangement .its' external appearance is new and original beautiful, the driving force system adopts hydraulic pressure system that makes the structure simple and compact, the action quick and reliable. This machine is equipped with the foot switch which can realize the semiautomatic craft movement circulation.Keywords: hydraulic system, overload protection, electromechanical integration目录第一章前言 (1)1.1液压传动的发展概况 (6)1.2液压传动在机械行业中的应用 (7)1.3 液压机的发展及工艺特点 (8)1.4液压系统的基本组成 (9)第二章小型压力机的液压系统原理设计 (10)2.1液压压力机的基本结构 (10)2.2 工况分析 (11)2.2.1负载循环图和速度循环图的绘制 (12)2.3拟定液压系统原理图 (13)2.3.1确定供油方式 (13)2.3.2自动补油保压回路的设计 (13)2.3.3 释压回路的设计 (14)2.4液压系统图的总体设计 (15)2.4.1主缸运动工作循环 (16)2.4.2顶出缸运动工作循环 (17)第三章液压系统的计算和元件选型 (17)3.1 确定液压缸主要参数 (17)3.1.1液压缸内径D和活塞杆直径d的确定 (18)3.1.2液压缸实际所需流量计算 (19)3.2液压元件的选择 (19)3.2.1确定液压泵规格和驱动电机功率 (19)3.2.2阀类元件及辅助元件的选择 (21)3.2.3 管道尺寸的确定 (23)3.3液压系统的验算 (26)3.3.1系统温升的验算 (26)第四章液压缸的结构设计 (28)4.1 液压缸主要尺寸的确定 (28)4.2 液压缸的结构设计 (30)第五章液压集成油路的设计 (32)5.1液压油路板的结构设计 (33)5.2液压集成块结构与设计 (34)5.2.1液压集成回路设计 (34)5.2.2液压集成块及其设计 (34)第六章液压站结构设计 (36)6.1 液压站的结构型式 (36)6.2 液压泵的安装方式 (36)6.3液压油箱的设计 (37)6.3.1 液压油箱有效容积的确定 (37)6.3.2 液压油箱的外形尺寸设计 (38)6.3.3 液压油箱的结构设计 (38)6.4液压站的结构设计 (41)6.4.1 电动机与液压泵的联接方式 (41)6.4.2 液压泵结构设计的注意事项 (41)6.4.3 电动机的选择 (42)第七章总结 (43)参考文献 (44)第一章前言1.1液压传动的发展概况液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。
液压系统(完整)介绍
液压系统(完整)介绍一、液压系统的基本概念液压系统,是一种利用液体传递压力和能量的动力传输系统。
它主要由液压泵、液压缸(或液压马达)、控制阀、油箱、油管等部件组成。
液压系统广泛应用于各类机械设备中,如挖掘机、起重机、汽车制动系统等,其优势在于结构紧凑、输出力大、操作简便。
二、液压系统的工作原理液压系统的工作原理基于帕斯卡原理,即在密闭容器内,液体受到的压力能够大小不变地向各个方向传递。
具体来说,液压系统的工作过程如下:1. 液压泵:将机械能转化为液体的压力能,为系统提供动力源。
2. 液压缸(或液压马达):将液体的压力能转化为机械能,实现直线或旋转运动。
3. 控制阀:调节液体流动方向、压力和流量,实现对液压系统的控制。
4. 油箱:储存液压油,为系统提供油源。
5. 油管:连接各液压部件,传递压力和能量。
三、液压系统的分类1. 水基液压系统:以水作为工作介质,具有环保、成本低等优点,但易腐蚀金属、密封性能较差。
4. 气液联动液压系统:以气体和液体为工作介质,结合了气压传动和液压传动的优点,适用于特殊场合。
