初二下册数学竞赛试题及答案
初二数学竞赛试题7套整理版(含答案)
初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
八年级数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
数学初二竞赛试题及答案
数学初二竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的立方等于它本身,那么这个数可以是:A. 0B. 1C. -1D. 以上都是3. 一个等腰三角形的两边长分别为3cm和4cm,那么它的周长可能是:A. 10cmB. 11cmC. 12cmD. 13cm4. 下列哪个选项是完全平方数?A. 12B. 13C. 14D. 155. 一个数的相反数是它本身,这个数是:A. 0C. -1D. 26. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 0D. 非负数7. 如果一个角是直角的一半,那么这个角的度数是:A. 45°B. 60°C. 90°D. 120°8. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和,那么第五项是:A. 4B. 5C. 6D. 79. 一个圆的直径是10cm,那么它的面积是:A. 25π cm²B. 50π cm²C. 100π cm²D. 200π c m²10. 一个等差数列的前三项是2, 5, 8,那么它的公差是:A. 1C. 3D. 4二、填空题(每题4分,共20分)1. 一个数的平方根是3,那么这个数是________。
2. 如果一个三角形的三个内角分别是30°,60°,90°,那么这个三角形是________三角形。
3. 一个数的立方根是2,那么这个数是________。
4. 一个数的倒数是1/2,那么这个数是________。
5. 一个圆的半径是5cm,那么它的直径是________cm。
三、解答题(每题10分,共50分)1. 已知等差数列的前三项是3, 6, 9,求这个数列的第10项。
2. 一个直角三角形的两个直角边长分别是6cm和8cm,求这个三角形的斜边长。
(word完整版)八年级数学竞赛题及答案解析
八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。
C.3错误!未找到引用源。
-错误!未找到引用源。
=3(a ≥0) D.错误!未找到引用源。
·错误!未找到引用源。
=错误!未找到引用源。
(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。
初二数学竞赛试卷及答案
一、选择题(每题3分,共30分)1. 已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()A. 24cmB. 26cmC. 28cmD. 30cm2. 下列分数中,分子分母互质的是()A. $\frac{2}{3}$B. $\frac{4}{5}$C. $\frac{6}{7}$D. $\frac{8}{9}$3. 下列数中,能被3整除的是()A. 258B. 267C. 278D. 2874. 下列图形中,具有轴对称性的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形5. 下列方程中,方程的解为x=2的是()A. 2x-1=3B. 2x+1=3C. 2x-1=5D. 2x+1=56. 下列数中,平方根是整数的是()A. 16B. 25C. 36D. 497. 下列代数式中,合并同类项后的结果为3x的是()A. 2x+1xB. 2x-1xC. 2x+2xD. 2x-2x8. 下列函数中,函数值为正数的x值有()A. x=1B. x=2C. x=3D. x=49. 下列数中,是质数的是()A. 17B. 18C. 19D. 2010. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形二、填空题(每题5分,共25分)11. 若a=3,b=5,则a+b的值为______。
12. 下列分数中,最简分数是______。
13. 下列数中,能被5整除的是______。
14. 下列方程中,方程的解为x=3的是______。
15. 下列数中,平方根是正数的是______。
16. 下列代数式中,合并同类项后的结果为5x的是______。
17. 下列函数中,函数值为0的x值有______。
18. 下列数中,是合数的是______。
19. 下列图形中,面积最小的是______。
20. 若a=2,b=4,则a×b的值为______。
三、解答题(每题15分,共30分)21. 已知一个等腰三角形的底边长为8cm,腰长为10cm,求该三角形的面积。
初二竞赛数学试题及答案
初二竞赛数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. √4答案:B2. 如果a和b是实数,且a² + b² = 0,那么a和b的值分别是?A. a = 0, b = 0B. a = 1, b = 1C. a = 0, b = 1D. a = 1, b = 0答案:A3. 一个等腰三角形的底边长为6,高为4,那么它的周长是多少?A. 12B. 14C. 16D. 18答案:C4. 已知x² - 5x + 6 = 0,那么x的值是?A. 2, 3B. 1, 6C. 2, -3D. -2, -3答案:A5. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A6. 一个数的绝对值是8,那么这个数可能是?A. 8B. -8C. 8或-8D. 0答案:C7. 如果一个角的补角是120°,那么这个角的度数是?A. 60°B. 30°C. 120°D. 150°答案:B8. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B9. 一个等差数列的首项是3,公差是2,那么它的第5项是多少?A. 11B. 13C. 15D. 17答案:A10. 一个二次函数y = ax² + bx + c的顶点坐标是(-2, 3),那么a 的值是?A. 1B. -1C. 2D. -2答案:B二、填空题(每题4分,共20分)11. 一个数的平方根是3,那么这个数是______。
