数学悖论与三大危机
数学历史上:三次数学悖论,引发三次数学危机
数学历史上:三次数学悖论,引发三次数学危机1 什么是悖论日本波岩书店《数学百科辞典》关于悖论辞条是这样说的:能够导出与一般判断相反的结论,而要推翻它又很难给出正当的根据时,这种论证称为悖论。
特别是,如果一个命题及其否定均可用逻辑上等效的推理加以证明,而其推导又无法明确指出错误时,这种矛盾,便称为悖论。
即是说,所谓悖论,是指这样一个命题A,由A出发,可以推出一个命题B,但从这个命题B,却会出现如下自相矛盾的现象:若B为真,则推出B为假;若B为假,又会推出B为真。
2 悖论的三种主要形式(1)一个论断看起来好像肯定错了,但实际上却是对的(佯谬);(2)一个论断看起来好像肯定是对的,但实际上却错了(似是而非的理论);(3)一系列推理看起来好像无懈可击,可是却导出了逻辑上的自相矛盾。
3 悖论存在的意义悖论是一个涉及数学、哲学、逻辑学、语义学等非常广泛的论题,是一种现时的科学理论体系所解释不了的矛盾。
正因为如此,悖论在“荒诞”中蕴涵着哲理,可以给人以启迪,给人以奇异的美感,沿着它所指引的推理思路,可以使您走上一条繁花似锦的羊肠小道,而又使用您在不知不觉中陷入自相矛盾的泥潭。
但经过破译,将会使您感到回味无穷,并且能从中启发思维,提高能力。
逻辑学家赫兹贝格说:“悖论之所以具有重大意,是由于它能使我们看到对于某些根本概念的理解存在多大的局限,……事实证明,它是产生逻辑和语言中新概念的重要源泉。
”4 悖论举例1. 上帝全能悖论甲说:“上帝是全能的。
”乙说:“全能就是世界上任何事都能办到。
请问:上帝能创造出一个对手来击败他自己吗?”如果说能,则上帝可以被对手击败,并非全能的;如果说不能,则说明上帝并非是全能的。
2. 唐·吉诃德悖论著名小说《唐·吉诃德》里描写了一个残酷的国王,在他所能统治的国家里有一条法律:每个旅游者都要回答一个问题:“您来这里干什么?”如果回答对了,一切事情都好办;如果回答错了,立刻被绞死。
数学悖论与三次数学危机
欧多克
二百年后,大约在公元前 二百年后,大约在公元前370年,才华横溢的 年 欧多克索斯建立起一套完整的比例论。 欧多克索斯建立起一套完整的比例论。他本人的 著作已失传,他的成果被保存在欧几里德《 著作已失传,他的成果被保存在欧几里德《几何 原本》一书第五篇中。 原本》一书第五篇中。欧多克索斯的巧妙方法可 以避开无理数这一“逻辑上的丑闻” 以避开无理数这一“逻辑上的丑闻”,并保留住 与之相关的一些结论, 与之相关的一斯的解决方式, 而引起的数学危机。但欧多克索斯的解决方式, 是借助几何方法, 是借助几何方法,通过避免直接出现无理数而实 现的。这就生硬地把数和量肢解开来。 现的。这就生硬地把数和量肢解开来。在这种解 决方案下, 决方案下,对无理数的使用只有在几何中是允许 合法的,在代数中就是非法的,不合逻辑的。 的,合法的,在代数中就是非法的,不合逻辑的。 或者说无理数只被当作是附在几何量上的单纯符 而不被当作真正的数。 号,而不被当作真正的数。
数学史上把贝克莱的问题称之为“ 数学史上把贝克莱的问题称之为“贝克 莱悖论” 笼统地说, 莱悖论”。笼统地说,贝克莱悖论可以表述 无穷小量究竟是否为0”的问题 的问题: 为“无穷小量究竟是否为 的问题:就无穷 小量在当时实际应用而言,它必须既是0, 小量在当时实际应用而言,它必须既是 , 又不是0。但从形式逻辑而言, 又不是 。但从形式逻辑而言,这无疑是一 个矛盾。 个矛盾。这一问题的提出在当时的数学界引 起了一定的混乱, 起了一定的混乱,由此导致了第二次数学危 机的产生。 机的产生。
希帕索斯悖论与第一次数学危机
希帕索斯悖论的提出与勾股定理的发现密切 相关。因此,我们从勾股定理谈起。 相关。因此,我们从勾股定理谈起。勾股定理是 欧氏几何中最著名的定理之一。 欧氏几何中最著名的定理之一。天文学家开普勒 曾称其为欧氏几何两颗璀璨的明珠之一。 曾称其为欧氏几何两颗璀璨的明珠之一。它在数 学与人类的实践活动中有着极其广泛的应用, 学与人类的实践活动中有着极其广泛的应用,同 时也是人类最早认识到的平面几何定理之一。 时也是人类最早认识到的平面几何定理之一。在 我国,最早的一部天文数学著作《周髀算经》 我国,最早的一部天文数学著作《周髀算经》中 就已有了关于这一定理的初步认识。不过, 就已有了关于这一定理的初步认识。不过,在我 国对于勾股定理的证明却是较迟的事情。 国对于勾股定理的证明却是较迟的事情。一直到 三国时期的赵爽才用面积割补给出它的第一种证 明。
