高二数学(文科)圆锥曲线题型总结
圆锥曲线十大题型全归纳
目录圆锥曲线十大题型全归纳题型一弦的垂直平分线问题 (2)题型二动弦过定点的问题 (3)题型三过已知曲线上定点的弦的问题 (4)题型四共线向量问题 (5)题型五面积问题 (7)题型六弦或弦长为定值、最值问题 (10)题型七直线问题 (14)题型八轨迹问题 (16)题型九对称问题 (19)题型十存在性问题 (21)圆锥曲线题型全归纳题型一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
题型二:动弦过定点的问题例题2、已知椭圆C :22221(0)x y a b a b+=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题例题4、已知点A 、B 、C 是椭圆E :22221x y a b+= (0)a b >>上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。
(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3x =对称,求直线PQ 的斜率。
题型四:共线向量问题1:如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E.I )求曲线E 的方程;II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足FH FG λ=,求λ的取值范围.2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =的焦点,离心率为5.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-.题型五:面积问题例题1、已知椭圆C :12222=+by a x (a >b >0)的离心率为,36短轴一个端点到右焦点的距离为3。
高中数学圆锥曲线知识点总结5篇
高中数学圆锥曲线知识点总结5篇高中数学圆锥曲线知识点总结5篇教育的现代化和大众化是推进知识普及和人才培养的重要策略。
科学科研的公正性和透明度是科研活动的重要保障。
下面就让小编给大家带来高中数学圆锥曲线知识点总结,希望大家喜欢!高中数学圆锥曲线知识点总结11、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x ,y+y )。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x ,y ) 则 a-b=(x-x ,y-y ).3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ 0时,λa与a同方向;当λ 0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上伸长为原来的∣λ∣倍;当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。
② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
高中圆锥曲线题型及解题方法
高中圆锥曲线题型及解题方法
高中数学中的圆锥曲线是指椭圆、双曲线和抛物线这三种曲线。
下面是一些常见的高中圆锥曲线题型及其解题方法:
1.椭圆题型:
o方程转化:将标准方程转化为对称轴方程或标准方程。
o确定关键参数:通过比较方程的系数,确定椭圆的中心、长轴和短轴的长度。
o图形性质:通过关键参数判断椭圆的形状,并确定焦点和直径等性质。
2.双曲线题型:
o方程转化:将标准方程转化为对称轴方程或标准方程。
o确定关键参数:通过比较方程的系数,确定双曲线的中心、焦距和各轴的长度。
o图形性质:通过关键参数判断双曲线的形状,确定焦点、渐近线和渐近角等性质。
3.抛物线题型:
o方程转化:将标准方程转化为顶点形式或焦点式。
o确定关键参数:通过比较方程的系数,确定抛物线的顶点、焦距和开口方向。
o图形性质:通过关键参数判断抛物线的形状,确定
对称轴、焦点和准线等性质。
解题方法的关键在于确定关键参数,然后利用这些参数来判断曲线的形状和性质。
同时,要熟练掌握方程转化的方法,以便在解题过程中将方程转化为更容易分析的形式。
除了掌握相应的公式和技巧,还需要多做练习,加深对圆锥曲线图形和性质的理解。
同时,理论和实践相结合,通过画图、观察和推理的方式加深对圆锥曲线的认识。
最重要的是理解概念和思想,而不只是死记硬背。
只有真正理解了圆锥曲线的几何性质,才能更好地应用于解题,并在应用过程中灵活运用。
高二圆锥曲线常考题型汇总-含答案
面角 P—AD—B 所成平面角为 120 ,那么四棱锥 P—ABCD 的外接球的体积为
.
35.已知抛物线
C:y2
=
2
px
的焦点
F
与双曲线
4 3
x2
−
4 y2
=
1
的右焦点相同,过点
F
分别做两条直线
l1 ,
l2
,
直线 l1 与抛物线 C 交于 A,B 两点,直线 l2 抛物线 C 交于 D,E 两点,若 l1 与 l2 斜率的平方和为 1,则 AB + DE
=(
)
A. 4 a 5
B. 5 a 4
C. 3 a 5
D. 5 a 3
24. 已知 O 为坐标原点,椭圆的方程为 x2 + y2 = 1,若 P 、 Q 为椭圆的两个动点且 OQ ⊥ OP ,则 43
OP 2 + OQ 2 的最小值是( )
A. 2
B. 46
C. 48
D. 7
7
7
25.设双曲线 C 的中心为点 O ,若直线 l1 和 l2 相交于点 O ,直线 l1 交双曲线于 A1 、 B1 ,直线 l2 交双曲线于 A2 、
的最小值为( A、16
) B、20
C、24
D、32
第5/19页
教师答案与解析参考版 一、选择+填空(选择题中每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.椭圆的焦点 F1(−2 2, 0), F2 (2 2, 0) ,长轴为 2a ,在椭圆上存在点 P ,是 F1PF2 = 90 ,对于直线 y = a ,在 圆 x2 + ( y −1)2 = 2 上始终存在两点 M , N 使得直线上有点 Q ,满 MQN = 90 ,则椭圆的离心率范围是( )
2020年高考文科数学《圆锥曲线》题型归纳与训练