答案:912. 如果一个三角形的两边长分别是5和7,且这两边的夹角是60°,那么这个三角形的面积是______。
答案:10√3/213. 一个等比数列的首项是2,公比是3,那么它的第4项是______。
答案:5414. 一个函数y = kx + b的图象经过点(1, 2)和(2, 4),那么k的值是______。
初二数学竞赛试题含答案
初二数学竞赛试题一选择题(每小题5分,共45分)1.a.b.c 是正整数,a >b 且a 2-ab-ac+bc=7.则a-c 等于(D ) A. -1 B. –1或-7 C . 1 D . 1或7 2. 已知a ≠0. b ≠0且a1+b1=4 则bab a bab a 323434-+-++等于(B )A .411- B.1019- C.0 D. 10193.对于非负数a 1.a 2…a 5满足M=(a 1+a 2+a 3+a 4)(a 2+a 3+a 4+a 5) N=(a 1+a 2+a 3+a 4+a 5)(a 2+a 3+a 4) ,则(B ) A. M >N B. M ≥N C. M <N D. M ≤N4.下列各图是纸箱厂剩下的废纸片,全是由全等的正方形组成的图形,为了充分5.,以使所作三角形与ABC 全等,这样的三角形最多可以画出(C ) A 8 个 B 6个 C 4个 D2个 6.有下列四个命题:(1) (2) 两边和第三边上的高对应相等的两个锐角三角形不一定是全等三角形 (3) 两边和第三边上的高对应相等的两个三角形是全等三角形(4) 两边和其中一边所对的角对应相等的两个三角形不一定是全等三角形 其中正确的是(D ) A.(1) (2) B. (2) (3) C. (3) (4) D.(4) (1)7.若x =a1-a ,则24x x +的值为(B )A . a-a 1 B.a1-a C. a+a1 D.不能确定8.如果两个三角形的两边和其中一边上的高分别对应相等,那么这两个三角形的 第三边所对的角(D )A .相等 B.不相等 C.互余 D.互补或相等 9 .已知实数a 满足 2000-a +2001-a =a,则a-20002的值为(C )A .1999 B.2000 C.2001 D.2002 二.填空题(每题5分,共40分) 10. 已知A=3232--+,化简后,A=211.设x=nn n n ++-+11,y=nn n n -+++11.且19x 2+143xy+19y 2=2005,则整数n=_2______.12.若m 适合于关系式y x y x m y x m y x --+-=-++--+199.19932253,则m=_201__ 13.满足23)31(2x x --=-的所有整数x 的和是___5_____14.在△ABC 中,∠C=90°,BC=40,AD 是∠BAC 的平分线交BC 于D,且DC :DB=3:5则点D 到AB 的距离是__15______15.在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是_2<AD <7___16.如图,在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,并且AE=21(AB+AD ),则∠ABC+∠17.张家村、李家村和杨家村三个村庄的位置不在同一眼机井,要求机井到三条道路的距离相等,那么打机井的位置有__4____处.三.三所学校分别记作A 、B 、C ,体育场记作O ,它是△ABC 的三条角平分线的交点,O 、A 、B 、C 每两地之间有直线道路相连,一支长跑队伍从体育场O 出发,跑遍各校再回到O 点,指出哪条路线跑的距离最短(已知AC >BC >AB ),并说明理由(9分)解:O →A →B →C →O (或 O →C →B →A →O )四.设a+b+c+3=2(a +11-++cb ),求a 2+b 2+c 2的值(8分)解:a=1,b=0.c=2 . a 2+b 2+c 2=5五.已知c b a x --+a c b x --+b c a x --=3,且a 1+b1+c1≠0,求(x-a-b-c )2005的值(9分)解: (x-a-b-c )2005=0六、如图,,已知AD ∥BC,∠EAD=∠EAB,∠EBA=∠EBC,直线DC 过E 交AD 于D,交BC 于C,求证: AD+BC=AB (9分)。
八年级下数学竞赛试题(含答案)
八年级(下)数学期末竞赛测试卷一、选择题(每小题3分,共30分)1、下列多项式中能用完全平方公式分解的是( ) A.x 2-x +1 B.1-2xy +x 2y 2 C.a 2+a +21D.-a 2+b 2-2ab 2、不等式组⎩⎨⎧>-≥-04012x x 的整数解为( )A.1个B.2个C.3个D.4个 3、下列各分式中,与分式ba a--的值相等的是 ( ) A 、b a a -- B 、b a a + C 、a b a - D 、-ab a -4、.若分式34922+--x x x 的值为0,则x 的值为( )A . 3-B .3或3-C .3D .无法确定5、某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82=甲x 分,82=乙x 分;2452=甲s ,1902=乙s ,那么成绩较为整齐的是( ) A .甲班 B .乙班 C .