八年级数学竞赛试题及参考答案
初二数学竞赛试题7套整理版(含答案)
初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
全国初二数学竞赛试题及答案解析
全国初二数学竞赛试题及答案解析一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不规则三角形答案:A解析:根据勾股定理的逆定理,如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
2. 已知x^2 - 5x + 6 = 0,求x的值。
A. 1B. 2C. 3D. 6答案:C解析:这是一个二次方程,可以通过因式分解法求解。
x^2 - 5x + 6 = (x - 2)(x - 3) = 0,解得x = 2 或 x = 3。
...30. 已知一个数列的前三项为2, 3, 5,且每一项都是前两项的和,求第10项的值。
答案:55解析:这是一个斐波那契数列,每一项都是前两项的和。
根据数列的规律,可以依次计算出第10项的值为55。
二、填空题(每题4分,共20分)31. 如果一个圆的半径是r,那么它的面积是______。
答案:πr^232. 一个长方体的长、宽、高分别是a、b、c,它的体积是______。
答案:abc...三、解答题(每题10分,共50分)36. 已知一个等腰三角形的底边长为10厘米,两腰的长度相等,且底角为45度。
求这个等腰三角形的面积。
答案:25√2解析:首先,根据底角为45度,我们可以知道这是一个等腰直角三角形。
根据勾股定理,两腰的长度为底边的√2倍,即10√2厘米。
然后,根据三角形面积公式(底×高÷2),面积为10×(10√2)÷2=50√2平方厘米。
37. 一个数的平方减去这个数等于36,求这个数。
答案:9 或 -4解析:设这个数为x,根据题意,我们有x^2 - x - 36 = 0。
这是一个二次方程,可以通过因式分解法求解:(x - 9)(x + 4) = 0。
解得x = 9 或 x = -4。
...结束语:本次全国初二数学竞赛试题涵盖了代数、几何、数列等多个领域,旨在考察学生的数学基础知识和解题能力。
(word完整版)八年级数学竞赛题及答案解析
八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。
C.3错误!未找到引用源。
-错误!未找到引用源。
=3(a ≥0) D.错误!未找到引用源。
·错误!未找到引用源。
=错误!未找到引用源。
(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。
八年级数学竞赛题及答案
八年级数学竞赛试题 姓名 成绩 。
1、某公园门票价格,对达到一定人数的团队,按团体票优惠,现有A 、B 、C 三个旅游团共72人,如果各团单独购票,门票依次为360元、、384元、480元;如果三个团合起来购票,总共可少花72元. ⑴这三个旅游团各有多少人?⑵在下面填写一种票价方案,使其与上述购票情况相符:2、如图,已知梯形ABCD 中,AD ∥BC ,CA 平分∠BCD ,AD =12,BC =22,CE =10, (1)试说明: AB =DE; (2)求CD 的长。
3、如图,D 为等腰△ABC 底边BC 的中点,E 、F 分别为AC 及其延长线上的点.又已知∠EDF = 90°,ED = DF = 1,AD = 5.求线段BC 的长.EDCBAFEDC B A参考答案解答题: 1、解:(1)360+384+480-72=1152(元),1152÷72=16(元/人),即团体票是每人16元。
因为16不能整除360,所以A 团未达到优惠人数,若三个团都未达到优惠人数, 则三个团的人数比为360︰384︰480=15︰16︰20,即三个团的人数分别为725115⨯、725116⨯、725120⨯,均不是整数,不可能, 所以B 、C 两团至少有一个团本来就已达到优惠人数,这有两种可能:①只有C 团达到;②B 、C 两团都达到.对于①,可得C 团人数为480÷16=30(人),A 、B 两团共有42人,A 团人数为423115⨯,B 团人数为423116⨯,不是整数,不可能;所以必是②成立,即C 团有30人,B 团有24人,A 团有18人. (2)2、先由AD 平行且等于BE 得到四边形ABED 为平行四边形,因此AB=DE ,再由角平分线得等腰,从而AD=CD=12;3、作DG ⊥AC 于G ,得△ABD 与△ADG 为相似变换,又DG=1/2EF=221,由勾股定理得AG=227,从而BD=75,BC=710;。
初二数学竞赛试卷及答案
一、选择题(每题3分,共30分)1. 已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()A. 24cmB. 26cmC. 28cmD. 30cm2. 下列分数中,分子分母互质的是()A. $\frac{2}{3}$B. $\frac{4}{5}$C. $\frac{6}{7}$D. $\frac{8}{9}$3. 下列数中,能被3整除的是()A. 258B. 267C. 278D. 2874. 下列图形中,具有轴对称性的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形5. 下列方程中,方程的解为x=2的是()A. 2x-1=3B. 2x+1=3C. 2x-1=5D. 2x+1=56. 下列数中,平方根是整数的是()A. 16B. 25C. 36D. 497. 下列代数式中,合并同类项后的结果为3x的是()A. 2x+1xB. 2x-1xC. 2x+2xD. 2x-2x8. 下列函数中,函数值为正数的x值有()A. x=1B. x=2C. x=3D. x=49. 下列数中,是质数的是()A. 17B. 18C. 19D. 2010. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形二、填空题(每题5分,共25分)11. 若a=3,b=5,则a+b的值为______。