四、液压系统的关键部件详解1. 液压泵:作为液压系统的“心脏”,液压泵负责将低压油转化为高压油,为整个系统提供动力。
常见的液压泵有齿轮泵、叶片泵和柱塞泵等。
每种泵都有其独特的特点和适用范围,选择合适的液压泵对系统的性能至关重要。
2. 液压缸:液压缸是系统的执行元件,它将液压油的压力能转化为机械能,实现直线往复运动或推送力量。
根据结构不同,液压缸可分为活塞式、柱塞式和膜片式等。
3. 控制阀:控制阀是液压系统的“大脑”,它负责调节和分配液压油流动的方向、压力和流量。
常用的控制阀包括方向阀、压力阀和流量阀等,它们共同确保系统按照预定的要求稳定运行。
4. 滤清器:液压油中的杂质会对系统造成损害,滤清器的作用就是过滤液压油中的杂质,保护系统的正常运行。
合理选择和使用滤清器,对延长液压系统寿命具有重要意义。
五、液压系统的优势与应用1. 优势:力量大:液压系统能够实现大范围的力矩放大,轻松完成重物搬运等任务。
压力机液压系统的原理
压力机液压系统的原理
压力机液压系统的原理是利用液压传动实现力量的增加和传递。
液压系统由液压泵、液压马达、液压缸、液压阀等组成。
1. 液压泵:液压泵通过机械作用将输入的机械能转换为液压能,将液体从低压区域吸入,提升压力后输出。
2. 液压马达:液压马达与液压泵相反,将液压能转换为机械能,将高压液体输入,输出机械能,驱动机械设备。
3. 液压缸:液压缸通过液体的压力将输入的液压能转换为机械能,从而实现线性运动或旋转运动。
4. 液压阀:液压阀用于控制液压系统中液体的流动方向、压力和流量等参数,实现对液压系统的控制。
在液压系统中,液压泵将液体从低压区域吸入,通过液压管路输入液压马达或液压缸,液压马达或液压缸将液体的压力转换为机械能,从而实现动力传递和力量的增大。
液压系统具有工作稳定、输送力矩大、传动效率高等优点,广泛用于各种机械设备中,如压力机、起重机、注塑机等。
100吨通用油压机的液压系统设计
100吨通用油压机的液压系统设计摘要油压机是一种以液压油为工作介质,根据帕斯卡原理制成的用于传递能量以实现各种工艺的机器。
液压机是一种锻压机械,它能完成调直、冷冲压、冷挤压等多种锻压工艺。
液压机的结构形式很多,但通常由横梁、立柱、工作台、滑块和顶出机构等部件组成。
本文为100T通用油压机液压系统设计,通过对油压机主缸及顶出缸进行工况分析,绘制其速度图和负载图。
选择液压基本回路,拟定液压系统原理图,使主缸能完成快速下行、减速压制、保压延时、泄压回程、停止的基本工作循环,顶出缸能实现顶出、退回、浮动压边的动作,之后对液压系统控制过程进行分析。
确定液压系统的主要参数,通过对压力、流量等参数的分析与计算,对泵、电机、控制阀等液压元件和辅助件进行了选择。
本次设计采用了集成块,除去与泵或液压缸等的连接仍然采用管接头和管道以外,其它各元件之间的连接都通过集成块上的通道,其结构更为紧凑,体积也相对更小,重量也更轻,大大减少管件连接,从而消除了因油管、接头引起的泄漏、振动和噪声,并且液压系统安装、调试和维护方便,压力损失小,外形美观。
另外对液压站进行了总体布局。
通过液压系统压力损失和温升的验算,本文液压系统的设计可以满足液压机工作循环的动作要求,能够实现塑性材料的成型加工工艺。
关键词油压机;液压系统;原理图;集成块;液压站The design of 100T hydraulic press hydraulicsystemAbstractHydraulic presses are machines that use liquid as working mediumand are made according to the principle of PASCAL to deliver energy to achieve various processes.Hydraulic presses are metal forming machines which can complete various forging technology such as alignment, cold forging, cold