12020年高考文科数学《圆锥曲线》题型归纳与训练【题型归纳】题型一 求曲线的方程例1 已知定点()0,3-G ,S 是圆()723:22=+-y x C (C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E ,设点E 的轨迹为M . 求M 的方程. 【答案】见解析【解析】由题意知ES EG =,所以26=+=+EC ES EC EG ,又因为266<=GC .所以点E 的轨迹是以G ,C 为焦点,长轴长为26的椭圆,动点E 的轨迹方程为191822=+y x . 例2 设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过点M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.求点P 的轨迹方程.【答案】见解析【解析】如图所示,设(),P x y ,(),0N x ,()1,M x y . 由2NP NM =知,1y =,即1y . 又点M 在椭圆2212x y +=上,则有22122x y +=,即222x y +=.例3 如图,矩形ABCD 中, ()()()()2,0,2,0,2,2,2,2A B C D -- 且,AM AD DN DC λλ==,[]0,1,AN λ∈交BM 于点Q .若点Q 的轨迹是曲线P 的一部分,曲线P 关于x 轴、y 轴、原点都对称,求曲线P 的轨迹方程.【答案】Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【解析】设(),Q x y ,由,AM AD DN DC λλ==,求得()()2,2,42,2M N λλ--,∵1,22QA AN QB BM k k k k λλ====-,∴11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭, ∴1224y y x x ⋅=-+-,整理得()22120,014x y x y +=-≤≤≤≤.可知点Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【易错点】求轨迹问题学生容易忽视范围 【思维点拨】高考中常见的求轨迹方程的方法有:1.直译法与定义法:直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简; 定义法求轨迹方程:轨迹方程问题中,若能得到与所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.2.相关点法:找动点之间的转化关系(平移,伸缩,中点,垂直等),用要求的代替已知轨迹的,代入化简3.参数法:可用联立求得参数方程,消参.注意此种问题通常范围有限制.4.交轨法:联立求交点,变形的轨迹. 题型二 最值(范围)问题例1 已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则DE AB +的最小值为( )A. 16B. 14C. 12D. 10 【答案】A【解析】设()()()()11223344,,,,,,,A x y B x y D x y E x y ,直线1l 的方程为()11y k x =-,联立方程()214 1y x y k x ==-⎧⎪⎨⎪⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=- 212124k k +=, 同理直线2l 与抛物线的交点满足:22342224k x x k ++=, 由抛物线定义可知12342AB DE x x x x p +=++++=22122222121224244448816k k k k k k ++++=++≥=, 当且仅当121k k =-=(或1-)时,取等号.【易错点】本题考查抛物线的焦点弦长,利用抛物线的焦点弦长公式,表示出DE AB +,然后利用基本不等3式求最值.对相关流程应有所熟练例2 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【答案】见解析【解析】(1)2(c,0)F c c 设,由条件知,222=2, 1.2c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (2)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,2238=16(43)0,441k k k x k ±∆->>=+当即时,12241PQ x k =-=+从而O PQ d OPQ =∆又点到直线的距离所以的面积1=2OPQ S d PQ ∆⋅=244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即OPQ ∆所以,当的面积最大时,l的方程为2222y x y x =-=--或. 【思维点拨】 圆锥曲线中的取值范围问题常用的方法有以下几个:(1)利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系; (2)利用基本不等式求出参数的取值范围;(3)利用函数的值域的求法(甚至求导),确定参数的取值范围. 题型三 定点定值与存在性问题例1 已知椭圆C :()222210x y a b a b +=>>上.(1)求C 的方程.(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .直线OM 的斜率与直线l 的斜率的乘积为定值. 【答案】见解析【解析】 (1)由题意有2a =,22421a b+=,解得28a =,24b =. 所以C 的方程为22184x y +=. (2)设直线l :()00y kx b kb =+≠≠,,()11A x y ,, ()22B x y ,,()M M M x y ,.将 y kx b =+代入22184x y +=得()22221+4280k x kbx b ++-=. 故1222221M x x kb x k +-==+,221M M by kx b k =+=+ . 于是直线OM 的斜率12M OM M y k x k ==-,即12OM k k ⋅=-. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.【思维点拨】解析几何是高考必考内容之一,在命题时多从考查各种圆锥曲线方程中的基本量关系及运算,在直线与圆锥曲线关系中.一般用方程的思想和函数的观点来解决问题,并会结合中点坐标,方程根与函数关系来求解.5例2 已知抛物线2:4C y x =,点()0,m M 在x 轴的正半轴上,过M 点的直线l 与抛物线C 相交于A ,B 两点,O 为坐标原点.(1) 若1=m ,且直线l 的斜率为1,求以AB 为直径的圆的方程; (2) 是否存在定点M ,使得不论直线:l x ky m =+绕点M 如何转动,2211AMBM+恒为定值?【答案】(1)()()223216x y -+-=. (2)存在定点M (2, 0). 【解析】(1)当1=m 时,()0,1M ,此时,点M 为抛物线C 的焦点,直线l 的方程为1-=x y ,设()()1122,,A x y B x y ,,联立24{ 1y xy x ==-,消去y 得, 2610x x -+=,∴126x x +=, 121224y y x x +=+-=,∴圆心坐标为(3, 2). 