数学悖论与三次数学危机
贝克莱
贝克莱悖论与第二次数学危机
第二次数学危机导源于微积分工具的使用。伴随 着人们科学理论与实践认识的提高,十七世纪几 乎在同一时期,微积分这一锐利无比的数学工具 为牛顿、莱布尼兹各自独立发现。这一工具一问 世,就显示出它的非凡威力。许许多多疑难问题 运用这一工具后变得易如翻掌。但是不管是牛顿, 还是莱布尼兹所创立的微积分理论都是不严格的。 两人的理论都建立在无穷小分析之上,但他们对 作为基本概念的无穷小量的理解与运用却是混乱 的。因而,从微积分诞生时就遭到了一些人的反 对与攻击。其中攻击最猛烈的是英国大主教贝克 莱。
1734年,贝克莱以“渺小的哲学家”之名出版了一本 标题很长的书《分析学家;或一篇致一位不信神数学家的 论文,其中审查一下近代分析学的对象、原则及论断是不 是比宗教的神秘、信仰的要点有更清晰的表达,或更明显 的推理》。在这本书中,贝克莱对牛顿的理论进行了攻击。 例如他指责牛顿,为计算比如说 x2 的导数,先将 x 取 一个不为0的增量 Δx ,由 (x + Δx)2 - x2 ,得到 2xΔx + (Δx2) ,后再被 Δx 除,得到 2x + Δx ,最后突然令 Δx = 0 ,求得导数为 2x 。这是“依靠双重错误得到了不科学 却正确的结果”。因为无穷小量在牛顿的理论中一会儿说 是零,一会儿又说不是零。因此,贝克莱嘲笑无穷小量是 “已死量的幽灵”。贝克莱的攻击虽说出自维护神学的目 的,但却真正抓住了牛顿理论中的缺陷,是切中要害的。
数学史上的三大危机
数学史上的三大危机无理数危机、无穷小是零危机和悖论危机无理数的发现-第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯的悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称"四艺",在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可总结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。
这个悖论直接触犯了毕氏学派的根本信条,导致了当时理解上的"危机",从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。
欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。
今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
第一次数学危机对古希腊的数学观点有极大的冲击。
这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却能够由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。
危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!无穷小是零吗?-第二次数学危机18世纪,微分法和积分法在生产和实践上都有了广泛而成功的实验过,绝大部分数学家对这个理论的可靠性是毫不怀疑的。
1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,茅头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。
他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。
数学史上三大危机和三大猜想
数学史上三大危机和三大猜想数学史上的三大危机分别为无理数理论,微积分理论,罗素悖论,数学史上的三大猜想分别为费马大定理,四色定理,哥德巴赫猜想,这三大危机和三大猜想都间接地推动了整个数学理论的进步,许许多多的数学家也因此付出了巨大的贡献,才有了今天数学的伟大辉煌。
一、无理数理论众所周知,世界上所有的实数都可以分为有理数和无理数。