12. 下列分数中,最简分数是______。
13. 下列数中,能被5整除的是______。
14. 下列方程中,方程的解为x=3的是______。
15. 下列数中,平方根是正数的是______。
16. 下列代数式中,合并同类项后的结果为5x的是______。
17. 下列函数中,函数值为0的x值有______。
18. 下列数中,是合数的是______。
19. 下列图形中,面积最小的是______。
20. 若a=2,b=4,则a×b的值为______。
三、解答题(每题15分,共30分)21. 已知一个等腰三角形的底边长为8cm,腰长为10cm,求该三角形的面积。
八年级数学竞赛试题(附答案)
八年级数学竞赛试题(本卷满分150分,时间120分钟)一、填空题(每小题5分,共50分)1.点P (3,-5)关于y 轴对称的点的坐标为( )A . (3,5)--B .(5,3)C .(3,5)-D .(3,5) 2.下列四组数据中,不能..作为直角三角形的三边长的是( ) A . 7,24,25 B .6,8,10 C .9,12,15 D .3,4,6 3.已知△ABC 中,AB=AC ,高BD ,CE 交于点O ,连接AO ,则图中全等三角形的对数为( )A .3B .4C .5D .6 4.如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=8,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则PQ+BQ 的最小值是( )A .4B .5C .6D .7 5.设M=(x -3)(x -7),N=(x -2)(x -8),则M 与N 的关系为( )A.M <NB.M >NC.M=N D .不能确定 6.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面,已知正多边形的边数为x ,y ,z ,则zy x 111++的值为( ) A .1 B .32 C .21 D .317.如图,长方形ABCD 中,△ABP 的面积为a ,△CDQ 的面积为b ,则阴影四边形的面积等于( )A .b a +B . b a -C .2ba + D .无法确定 8.若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是( )A .0x y z ++=B .20x y z +-=C . 20y z x +-=D . 20z x y +-=9.已知3030--+-+-=a x x a x y ,其中0<a <30,30≤≤x a ,那么y 的最小值为.( ) A .10 B .20C .30D .4010.如图,ABE ∆和ADC ∆是ABC ∆分别沿着AB ,AC 边翻折0180形成的,若∠1:∠2:∠3=28:5:3,则a ∠的度数为.( )A .60oB .70oC .80oD .90o二、填空题(每小题7分,共49分)11.如果2222(2)(2)45a b a b +++-=,则a 2+b 2的值为 .12.将五个分数:23 ,58 ,1523 ,1017 ,1219 ;由小到大或由大到小排列,排在中间位置的分数是13.x 表示a 与b 的和的平方,y 表示a 与b 的平方的和,则a=7,b=-5时,x -y 的值是14.计算:|11992 -11991 |+|11993 -11992 |-|11993 -11991 |=15.观察下列运算:12=1;22=1+3;32=1+3+5;42=1+3+5+7;52=1+3+5+7+9;则n 2= (n 为正整数)。
八年级数学竞赛试卷(含答案)
八年级数学竞赛试卷(含答案) (满分:完卷时间:120分钟)一、选择题(每小题5分,共40分)1.下列四组数据中,不能..作为直角三角形的三边长的是( ) A . 7,24,25 B .6,8,10 C .9,12,15 D .3,4,6 2设M=(x -3)(x -7),N=(x -2)(x -8),则M 与N 的关系为【 】 A.M <N B.M >N C.M=N D .不能确定3.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187… 解答下列问题:3+32+33+34+…+32015的末位数字是【 】 A .0B .1C .3D .94.若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是【 】A .0x y z ++=B .20x y z +-=C . 20y z x +-=D . 20z x y +-= 5.已知△ABC 中,AB=AC,高BD 、CE 交于点O,连接AO,则图中全等三角形的对数为【 】A .3B .4C .5D .6第5题图 第6题图6、如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=8,AD 平分∠BAC,点PQ 分别是AB 、AD 边上的动点,则PQ+BQ 的最小值是【 】A .4B .5C .6D .7 7、点(3,5)P -关于y 轴对称的点的坐标为( )A . (3,5)--B .(5,3)C .(3,5)-D .(3,5) 8、下列四个命题中,真命题有( )① 两条直线被第三条直线所截,内错角相等.② 如果∠1和∠2是对顶角,那么∠1=∠2. ③ 三角形的一个外角大于任何一个内角. ④ 如果02>x ,那么0>x . A .1个 B .2个 C .3个 D .4个二、填空题(每小题5分,共40分)9.若532+y x b a 与x y b a 2425-是同类项,则XY= .10. 如图,直线l ∥m,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,则 ∠1+∠2的度数为 .11.