两班一样整齐 D .无法确定6、某天同时同地,甲同学测得1 m 的测竿在地面上影长为0.8 m ,乙同学测得国旗旗杆在地面上的影长为9.6 m ,则国旗旗杆的长为( )A .10 mB .12 mC .13 mD .15 m7、如图,△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,DE =1,BC =3,AB =6,则AD 的长为( )A .1B .1.5C .2D .2.5(第7题图) (第9题图)8、赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A .1421140140=-+x x B .1421280280=++x x C .1421140140=++x x D .1211010=++x x 9、如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2米,桌面距离地面1米.若灯泡距离地面3米,则地面上阴影部分的面积为( )A .0.36π平方米B .0.81π平方米C .2π平方米D .3.24π平方米10.下列从左到右的变形是因式分解的是( ) A.(x+1)(x-1)=x 2-1 B. a 2b =a ·ab C.ab-a-b+1=(a-1)(b-1) D.m 2-2m-3=m(m-2-m3)二、填空题(每小题3分,共24分)11、已知:线段AB=10cm ,C 为AB 有黄金分割点,AC>BC ,则AC=_________. 12、不等式(a -b )x>a -b 的解集是x <1,则a 与b 的大小关系是________. 13、已知x 1,x 2,x 3的标准差是2,则数据2x 1+3,2x 2+3,2x 3+3的方差是 .. 14、计算机生产车间制造a 个零件,原计划每天造x 个,后为了供货需要,每天多造了b 个,则可提前______________天完成。
初二竞赛数学试题大全及答案
初二竞赛数学试题大全及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于16,这个数是什么?A. 4B. -4C. 4或-4D. 16答案:C3. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A4. 一个数的立方是-27,这个数是什么?A. -3B. 3C. -27D. 27答案:A5. 如果一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 0答案:C6. 一个数的倒数是1/4,这个数是什么?A. 4B. -4C. 1/4D. 4/1答案:A7. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π答案:B8. 一个数的平方根是4,这个数是什么?A. 16B. -16C. 4D. 8答案:A9. 如果一个数的立方根是2,这个数是什么?A. 8B. 6C. 4D. 2答案:A10. 一个数的对数以10为底是2,这个数是什么?A. 100B. 10C. 20D. 200答案:B二、填空题(每题3分,共15分)11. 一个数的平方是36,这个数是_________。
答案:±612. 一个数的立方是64,这个数是_________。
答案:413. 一个圆的周长是2π,那么它的半径是_________。
答案:114. 如果一个数的绝对值是10,那么这个数可以是_________。
答案:±1015. 一个数的对数以2为底是3,这个数是_________。
答案:8三、解答题(每题5分,共55分)16. 证明勾股定理。
答案:略(根据直角三角形的两条直角边的平方和等于斜边的平方进行证明)17. 解一元二次方程:x² - 5x + 6 = 0。
答案:(x - 2)(x - 3) = 0,解得 x₁ = 2,x₂ = 3。
初二数学竞赛试题及答案
初二数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 4B. 2/3C. √2D. 0.5答案:C2. 如果一个三角形的两边长分别为3和4,且第三边长为整数,那么第三边长可能是:A. 1B. 2C. 5D. 7答案:C3. 计算下列表达式的值:(3x - 2) / (x + 1),当x = 2时,结果为:A. 1/3B. 1C. 4D. 5答案:C4. 一个数的平方是其本身的数有:A. 0和1B. 0和-1C. 1和-1D. 0和2答案:A5. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A6. 一个数的立方是-8,这个数是:A. 2B. -2C. 3D. -3答案:B7. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 负数C. 0D. 正数或08. 计算下列表达式的值:(2x + 3) / (x - 1),当x = 2时,结果为:A. 5B. 7C. 9D. 11答案:B9. 一个等腰三角形的两边长分别为5和8,那么其周长可能是:A. 18B. 21C. 26D. 30答案:C10. 一个数的相反数是-3,这个数是:A. 3B. -3C. 0D. 6答案:A二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是______。
12. 一个数的立方根是2,那么这个数是______。
答案:813. 如果一个角的补角是120°,那么这个角的度数是______。
答案:60°14. 一个数的倒数是1/2,那么这个数是______。
答案:215. 一个数的绝对值是5,那么这个数可能是______或______。
答案:5或-5三、解答题(每题10分,共50分)16. 已知一个直角三角形的两个直角边长分别为6和8,求斜边的长度。