然而,在最初的时候并没有发现无理数的存在,所以很多数学家认为所有数都是有限小数,而希帕苏斯首先提出了二的算术平方根概念,发现了世界上有一类数,他们是无限不循环小数,然而遭受了当时科学界的否定。
二、微积分理论微积分是世界数学史上璀璨的辉煌,微积分使用微元的概念,解决了很多不能够解决的问题。
特别对于复杂的图形,有很厉害的求解作用,但是由于微积分刚提出来的时候,理论非常复杂,没有在当时的数学界广为接受。
三、罗素悖论罗素悖论是对于集合理论的悖论,世界上所有的物体都能够通过集合来表达,但是罗素指出,如果一个集合中所有的元素都不是他本来的元素,那么这样的一个集合是否还能表现为原有的集合,这理论被称为罗素悖论,后来根据数学家修改集合的.定义规则,才避免了这样的悖论。
四、费马大定理费马大定理有这样一个猜想当整数n>2时,关于x,y,z的不定方程x^n+y^n=z^n无正整数解。
这样的一个看似简单的地理,后来经过后世许多人的证明,终于确定费马大定理成立,是数学史上的一个伟大猜想。
五、四色定理四色定理表明,如果许多国家围绕着一个点拥有很多的边界,那么只要用四种颜色就能够将所有的国家全部区分开来,四色定理是对二维空间的终极解释,也表明了两个直线,只要相交一定有四个区的出现。
六、哥德巴赫猜想哥德巴赫猜想,如果把1算做一个质数,那么世界上任何大于二的数都可以由三个质数通过相加的方式得成,后来科学家们经过艰难的计算,终于算出了哥德巴赫猜想。
数学史上的三次危机及如何化解
数学史上的三次危机及如何化解一、希伯斯(Hippasu,米太旁登地方人,公元前5世纪)发现了一个腰为1的等腰直角三角形的斜边(即根号2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。
相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希伯斯抛入大海。
解决:1、伯内特解释了芝诺的“二分法”:即不可能在有限的时间内通过无限多个点,在你走完全程之前必须先走过给定距离的一半,为此又必须走过一半的一半,等等,直至无穷。
亚里士多德批评芝诺在这里犯了错误:“他主张一个事物不可能在有限的时间里通过无限的事物,或者分别地和无限的事物相接触,须知长度和时间被说成是“无限的”有两种涵义。
一般地说,一切连续事物被说成是“无限的”都有两种涵义:或分起来的无限,或延伸上的无限。
因此,一方面,事物在有限的时间里不能和数量上无限的事物相接触。
另一方面,却能和分起来无限的事物相接触,因为时间本身分起来也是无限的。
因此,通过一个无限的事物是在无限的时间里而不是在有限的时间里进行的,和无限的事物接触是在无限数的而不是在有限数的范围上进行的。
2、亚里士多德指出这个论证和前面的二分法是一回事,这个论证得到的结论是:跑得慢的人不可能被赶上。
因此,对这个论证的解决方法也必然是同一个方法,认为在运动中领先的东西不能被追上这个想法是错误的,因为在它领先的时间内是不能被赶上的,但是,如果芝诺允许它能越过所规定的有限的距离的话,那么它也是可以被赶上的。
3、亚里士多德认为芝诺的这个说法是错误的,因为时间不是由不可分的‘现在’组成的,正如别的任何量都不是由不可分的部分组合成的那样。
亚里士多德认为,这个结论是因为把时间当作是由‘现在’组成的而引起的,如果不肯定这个前提,这个结论是不会出现的。
4、亚里士多德认为,这里错误在于他把一个运动物体经过另一运动物体所花的时间,看做等同于以相同速度经过相同大小的静止物体所花的时间,事实上这两者是不相等的。
数学悖论和三次数学危机概述
❖ 数学历来被视为严格、和谐、精确的学科,纵观数学发展
史,数学发展从来不是完全直线式的,他的体系不是永远和谐 的,而常常出现悖论。悖论是指在某一一定的理论体系的基础 上,根据合理的推理原则,推出了两个互相矛盾的命题,或者 是证明了这样一个复合命题,它表现为两个互相矛盾的命题的 等价式。数学悖论在数学理论中的发展是一件严重的事,因为 它直接导致了人们对于相应理论的怀疑,而如果一个悖论所涉 及的面十分广泛的话,甚至涉及到整个学科的基础时,这种怀 疑情绪又可能发展成为普遍的危机感,特别是一些重要悖论的 产生自然引起人们对数学基础的怀疑以及对数学可靠性信仰的 动摇。数学史上曾经发生过三次数学危机,每次都是由一两个 典型的数学悖论引起的。本讲回顾了历史上发生的三次数学危 机,重点介绍了三次数学危机对数学发展的重要作用。