如果2222(2)(2)45a b a b +++-=,则a 2+b 2的值为 . 12.已知2(25)1000a +=,则(15)(35)a a ++的值为 .13.计算1111111111234523456⎛⎫⎛⎫----++++ ⎪⎪⎝⎭⎝⎭1111111111234562345⎛⎫⎛⎫------+++ ⎪⎪⎝⎭⎝⎭的结果是 .14.如图,在△ABC 中,I 是三内角平分线的交点,∠BIC=130°,则∠A= .15.如图,钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A,则∠A 的度数是 .16、如图AB=AC,则数轴上点C 所表示的数为_____________题 号 1 2 3 4 5 6 7 8 答案题 号 9 10 11 12 13 14 15 16 答案OE D CA QP C B D第10题第14题图第15题图第16题图二、解答题(每小题10分,共40分)17.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.18.已知a=2015x+2014,b=2015x+2015,c=2015x+2016.求a2+b2+c2-ab-bc-ca的值.19.如图,△ABC是边长为6的等边三角形, P是AC边上一动点,由A向C运动(与A、C 不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q 不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.ICBA20.已知△ABC中,∠A:∠B:∠C=3:4:2,AD、BE是角平分线.求证:AB+BD=AE+BE.参考答案三、解答题(每小题10分,共40分)17.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.(2b=a+c)18.已知a=2015x+2014,b=2015x+2015,c=2015x+2016.求a2+b2+c2-ab-bc-ca的值=319.如图,△ABC是边长为6的等边三角形, P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.解法一:过P 作PE ∥QC则△AFP是等边三角形, ∵P 、Q 同时出发、速度相同,即BQ=AP∴BQ=PF∴△DBQ≌△DFP,∴BD=DF∵,∴BD=DF=FA=,∴AP=2.解法二: ∵P 、Q 同时同速出发,∴AQ=BQ设AP=BQ=x,则PC=6-x,QC=6+x 在Rt△QCP中,∠CQP=30°,∠C=60°∴∠CQP=90°∴QC=2PC,即6+x=2(6-x)∴x=2∴AP=2(2)由(1 )知BD=DF而△APF 是等边三角形,PE ⊥AF,∵AE=EF 又DE+(BD+AE)=AB=6,∴DE+(DF+EF)=6 ,即DE+DE=6∵DE=3 为定值,即DE 的长不变20.已知△ABC中,∠A:∠B:∠C=3:4:2,AD、BE是角平分线.求证:AB+BD=AE+BE.题号 1 2 3 4 5 6 7 8 答案 D B D D C A A A 题号9 10 11 12 13 14 15 16答案-2 4507 900 1/680°12°15AED CB证明:延长AB到F,使BF=BD,连DF,所以∠F=∠BDF因为∠ABC=80所以∠F=40°因为∠ACB=40度所以∠F=∠ACB,因为AD是平分线所以∠BAD=∠CAD又AD为公共边所以△ADF≌△ADC所以AF=AC因为AD是角平分线,所以∠CBE=∠ABC/2=40所以∠EBD=∠C所以BE=EC,所以BE+AE=EC+AE=AC=AF=AB+BF=AB+BD。
八年级数学竞赛测试题(含答案)
初二数学竞赛测试题班级 _____________________一、选择题(每小题4分,共32分)1.如果a >b,则2a -b 一定是( C ) A 、负数 B 、非负数 C 、正数 D 、非正数。
2.已知x ﹥0,y ﹤0,∣x ∣﹤∣y ∣,则x+y 是( C )A 、零B 、正数C 、负数D 、不确定。
3.如图,△ABC 中,∠B=∠C ,D 在BC 边上, ∠BAD=500,在AC 上取一点E ,使得∠ADE=∠AED ,则∠EDC 的度数为( B )A 、150B 、250C 、300D 、504.满足等式 2003200320032003=+--+xy y x x y y x的正整数对(x,y )的个数是( )A 、1B 、2C 、3D 、45.今有四个命题:①若两实数的和与积都是奇数,则这两数都是奇数。
②若两实数的和与积都是偶数,则这两数都是偶数。
③若两实数的和与积都是有理数,则这两数都是有理数。
④若两实数的和与积都是无理数,则这两数都是无理数。
其中正确命题个数为( )A 、0B 、1C 、2D 、46.若M=3x 2-8xy+9y 2-4x+6y+13(x,y 是实数),则M 的值一定是( )A 、正数B 、负数C 、零D 、整数7.设A=48)41001441431(222+++-+-⨯ 则与A 最接近的正整数是( ) A 、18 B 、20 C 、24 D 、25 8.如果关于x 的方程k(k+1) (k-2)x 2-2(k+1) (k+2)x+k+2=0,只有一个实数解,则实数k 可取不同的值的个数为( )(A)2 (B)3 (C)4 (D)5.二.填空题(每小题5 分共30分)9.如图,有一块矩形ABCD,AB=8,AD=6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE,再将△AED 沿DE 向上翻折,AE 与BC 的交点为F,则△CEF 的面积为 .10.关于x 的方程∣∣x-2 ∣-1∣=a 有三个整数解,则a 的值是 . 11.已知关于x 的方程a 2x 2-(3a 2-8a)x+2a 2-13a+15=0(其中a 是非负整数),至少有一个整数根,那么a= .12.若关于x 的方程13213+-=++x x ax x 有增根x=-1,则a= . 13.已知三个质数a,b,c 满足a+b+c+abc=99,那么a c c b b a -+-+-= .14.在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心).若现在时间恰好是12点整,则经过 秒钟后,△OAB 的面积第一次达到最大.三、解答题:15.如图已知△ABC 中,∠ACB=900, AC=BC ,CD ∥AB ,BD=AB ,求∠D 的度数。