extruding and so on. Hydraulic presses have many structural forms but more often than not theyare composed ofcrossbeam,vertical post,work table, slide block and ejector parts.Thispaper is aboutthe design of 100T hydraulic press's hydraulic system, though the condition analysis of the hydraulic press's main cylinder and ejection cylinder, we can draw their velocity diagrams and load diagrams. Then we choose basic hydraulic circuit to form the hydraulic system schematics. We must make sure the main cylinder can complete the basic working cycle of fast descending, deceleration repression, time delay of press forming, relinef-pressure return and stop, and on the other hand, ejection cylinder can realize the action of ejection, return and floating side pressing. After that, we must analyse the control process of the hydraulic system. Hydraulic system's main parameters are determined and through the analysis and calculation of pressure, flow and other parameters, and then we can go on the choose hydraulic components and auxiliary parts such as pump , motor, filters, control valves.This design adopted the manifold block, and except that the connection of pump and hydraulic cylinder still uses the pipes and pipe joints, the connection of other components all through the channel of the manifold block. Its structure is morecompact, volume is relatively smaller, its weight is lighterwithout pipe connection. What's more, it can eliminate leakage of tubing, connectors, vibration and noise, also, the installation, commissioning and maintenance of hydraulic systrem are convenient, low pressure drop, and it looks more beautiful.The paper has also designed the overall layout of the hydraulic station.what is more this paper have three-dimensional graph of integrated