全面翅片的分类与特点.docx

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

翅片分类及其特点简介

14121330彭启

0.引言

翅片是基本的传热元件,其作用是扩大换热面积,提高热传递的效率。翅片可以看成是隔板的延伸和扩展;其次,翅片的不同形式使空气在流道内形成了强烈的扰流,并使流动边界层和热边界层断裂、重组,从而强化换热;最后,翅片还可以提高散热器整体强度,有效扩大其应用范围。常用的翅片结构形式有平直翅片、百叶窗翅片、锯齿翅片、多孔翅片和波纹翅片[1]。

图1 典型翅片结构形式

许多学者对翅片作了深入广泛的研究,本文利用翅片应用的环境,按照管内与管外;液体之间换热、液体与气体之间换热、气体与气体之间换热等方面对翅片进行分类,并详细阐述各种翅片的特点。

1.管内与管外翅片的结构形式与特点

在换热器及许多换热设备中,传热壁面两侧流体的对流换热系数的大小往往很不均衡,因此需要在传热壁面对流换热系数小的那一侧加装翅片。

翅片管换热器所用翅片管有内翅片管和外翅片管两种,其中以外翅片管应用较为普遍。外翅片管一般是用机械加工的方法在光管外表面形成一定高度、一定片距、一定厚度的翅片。翅片管的型式有螺旋翅片管、套装翅片管、滚轧式翅片管、板翅式翅片管[2]。

其中螺旋形翅片管广泛应用于管内为液体或气液两相工质而管外为气体的场合,具有强化管外气流扰动、扩大换热面积的作用,从而增强传热,节约能源。同时由于其结构紧凑,使金属耗量减少,因此在电场锅炉中采用螺旋管束翅片管省煤器可大大节省运行费用,在国

内外得到了迅速的推广应用[3]。

为改进螺旋形翅片管易积灰且不易清理的缺点,近年来提出了H型鳍片管。H型鳍片管,亦称H型肋片管,是把两片中间有圆弧的钢片对称地与光管焊接在一起形成鳍片(肋片或蝶片),正面形状颇像字母“H”。由于其鳍片表面特殊的沟槽结构,去除了部分在鳍片表面

进口和尾部分离区中的换热面积,降低了进口和尾部分离区传热恶化对整个鳍片传热的影响,从而提高了鳍片的平均对流换热系数和鳍片效率,达到强化传热的目的,并避免了螺旋鳍片管束常见的因结构设计不合理导致的鳍片烧毁问题[4]。

对于波纹内翅片管中对流换热与阻力特性的实验研究发现,翅片管的综合性能一般都强于光管,不同的管径及其翅片形式对换热强化影响很大,因此应根据管径大小合理选择翅片管结构[5]。

2.液体之间换热翅片的结构形式与特点

当管内管外都是液体的受迫对流时,如果换热壁面两侧的换热系数都很大,则没有必要采用翅片管。如水/水换热器,用热水加热冷水时,两侧换热系数都足够高,没有必要采用

翅片管,但为了进一步增强传热,可采用螺纹管或波纹管代替光管;发电厂冷凝器,管外是水蒸汽的凝结,管内工质是水,两侧的换热系数都很高,一般情况下,无需采用翅片管。3.液体与气体之间换热翅片的结构形式与特点

当管外是气体的受迫对流,管内是液体工质的受迫对流时,管外的换热系数就较管内的小得多。因此,管外的传热热阻便成为影响其总传热量的主要热阻(亦称控制热阻)。在这种情况下,管外空间传热的增强通常采用扩展表面即肋化表面来实现。研究证明,当2λ/aδ<1时,将传热面设计成肋化表面是无效的;当2λ/aδ>5时,将传热面设计成肋化表面可以起到强化传热的效果。

而当管内是气体的受迫对流,管外是液体工质的受迫对流时,管内的换热系数就较管外小得多。因此,管内的传热热阻便成为影响其总传热量的主要热阻。在这种情况下,就需要在管内增加扩展表面即肋化或者加装扰流件使湍流强度增加从而使气体侧的传热性能增强。