初二数学竞赛测试卷及答案
一、选择题(每题5分,共20分)1. 下列各数中,不是有理数的是()A. √4B. -πC. 0.25D. 1/22. 已知a、b是方程x² - 3x + 2 = 0的两个根,则a + b的值为()A. 3B. -3C. 1D. 23. 一个长方形的长是6cm,宽是4cm,它的对角线长是()A. 8cmB. 10cmC. 12cmD. 16cm4. 在直角坐标系中,点A(2,3)关于原点对称的点的坐标是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (3,-2)5. 一个数的平方是64,那么这个数可能是()A. 8B. -8C. 8或-8D. 无法确定二、填空题(每题5分,共25分)6. 0.5的平方根是______。
7. 如果a² = 9,那么a的值是______。
8. 下列各数中,正数是______。
9. 3x - 5 = 2的解是______。
10. 下列各图中,是圆的是______。
三、解答题(每题10分,共30分)11. 解下列方程:(1) 2(x - 1) - 3 = 5(2) 5x + 2 = 3x - 712. 一个等腰三角形的底边长为10cm,腰长为8cm,求这个三角形的周长。
13. 已知一个数列的前三项分别是3,6,9,求这个数列的第四项。
四、应用题(每题15分,共30分)14. 小明骑自行车去图书馆,他骑行的速度是每小时12公里,骑行了1小时后,他离图书馆还有15公里。
请问小明骑自行车去图书馆需要多少时间?15. 某商店将一台电脑标价为5000元,打八折后,再赠送顾客一台价值200元的显示器。
请问顾客实际需要支付的金额是多少?答案一、选择题1. B2. A3. B4. A5. C二、填空题6. ±√27. ±38. 3,6,99. x = 110. ②三、解答题11. (1) x = 4(2) x = -312. 周长 = 10 + 8 + 8 = 26cm13. 第四项是 9 + 3 = 12四、应用题14. 小明离图书馆的距离是 15公里,以每小时12公里的速度骑行,需要的时间是 15 / 12 = 1.25小时,即1小时15分钟。
初二数学竞赛试题及答案
初二数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 4B. 2/3C. √2D. 0.5答案:C2. 如果一个三角形的两边长分别为3和4,且第三边长为整数,那么第三边长可能是:A. 1B. 2C. 5D. 7答案:C3. 计算下列表达式的值:(3x - 2) / (x + 1),当x = 2时,结果为:A. 1/3B. 1C. 4D. 5答案:C4. 一个数的平方是其本身的数有:A. 0和1B. 0和-1C. 1和-1D. 0和2答案:A5. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A6. 一个数的立方是-8,这个数是:A. 2B. -2C. 3D. -3答案:B7. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 负数C. 0D. 正数或08. 计算下列表达式的值:(2x + 3) / (x - 1),当x = 2时,结果为:A. 5B. 7C. 9D. 11答案:B9. 一个等腰三角形的两边长分别为5和8,那么其周长可能是:A. 18B. 21C. 26D. 30答案:C10. 一个数的相反数是-3,这个数是:A. 3B. -3C. 0D. 6答案:A二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是______。
12. 一个数的立方根是2,那么这个数是______。
答案:813. 如果一个角的补角是120°,那么这个角的度数是______。
答案:60°14. 一个数的倒数是1/2,那么这个数是______。
答案:215. 一个数的绝对值是5,那么这个数可能是______或______。
答案:5或-5三、解答题(每题10分,共50分)16. 已知一个直角三角形的两个直角边长分别为6和8,求斜边的长度。
答案:根据勾股定理,斜边的长度为√(6² + 8²) = √(36 + 64) = √100 = 10。
八年级学生综合能力数学竞赛附答案
八年级学生综合能力数学竞赛题号 一 二 三 总分 得分13 14 15 16 17一、选择题(每小题4分,共24分)1.计算)1011)(911)...(411)(311)(211(22222-----的值是 ( ) A.2110 B.2113 C.209 D.20112.甲从A 地到B 地要走m 小时,乙从B 地到A 地要走n 小时,甲、乙两人分别从A、B 两地同时出发相向而行到相遇需要的时间是( )A. 2n m +B. n m mn +C.mnn m + D.m+n3.如图,点A 在正方体左侧面的中心,点B 是正方体 的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面 爬到点B 的最短路程是A. 3B. 22+C.10D.44.如图,在Rt △ABC 中,∠C =900,BD 平分∠ABC ,交AC 于D ,沿DE 所在直线折叠,点B 恰好与点A 重合,若CD =2,则AB 的值为 ( )A 、23B 、4C 、43D 、85.下列说法中,正确的个数是 ( ) ①已知直角三角形的面积为2,两直角边的比为1:2,则斜边长为10; ②直角三角形的最大边长为3,最短边长为1,则另一边长为2; ③在ABC ∆中,若::1:5:6A B C ∠∠∠=,则ABC ∆为直角三角形; ④等腰三角形面积为12,底边上的高为4,则腰长为5。