block, hydraulic pressure station,which make it more beautiful and accessible to reader.The hydraulic system can meet the press order cycle action requires and realize the plastic material forging press, stamping cold extrusion, straightening, bending forming process and other contour machining technic through check calculation of hydraulic system pressure loss and the temperature of the hydraulic system.Key words hydraulic press;hydraulic system;system diagram; manifold block;hydraulic station目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 研究背景 (1)1.2 研究目的与意义 (1)1.2.1 研究目的 (1)1.2.2 研究意义 (2)1.3 研究内容 (2)第2章液压系统设计要求和工况分析 (3)2.1 明确对液压系统的设计要求 (3)2.2 液压系统的工况分析 (4)2.2.1 液压机主缸的工况分析 (4)2.2.2 液压机顶出缸的工况分析 (5)第3章确定液压系统主要参数 (7)3.1 确定液压缸的主要参数 (7)3.1.1初选液压缸的工作压力 (7)3.1.2 确定液压缸的主要结构尺寸 (7)3.2 计算系统所需压力 (8)3.3 系统流量的计算 (9)3.3.1 主缸流量的计算 (9)3.3.2. 顶出缸流量的计算 (10)第4章液压机液压系统原理图设计 (11)4.1 系统原理图的设计 (11)4.2 液压系统原理图的问题 (13)4.3 液压系统的工作原理 (14)第5章液压元件的选择 (17)5.1 确定液压泵及驱动电机的功率 (17)5.1.1 确定液压泵的工作压力 (17)q (17)5.1.2 确定液压泵的最大流量p5.1.3 选择液压泵的规格 (18)5.1.4 电动机的选择 (18)5.2 阀类元件及辅助元件的选择 (18)5.3 管道尺寸的确定 (20)5.4 油箱容积的确定 (20)5.5 系统温升的验算 (21)第6章液压站结构设计 (23)6.1 液压站的结构型式 (23)6.2 液压泵的安装方式 (23)6.3 液压集成油路的设计 (23)6.4 液压油箱的设计 (24)结论 (27)致谢 (28)参考文献 (29)附录 (30)第1章绪论1.1 研究背景液压传动在机械制造、冶金、工程机械、农工机械、轻工机械、航空、船舶等各个部门均有广泛应用。
大型多工位压力机的液压系统的优化设计
大型多工位压力机的液压系统的优化设计液压系统是大型多工位压力机的核心组成部分,其设计的优化对于提高压力机的工作效率和性能具有重要意义。
本文将针对大型多工位压力机的液压系统进行优化设计,以提高压力机的工作效率和性能。
一、液压系统的组成大型多工位压力机的液压系统主要由液压泵站、液压缸、阀组和管路等组成。
液压泵站负责提供压力机所需的液压动力,液压缸负责实现压力机的升降运动,阀组负责控制液压油的流入和流出,管路负责将液压油传递到各个液压缸。
二、优化设计方案1. 选用适当的液压泵站在大型多工位压力机的液压系统中,选用适当的液压泵站对于保证液压系统的工作效率和性能至关重要。
我们可以根据压力机的工作条件和要求来选择液压泵站的类型和参数,如柱塞泵、齿轮泵等,以提供足够的液压功率和压力。
2. 合理设计液压缸的尺寸和参数液压缸是大型多工位压力机的主要执行机构,其尺寸和参数的设计对于保证压力机的工作效率和性能具有重要影响。
在设计液压缸时,需考虑到液压缸所需的工作力和行程,并匹配合适的液压缸类型和参数,如活塞直径、行程长度等。