第一次数学危机的影响
❖ 毕达哥拉斯悖论的出现,对毕达哥拉斯学派产生 了沉重的打击,“数即万物”的世界观被极大的动摇 了,有理数的尊崇地位也受到了挑战,因此也影响到了 整个数学的基础,使数学界产生了极度的思想混乱, 历史上称之为第一次数学危机。 ❖ 第一次数学危机的影响是巨大的,它极大的推动 了数学及其相关学科的发展。
第一次数学危机的影响
❖ 首先,第一次数学危机让人们第一次认识到了无理数 的存在,无理数从此诞生了,之后,许多数学家正式研究 了无理数,给出了无理数的严格定义,提出了一个含有有 理数和无理数的新的数类——实数,并建立了完整的实数 理论,为数学分析的发展奠定了基础。再者,第一次数学 危机表明,直觉和经验不一定靠得住,推理证明才是可靠 的,从此希腊人开始重视演绎推理,并由此建立了几何公 理体系。欧氏几何就是人们为了消除矛盾,解除危机,在 这时候应运而生的。第一次数学危机极大地促进了几何学 的发展,使几何学在此后两千年间成为几乎是全部严密数 学的基础,这不能不说是数学思想史上的一次巨大革命。
数学三大危机
数学三大危机第一,希伯斯(Hippasu,米太旁登地方人,公元前5世纪)发现了一个腰为1的等腰直角三角形的斜边(即根号2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。
相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希伯斯抛入大海。
第二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻。
第三,罗素悖论:S由一切不是自身元素的集合所组成,那S包含S吗?用通俗一点的话来说,小明有一天说:“我正在撒谎!”问小明到底撒谎还是说实话。
罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!中文名数学三大危机外文名Three crises in Mathematics第一次发现了根号2,推翻“万物皆数” 第二次微积分概念的合理性遭到严重质疑第三次集合论中的罗素悖论毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。
毕达哥拉斯学派所说的数仅指整数。
而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。
然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数的诞生。
小小的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。
这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。
史上数学三大危机简介
---------------------------------------------------------------最新资料推荐------------------------------------------------------史上数学三大危机简介数学三大危机数学三大危机简述:第一,希帕索斯(Hippasu,米太旁登地方人,公元前 5 世纪)发现了一个腰为 1 的等腰直角三角形的斜边(即根号 2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。
相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希帕索斯抛入大海;第二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻;第三,罗素悖论:S 由一切不是自身元素的集合所组成,那 S 包含 S 吗?用通俗一点的话来说,小明有一天说:我正在撒谎!问小明到底撒谎还是说实话。
罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题万物皆数是该学派的哲学基石。
毕达哥拉斯学派所说的数仅指整数。
而一切数均可表成整数或整数之比则是这一学派的数学信仰。