肋化表面不仅能起到增加参与对流换热的总有效面积、减小该侧传热热阻的作用,而且可使肋侧的壁面温度更加接近于同侧流体的温度。采用扩展受热面是强化传热的一种有效途径,扩展表面的应用是缩小换热器体积、减轻换热器重量、提高换热器效率的重要措施。正因如此,扩展传热面的研究和设计日益得到广泛得工业应用。

采用管内、管外扩展表面的对流受热面可以增加传热量,节省金属消耗,并使通风阻力和工质流动阻力有所降低,己经成为锅炉及换热器对流受热面的发展方向,得到了愈来愈广

泛的应用。扩展表面的型式多种多样,在对流受热面中经常采用的有圆形、方形和螺旋形翅片管,带纵向肋片的鳍片管,以及用纵向肋片管组成的膜式对流受热面等。由于各种扩展表面所增加的受热面积不同,其对流体的扰动程度也不同,因此它们对传热强化的效果也不相同。

人们在进行强化翅片表面换热的研究中,提出了各种强化换热的方法,主要有以下几种:一是增强空气侧的湍流强度,可通过不断改变气流来流方向,来达到强化换热的目的,主要采用将翅片冲压成波纹形,由此产生了波纹形翅片类型。二是采用间断式翅片表面,将翅片表面沿气流方向逐渐断开,以阻止翅片表面空气层流边界层的发展,使边界层在各表面不断地破坏,又在下一个冲条形成新的边界层,不断利用冲条的前缘效应,达到强化换热的目的。属于这种翅片的有条缝形翅片和百叶窗形翅片等[6]。

由于平翅片换热器在结构和制造上的简单方便、运用上的耐久性及其较好的适用性,到目前为止,制冷工程中大量使用的换热器(如氨冷风机蒸发器,表面式空气冷却器等)仍广泛采用矩形平肋片作为扩展表面。矩形平肋片具有结构简单紧凑、利于除霜、容易制造等优点,同时由于其仅仅依赖于增大传热面积来强化传热导致传热效果较差,特别是在管内流体相变换热,管外空气受迫流动换热的热交换器中,空气侧尽管加了肋片,其热阻仍然是整个传热过程中的主要热阻[7]。

由于波纹形翅片可以加大空气流道的长度,并且能够对气流造成充分的混合,所以也被空调制冷广泛采用。波纹翅片可以改变气流的来流方向,大大增加了空气换热面积,增强了流体扰动,由于漩涡的形成与分离,减薄或者破坏了热边界层的连续发展,使其换热特性得到有效强化,同时也带来了较大的阻力损失,但是换热增加的幅度要大于阻力增加的幅度。在湿工况下,条缝翅片的阻力增加较多,系统风量会减少,此时,可考虑采用波纹形翅片换热器,且翅片间距不宜太小[8]。

条缝形翅片具有高效的换热性能,流体通过条缝形翅片时,涡旋首先在下游出现,随着雷诺数的增加,涡旋出现点向上游前移。当翅片间距减小时,在较小的雷诺数下,涡旋就开始出现。这一现象说明,在小的翅片间距下,由于涡旋的产生,换热系数被增强。对于连续型波纹翅片, 开缝有利于消除横向涡, 并使流体混合得更加充分,从而提高翅片的流动和换热性能;在开缝翅片的拐角和缝隙处,局部换热系数变化剧烈;换热系数的极大值出现在拐角上游或者翅片的前缘,而极小值则出现在拐角下游或者翅片的后缘[9]。在干工况下,尽量采用换热系数大的翅片形式,如条缝翅片,但由于条缝翅片的阻力较大,因此,在需要相同换热量时,尽量选用迎风面积较大的,而不是排数较大的,以充分利用增强型翅片的优点,

相关文档
最新文档