又1228AB x x =++=,∴圆的半径为4,∴圆的方程为()()223216x y -+-=. (2)由题意可设直线l 的方程为x ky m =+,则直线l 的方程与抛物线2:4C y x =联立, 消去x 得: 2440y ky m --=,则124y y m =-, 124y y k +=,()()22222211221111AMBMx m y x m y +=+-+-+()()()22122222222121211111y y k y k y k y y +=+=+++ ()()()()222121222222221221682111621y y y y k m k mky y k m m k +-++===+++ 对任意k R ∈恒为定值,于是2=m ,此时221114AMBM+=. ∴存在定点()0,2M ,满足题意. 【易错点】定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果(取特殊位置或特殊值),因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.【思维点拨】定点、定值问题通常先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.在求解中通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.【巩固训练】题型一 求曲线的方程1.设圆222150x y x ++-=的圆心为A ,直线l 过点()0,1B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程. 【答案】13422=+y x (0≠y ) 【解析】因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为13422=+y x (0≠y ).2.已知动圆G 过定点()4,0F ,且在y 轴上截得的弦长为8.求动圆G 的圆心点G 的轨迹方程; 【答案】28y x =【解析】设动圆圆心(),G x y ,设圆交y 轴于,M N 两点,连接,GF GM , 则GF GM =,过点G 作GH MN ⊥,则点H 是MN 的中点, 显然()22224,4GM x GF x y =+=-+,于是()222244x y x -+=+,化简整理得28y x =,故的轨迹方程为28y x =.73.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程. 【答案】(1)见解析; (2)12-=x y .【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(1)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=.所以FQ AR ∥. (2)设l 与x 轴的交点为)0,(1x D , 则1111,2222ABF PQF a b S b a FD b a x S -=-=--=△△. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .题型二 最值(范围)问题1.已知动点E 到点A ()2,0与点B ()2,0-的直线斜率之积为14-,点E 的轨迹为曲线C . (1)求C 的方程;(2)过点D ()1,0作直线l 与曲线C 交于P , Q 两点,求OP OQ ⋅的最大值.【答案】(1)()22124x y x +=≠±(2)14 【解析】(1)设(),E x y ,则2x ≠±.因为E 到点A ()2,0,与点B ()2,0-的斜率之积为14-,所以122y y x x ⋅=-+-,整理得C 的方程为()22124x y x +=≠±.(2)当l 垂直于轴时,l 的方程为1x =,代入2214x y +=得2P ⎛⎫ ⎪ ⎪⎝⎭, 1,2Q ⎛- ⎝⎭.11,1,224OP OQ ⎛⎫⎛⎫⋅=⋅-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.当l 不垂直于x 轴时,依题意可设()()10y k x k =-≠,代入2214x y +=得 ()2222148440k xk x k +-+-=.因为()216130k ∆=+>,设()11,P x y , ()22,Q x y .则2122814k x x k +=+, 21224414k x x k-=+. ()()21212121211OP OQ x x y y x x k x x ⋅=+=+-- ()()22212121k x x k x x k =+-++21174416k =-+ 14<综上OP OQ ⋅ 14≤,当l 垂直于x 轴时等号成立,故OP OQ ⋅的最大值是14.92.设椭圆()2222:10x y M a b a b +=>>经过点12,,P F F ⎭是椭圆M 的左、右焦点,且12PF F ∆的面积为2. (1)求椭圆M 的方程;(2)设O 为坐标原点,过椭圆M 内的一点()0,t 作斜率为k 的直线l 与椭圆M 交于,A B 两点,直线,OA OB 的斜率分别为12,k k ,若对任意实数k ,存在实数m ,使得12k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)[)2,m ∈+∞. 【解析】(1)略(2)设直线l 的方程为y kx t =+,由221{ 43x y y kx t+==+, 得()2223484120k x ktx t +++-=,设()()1122,,,A x y B x y ,则21212228412,3434kt t x x x x k k-+=-=++, ()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--, 由12k k mk +=对任意k 成立,得22223t m t =--,∴()232m t m-=,又()0,t 在椭圆内部中,∴203t ≤<,∴2m ≥,即[)2,m ∈+∞.题型三 定点定值与存在性问题1.已知12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,离心率为12, ,M N 分别是椭圆的上、下顶点, 22•2MF NF =-. (1)求椭圆E 的方程;(2)若直线y kx m =+与椭圆E 交于相异两点,A B ,且满足直线,MA MB 的斜率之积为14,证明:直线AB 恒过定点,并求定点的坐标.【答案】(1)22143x y +=(2)直线AB恒过定点(0,.