答案:根据勾股定理,斜边的长度为√(6² + 8²) = √(36 + 64) = √100 = 10。
下八年级数学竞赛试题及答案
八年级数学竞赛试题1. 一辆汽车从湄江出发开往娄底.如果汽车每小时行使a 千米,则t 小时可以到达,如果汽车每小时行使b ()b a >千米,那么可以提前到达娄底的时间是( )小时..A at a b + B.bt a b + C.abt a b+ D.bt atb -2. 分式方程()()1112x mx x x -=--+有增根,则m 的值为( ) A.0和3 B.1 C.1和2- D.33. 由下列条件可以作出唯一的等腰三角形的是( )A.已知等腰三角形的两腰B.已知一腰和一腰上的高C.已知底角的度数和顶角的度数 D .已知底边长和底边上的中线的长4. )A.(1x -B.(1x -C.(1x -+D.(1x -5. 当12x +=()20033420052001x x --的值是( ) A.0 B.1- C.1 D.20032-6. 若34x -<<45x -=的x 值为( )A.2B.3C.4D.5 7. 设0a b <<,224a b ab +=,则a ba b+-的值为( )C.2D.3 8. 若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥9. 已知a 、b 为常数,若0ax b +>的解集是13x <,则0bx a -<的解集是( ) A.3x >- B.3x <- C.3x > D.3x <10. 在等腰ABC △中,AB AC =,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A.7B.11C.7或11D.7或10二.填空题(共8小题,每小题5分,共40分)11. 如图ABC △中,AD 平分BAC ∠,且AB BD AC +=,若64B ∠=︒,则C ∠= .12. 若22013a x +=,22014b x +=,22015c x +=,且24abc =,则111a b c b c a c a b a b c++---的值为 .13. 一条线段的长为a ,若要使31a -,41a +,12a -这三条线段组成一个三角形,则a 的取值范围是 .14. 的整数解有 组.15. 如图BD 是ABC △的一条角平分线,8AB =,4BC =,且24ABC S =△,则DBC △的面积是 .16. 若关于x 的方程212x ax +=--的解为正数,则a 的取值范围是 . 17. 关于x 的不等式332x m m -≤-的正整数解为1,2,3,4,则m 的取值范围是 . 18. 如果21a -和5a -是一个数m 的平方根,则m 的值为 .三.解答题(共5小题,每小题8分,共40分)19. 已知:在ABC △中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,若AF EF =,求证:BE AC =.20. 若关于x 的分式方程311x m x x--=-无解,求m 的值.21. 已知有理数a ,b ,c 满足0a b c ++-=,求()2015a cb +-的值.22. 某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)23. 如图,已知在ABC △中,AB AC =,CE 是AB 边上的中线,延长AB 到D ,使BD AB =,连接CD .求证:12CE CD =.参考答案二.填空题(共8小题)11、 32︒ 12、18 13、352a << 14、 4 15、 816、 a <2且a ≠﹣4 17、12≤m <15 18、 81或9三.解答题(共5小题,每小题10分,共40分)19、证明:如图,延长AD 到点G ,使得AD=DG ,连接BG .∵AD 是BC 边上的中线(已知),∴DC=DB ,在△ADC 和△GDB 中,∴△ADC ≌△GDB (SAS ), ∴CAD G ∠=∠,BG AC =,∵AF EF =,∴CAD AEF ∠=∠, 又∠BED=∠AEF (对顶角相等),∴∠BED=∠G ∴BE=BG ,又BG AC =, ∴BE=AC .20、解:去分母得x (x ﹣m )﹣3(x ﹣1)=x (x ﹣1),﹣mx ﹣3x+3=﹣x ,整理得(2+m )x ﹣3=0,∵关于x 的分式方程﹣=1无解,分两种情况:(1)当此方程的解为增根时,则x=1或0, 当x=1时,2+m ﹣3=0,解得m=1, 当x=0时,﹣3=0,无解;(2)当整式方程无解时,即当2+m=0时,方程(2+m )x ﹣3=0无解,即m=﹣2. 综上所述,m=1或﹣2.21.解:将等式整理配方,得)))2221210++=,10=20=10=,∴2a =,6b =,4c =,∴()()20152015201524600.a c b +-=+-==22、解:(1)设购进甲种商品x 件,购进乙商品y 件,根据题意得:,解得:,答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a 件,则购进乙种商品(100﹣a )件, 根据题意列得:,解得:20≤a ≤22,∵a 为整数,故20a =,21,22.当20a =时,利润为:()()201520453580900-⨯+-⨯=元 当21a =时,利润为:()()201521453579895-⨯+-⨯=元 当22a =时,利润为:()()201522453578890-⨯+-⨯=元∴当a=20时,利润最大,最大利润为900元,此时乙种商品应购进数量为100﹣20=80, 答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.23、证明:如图,延长CE 到F ,使EF=CE ,连接FB ,∵CE 是AB 边上的中线,∴AE=BE , 又∵∠BEF=∠AEC ,∴△AEC ≌△BEF , ∴FB=AC ,∠1=∠A , ∵BD=AB ,∴FB=BD ,∵∠3=∠A+∠ACB=∠1+∠2,即∠CBD=∠CBF ,又∵BC 为公共边,∴△CDB ≌△CFB ,∴CD=CF=2CE ,即CE=CD .。