1 / 6然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的掘墓人。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为 1 的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数的诞生。
小小的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。
数学悖论与三次数学危机
2圯c
a
=2
姨。
就是说,他发现正方
形一边长与对角线长之比不是整数或整数比,而是一个很奇怪的即与已有理论不符的数。
因为按“万物皆数”的“数”只是整数和分数的观点,它是不应该存在的(这就等于说,正方形的对角线没有长度)。
所以2
姨的发现,使数只能是整数和整数比这一观点能否站得住脚成了问题,因而产生了数学史上第一次数学危机。
当然,这次危机最终被数学家巧妙地解除了:他们在几何学中允许正方形对角线长这样的几何量存在,但在代数学中避免2
姨这样的数出现。
见克莱悖论:无穷小量是零又不是零
这一悖论是英国著名的唯心主义哲学家贝克莱大主教提出的。
他不是数学家,却一针见血地指出了17、18世纪在科学和生产实践中都获得了广泛应用的微积分理论的漏洞。
微积分的思想我们早已有过体验:为求圆的面积,我们把画在硬纸板上的圆分成若干等分,剪开后用这些近似等腰三角形的小纸片拼成如图2的“近似”长方形。
随着分成的小纸片数越来越多,每个小纸片就越来越小,它们的面积之和就越来越接近长方形的实际面积,因而得出圆的面积S=πr2(图2)。
所以,这种无限细分、极限求和
的微积分思想是建立在无
穷小计算基础上的。
贝克
莱指责微积分的发明者牛
顿和莱布尼兹在微积分计
算中处理无限细分得到的
无穷小量含混不清,一会。
第二讲:数学悖论与三次数学危机
危机的彻底解决
由无理数引发的第一次数学危机一直延
续到19世纪。直到1872年,德国数学家戴德
金(Dedekind)从连续性的要求出发,用有理
数的“分割”来定义了无理数,对数系进行
了扩张,使人类认识了实数系,并把实数理
论建立在严格的科学基础上,才结束了无理
数被认为“无理”的时代,危机也才算最终
得到解决,它一共持续了2000多年。
第二讲
数学悖论 与 三次数学危机
前言 一、毕达哥拉斯悖论与第一次数学危机
1、危机的起因 2、危机的实质 3、危机的解决
二、贝克莱悖论与第二次数学危机
1、危机的引发 2、危机的实质 3、危机的解决 4、成果
三、罗素悖论与第三次数学危机
1.“数学基础”的曙光——集合论的诞生与发展 2.数学“绝对严格”了? 3.“基石”动摇——罗素的“集合论悖论”引发危机 4.危机的消除——集合论公理化
5
2)危机的出现
毕派成员之一希帕索斯(Hippasis)从正方形中发现了一个惊 人的结论:边长为1的正方形的对角线与边是不可公度的! 希帕索斯的这一发现导致了数学史上第一个无理数√2 的诞 生,因为对角线长度既不能用整数、也不能用分数表示。 但它却直接动摇和摧毁了毕达哥拉斯学派的数学信仰: 一切数均可表成整数或整数之比! 进而动摇了局限在可通约量上的关于相似形的所有理论; 动摇了信徒们对毕的信念;动摇了毕在学术界的统治地位。 由于出现了不是有理数的数,故称为“悖论”。 因毕达哥拉斯学派的声望,而多称为“毕达哥拉斯悖论”。 因它触犯了毕氏学派的根本信条,不能被接受,从而导致了 西方数学史上一场大的风波,史称“第一次数学危机”。 6
认为数是万物的本原,“万物皆数”,——该学派的信条: 万物按照一定的数量比例而构成和谐秩序。 • 代数上: “一切数均可表成整数或整数之比”; • 几何上:“任意两条线段都可公度”;
(推荐)数学的完美之旅——数学悖论与三次数学危机
数学的完美之旅——数学悖论与三次数学危机摘要:古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精确的思考,也正是悖论直接导致了三次数学危机,并不断推动数学走向完整与完美。
关键词:数学悖论;三次数学危机;数学的完美1 引言“现在我说一句假话。
”这句话是真是假?“悖论(Paradox)”,也可叫“逆论”或“反论”。
悖论是一种认识矛盾,它既包括逻辑矛盾、语义矛盾,也包括思想方法上的矛盾。