【解析】(1)由题知()0,2c F ,()b M ,0,()b N -,0,22222-=-=⋅∴b c NF MF ① 由21==a c e ,得c a 2= ② 又222cb a =- ③ 由①②③联立解得:42=a ,32=b ∴椭圆E 的方程为13422=+y x . (2)证明:由椭圆E 的方程得,上顶点()3,0M , 设()11,y x A ,()22,y x B ,由题意知,01≠x ,02≠x由⎪⎩⎪⎨⎧=++=13422y x mkx y 得:()()034843222=-+++m kmx x k∴221438kkmx x +-=+,()22214334k m x x +-=, 又111133x m kx x y k MA -+=-=,222233x m kx x y k MB -+=-=, 由41=⋅NB MA k k ,得()()2121334x x m kx m kx =-+-+, ()()()()()()0433483414342222=+-+--+--k m km m k k m ,化简得:06332=+-m m 解得:3=m 或32=m ,结合01≠x ,02≠x 知32=m ,11即直线AB 恒过定点()32,0.2.已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.【答案】(1) 1422=+y x (2)见解析. 【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab ac 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (2)由(1)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN .综上,BM AN ⋅为定值.3. 在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点 到(0,2)Q 的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y += 相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.【答案】(1) 2213x y += (2)见解析【解析】(1)由2223c e c a a ==⇒=,所以222213b ac a =-= 设(,)P x y 是椭圆C 上任意一点,则22221x y a b+=,所以222222(1)3y x a a y b =-=-||PQ ===所以,当1y =-时,||PQ 3=,可得a =1,b c ==故椭圆C 的方程为:2213x y += (2)存在点M 满足要求,使OAB ∆得面积最大.假设直线:1l mx ny +=与圆22:1O x y +=相交于不同两点,A B , 则圆心O 到l 的距离1d =<,∴221m n +> ①因为(,)M m n 在椭圆C 上,所以2213m n +=②,由①②得:203m <∵||AB ==所以1||2OABSAB d =⋅=2213m n =-代入上式13得213221213OABmS m m ∆==+⋅,当且仅当22231(0,3]32m m =⇒=∈,∴2231,22m n ==,此时满足要求的点(22M ±±有四个. 此时对应的OAB ∆的面积为12. 4.已知过抛物线()022>=p px y 的焦点F ,斜率为的直线交抛物线于()()()112212,,,A x y B x y x x < 两点,且6AB =.(1)求该抛物线E 的方程;(2)过点F 任意作互相垂直的两条直线12,l l ,分别交曲线E 于点,C D 和,M N .设线段,CD MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点.【答案】(1)24y x = (2)直线PQ 恒过定点()3,0.【解析】(1)抛物线的焦点,02p F ⎛⎫⎪⎝⎭,∴直线AB 的方程为:2p y x ⎫=-⎪⎭联立方程组22{ 2y pxp y x =⎫=-⎪⎭,消元得: 22204p x px -+=, ∴212122,4p x x p x x+==∴6AB ===,解得2p =±.∵0p >,∴抛物线E 的方程为:24y x =.(2)设,C D 两点坐标分别为()()1122,,,x y x y ,则点P 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭.. 由题意可设直线1l 的方程为()()10y k x k =-≠. 由()24{1y x y k x ==-,得()2222240k x k x k -++=.()24224416160k k k ∆=+-=+>因为直线1l 与曲线E 于,C D 两点,所以()1212122442,2x x y y k x x k k+=++=+-=. 所以点P 的坐标为2221,k k ⎛⎫+⎪⎝⎭. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为()212,2k k +-. 当1k ≠±时,有222112k k +≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为()222121k y k x k k+=---,整理得()230yk x k y +--=. 于是,直线PQ 恒过定点()3,0; 当1k=±时,直线PQ 的方程为3x =,也过点()3,0.综上所述,直线PQ 恒过定点()3,0.。
(完整版)圆锥曲线常见题型及答案
圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。
此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。
此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。
高考圆锥曲线大题题型及解题技巧
高考圆锥曲线大题题型及解题技巧x高考圆锥曲线大题题型及解题技巧一、基本概念圆锥曲线是椭圆、双曲线与圆锥体的综合体,它说明物体穿过三种物理媒质,如水、气体和固体物质,以及它们之间的相互转换性。
二、圆锥曲线的基本特点1、圆锥曲线具有规律性:它的主要特征是抛物线的函数形式呈现出以对称中心为中心的规律性,在此基础上拓展形成了螺旋状的曲线;2、圆锥曲线与旋转有关:圆锥曲线的曲线形状可以用某种旋转的路径进行描述;3、圆锥曲线的曲线表示有多种变化:圆锥曲线可以表示为二维图形或三维图形,可以表示为数学方程式,也可以表示为一组矢量。
三、圆锥曲线大题解题技巧1、分析题干:根据题干内容,在解题之前要细致地分析题干,弄清楚问题的范围,是对一组数据进行分析,还是对某种形式的函数进行分析,要把握好范围和类型,以便选择正确的解题方法;2、画出曲线图:如果是需要求曲线的半径、圆心坐标和焦点等信息,可以先画出曲线图,有助于理清思路;3、推导出数学公式:如果是要分析曲线的性质,可以根据曲线的特性,推导出相应的数学公式,以便求解;4、运用矩阵的相关理论:在计算曲线的性质时,可以运用矩阵的相关理论,根据相关的矩阵的乘法,求出所求的值。
五、练习1、(XX年某省某市高考)已知圆锥曲线的参数方程为:$$left{begin{array}{l} x^{2} + y^{2}=a^{2} z^{2} a>0, a eq 1 end{array}ight.$$(1)求出曲线的中心坐标;(2)求出曲线的渐近线方程和焦点坐标。