初二数竞赛试题及答案
初二数竞赛试题及答案初二数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 如果一个数的平方等于81,那么这个数是:A. 9B. -9C. 9 或 -9D. 813. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是:A. 5B. 6C. 7D. 84. 一个数列的前三项为2, 4, 6,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法判断5. 以下哪个是二次方程的解:A. x = 1/2B. x = 2C. x = -3D. x = 0二、填空题(每题2分,共10分)6. 一个数的立方等于-27,这个数是_________。
7. 如果一个数的绝对值是5,那么这个数可以是_________。
8. 一个数的倒数是1/4,那么这个数是_________。
9. 一个数的平方根是4,那么这个数是_________。
10. 一个数的平方根是-4,那么这个数是_________。
三、解答题(每题5分,共20分)11. 解方程:2x + 3 = 11。
12. 证明:如果一个三角形的两边分别为a和b,且a < b,那么这个三角形的周长不可能是偶数。
13. 计算:(2x + 3)(x - 4)。
14. 一个圆的半径是5厘米,求它的面积。
四、证明题(每题5分,共10分)15. 证明:直角三角形的斜边的平方等于两直角边的平方和。
16. 证明:如果一个数的平方是正数,那么这个数本身是正数或负数。
五、综合题(每题10分,共10分)17. 一个班级有40名学生,其中20名男生和20名女生。
如果随机抽取一名学生,求以下概率:A. 抽到男生的概率。
B. 抽到女生的概率。
C. 如果已经知道抽到的是男生,那么这名男生是班长的概率。
答案:一、选择题1. A2. C3. A4. A5. D二、填空题6. -37. ±58. 49. 1610. 无实数解三、解答题11. 解:2x + 3 = 11,2x = 8,x = 4。
初二数学竞赛试卷及答案
第8题 初二数学竞赛试题考试时间 60分钟 满分80分一、选择题:(每小题3分, 共24分)1.计算12-22+32-42+52-62+…+992-1002的值是( )A .5050B .-5050C .100D .-1002.一个凸n 边形,除一个内角外,其余n-1个内角的和为2008°,则n 的值是( )A . 12B .13C .14D .153.文具店的老板均以60元的价格卖出了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板( ) A. 赚了5元B. 亏了25元C. 赚了25元D. 亏了5元4. 一次函数y =x 图象向下平移2个单位长度再向右平移3个单位长度后,对应函数表达式是( )A.y =2x -8B.y =12x C.y =x +2 D. y =x -55.若14+x 表示一个整数,则整数x 可取值共有( ) A.3个 B.4个 C.5个 D.6个 6.方程13153520052007x x x x +++=⨯的解是 x =( ) A.20072006 B.20062007 C. 10032007 D.100320077.如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于( ) A. 585° B. 540° C. 270° D. 03158.在直线l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4, 则S 1+2S 2+2S 3+S 4= ( )A.5B.4C. 6D.10密封线姓名学校考号二、填空题:(每小题4分, 共16分)2008的末位数字是_______________。
9. 200810.如果同时满足不等式5x-a≥ 0和7x-b<0的整数仅为1、2、3,那么整数a、b的有序对(a,b)有_______________。
初二数学竞赛试题及参考答案
初二数学竞赛试题及参考答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 44. 以下哪个表达式等于0?A. 2 + 3B. 2 - 2C. 2 × 3D. 2 ÷ 25. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π二、填空题(每题2分,共10分)6. 一个数的立方根是它本身,这个数可以是______。
7. 一个数的绝对值是它本身,这个数可以是______。
8. 一个数的相反数是它本身,这个数是______。
9. 一个数的倒数是它本身,这个数是______。
10. 如果一个数的平方是16,那么这个数可以是______。
三、简答题(每题5分,共20分)11. 解释什么是勾股定理,并给出一个例子。
12. 解释什么是有理数和无理数,并给出一个例子。
13. 解释什么是因式分解,并给出一个例子。
14. 解释什么是二次方程,并给出一个例子。
四、解答题(每题10分,共30分)15. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求它的体积。
16. 一个等腰三角形的底边长为8厘米,两腰边长为5厘米,求它的面积。
17. 一个二次方程 \( ax^2 + bx + c = 0 \) 的系数 a、b、c 分别为 2、-7 和 3,求它的根。