“一般而言,悖论的某个答案单独看是很有说服力的,而势均力敌的对手之间的‘拉锯战’则使问题保持了生气。
”1悖论有四种主要形式。
1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。
2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)3.某一理论的公理和推理原则看上去是合理的,但在这个理论中却推出了两个互相矛盾的命题“悖论是有趣的”是每一个接触过悖论的人的感受;“悖论是极其重要的”接受这一观点的人却少之又少。
但请不要小看悖论,生活中存在悖论,如“涂写一个告示,上书:不准涂写!”2古今中外也有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精确的思考,也正是悖论直接导致了三次数学危机,并不断推动数学走向完美。
2 第一次数学危机“在整个数学发展的历史上,贯穿着矛盾的斗争与解决。
而在矛盾激化到涉及整个数学的基础时,就产生数学危机。
”3这句话很精确地道出了三次数学危机的本质。
公元前5世纪,毕达哥拉斯学派的成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
这一个小小的2不仅严重触犯了毕达哥拉斯学派的信条,同时也冲击了当时希腊人的普遍见解,这一结论的悖论性表现在它与常识的冲突上:任何量都“应该”表示成有理数。
可是这一为人们的经验所确信的常识性论断居然被小小的2的存在而推翻了!希帕索斯的这一发现,史称“希帕索斯悖论”,它成为一场巨大数学风波的导火索,直接触发了第一次数学危机。
三次数学危机和数学悖论读书笔记
三次数学危机和数学悖论读书笔记一、第一次数学危机。
1. 危机的起源。
- 毕达哥拉斯学派认为“万物皆数”,这里的数指的是整数或整数之比(即有理数)。
当他们研究等腰直角三角形的斜边与直角边的关系时,发现了一个不可公度的量。
例如,对于边长为1的等腰直角三角形,其斜边长度为√(2),√(2)不能表示为两个整数之比,这与他们的信条产生了冲突。
2. 对数学的影响。
二、第二次数学危机。
1. 危机的起源。
- 17世纪,牛顿和莱布尼茨分别独立地创立了微积分。
在微积分的早期发展中,存在着一些概念上的模糊性。
例如,牛顿的流数法中,对于无穷小量的定义和处理不够严谨。
在求导过程中,先把一个量看作无穷小量进行运算,最后又把它当作零舍去,这就引发了逻辑上的矛盾。
例如,对于函数y = x^2,求导时(Δ y)/(Δ x)=frac{(x + Δ x)^2-x^2}{Δ x}=2x+Δ x,当Δ x趋近于0时,牛顿把Δ x既当作非零的量进行运算,最后又当作零舍去得到y' = 2x。
2. 对数学的影响。
- 这次危机促使数学家们对微积分的基础进行深入的思考和研究。
柯西、魏尔斯特拉斯等数学家通过极限理论等方式来完善微积分的基础。
柯西提出了极限的ε - δ定义,使得微积分中的概念如导数、积分等有了严格的定义基础。
魏尔斯特拉斯进一步完善了极限理论,消除了无穷小量概念的模糊性,从而使微积分建立在严格的逻辑基础之上,推动了分析学的蓬勃发展,也为现代数学分析等学科的发展奠定了坚实的基础。
三、第三次数学危机。
1. 危机的起源。
- 19世纪末,集合论成为了数学的基础。
康托尔创立的集合论在处理无穷集合等问题上取得了巨大的成功。
罗素提出了著名的罗素悖论。
考虑集合S={xx∉ x},如果S∈ S,根据S的定义,S∉ S;如果S∉ S,同样根据定义S∈ S,这就产生了矛盾。
这个悖论表明集合论本身存在着逻辑漏洞。
2. 对数学的影响。
- 第三次数学危机引发了数学界的巨大震动。
三大数学危机
三大数学危机数学危机是数学公理在定义上的不完全或不够严谨,导致在理性推论下,将会得到错误的结论。
例如:在无理数还没被发现之前,在毕氏定理中出现腰长为1的等腰直角三角形的斜边长度,竟是无法写成有理数的数。
这是第一次数学危机。
第二次数学危机得解决微积分引入无穷小量而产生的极值问题(飞矢不动的悖论)。
第三次数学危机则是因罗素悖论而起,罗素悖论点出了数学集合论中的缺失。
飞矢不动悖论是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论中的一个。