解:(1)令参数方程中的参数$a=frac{1}{m}$,代入参数方程可得:$$left{begin{array}{l} x^{2} + y^{2}=frac{1}{m^{2}} z^{2} m>0, meq 1 end{array}ight.$$令$z=0$,得到$x^{2} + y^{2}=0$,由此可知曲线的中心坐标为:$(0, 0)$。
高二圆锥曲线保姆级总结
圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)
题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
圆锥曲线经典题型总结(含答案)
圆锥曲线整理1.圆锥曲线的定义:(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d .圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
%(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222b x a y -=1(0,0a b >>)。
(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。
2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):椭圆:由x2,y 2分母的大小决定,焦点在分母大的坐标轴上。
圆锥曲线的七种常考题型详解【高考必备】
圆锥曲线的七种常考题型详解【高考必备】圆锥曲线的七种常见题型题型一:定义的应用圆锥曲线的定义包括椭圆、双曲线和抛物线。
在定义的应用中,可以寻找符合条件的等量关系,进行等价转换和数形结合。
适用条件需要注意。
例1:动圆M与圆C1:(x+1)+y=36内切,与圆C2:(x-1)+y=4外切,求圆心M的轨迹方程。
例2:方程表示的曲线是什么?题型二:圆锥曲线焦点位置的判断在判断圆锥曲线焦点位置时,需要将方程化成标准方程,然后判断。
对于椭圆,焦点在分母大的坐标轴上;对于双曲线,焦点在系数为正的坐标轴上;对于抛物线,焦点在一次项的坐标轴上,一次项的符号决定开口方向。
例1:已知方程表示焦点在y轴上的椭圆,则m的取值范围是什么?例2:当k为何值时,方程是椭圆或双曲线?题型三:圆锥曲线焦点三角形问题在圆锥曲线中,可以利用定义和正弦、余弦定理求解焦点三角形问题。
PF,PF2=n,m+n,m-n,mn,m+n四者的关系在圆锥曲线中有应用。
例1:椭圆上一点P与两个焦点F1,F2的张角为α,求△F1PF2的面积。
例2:已知双曲线的离心率为2,F1、F2是左右焦点,P 为双曲线上一点,且∠F1PF2=60,求该双曲线的标准方程。
题型四:圆锥曲线中离心率、渐近线的求法在圆锥曲线中,可以利用a、b、c三者的相等或不等关系式,求解离心率和渐近线的值、最值或范围。
在解题时需要注重数形结合思想和不等式解法。
例1:已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是多少?例2:双曲线的两个焦点为F1、F2,渐近线的斜率为±1/2,求双曲线的标准方程。
题型五:圆锥曲线的参数方程在圆锥曲线的参数方程中,需要注意参数的取值范围,可以通过消元或代数运算求解。
例1:求椭圆x^2/4+y^2/9=1的参数方程。
例2:求双曲线x^2/9-y^2/4=1的参数方程。
题型六:圆锥曲线的对称性圆锥曲线具有对称性,可以通过对称性求解问题。
圆锥曲线题型总结:圆锥曲线常考结论题型汇总【自己整理全面】
高考数学专题突破:圆锥曲线二级结论课题1:22a b ±结论一:若直线AB 与圆锥曲线相交于A ,B 两点,M 为AB 的中点,则由点差法可推导得以下结论。
椭圆12222=+b y a x )0(>>b a 22AB a k b k OM-=• 12222=+b x a y )0(>>b a 22AB b a k -=•OMk 双曲线)0,0(12222>>=-b a b y a x 22AB a k b k OM=• )0,0(12222>>=-b a bx a y 22AB ba k =•OMk 抛物线)0(22>=p px y M py k AB =)0(22>-=p px yMp y -k AB = )0(22>=p py xp Mx k AB =)0(22>-=p py xpMx -k AB = 【2014江西理】过点M (1,1)作斜率为﹣21的直线与椭圆C :+=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 . 【答案】22 【解析】解法一:设A (x 1,y 1),B (x 2,y 2),则,,∵过点M (1,1)作斜率为﹣21的直线与椭圆C :+=1(a >b >0)相交于A ,B 两点,M 是线段AB 的中点,∴两式相减可得,∴a=b ,∴=b ,∴e==22. 解法二:由22AB a -k b k OM =•,即121-•=- 22a b ,22a b = 21,e=22a-1b =22【2013新课标1理10】已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 【答案】D【解析】设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②①-②,得1212121222=0x x x x y y y y a b(+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9.∴椭圆E 的方程为22=1189x y +.故选D. 【2010新课标理12】已知双曲线E 的中心为原点,P (3,0)是E 的焦点,过P 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (﹣12,﹣15),则E 的方程式为( ) A .B .C .D .【答案】B【解析】由已知条件易得直线l 的斜率为k=k PN =1, 设双曲线方程为,A (x 1,y 1),B (x 2,y 2),则有,两式相减并结合x 1+x 2=﹣24,y 1+y 2=﹣30得=,从而==1即4b 2=5a 2,又a 2+b 2=9,解得a 2=4,b 2=5。
高中数学:圆锥曲线七个经典题型整理,概念、公式、例题
高中数学:圆锥曲线七个经典题型整理,概念、公式、例题圆锥曲线中常见题型总结1、直线与圆锥曲线位置关系这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。
2、圆锥曲线与向量结合问题这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。