3. 合理布置阀组和管路阀组和管路在大型多工位压力机的液压系统中起到控制和传递液压油的作用,其布置的合理性对于液压系统的工作效率和性能有直接影响。
在布置阀组和管路时,需遵循最短路径和最小阻力原则,以减小液压油的压力损失和流量波动,提高液压系统的响应速度和稳定性。
4. 采用先进的液压控制技术随着科技的发展,液压控制技术也得到了迅速发展。
在大型多工位压力机的液压系统中,采用先进的液压控制技术可以提高压力机的工作效率和性能。
例如,采用比例阀或伺服阀等精确控制液压油的流量和压力,可以实现压力机的精确控制和优化调节。
5. 合理选用液压油液压油作为液压系统的工作介质,其选用的合理性对于液压系统的工作效率和寿命有重要影响。
在选择液压油时,需考虑液压系统的工作温度、工作压力和密封要求等因素,并根据压力机的工作条件和要求选用合适的液压油类型和品牌。
液压系统应用实例及分析
液压系统应用实例及分析液压系统,在工程领域中广泛应用于各种机械设备中,提供了强大的力量和可靠性。
以下是几个典型的液压系统应用实例及分析。
1. 挖掘机挖掘机是一种常见的工程机械设备,其液压系统用于提供机械臂的力量和控制。
液压马达和液压缸驱动机械臂和斗杆的伸缩和旋转运动。
液压系统的主要优势是能够提供足够的力量以应对重工作量,并且具有精确的运动控制,使得挖掘机能够精确地进行各种工作,如挖掘、装载和解体。
2. 压力机压力机是一种用于冷压和热压工艺的设备,液压系统用于提供高压力和精确的压力控制。
液压泵提供高压液体,并通过液压缸将力传递到工作台或模具上。
液压系统可根据需要调整压力和速度,实现产品的压制和形状调整。
液压系统的优势在于其高压力输出和可靠性,使得压力机能够在高负荷条件下进行长时间运行。
3. 汽车制动系统液压制动系统是汽车重要的安全设备,用于控制汽车的制动力和转向力。
制动时,驾驶员通过踩下踏板使液压油压力增加,液压力传递到制动腌盘上的刹车片。
液压制动系统的优势在于其响应速度快、可靠性高、刹车力量可调节。
此外,液压制动系统还能适应各种行驶条件和速度,保证了汽车行驶时的安全性。
4. 风力发电装置风力发电装置中的液压系统常用于调节叶片角度和旋转转速。
液压马达和液压缸用于精确地调整叶片角度,以最大化风力的捕捉效率。
液压系统还能通过调节转子的转速来保护发电机和风力机。
液压系统的主要优势是响应速度快,能够提供精确的动力控制,并且能够适应不同的风力条件,使风力发电装置能够在各种风速下高效运行。
总的来说,液压系统在工程领域中的应用非常广泛,并且在许多机械设备中都能发挥重要的作用。
液压系统具有高压力输出、精确的运动控制和可靠性等优势,能够满足不同应用需求。
随着科技的进步和工程技术的不断发展,液压系统将继续在各个领域中发挥重要的作用,并不断得到改进和创新。
液压压力机工作原理图讲解
液压压力机工作原理图讲解
液压压力机是一种利用液体(一般是油)的压力来实现加工、成型等工作的机械装置。
其工作原理主要包括以下几个部分:
1. 液压系统:液压压力机主要由液压油箱、液压泵、液压马达、液压缸等组成。
液压泵通过机械传动或电动驱动将空气泵入液压油箱内,形成一定压力的液压油。
2. 液压缸:液压缸是液压压力机的核心部件,它由活塞、活塞杆、油缸和密封装置等组成。
液压油经过液压泵的供油作用,进入液压缸内的油缸,推动活塞运动。
3. 压力传递:当液压油进入液压缸后,活塞受到压力作用而向外运动,通过活塞杆将力量传递给被压物体,使其发生变形或形成加工完成的产品。
4. 电控系统:液压压力机通常配备电控系统,通过控制液压泵的启停和方向控制阀的开关,可以实现对液压系统的控制。
电控系统还可以根据工艺要求设定压力、时间等参数,以确保加工过程的质量和稳定性。
5. 安全保护装置:液压压力机还配备了一系列的安全装置,如压力传感器、温度传感器、液位报警器等,以监测液压系统的运行状态和防止意外事故的发生。
通过液压系统的工作原理,液压压力机可以实现大功率、高精
度和连续稳定的加工过程。
它广泛应用于各种金属成型加工、塑料制品加工、橡胶制品加工等行业。
压力机每日检查机保养内容(4篇)