人们通常把这些悖论称为芝诺悖论。
芝诺提出,由于箭在其飞行过程中的任何瞬间都有一个暂时的位置,所以它在这个位置上和不动没有什么区别。
中国古代的名家惠施也提出过,“飞鸟之景,未尝动也”的类似说法。
芝诺问他的学生:“一支射出的箭是动的还是不动的?”“那还用说,当然是动的。
”“确实是这样,在每个人的眼里它都是动的。
可是,这支箭在每一个瞬间里都有它的位置吗?”“有的,老师。
”“在这一瞬间里,它占据的空间和它的体积一样吗?”“有确定的位置,又占据着和自身体积一样大小的空间。
”“那么,在这一瞬间里,这支箭是动的,还是不动的?”“不动的,老师”“这一瞬间是不动的,那么其他瞬间呢?”“也是不动的,老师”“所以,射出去的箭是不动的?”罗素悖论(Russell's paradox),也称为理发师悖论,是罗素于1901年提出的悖论,一个关于类的内涵问题。
罗素悖论当时的提出,造成了第三次数学危机。
理发师悖论”悖论内容一位理发师说:“我只给不给自己刮脸的人刮脸。
”那么他是否给自己刮脸呢?如果他给的话,但按照他的话,他就不该给自己刮脸;如果他不给的话,但按照他的话,他就该给自己刮脸。
于是矛盾出现了。
罗素悖论我们通常希望:任给一个性质,满足该性质的所有类可以组成一个类。
但这样的企图将导致悖论:罗素悖论:设性质P(x)表示“”,现假设由性质P确定了一个类A——也就是说“”。
数学发展史上三次数学危机
数学发展史上三次数学危机第一次数学危机“无理数的产生”第一次危机发生在公元前580~568 年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。
这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。
毕达哥拉斯学派认为“万物皆数” ,这个数就是整数,他们确定数学的目的是企图通过数的奥秘来探索宇宙的永恒真理,并且认为宇宙间的一切现象都能归结为整数或整数之比。
后来这个学派发现了毕达哥拉斯学定理(勾股定理),他们认为这是一件很了不起的事,然而了不起的事后面还有更了不起的事。
毕达哥拉斯学派的希帕索斯从毕达哥拉斯定理出发,发现边长为 1 的正方形对角线不能用整数来表示,这就产生了这个无理数。
这无疑对“万物皆数” 产生了巨大的冲击,由此引发了第一次数学危机。
第二次数学危机“微积分工具”18 世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。
但是不管是牛顿,还是莱布尼茨所创立的微积分理论都是不严格的。
危机的起源因为牛顿和莱布尼茨的微积分理论是建立在无穷小分析之上的,但他们对作为基本概念的无穷小量的理解与应用是混乱的。
1734 年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础——无穷小的问题,提出了所谓贝克莱悖论。
笼统的说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题。
这一问题的提出在当时的数学界引起了一定的混乱,由此导致了第二次数学危机的产生。
第三次数学危机“罗素悖论”到 19 世纪末,康托尔的集合论已经得到数学家的承认,集合论也成功地应用到其他的数学分支。
集合论是数学的基础,由于集合论的使用,数学似乎已经达到了无懈可击的地步。
但是,正当数学家们熟练地应用集合论时,数学帝国又爆发了一次危机。
康托尔集合论的创造性成果为数学提供了广泛的理论基础,所以在 1900 年巴黎国际数学会议上,法国大数学家庞加莱宣称:“数学的严格性,看来直到今天才可以说实现了。
数学悖论与三次数学危机
数学悖论与三次数学危机数学,作为一门精确的科学,自古以来一直受到人们的推崇和喜爱。
然而,数学也并非完美无缺,它也存在着一些悖论和危机,这些问题挑战着人们对数学的认知和理解。
本文将探讨数学悖论与三次数学危机,并着重讨论数学领域中的挑战和问题。
一、数学悖论1. 贝塞尔悖论:贝塞尔曲线在数学和科学领域中广泛应用,它是一种描述曲线形状的数学工具。
然而,贝塞尔悖论指出,贝塞尔曲线的某些性质与直觉相悖。
例如,当贝塞尔曲线被细分为越来越多的段落时,曲线并不会平滑地收敛到给定的目标形状。
这一悖论引发了对曲线近似和计算的许多挑战。