3、圆锥曲线弦长问题弦长问题主要记住弦长公式:设直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则:4、定点、定值问题(1)定点问题可先运用特殊值或者对称探索出该定点,再证明结论,即可简化运算;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.5、最值、参数范围问题这类常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围.6、轨迹问题轨迹问题一般方法有三种:定义法,相关点法和参数法。
定义法:(1)判断动点的运动轨迹是否满足某种曲线的定义;(2)设标准方程,求方程中的基本量(3)求轨迹方程相关点法:(1)分析题目:与动点M(x,y)相关的点P(x0,y0)在已知曲线上;(2)寻求关系式,x0=f(x,y),y0=g(x,y);(3)将x0,y0代入已知曲线方程;(4)整理关于x,y的关系式得到M的轨迹方程。
(完整word版)高中圆锥曲线经典题型归纳
基本方法:点差法适用类型:出现弦中点和斜率的关系已知椭圆C :22233b y x =+,过右焦点F 且斜率为1的直线交椭圆C 于A,B 两点,N 为弦AB 的中点,求直线ON (O 为坐标原点)的斜率K ON 。
解:设00(,)N x y ,设11(,)A x y ,22(,)B x y ,将其带入椭圆C 得:22211222223333x y b x y b ⎧+=⎪⎨+=⎪⎩①②①减②,并整理,得:12121212()()3()()x x x x y y y y +-=-+- 进一步整理:012012111333ON AB y x x k x y y k -==-=-=--题型:求轨迹方程类型:弦中点型曲线E :2212516x y +=,过点Q (2,1)的E 弦的中点的轨迹方程。
解:设直线与椭圆交与1122(,),(,)G x y H x y 两点,中点为00(,)S x y由点差法可得:弦的斜率01212121201616()25()25x y y x x k x x y y y -+==-=--+,由00(,)S x y ,Q (2,1)两点可得弦的斜率为0012y k x -=-, 所以0000116225y x k x y -==--, 化简可得中点的轨迹方程为:22162532250x y x y +--=.练习:已知直线l 过椭圆E :2222x y +=的右焦点F ,且与E 相交于,P Q 两点.设1()2OR OP OQ =+(O 为原点),求点R 的轨迹方程答案:2220x y x +-=类型:动点型在直角坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点P 向y 轴作垂线段PP ′,P ′为垂足。
求线段PP ′中点M 的轨迹C 的方程.解:设M (x ,y ),P (x 1,y 1),则).,0(1y P '则有:44,2,222211111=+⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧+==y x y y x x y y y x x 代入即得轨迹C 的方程为.1422=+y x练习设12,F F 分别是椭圆C :22143x y +=的左右焦点,K 是椭圆C 上的动点,求线段1KF 的中点B 的轨迹方程。
完整版)圆锥曲线大题题型归纳
完整版)圆锥曲线大题题型归纳圆锥曲线大题题型归纳基本方法:1.待定系数法:求解直线方程中的系数,求标准方程中的待定系数a、b、c、e、p等;2.齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题;3.韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。
但是,如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根;4.点差法:解决弦中点问题,端点坐标设而不求。
也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式;5.距离转化法:将斜线上的长度问题、比例问题、向量问题转化为水平或竖直方向上的距离问题、比例问题、坐标问题;基本思想:1.“常规求值”问题需要找等式,“求范围”问题需要找不等式;2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解;3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关;4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决;5.有些题思路易成,但难以实施。
这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。
题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题例1、已知F1,F2为椭圆x^2/a^2+y^2/b^2=1的两个焦点,P在椭圆上,且∠F1PF2=60°,则△F1PF2的面积为多少?点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。
变式1、已知F1,F2分别是双曲线3x^2-5y^2=75的左右焦点,P是双曲线右支上的一点,且∠F1PF2=120°,求△F1PF2的面积。
变式2、已知F1,F2为椭圆x^2/a^2+y^2/b^2=1(0<b<10)的左、右焦点,P是椭圆上一点。
1)求|PF1|/|PF2|的最大值;2)若∠F1PF2=60°且△F1PF2的面积为100b^2,求b的值。
圆锥曲线题型归纳(经典含答案)
9.设椭圆中心在坐标原点, 是它的两个顶点,直线 与AB相交于点 ,与椭圆相交于 、 两点.
(1)若 ,求 的值;(2)求四边形 面积的最大值.
(1)解:依题设得椭圆的方程为 ,
直线 的方程分别为 , .如图,设 ,其中 ,且 满足方程 ,故 .①
所以 , ,由 ,得 .
将②、③代入上式,整理得 ,………………………10分
所以 ,即 或 .经检验,都符合条件①.
当 时,直线 的方程为 .
显然,此时直线 经过定点 点.即直线 经过点 ,与题意不符.
当 时,直线 的方程为 .显然,此时直线 经过定点 点,且不过点 .
综上, 与 的关系是: ,且直线 经过定点 点.…………13分
6. 在椭圆 求一点P,是它到直线l:x+2y+10=0的距离最小,并求最大最小值。
目标:复习研究圆锥曲线上的点与直线的距离问题的一般处理方法。
提示:(1)可等价转化为与直线l平行的椭圆的切线与直线l之间的距离;(1)也可以用椭圆的参数方程。
解法一:设直线m:x+2y+m=0与椭圆 相切,则 ,消去x,得8y2+4my+m2-4=0,
(2)-(1)得
即 ,又直线AB过点(1,1)
所以直线AB的方程为:
2.直线l经过点A(1,2),交椭圆 于两点P1、P2,
(1)若A是线段P1P2的中点,求l的方程;(2)求P1P2的中点的轨迹.