A.1 B.2 C.3 D.46.如图,已知动点P 在函数()102y x x=>的图像上运动, PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,线段PM 、PN 分别与直线AB :y=-x+1交于点E 、F ,则AF·BE 的值为 ( )ABA.4B.2C.1D.12二、填空题(每小题4分,共24分) 7..如图是三个反比例函数x k y 1=,x k y 2=,x k y 3=在x轴上方的图象,则1k 、2k 、3k 的大小关系为8.已知114a b -=,则2227a ab ba b ab ---+的值等于 9.已知分式xx -+312值为负数,则x 的取值范围是10.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,则此三角形的形状为11. 如图,Rt △ABC 中,AC=10,BC=24,分别以它的三边为直径向上作三个半圆,则阴影部分面积为12.如图,直线y=-x+b 与双曲线y= -x1(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2 =三、解答题(本大共5小题,13—16每题10分,17题12分,共52分)13.阅读材料,并完成下列问题:方程3232+=+x x 的解为:x 1=3,x 2=32; 4242+=+x x 的解为:x 1=4,x 2=42;5252+=+x x 的解为:x 1=5,x 2=52.(1)观察上述方程及解,猜想关于x 的方程aa x x 22+=+的解为(2)解方程1212-+=-+a a x xy xOy =k 3xy =k 2xy =k 1x14.我市是著名的苹果生产基地,果品公司从A 村收购苹果400吨,从B 村收购苹果600吨.现在要将这些苹果运到C ,D 两个冷藏仓库储存,已知C 库可储存300吨,D 库可储存700吨苹果;从A 村运往C ,D 两处的费用分别为每吨20元和25元,从B 村运往C ,D 两处的费用分别为每吨15元和18元.请你设计一个方案使苹果的运输费用最小,最小费用是多少?15. 如图,直线k kx y 2+=(k ≠0)与x 轴交于点B ,与双曲线xy 4=交于点A 、C ,其中点A 在第一象限,点C 在第三象限. ⑴ 求B 点的坐标;⑵ 若S △AOB =2,求A 点的坐标;⑶ 坐标轴上是否存在点P ,使△AOP 是等腰三角形?若存在,请直接..写出所有P 点的坐标;若不存在,请说明理由.16.这是一个真实的故事,2008年5月12日14时28分,四川汶川发生了8.0级大地震,震后两小时,武警某师参谋长王毅奉命率部队乘车火速向汶川县城前进.13日凌晨1时15分,车行至古尔沟,巨大的山体塌方将道路完全堵塞,部队无法继续前进,王毅毅然决定带领先遣分队徒步向汶川挺进,到达理县时为救当地受灾群众而耽搁了1小时,随后,先遣分队将步行速度提高91,于13日23时15分赶到汶川县城.求先遣分队徒步从理县到汶川.....用了多少小时?17.如图,x 轴是西气东输工程天然气的主管道,按规定主管道在我市只允许开一个口,A(2,1),B(10,5)是我市新建的两个天然气站,现在要在x 轴上选一个点开口,分别连接到A 、B.(1)选择开口点C,使C 点到A 、B 两点的距离相等,求点C 的坐标;(2)是否存在点D,使点D 到A 、B 的距离之和最小,若存在,求出D 到A 、B 的距离之和;若不存在请说明理由.答案一、DBCCDC二、7、123k k k >>;8、6;9、321>-<x x 或;10、等边三角形;11、120;12、2三、13、解:(1)x 1=a ,x 2=a2;………3分 (2)把1212-+=-+a a x x 变形得:121121-+-=-+-a a x x ,………5分 则121,1121-=--=-a x a x ,………7分所以11,21-+==a a x a x ………10分14、解:设运苹果的总费用为y 元,从A 村运x 吨苹果到C 库,,则从A 村运(400x -)吨到D 库,从B 村运(300x -)吨苹果到C 库,从B 村运(x +300)吨苹果到D 库…2分由题意得:)300(18)300(15)400(2520++-+-+=x x x x y 199002+-=x )3000(<<x ………6分一次函数199002+-=x y , y 随x 的增大而减小∴当300=x 时,19300199003002=+⨯-=y 最小………9分答: 从A 村运300吨苹果到C 库,,则从A 村运100吨到D 库,从B 村运600吨苹果到D 库,这样苹果的运输费用最小,最小费用是19300元.………10分 15、解:(1)把0=y 代人k kx y 2+=得:2-=x 所以B 的坐标为(-2,0)………2分 (2) S △AOB =2 即2221=⋅⨯y ∴2=y把2=y 代人xy 4=得:2=x 所以A 的坐标为(2,2)………6分 (3))0,4(),0,22(),0,22(),0,2(),4,0(),22,0(),22,0(),2,0(87654321P P P P P P P P --………10分16、设先遣分队从古尔沟到理县的平均速度为每小时x 千米,则从理县到汶川的平均速度为每小时x )911(+千米.………1分由题意得:21)911(6030=++x x ………5分解分式方程得:4=x ………7分经检验4=x 是分式方程的解………8分5.134)911(60=⨯+答:先遣分队徒步从理县到汶川.....用13.5小时.………10分 17、解:(1)连结AB ,作线段AB 的垂直平分线交x 轴于C 点,C 点到A 、B 距离相等………2分过A 作AF ⊥x 轴于F,过B 作BH ⊥x 轴于H.在Rt ∆AFC 和Rt ∆BHC 中, AC=BC ,FH=10-2=8, 由勾股定理得2222CH BH CF AF +=+即2222)8(51CF CF -+=+解得CF=5.5 ∴OC=7.5C 点坐标为(7.5,0)………7分(2)存在点D,作A 点关于x 轴对称点E 连结BE ,交x 轴于点D ,D 点到A 、B 的距离之和最小,………9分108622=+==+EB DB DA ………12分。