五、附加题(每题5分,共5分)18. 一个数列的前三项是 1, 1, 2,从第四项开始,每一项都是前三项的和。
求这个数列的前10项。
参考答案一、选择题1. D2. A3. A4. B5. B二、填空题6. 0, 1, -1, 17. 非负数8. 09. ±110. ±4三、简答题11. 勾股定理是指在一个直角三角形中,直角边的平方和等于斜边的平方。
初二数学竞赛测试题(含答案)
初二数学竞赛测试题班级 _____________________一、选择题(每小题4分,共32分)1.如果a >b,则2a -b 一定是( C ) A 、负数 B 、非负数 C 、正数 D 、非正数。
2.已知x ﹥0,y ﹤0,∣x ∣﹤∣y ∣,则x+y 是( C )A 、零B 、正数C 、负数D 、不确定。
3.如图,△ABC 中,∠B=∠C ,D 在BC 边上, ∠BAD=500,在AC 上取一点E ,使得∠ADE=∠AED ,则∠EDC 的度数为( B )A 、150B 、250C 、300D 、504.满足等式 2003200320032003=+--+xy y x x y y x的正整数对(x,y )的个数是( )A 、1B 、2C 、3D 、45.今有四个命题:①若两实数的和与积都是奇数,则这两数都是奇数。
②若两实数的和与积都是偶数,则这两数都是偶数。
③若两实数的和与积都是有理数,则这两数都是有理数。
④若两实数的和与积都是无理数,则这两数都是无理数。
其中正确命题个数为( )A 、0B 、1C 、2D 、46.若M=3x 2-8xy+9y 2-4x+6y+13(x,y 是实数),则M 的值一定是( )A 、正数B 、负数C 、零D 、整数7.设A=48)41001441431(222+++-+-⨯ 则与A 最接近的正整数是( ) A 、18 B 、20 C 、24 D 、25 8.如果关于x 的方程k(k+1) (k-2)x 2-2(k+1) (k+2)x+k+2=0,只有一个实数解,则实数k 可取不同的值的个数为( )(A)2 (B)3 (C)4 (D)5.二.填空题(每小题5 分共30分)9.如图,有一块矩形ABCD,AB=8,AD=6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE,再将△AED 沿DE 向上翻折,AE 与BC 的交点为F,则△CEF 的面积为 .10.关于x 的方程∣∣x-2 ∣-1∣=a 有三个整数解,则a 的值是 .11.已知关于x 的方程a 2x 2-(3a 2-8a)x+2a 2-13a+15=0(其中a 是非负整数),至少有一个整数根,那么a= . 12.若关于x 的方程13213+-=++x x ax x 有增根x=-1,则a= . 13.已知三个质数a,b,c 满足a+b+c+abc=99,那么a c c b b a -+-+-= .14.在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心).若现在时间恰好是12点整,则经过 秒钟后,△OAB 的面积第一次达到最大.三、解答题:15.如图已知△ABC 中,∠ACB=900, AC=BC ,CD ∥AB ,BD=AB ,求∠D 的度数。
初二数学竞赛试题包含答案
1 / 4初二数学竞赛试题一选择题(每小题5分,共45分)1.a.b.c 是正整数,a >b 且a 2-ab-ac+bc=7.则a-c 等于(D ) A. -1 B. –1或-7 C . 1 D . 1或7 2. 已知a ≠0. b ≠0且a1+b1=4 则bab a bab a 323434-+-++等于(B )A .411- B. 1019- C.0 D. 10193.对于非负数a 1.a 2…a 5满足M=(a 1+a 2+a 3+a 4)(a 2+a 3+a 4+a 5) N=(a 1+a 2+a 3+a 4+a 5)(a 2+a 3+a 4) ,则(B ) A. M >N B. M ≥N C. M <N D. M ≤N4.下列各图是纸箱厂剩下的废纸片,全是由全等的正方形组成的图形,为了充分5.,以使所作三角形与ABC 全等,这样的三角形最多可以画出(C ) A 8 个 B 6个 C 4个 D2个 6.有下列四个命题:(1) (2) 两边和第三边上的高对应相等的两个锐角三角形不一定是全等三角形 (3) 两边和第三边上的高对应相等的两个三角形是全等三角形(4) 两边和其中一边所对的角对应相等的两个三角形不一定是全等三角形 其中正确的是(D ) A.(1) (2) B. (2) (3) C. (3) (4) D.(4) (1)7.若x =a1-a ,则24x x +的值为(B )A . a-a 1 B.a1-a C. a+a1 D.不能确定8.如果两个三角形的两边和其中一边上的高分别对应相等,那么这两个三角形的 第三边所对的角(D )A .相等 B.不相等 C.互余 D.互补或相等 9 .已知实数a 满足 2000-a +2001-a =a,则a-20002的值为(C )A .1999 B.2000 C.2001 D.2002 二.填空题(每题5分,共40分) 10. 已知A=3232--+,化简后,A=211.设x=nn n n ++-+11,y=nn n n -+++11.且19x 2+143xy+19y 2=2005,则整数n=_2______.12.若m 适合于关系式y x y x m y x m y x --+-=-++--+199.19932253,则m=_201__ 13.满足23)31(2x x --=-的所有整数x 的和是___5_____14.在△ABC 中,∠C=90°,BC=40,AD 是∠BAC 的平分线交BC 于D,且DC :DB=3:5则点D 到AB 的距离是__15______15.在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是_2<AD <7___16.