压力机每日检查机保养内容压力机是一种常见的机械设备,用于加工金属或其他材料。
由于其运行时需要承受较大的压力,因此每日检查和保养是非常重要的。
以下是压力机每日检查和保养的内容。
1. 润滑系统:首先需要检查润滑系统的情况。
包括润滑油的量和质量。
检查润滑油是否充足,如果不足需要添加。
同时,还要检查润滑油的质量,如果发现有杂质或变质,需要及时更换。
检查润滑系统的管路和油泵是否有漏油情况,如果有需要进行修理。
2. 液压系统:液压系统是压力机运行的关键。
每日需要检查液压系统的压力是否正常。
可以通过仪表来进行测量。
如果发现压力异常,需要及时调整。
同时,还要检查液压系统的阀门和管路是否有漏油情况,如果有需要进行修理。
3. 电气系统:压力机的电气系统是控制整个设备运行的关键。
每日需要检查电气系统的电源是否正常。
检查电源线和插头的接触是否紧固,如果发现松动需要及时处理。
还要检查电气系统的开关和按钮是否灵活,如果发现有故障需要及时更换。
检查电气控制柜内部的线路是否整齐,如果发现短路或断路的情况需要进行修理。
4. 操作系统:操作系统是用户操作压力机的界面。
每日需要检查操作系统的功能是否正常。
包括触摸屏、按键和指示灯等部件。
检查操作系统是否能够正常开机和运行,如果发现功能异常需要及时修复。
同时,还要检查操作系统的相关参数设置是否正确,如果不正确需要进行调整。
5. 安全装置:安全装置是保证人员和设备安全的重要措施。
每日需要检查安全装置的情况。
包括保护罩、光电开关、限位开关等。
检查安全装置是否完好,如果发现异常需要及时修复。
同时,还要检查安全装置的灵敏度是否正常,如果不正常需要进行调整。
6. 机械部件:机械部件是压力机的核心组成部分。
每日需要检查机械部件的磨损情况。
包括滑块、工作台、模具等部件。
检查机械部件是否有变形、断裂或磨损,如果发现问题需要及时修复或更换。
7. 清洁和卫生:每日还需要对压力机进行清洁和卫生。
清除机器表面和内部的灰尘和杂物。
伺服压力机组成
伺服压力机组成一、液压系统液压系统是伺服压力机的核心部分,它由液压泵、液压缸、液压阀、油箱和液压管路等组成。
液压泵是液压系统的动力源,它将机械能转换成液压能,提供所需的液压流量和压力。
液压缸是液压系统的执行部件,它将液压能转换成机械能,实现对工件的加工和成型。
液压阀是液压系统的控制部件,它根据工艺要求控制液压缸的运动,保证加工过程的精度和稳定性。
油箱是液压系统的储油部件,用于储存液压油并冷却油温,保证液压系统的正常工作。
液压管路是液压系统的输油部件,将液压泵提供的液压油输送到液压缸和液压阀,实现液压能的传递和控制。
二、电气控制系统电气控制系统是伺服压力机的重要组成部分,它由PLC、伺服电机、编码器、传感器和操作面板等组成。
PLC是电气控制系统的核心部件,它根据工艺要求控制液压系统的运行,实现对工件加工过程的精确控制。
伺服电机是电气控制系统的动力源,它提供所需的电动力,驱动液压系统的执行部件实现工件加工和成型。
编码器是电气控制系统的反馈部件,它实时监测伺服电机的运动位置和速度,反馈给PLC,保证加工过程的精度和稳定性。
传感器是电气控制系统的监测部件,用于监测加工过程中的压力、温度和流量等参数,反馈给PLC,保证加工过程的安全和可靠。
操作面板是电气控制系统的人机交互界面,用于操作和监控伺服压力机的运行状态,实现对加工过程的远程控制和实时监测。
三、机械结构机械结构是伺服压力机的承载部分,它由机架、上下料系统、模具和安全保护装置等组成。
机架是伺服压力机的主体部件,它承载液压系统和电气控制系统,具有足够的刚度和稳定性,保证加工过程的精确性和稳定性。
上下料系统是伺服压力机的辅助部件,它用于装卸工件和模具,保证加工过程的连续性和高效性。
模具是伺服压力机的加工部件,它根据工艺要求设计成各种形状和尺寸,用于对工件进行成型和加工。
安全保护装置是伺服压力机的安全部件,它用于监测机械结构的运行状态,保护操作人员和设备免受意外伤害。
压力机液压系统
插装阀系统具有密封性能好、通流能力大、压力损
失小、易于集成化等优点,在压力机中得到广泛应用。
华中科技大学
华中科技大学
3150KN 液压机插装阀集成系统原理