解:(1)设P1(x1,y1)、P2(x2,y2),
则
…………*
∵A(1,2)是线段P1P2的中点,∴x1+x2=2,y1+y2=4,
圆锥曲线知识点与题型总结
圆锥曲线知识点与题型总结
圆锥曲线是解析几何中重要的一个概念,它包括椭圆、双曲线和抛物线。
以下是关于圆锥曲线的一些常见知识点和题型总结:
1. 椭圆:椭圆是一个闭合曲线,它的定义可以是平面上到两个定点的距离之和等于常数的点的轨迹。
常见的问题包括求椭圆的焦距、长轴和短轴的长度以及离心率等。
2. 双曲线:双曲线是一个开放曲线,它的定义可以是平面上到两个定点的距离之差等于常数的点的轨迹。
常见的问题包括求双曲线的焦点、焦距、渐近线的方程以及离心率等。
3. 抛物线:抛物线是一个开放曲线,它的定义可以是平面上到一个定点的距离等于到一个定直线的距离的点的轨迹。
常见的问题包括求抛物线的焦点、方程、顶点和焦距等。
4. 焦点和直线的关系:对于椭圆和双曲线来说,焦点与直线的关系是他们的轨迹定义的一部分。
对于抛物线来说,焦点和直线的关系可以通过求解焦点和直线的交点来确定。
5. 图像的性质:不同类型的圆锥曲线具有不同的性质,包括对称性、离心率、渐近线、焦点和顶点等。
这些性质可以用来解决与图像相关的问题。
6. 解析几何的应用:圆锥曲线在解析几何中有广泛的应用,如椭球和椭圆柱体的表面积和体积计算、抛物线在物理学、工程学和天文学中的应用等。
总之,掌握圆锥曲线的定义、性质和应用是解析几何的重要内容。
通过熟练掌握各类型曲线的公式和相关知识,能够解决与圆锥曲线相关的各种问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学(文)圆锥曲线复习1.已知动圆过点(1,0),且与直线x=一l 相切,则动圆圆心的轨迹方程为( )A .x 2+y 2=lB .x 2-y 2=1C .y 2=4x D .x=02.已知椭圆()222210x y a b a b +=>>,双曲线()222210,0x y a b a b-=>>和抛物线22y px =()0p >的离心率分别是123,,e e e ,则 ( )A .123e e e > B. 123e e e = C. 123e e e < D. 123e e e ≥3. 已知直线)0(112222>>=++-=b a b y a x x y 与椭圆相交于A 、B 两点。
(1)若椭圆的离心率为33,焦距为2,求椭圆的标准方程;(2)若OB OA ⊥(其中O 为坐标原点),当椭圆的离率]22,21[∈e 时,求椭圆的长轴长的最大值。
1.已知动圆过点(1,0),且与直线x=一l 相切,则动圆圆心的轨迹方程为( C )A .x 2+y 2=lB .x 2-y 2=1C .y 2=4x D .x=02.已知椭圆()222210x y a b a b +=>>,双曲线()222210,0x y a b a b-=>>和抛物线22y px =()0p >的离心率分别是123,,e e e ,则 ( C )A .123e e e > B. 123e e e = C. 123e e e < D. 123e e e ≥3. 已知直线)0(112222>>=++-=b a b y a x x y 与椭圆相交于A 、B 两点。
(1)若椭圆的离心率为33,焦距为2,求椭圆的标准方程;(2)若OB OA ⊥(其中O 为坐标原点),当椭圆的离率]22,21[∈e 时,求椭圆的长轴长的最大值。
解:(1).2,3,22.33,3322=-=====c a b a c a c e 则解得又即.12322=+∴y x 椭圆的标准方程为 …………3分(2)由,0)1(2)(,1,12222222222=-⋅+-⋅+⎪⎩⎪⎨⎧+-==+b a x a x b a y x y b y a x 得消去………4分由.1,0)1)((4)2(22222222>+>-+--=∆b a b b a a a 整理得…………5分2221122121222222(1)(,,),(,),,.a a b A x y B x y x x x x a b a b-+==++设则 .1)()1)(1(21212121++-=+-+-=∴x x x x x x y y …………7分 .01)(2,0),(21212121=++-=+∴⊥x x x x y y x x O OB OA 即为坐标原点其中 .02.012)1(222222222222=-+=++-+-∴b a b a ba ab a b a 整理得 …………9分 222222221112,e a e a a c a b -+=-=-=代入上式得 ,).111(2122e a -+=∴ …………11分2221111341[,],1,2,22422431e e e e ∈∴≤≤∴≤-≤∴≤≤- 2222717313,,1,3162a ab e ∴≤+≤∴≤≤+>-适合条件 由此得.26642≤≤a .6,62342故长轴长的最大值为≤≤∴a4.若焦点在x 轴上的椭圆211222的离心率为=+m y x ,则m = ( )A .2B .23 C .38 D .32 5.双曲线19422=-x y 的渐近线方程是( )A .x y 23±= B .x y 49±= C .x y 32±= D .x y 94±= 6.若抛物线C 以坐标原点为顶点,以双曲线191622=-x y 的顶点为焦点且过第二象限,则抛物线C 的准线方程是( )A .x =3B .y =-4C .x =3或y =-4D .x =4或y =-37.