八年级趣味数学竞赛试题
八年级趣味数学竞赛试题班级姓名得分1、一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。
问他赚了多少?答案:2元2、小华的爸爸1分钟可以剪好5只自己的指甲。
他在5分钟内可以剪好几只自己的指甲?答案:20只,包括手指甲和脚趾甲3、哪一年正着念和倒着念一样?答案:1961年4、一根绳子两个头,一根半绳子有几个头?答案:4个5、桌子上原有12支点燃的蜡烛,先被风吹灭了3支,不久又被风吹灭了2支,桌子上还剩几支蜡烛呢?答案:12支6、一张照片上有3个人,但是却有2个爸爸和2个儿子,为什么?答案:照片上的人分别为爷爷、爸爸、儿子7、用放大镜不能放大的是什么?猜一几何名词。
答案:角8、5只鸡,5天生了5个蛋。
100天内要100个蛋,需要多少只鸡?答案:5只9、12356789,猜一含数字成语。
答案:丢三落四10、阿拉伯数字是哪个国家或地区的人发明创造的?()答案:AA、古印度人B、阿拉伯人C、欧洲人D、中国人11、7/8,猜一含数字成语。
答案:七上八下12、一个农夫带着三只兔到集市上去卖,每只兔大概三四千克,但农夫的秤只能称五千克以上,问他该如何称量。
答案:先称3只,再拿下一只,称量后算差。
13、一天有个年轻人来到王老板的店里买一件礼物,这件礼物成本是18元,售价是21元。
结果是这个年轻人掏出100元要买这件礼物。
王老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元。
但是街坊后来发现那100元是假钞,王老板无奈还了街坊100元。
现在问题是:王老板在这次交易中到底损失了多少钱?答案:97元14、把绳子三折来量,井外余4米;把绳子四折来量,井外余1米。
求井深和绳子各是多少?15、王师傅爱喝酒,家中有24只空啤酒瓶。
某商店推出一项活动:三个空啤酒瓶可以换一瓶啤酒。
请问:王师傅家的空啤酒瓶可以换多少瓶啤酒喝?答案:12瓶。
因为三个空啤酒瓶可以换一瓶啤酒,相当于两个空瓶换一瓶酒喝。
新初二数学竞赛试题及答案
新初二数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于其本身,这个数可能是:A. 0B. 1C. -1D. 2答案:B3. 一个三角形的三个内角之和是多少度?A. 180度B. 360度C. 90度D. 120度答案:A4. 以下哪个是二次方程的解法?A. 直接开平方法B. 配方法C. 因式分解法D. 所有以上答案:D5. 一个数的绝对值是其本身,这个数是:A. 正数B. 零C. 负数D. 正数或零答案:D6. 以下哪个是不等式的解集?A. 所有实数B. 所有正数C. 所有负数D. 所有非零数答案:A7. 一个圆的周长是其直径的多少倍?A. π倍B. 2倍C. 3倍D. 4倍答案:A8. 以下哪个是整式除法的运算法则?A. 同底数幂相除B. 幂的乘方C. 积的乘方D. 所有以上答案:D9. 以下哪个是几何级数的通项公式?A. \( a_n = a_1 \times r^{(n-1)} \)B. \( a_n = a_1 \times n \)C. \( a_n = a_1 \times (n-1) \)D. \( a_n = a_1 \times r \)答案:A10. 以下哪个是勾股定理的表述?A. 直角三角形的斜边平方等于两直角边平方和B. 直角三角形的两直角边平方和等于斜边平方C. 直角三角形的斜边等于两直角边之和D. 直角三角形的两直角边等于斜边的平方根答案:A二、填空题(每题4分,共20分)11. 如果 \( a \) 和 \( b \) 是两个连续的整数,且 \( a > b \),那么 \( a \) 的值是 \( b \) 加上 ______ 。
答案:112. 一个数的平方根是 \( \sqrt{a} \),那么这个数是 \( \sqrt{a} \) 的 ______ 。
答案:平方13. 如果一个三角形的三边长分别为 \( a \),\( b \) 和 \( c \),且满足 \( a^2 + b^2 = c^2 \),那么这个三角形是 ______ 三角形。
八年级数学竞赛题及其规范标准答案解析
八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。
C.3错误!未找到引用源。
-错误!未找到引用源。
=3(a ≥0) D.错误!未找到引用源。
·错误!未找到引用源。
=错误!未找到引用源。
(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。
初二的数学竞赛试题及答案
初二的数学竞赛试题及答案初二数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. -3.14B. √2C. 0.33333(无限循环)D. 1/32. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 24. 以下哪个不是二次根式?A. √3B. 2√2C. √(-1)D. √45. 一个多项式P(x) = x^2 - 5x + 6可以分解为?A. (x - 1)(x - 6)B. (x - 2)(x - 3)C. (x - 3)(x - 2)D. (x + 1)(x + 6)二、填空题(每题3分,共15分)6. 如果一个数的立方根是2,那么这个数是______。