系统包括五个插装阀集成 块
F1、F2组成进油调压 回路,F1为单向阀, 用于防止系统油液倒流, F2 的压力先导阀2用来 调整系统压力,压力先 导阀1 用于限制系统最 高压力,缓冲阀3 与电 磁换向阀4配合,用于 泵卸载、升压缓冲。 F3、F4组成主缸上腔 油液三通回路,压力先 导阀6 为主缸上腔安全 阀,缓冲阀7 与电磁换 向阀8 配合,用于主缸 上腔泄压缓冲。
华中科技大学
5、泄压,主缸回程 保压结束,时间继电器发出 信号,2Y 得电,阀6 处于左 位。由于主缸上腔压力很高, 液动滑阀12 处于上位,压 力油使外控顺序阀11 开启, 泵1输出油液经阀11 回油箱。 泵1 在低压下工作,此压力 不足以打开充液阀14 的主 阀芯,而是先打开该阀的卸 载阀芯,使主缸上腔油液经 此卸载阀芯开口泄回上位油 箱,压力逐渐降低。 当主缸上腔压力泄到一定值 后,阀12 回到下位,阀11 关闭,泵1 压力升高,阀14 完全打开,此时进油路:泵 1-阀6左位-阀9-主缸下 腔。回油路:主缸上腔-阀 14-上位油箱15。实现主 缸快速回程。
通用液压机液压系统特点
1、系统采用高压、大流量恒功率变量泵供油和 利用上滑块自重加速、充液阀14 补油的快速运 动回路,功率利用合理。 2、采用背压阀10 及液控单向阀9 控制上液压缸 下腔的回油压力,既满足了主机对力和速度的要 求,又节省了能量。 3、采用单向阀13 保压,液动阀12、顺序阀11 和带卸载阀芯的液控单向阀14 组成的泄压回路, 减少了由保压到回程的液压冲击。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力机液压系统
院系:工业中心
班级:106001班
学号:100203120
姓名:王永安
压力机液压系统
(一)、压力机简介
压力机是一种结构精巧的通用性压力机。
具有用途广泛,生产效率高等特点,压力机可广泛应用于切断、冲孔、落料、弯曲、铆合和成形等工艺。
通过对金属坯件施加强大的压力使金属发生塑性变形和断裂来加工成零件。
机械压力机工作时由电动机通过三角皮带驱动大皮带轮(通常兼作飞轮),经过齿轮副和离合器带动曲柄滑块机构,使滑块和凸模直线下行.压力机是锻压、冲压、冷挤、校直、弯曲、粉末冶金、成形、打包等工艺中广泛应用的压力加工机械,是最早应用液压传动的机械之一。
压力机的类型很多,其中以四柱式液压机最为典型。
主机为三梁四柱式结构,上滑块由四柱导向、上液压缸驱动,实现“快速下行→慢速加压→保压延时→快速回程→原位停止”的动作循环。
下液压缸布置在工作台中间孔内,驱动下滑块实现“向上顶出→向下退回”或“浮动压边下行→停止→顶出”的动作循环。
压力机液压系统以压力控制为主,系统压力高,流量大,功率大,尤其要注意如何提高系统效率和防止产生液压冲击。
机械原理:压力机通常由电动机通过摩擦盘带动飞轮轮缘而使飞轮旋转,所以这种压力机又称摩擦压力机,中国最大的摩擦压力机为25兆牛。
更大规格的压力机用液压系统驱动飞轮,称为液压螺旋压力机,最大规格的有125兆牛。
后来又出现用电机直接驱动飞轮的电动压力机,它的结构紧凑,传动环节少,由于换向频繁,对控制电器要求较高,并需要特殊电机。
旋压力机无固定下死点,对较大的模锻件,可以多次打击成形,可以进行单打、连打和寸动。
打击力与工件的变形量有关,变形大时打击力小,变形小(如冷击)时打击力大。
在这些方面,它与锻锤相似。
但它的滑块速度低(约0.5米/秒,仅为锻锤的1/10),打击力通过机架封闭,故工作平稳,振动比锻锤小得多,不需要很大的基础。
压力机装有打滑保险机构,将最大打击力限制在公称压力的2倍以内,以保护设备安全。
压力机的下部都装有锻件顶出装置。
螺旋压力机兼有模锻锤、机械压力机等多种锻压机械的作用,万能性强,可用于模锻、冲裁、拉深等工艺。
此外,螺旋压力机,特别是摩擦压力机结构简单,制造容易,所以应用广泛。
螺旋压力机的缺点是生产率和机械效率较低。
(二)3150KN通用液压系统工作原理及特点
3150KN通用液压机的液压系统有两个泵,主泵1是一个高压、大流量恒功率(压力补偿)变量泵,最高工作压力由溢流阀4的远程调压阀5调压。