直线y=kx+1与椭圆1522=+my x 恒有公共点,则m 的取值范围是 ( )A .(0,1)B .(0,5)C .[1,+ )∞D .[1,5),5()+∞8.一动圆与两圆:221x y +=和228120x y x +-+=都外切,则动圆心的轨迹为( ) (A )圆弧 (B )圆 (C )椭圆 (D )双曲线的一支9.已知点P 是抛物线x y 42=上的动点,点P 在y 轴上的射影是点Q ,抛物线外一点A (4,5)则|PA|+|PQ|的最小值是 .10.如图,过抛物线)0(22>=p px y 的焦点F 的直线与抛物线相交于M 、N 两点,自M 、N 向准线l 作垂线,垂足分别为M 1、N 1.(I )求证:FM 1⊥FN 1;(II )记△FMM 1、△FM 1N 1、△FNN 1的面积分别为S 1、S 2、S 3,试判断31224S S S =是否成立,并证明你的结论.4.若焦点在x 轴上的椭圆211222的离心率为=+m y x ,则m = ( B )5.双曲线19422=-x y 的渐近线方程是( C )6.若抛物线C 以坐标原点为顶点,以双曲线191622=-x y 的顶点为焦点且过第二象限,则抛物线C 的准线方程是( B )A .x =3B .y =-4C .x =3或y =-4D .x =4或y =-37.直线y=kx+1与椭圆1522=+my x 恒有公共点,则m 的取值范围是 ( D )解析:直线过定点(0,1),把点代入要不大于1,且m 不等于5(等于5不是椭圆) 8.一动圆与两圆:221x y +=和228120x y x +-+=都外切,则动圆心的轨迹为( D ) (A )圆弧 (B )圆 (C )椭圆 (D )双曲线的一支9.已知点P 是抛物线x y 42=上的动点,点P 在y 轴上的射影是点Q ,抛物线外一点A (4,5)则|PA|+|PQ|的最小值是 5 .解析:画图,点到直线的最小距离是垂线段。
10.如图,过抛物线)0(22>=p px y 的焦点F 的直线与抛物线相交于M 、N 两点,自M 、N 向准线l 作垂线,垂足分别为M 1、N 1.(I )求证:FM 1⊥FN 1;(II )记△FMM 1、△FM 1N 1、△FNN 1的面积分别为S 1、S 2、S 3,试判断31224S S S =是否成立,并证明你的结论.解析:一般圆锥曲线有过定点的直线,先设直线方程,然后与圆锥曲线方程联立化简,用韦达定理表示出 X1+x2=,x1x2=(或y1+y2=,y1y2=)….(1) 先设直线方程,联立方程得到y1+y2=,y1y2=用向量FM 1乘以FN1,化简,把上面的结果代入即可(2)根据面积公式,用坐标分别表示它们的面积,然后化简即可10.在双曲线822=-y x 的右支上过右焦点F 2有一条弦PQ ,|PQ|=7,F 1是左焦点,那么 △F 1PQ 的周长为 A . 28 B .2814- C . 2814+ D . 2811.等比数列{}n a 的各项均为正数,且965=a a ,则1032313log log log a a a +++ 的值为A . 12B . 10C . 8D .5log 23+12.在同一坐标系中,方程12222=+y b x a 与02=+by ax )0(>>b a 的图象大致是13.过抛物线px y 22=(p >0)的焦点F 作一直线l 与 抛物线交于P 、Q 两点,作PP 1、QQ 1垂直于抛物线的 准线,垂足分别是P 1、Q 1,已知线段PF 、QF 的长度分别是4,9,那么|P 1Q 1|= .14.已知1F 、2F 分别为椭圆C :22221(0)+=>>x y a b a b的左右两焦点,点A 为椭圆的左顶点,且椭圆C 上的点B3(1,)2到1F 、2F 两点的距离之和为4. (1)求椭圆C 的方程;(2)过椭圆C 的焦点2F 作AB 平行线交椭圆C 于P ,Q 两点,求∆1F PQ 的面积.10.在双曲线822=-y x 的右支上过右焦点F 2有一条弦PQ ,|PQ|=7,F 1是左焦点,那么 △F 1PQ 的周长为( C ) A . 28 B .2814- C . 2814+ D . 28解析:PF1+QF1+PQ= PF1-PF2+QF1-QF2+2PQ=4a+1412.在同一坐标系中,方程12222=+y b x a 与02=+by ax )0(>>b a 的图象大致是(C)解析:把它们化为标准方程13.过抛物线px y 22=(p >0)的焦点F 作一直线l 与抛物线交于P 、Q 两点,作PP 1、QQ 1垂直于抛物线的准线,垂足分别是P 1、Q 1,已知线段PF 、QF 的长度分别是4,9,那么|P 1Q 1|= 12 . 解析:过Q 垂直于PP1交PP1于D ,利用抛物线的定义可知PD=5.利用勾股定理可知答案。
14.已知1F 、2F 分别为椭圆C :22221(0)+=>>x y a b a b的左右两焦点,点A 为椭圆的左顶点,且椭圆C 上的点B 3(1,)2到1F 、2F 两点的距离之和为4. (1)求椭圆C 的方程;(2)过椭圆C 的焦点2F 作AB 平行线交椭圆C 于P ,Q 两点,求∆1F PQ 的面积.解析:(1)椭圆C 上的点B 到1F 、2F 两点的距离之和为4,可知a=2.再把点B 代入解析式可求出b 。
(2)AB 平行线可求得斜率,再设直线方程。
联立椭圆方程,化简。
韦达定理表示出y1+y2=,y1y2=把三角形面积表示出来=212212121214)(2121y y y y F F y y F F -+=-解析:选A 解析:选A 解析:选B 20.22.。