如图,在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,并且AE=21(AB+AD ),则∠ABC+∠3 / 417.张家村、李家村和杨家村三个村庄的位置不在同一眼机井,要求机井到三条道路的距离相等,那么打机井的位置有__4____处.三.三所学校分别记作A 、B 、C ,体育场记作O ,它是△ABC 的三条角平分线的交点,O 、A 、B 、C 每两地之间有直线道路相连,一支长跑队伍从体育场O 出发,跑遍各校再回到O 点,指出哪条路线跑的距离最短(已知AC >BC >AB ),并说明理由(9分)解:O →A →B →C →O (或 O →C →B →A →O )四.设a+b+c+3=2(a +11-++cb ),求a 2+b 2+c 2的值(8分)解:a=1,b=0.c=2 . a 2+b 2+c 2=5五.已知c b a x --+a c b x --+b c a x --=3,且a 1+b1+c1≠0,求(x-a-b-c )2005的值(9分)解: (x-a-b-c )2005=0六、如图,,已知AD ∥BC,∠EAD=∠EAB,∠EBA=∠EBC,直线DC 过E 交AD 于D,交BC 于C,求证: AD+BC=AB (9分)4 / 4。
新人教版八年级(下)数学竞赛试卷及答案
八年级第二学期数学科竞赛试题(考试时间:100分钟 试卷总分:120分)一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,1、如果分式x-1有意义,那么x 的取值范围是 A 、x >1 B 、x <1 C 、x ≠1 D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是A 、(2,-4)B 、(4,-2)C 、(-1,8)D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为A 、4B 、34C 、4或34D 、24、用两个全等的等边三角形,可以拼成下列哪种图形A 、矩形B 、菱形C 、正方形D 、等腰梯形 5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为A BC D6、△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有 A .1个 B .2个 C .3个 D .4个7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为A 、120cmB 、360cmC 、60cmD 、cm 320学校: 班级: 姓名: 座号:第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为A 、100B 、150C 、200D 、300 10、下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
初二数学竞赛试卷(含答案)
初二数学竞赛试卷一、填空题(1—20题每小题3分,第21—30题每小题4分,共100分)1、某商店以每枝0.10元的价格买进1500支铅笔,如果以每枝0.25元的价格出售,要保证利润很多于100元,那么至少要售出 支铅笔。
2、图中的大正方形的面积S 大相对于小正方形的面积S 小的倍数为 。
3、用计算器探索,按一定的规律排列的一组数:1,,...,7.6,5,2,3,2--如果从1开始依次连续选择若干个数,使他们的和大于5,那么至少要选 个数。
4、已知a,b,c 为三个有理数,它们在数轴上的对应位置如图所示,则=-----c a a b b c 。
5、几个相同的正方形叠合在一起,该组合的正视图(即从正面看到的图形)和俯视图(即从上面看到的图形)如下所示,那么组合体中的正方体的个数至少为 ,最多 个。
6、一个矿泉瓶由瓶颈和瓶身组成,下面的瓶身能够看作是一个圆柱体,现将一个矿泉水瓶正放,瓶中的水尚不满瓶身,它的高为15cm ;再将瓶倒放,发现瓶中有5cm 高的空余,如果该瓶中原装有500ml 的矿泉水,则瓶的容积为 __________ ml.(精确到1ml )7、已知梯形ABCD 的上底AD=3cm ,下底BC=7cm ,EF ∥AB ,分别交AB 、BC 于点E 、F,且将这个梯形分成面积相等的两部分,则AE 的长是 cm.8、在边长为10m 的正方形的池塘边上的A ,B ,C ,D处各有一棵树,已知AB=1m,BC=2m,CD=3m.现用一根长4m 的绳子将一头羊拴在某一棵树上,为了使羊的活动区域最大(羊不能下水),应将绳子拴在_________处的树上。
9、 在如下图的中国象棋盘中若建立直角坐标系后,棋子士所在位置的坐标为(-1,-2),棋子相所在的位置的坐标为(2,-2),那么棋子炮所在位置的坐标为。
10、周长为36、各边都为整数的三角形的个数为个。
11、如图,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠C=124°,∠E=80°,则∠F= 度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学竞赛试题
一.选择题(共10小题,,每小题4分,共40分)
1. 一辆汽车从湄江出发开往娄底.如果汽车每小时行使a 千米,则t 小时可以到达,如
果汽车每小时行使b ()b a >千米,那么可以提前到达娄底的时间是( )小时. 2. .
A at a b + B.bt a b + C.abt
a b
+ D.bt at b -
3. 分式方程()()
1112x m
x x x -=--+有增根,则m 的值为( ) 4.
A.0和3
B.1
C.1和2-
D.3 5. 由下列条件可以作出唯一的等腰三角形的是( )
6. A.已知等腰三角形的两腰 B.已知一腰和一腰上的高
7.