7. 一个数的相反数是-5,那么这个数是______。
8. 如果一个数的绝对值是7,那么这个数可以是______或______。
9. 一个二次方程x^2 + ax + b = 0的判别式是______。
10. 如果一个分数的分子是3,分母是6,那么这个分数化简后的结果是______。
三、解答题(每题10分,共70分)11. 解方程:2x + 5 = 3x - 2。
12. 证明:如果一个三角形的两边和这两边之间的夹角相等,那么这个三角形是等腰三角形。
13. 计算:(2a + 3b)(2a - 3b)。
14. 化简:(3x^2 - 2x + 1) / (x + 1)。
15. 解不等式:3x - 5 > 2x + 4。
答案一、选择题1. B2. A3. A4. C5. C二、填空题6. 87. 58. 7, -79. a^2 - 4b10. 1/2三、解答题11. 解:2x + 5 = 3x - 2x = 712. 证明:设三角形ABC中,AB = AC,∠BAC = ∠BAC,根据SAS(边角边)相似,△ABC ∽ △BAC,所以AB = AC,故△ABC是等腰三角形。
八年级数学竞赛试题(含答案)-
CD八年级数学竞赛试题一、选择题:1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ). (A ) 14 (B ) 16 (C )18 (D )20 3.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx恰有一个公共实数根,则222a b c bc ca ab++的值为( ). (A ) 0 (B )1 (C )2 (D )3 4.若3210x x x +++=,则2627--+x x+ … +x x ++-11+ … +2726x x +的值是( )(A )1 (B )0 (C )-1 (D )25.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) (A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限 (D )第三、四象限6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )(A)1个 (B) 2个 (C) 3个 (D)无穷多个8.如图在四边形ABCD 中,∠DAB=∠BCD=90°,AB=AD ,若这个四边形的面积是10,则BC+CD 等于( ) A .54 B .102 C .64D .289.线段a x y +-=21(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为 ( )A .6B .8C .9D .1010.四条直线两两相交,且任意三条不交于同一点,则这四条直线共可构成的同位角有( ) (A )24组 (B )48组 (C )12组 (D )16组 11、如图,P 是△ABC 内一点,BP ,CP ,AP 的延长线分别与 AC ,AB ,BC 交于点E ,F ,D 。
八年级数学竞赛试题及答案
八年级数学竞赛试题及答案1.将1、2、3、4、5这五个数字排成一排,使得最后一个数是奇数且其中任意连续三个数之和都能被这三个数中的第一个数整除。
求满足要求的排法数量。
答案:3种2.XXX沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车。
假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车。
求发车间隔的时间。
答案:18分钟3.如图,在三角形ABC中,AB=7,AC=11,点M是BC 的中点,AD是∠BAC的平分线,MF∥AD。
求FC的长度。
答案:FC=54.已知0<a<1,且满足$\left\lfloor\frac{a+1}{2}\right\rfloor+\left\lfloor\frac{a+2}{3}\right\rfloor+\cdots+\left\lfloor\frac{a+29}{30}\right\rfloor=18$,求$\left\lfloor10a\right\rfloor$的值。
答案:25.XXX家电话号码原为六位数。
第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码。
XXX发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍。
求XXX家原来的电话号码。
答案:6.在平面上有7个点,其中任意3个点都不在同一条直线上。
如果连接这7个点中的每两个点,那么最多可以得到21条线段;以这些线段为边,最多能构成35个三角形。
7.设a、b、c均是不为0的实数,且满足$a^2-b^2=bc$及$b^2-c^2=ca$。
证明:$a^2-c^2=ab$。
8.如图,在凹四边形ABCD中,它的三个内角∠A、∠B、∠C均为45度。
E、F、G、H分别是边AB、BC、CD、DA的中点。
证明:四边形EFGH是正方形。
9.已知长方形ABCO,O为坐标原点,点B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限且是直线y=2x+6上的一点,若△APD是等腰直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