辅助泵2是一个低压小流量定量泵,用于供应液动阀的控制油,其压力由溢流阀3调整。
(1)启动按启动按扭,电磁铁全部处于失电状态,主泵1输出的油经三位四通电液换向阀6中位及阀21中位流回油箱,空载启动。
(2)上缸快速下行电磁铁1Y、5Y得电,阀6换至右位,控制油经阀8右位使液控单向阀9打开。
进油路:泵1→换向阀6右位→单向阀13→上缸16上腔。
回油路:上缸16下腔→液控单向阀9→换向阀6右位→换向阀21中位→油箱。
上缸滑块在自重作用下迅速下降,泵1虽处于最大流量状态,仍不能满足其需要,因而上缸上腔形成负压,上部油箱15的油液经液控单向阀14(充液阀)进入上缸上腔。
(3)上缸慢速接近工件,加压当上缸滑块降至一定位置触动行程开关2S后,电磁铁5Y失电,阀8处于原位,液控单向阀9关闭。
上缸下空油液经背压阀10、阀6右位、阀21中位回油箱。
这时,上缸上腔压力升高,充液阀14关闭。
上缸在泵1供给的压力油作用下慢速接近工件。
当上缸滑块接触工件后,阻力急剧增加,上腔压力进一步提高,泵1的输出流量自动减小。
(4)保压当上缸上腔压力达到预定值时,压力继电器7发出信号,使电磁铁1Y失电,阀6回中位,上缸的上、下腔封闭,单向阀13和充液阀14的锥面保证了上缸上腔良好的密封性,使上缸上腔保压,保压时间由压力继电器7控制的时间继电器调整。
保压期间,泵1经阀6、阀21的中位卸载。
(5)泄压,上缸回程保压过程结束,时间继电器发出信号,电磁铁2Y得电,阀6换至左位。
由于上缸上腔压力很高,液动滑阀12处于上位,压力油经阀6左位及阀12上位使外控顺序阀11开启。
此时泵1输出油液经顺序阀11回油箱。
泵1在低压下工作,此压力
不足以打开充液阀14的主阀芯,而是先打开阀14中的卸载芯,使上缸上腔油液经此卸载阀芯开口泄回上部油箱15,压力逐渐降低。
当上缸上腔压力泄至一定值后,液动滑阀12回到下位,外控顺序阀11关闭,泵1供油压力升高,阀14完全打开,此时油液流动情况为
进油路:泵1→换向阀6左位→液控单向阀9→上缸下腔。
回油路:上缸上腔→充液阀14→上部油箱15。
实现主缸快速回程。
(6)上缸原位停止当上缸滑块上长至触动行程开关1S,电磁铁2Y失电,阀6处于中位,液控单向阀9将主缸下腔封闭,上缸原位停止不动。
泵1输出油经阀6、阀21中位回油箱,泵卸载。
(7)下液压缸顶出及退回电磁铁3Y得电,换向阀21换至左位进油路:泵1→换向阀6中位→换向阀21左位→下缸17下腔。
回油路:下缸17上腔→换向阀21左位→油箱。
下液压缸活塞上升,顶出。
电磁铁3Y失电,4Y得电,换向阀21换至右位,下液压缸活塞下行,退回。
(8)浮动压边作薄板拉伸压边时,要求下缸活塞上升到一定位置后,既保持一定压力,又能随上缸滑块的下压而下降。
这时,换向阀21处于中位,上缸滑块下压时下缸活塞被迫随之下行,下缸下腔油液经节流器19和背压阀20流回油箱,使下缸下腔保持所需的压边压力。
调节背压阀20即可改变浮动压边力。
下缸上腔则经阀21中位从油箱补油。
溢流阀18为下缸下腔安全阀。
表1为3150KN通用液压机的电磁铁动作顺序表
该系统采用高压大流量恒功率变量泵供油和利用滑块自重充液的快速运动回路,既符合工艺要求,又节省了能量;采用单向阀13保压及由顺序阀11和带卸载阀芯的充液阀14组成的泄压回路,结构简单,减小了由保压转换为快速回程时的液压冲击。
图1 3150KN通过液压机液压系统图
1—主泵 2—辅助泵 3、4、18—溢流阀 5—远程调压阀 6、21—电液换向阀 7—压力继电器 8—电磁换向阀 9—液控单向阀 10、20—背压阀 11—顺序阀 12—液控滑阀 13单向阀 14—充液阀 15—油箱 16—上缸 17—下缸 19—节流器 22—压力表
(三)通用液压机系统的特点:
1、系统采用高压、大流量恒功率变量泵供油和利用上滑块自重加速、充液阀14 补油的快速运动,功率利用合理。
2、采用背压阀10 及液控单向阀9 控制上液压缸下腔的回油压力,既满足了主机对力和速度的要求,又节省了能量。
3、采用单向阀13 保压,液动阀12、顺序阀11和带卸载阀芯的液控单向阀14 组成的泄压回路,减少了由保压到回程的液压冲击。