C.已知底角的度数和顶角的度数
D.已知底边长和底边上的中线的长
8. ,得( )
9. A.(1x -(1x -(1x -+ D.(1x -
10. 当12
x +=
时,代数式()20033420052001x x --的值是( ) 11. A.0 B.1- C.1 D.20032-
12. 若34x -<<45x -=的x 值为( ) 13. A.2 B.3 C.4 D.5
14. 设0a b <<,224a b ab +=,则a b
a b +-的值为( )
15. C.2 D.3
16. 若不等式组21
1x a x a >-⎧⎨<+⎩
无解,则a 的取值范围是( )
17. A.2a < B.2a = C.2a > D.2a ≥
18. 已知a 、b 为常数,若0ax b +>的解集是1
3
x <,则0bx a -<的解集是( )
19. A.3x >- B.3x <- C.3x > D.3x < 20. 在等腰ABC △中,AB AC =,中线BD 将这个三角形的周长分为15和12两个部分,
则这个等腰三角形的底边长为( )
21. A.7 B.11 C.7或11 D.7或10
二.填空题(共8小题,每小题5分,共40分)
22. 如图ABC △中,AD 平分BAC ∠,且AB BD AC +=,若64B ∠=︒,则C ∠= .
23.
24. 若22013a x +=,22014b x +=,22015c x +=,
且24abc =,则111a b c bc ac ab a b c
++---的值为 .
25. 一条线段的长为a ,若要使31a -,41a +,12a -这三条线段组成一个三角形,则a
的取值范围是 . 26. 方程1998x y +=的整数解有 组.
27. 如图BD 是ABC △的一条角平分线,8AB =,4BC =,且24ABC S =△,则DBC △的
面积是 .
28.
29. 若关于x 的方程
212
x a
x +=--的解为正数,则a 的取值范围是 . 30. 关于x 的不等式332x m m -≤-的正整数解为1,2,3,4,则m 的取值范围
是 .
31. 如果21a -和5a -是一个数m 的平方根,则m 的值为 .
三.解答题(共5小题,每小题8分,共40分)
32. 已知:在ABC △中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,
若AF EF =,求证:BE AC =.
33.
34. 若关于x 的分式方程
3
11x m x x
--=-无解,求m 的值.
35. 已知有理数a ,b ,c 满足0a b c ++-=,求()2015
a c
b +-的
值.
36.某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品
每件进价35元,售价45元.
37.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、
乙两种商品各多少件?
38.(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品
全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)
39.如图,已知在ABC
△中,AB AC
=,CE是AB边上的中线,延长AB到D,使
BD AB
=,连接CD.求证:
1
2
CE CD
=.
参考答案
题号 1 2 3 4 5 6 7 8 9 10 答案 D D D B
A
B
A
D
B
C
二.填空题(共8小题)
11、 32︒
12、1
8 13、352a << 14、 4 15、 8
16、 a <2且a ≠﹣4 17、12≤m <15 18、 81或9
三.解答题(共5小题,每小题10分,共40分)
19、证明:如图,延长AD 到点G ,使得AD=DG ,连接BG .
∵AD 是BC 边上的中线(已知),∴DC=DB ,
在△ADC 和△GDB 中,
∴△ADC ≌△GDB (SAS ), ∴CAD G ∠=∠,BG AC =,
∵AF EF =,∴CAD AEF ∠=∠, 又∠BED=∠AEF (对顶角相等),∴∠BED=∠G ∴BE=BG ,又BG AC =, ∴BE=AC .
20、解:去分母得x (x ﹣m )﹣3(x ﹣1)=x (x ﹣1),﹣mx ﹣3x+3=﹣x ,
整理得(2+m )x ﹣3=0,
∵关于x 的分式方程
﹣=1无解,分两种情况:
(1)当此方程的解为增根时,则x=1或0, 当x=1时,2+m ﹣3=0,解得m=1, 当x=0时,﹣3=0,无解;
(2)当整式方程无解时,即当2+m=0时,方程(2+m )x ﹣3=0无解,即m=﹣2. 综上所述,m=1或﹣2.
21.解:将等式整理配方,得)))
2
2
2
1122310a b c -+
-+
-=,
110
a -=,
220
b -=310
c -=,
∴2a =,6b =,4c =,∴()()
2015
2015
201524600.a c b +-=+-==
22、解:(1)设购进甲种商品x 件,购进乙商品y 件,
根据题意得:,解得:,
答:商店购进甲种商品40件,购进乙种商品60件;
(2)设商店购进甲种商品a 件,则购进乙种商品(100﹣a )件, 根据题意列得:
,
解得:20≤a ≤22,
∵a 为整数,故20a =,21,22.
当20a =时,利润为:()()201520453580900-⨯+-⨯=元 当21a =时,利润为:()()201521453579895-⨯+-⨯=元 当22a =时,利润为:()()201522453578890-⨯+-⨯=元
∴当a=20时,利润最大,最大利润为900元,此时乙种商品应购进数量为100﹣20=80,
答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
23、证明:如图,延长CE 到F ,使EF=CE ,连接FB ,
∵CE 是AB 边上的中线,∴AE=BE , 又∵∠BEF=∠AEC ,∴△AEC ≌△BEF , ∴FB=AC ,∠1=∠A , ∵BD=AB ,∴FB=BD ,
∵∠3=∠A+∠ACB=∠1+∠2,即∠CBD=∠CBF ,
又∵BC 为公共边,∴△CDB ≌△CFB ,∴CD=CF=2CE ,即CE=CD .。