14、⑴ 证明:∵2211x x y y =+=+,,∴22x y x y -=- ∴ 1 ()x y x y +=≠⑵ 解:∵2211x x y y =+=+,,∴3232x x x y y y =+=+,,432432x x x y y y =+=+,,543543x x x y y y =+=+,,∴554343322322x y x x y y x x x x y y y y +=+++=+++++++ 222222x x x x x y y y y y =+++++++++223()2()3(11)2()33211x y x y x y x y =+++=+++++=⨯+= 15、证明:作∠OBF=∠OAE 交AD 于F∵∠BAD=∠ABE ∴OA=OB又∠AOE=∠BOF∴△AOE ≌△BOF (ASA ) ∴AE=BF ∵AE=BD ∴BF=BD∴∠BDF=∠BFD ∵∠BDF=∠C+∠OAE ∠BFD=∠BOF+∠OBF ∴∠BOF=∠C∵∠BOF=∠BAD+∠ABE=2∠BAD∴∠BAD=12∠C(第15题图)DCB八年级数学竞赛试题(二)一、填空题(每小题4分,共40分)1、实数包括______和________;一个正实数的绝对值是_______;一个非正实数的绝对值是_______。
2________;23 的算术平方根是__________。
3、甲、乙两位探险者到沙漠进行探险。
某日早晨7∶00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进。
上午10∶00,甲、乙二人的距离的平方是_____。
4、一个等腰三角形的周长为16,底边上的高是4,则这个三角形的三边长分别是________,________,_________。
5、已知:如图1,E 、F 分别是正方形ABCD 的边BC 、 CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若∠EAF=500,则∠CME +∠CNF =________。
6、在旋转过程中,确定一个三角形旋转后的位置,除需要此三角形原来的位置外,还需的条件是__________________。
7、如图2,将面积为2a 的正方形与面积为2b 的正方形 (b>a)放在一起,则△ABC 的面积是__________。
8、若菱形两条对角线长分别为6cm 和8cm ,则它的周长为_______,面积是________。
9、已知矩形的周长是72cm ,一边中点与对边的两个端点连线的夹角为直角,则此矩形的长边长为_______cm ,短边长为________cm 。
10、如图3,在矩形ABCD 中,DC=5cm,在DC 上存在一点E ,沿直线 AE 把△AED 折叠,使点D 恰好落在BC 边上,设此点为F,若△ABF的面积为30cm 2,那么折叠的△AED 的面积为_______。
二、选择题(每小题3分,共24分) 11、下列说法中正确的是( )A 、三角形一边的平方等于其它两边的平方和B 、直角三角形中斜边的平方等于两直角边的平方和C 、直角三角形一边的平方等于其它两边的平方A EGD BFC 图2ABCD EF 图3ABCD FE图4 ABC D FE NM图1D 、直角三角形一边等于等于其它两边的和12、如图4,正方形ABCD 的边长为1cm ,以对角线AC 为边长再作一个正方形,则正方形ACEF 的面积是( )A 、3cm 2B 、4cm 2C 、5cm 2D 、2cm 213、以线段16,13,10,6a b c d ====为边,且使a ∥c 作四边形,这样的四边形( ) A 、能作一个 B 、能作两个 C 、能作三个 D 、能作无数个 E 、不能作14、如图5,正方形的面积为256,点F 在AD 上,点E 在AB 的延长线上,Rt △CEF 的面积为200,则BE 的值为( )A 、10B 、11C 、12D 、15 153====对于他们的解法,正确的是( )A 、甲、乙的解法都正确B 、甲的解法正确,乙的解法不正确C 、乙的解法正确,甲的解法不正确D 、甲、乙的解法都不正确 16、实数a 、b 满足ab=1,若11,1111a bM N a b a b=+=+++++,则M 、N 的关系为( ) A 、M>N B 、M=N C 、M<N D 、不确定 17、在图形旋转中,下列说法中错误的是( ) A 、图形上的每一点到旋转中心的距离相等 B 、图形上的每一点移动的角度相同 C 、图形上可能存在不动点D 、图形上任意两点的连线与其对应两点的连线相等 18、根据下列条件,能作出平行四边形的是( )AB E CD F 图5A 、两组对边的长分别是3和5B 、相邻两边的长分别是3和5,且一条对角线长为9C 、一边的长为7,两条对角线的长分别为6和8D 、一边的长为7,两条对角线的长分别为6和5 三、解答题。
19、 (1) (4分)化简2+ (0a ≠)(2)(5分)⎛+ ⎝20、(10分)如图6,凸四边形ABCD 中 ,AB ∥CD ,且AB+BC=CD+AD 。
求证:ABCD 是平行四边形。
21、(7分)设x 、y 都是有理数,且满足方程(21+3π)x+(31+2π)y-4-π=0, 求x-y 的值。
22、(10分)已知:如图7,等腰梯形ABCD 中,AB ∥CD ,对角线AC ⊥BD 于O ,BC= AB=a CD=b a+b=34.,如果,,求:a 、b 的值。
ABCD 图6ABCD图7O参考答案一、填空题。
1.有理数、无理数,正数,非负数133. 4244. 6,6,55. 10006.旋转方向和旋转角度7.212b 8. 20cm ,24cm 2 9. 24,12 10. 16.9cm 2 二、选择题B 、D 、E 、D 、A 、B 、A 、A 三、解答题解:(1) (2)()22a a a+=-+-=-3216480.20.84123216430.20.84120.4⎛⎫-+- ⎪⎝⎭⎛⎫=-+- ⎪⎝⎭=-四、证明:假设ABCD 不是平行四边形,即AB ≠CD 。
不妨设AB>CD 。
在AB 边上取点E ,使AE=CD ,则 AECD 是平行四边形。
∴AD=CE 。
由AB+BC=CD+AD 即(AB+EB)+BC=CD+AD∴EB+BC=CE ,与三角形不等式EB+BC>CE 矛盾。
因此,ABCD 必是平行四边形。