2. 伯克霍夫悖论:伯克霍夫悖论涉及到在无限次迭代的情况下,计算某些概率的困难性。
例如,如果我们有一枚硬币,每次抛掷,正面朝上的概率为1/2。
那么,如果我们连续无限次抛掷硬币,正面朝上的次数相对于总次数的比例又是多少呢?直觉上,这个比例应该是1/2,但根据伯克霍夫悖论,这个比例实际上是一个不确定的值。
3. 瑕疵统计:瑕疵统计是指在无限时间和空间中的某些分布,存在着某些奇怪的性质。
例如,考虑一个线段,我们可以通过在中间随机选择一个点,然后将剩余部分一分为二。
重复此过程,我们将得到一系列长度不断减小的线段。
然而,根据瑕疵统计,最终我们会得到一个长度为零的线段。
这种现象挑战着我们对无穷的理解。
二、三次数学危机1. 黑洞信息悖论:黑洞是宇宙中最神秘而又引人入胜的天体之一。
然而,根据黑洞信息悖论,当物质进入黑洞时,所有关于该物质的信息都将永久性地丢失。
这一结果与量子力学的基本原理相矛盾,其中信息是不可破坏的。
黑洞信息悖论挑战了我们对信息保存和宇宙进化的理解。
2. 艾伦-克拉曼恩悖论:在数学中,一个凯莱集合是指具有类似于实数线的长度,但没有定义的集合。
这种存在令人惊讶,因为对于实数而言,我们可以精确地描述和测量其长度。
然而,艾伦-克拉曼恩悖论指出,某些特殊的凯莱集合存在于一个叫做超计算的理论计算机中。
数学历史上三大危机
数学历史上三大危机数学作为一门研究数量、结构、变化和空间等概念的学科,自诞生以来就不断面临着各种挑战和危机。
其中,数学历史上最为著名的三大危机,分别是无理数的发现、无穷小量的悖论以及集合论中的罗素悖论。
这三大危机不仅推动了数学的发展,也深刻地影响了数学哲学和科学哲学的演变。
一、无理数的发现无理数的发现是数学史上的一次重大突破,也是数学历史上第一次危机。
自古以来,人们一直认为所有的数都可以表示为分数,即两个整数的比例。
然而,公元前5世纪,古希腊数学家毕达哥拉斯学派发现了一个重要的几何事实:边长为1的正方形的对角线长度无法用两个整数的比例来表示。
这个发现不仅颠覆了毕达哥拉斯学派关于数的理论,也引发了一场关于无理数存在性的哲学争论。
无理数的发现揭示了数学中存在着一类无法用分数精确表示的数,这对当时的数学观念产生了巨大的冲击。
为了解决这个问题,古希腊数学家们发展了无理数的理论,并提出了诸如平方根、立方根等概念。
无理数的发现不仅推动了数学的发展,也促使人们重新审视数学的基础和本质。
二、无穷小量的悖论无穷小量的悖论是数学史上第二次重大危机。
在17世纪,随着微积分的诞生,无穷小量的概念逐渐被引入数学研究。
然而,无穷小量的性质和应用却引发了诸多悖论和争论。
例如,无穷小量是0还是非0?无穷小量乘以无穷大是什么?这些问题困扰着当时的数学家,也对微积分的发展产生了阻碍。
为了解决无穷小量的悖论,数学家们进行了深入的研究和探索。
19世纪,柯西、黎曼等数学家提出了极限的概念,建立了微积分的严格基础。
极限概念的引入不仅解决了无穷小量的悖论,也推动了数学分析的进一步发展。
三、集合论中的罗素悖论集合论中的罗素悖论是数学史上第三次重大危机。
19世纪末,德国数学家康托尔创立了集合论,为数学提供了一个全新的研究对象。
然而,1901年,英国哲学家罗素发现了一个关于集合论的基本悖论:一个集合如果包含所有不包含自身的集合,那么这个集合是否包含自身?罗素悖论揭示了集合论中存在的基本矛盾,对数学的基础产生了严重的挑战。
数学的三大危机和悖论
•
现 得 很 优 秀 ︒
数 学 体 系 ︐ 尽 管 很 多 方 面 表
机 ︐ 就 没 能 完 全 形 成 真 正 的
大 国 ︐ 因 为 没 有 这 次 数 学 危
向 不 同 的 路 ︐ 像 中 国 这 样 的
使 得 东 西 方 数 学 体 系 完 全 走
大 定 律 ︒ 正 是 因 为 这 次 危 机 ︐
• 下面我来跟大伙聊聊这三次有意思的事件。
第一次数学文化
第一次数学危机发生在公元前500年左右,我感觉跟 精确度有关,我们平时用到的数学知识,几乎都只要 精确到一定程序就可以了,所以古希腊毕达哥拉斯学 派认为,任何一个数都能用a/b的形式来表示,其中a 和b都是整数,这些数在数学上有个专有名词叫有理 数。但是有一天,有个叫希帕索斯的学者发现,好像 不是这么回事,他作了一个这样的假设,就是等腰直 角三角形,如果直边都为1,那么它的斜边(√2)就不 满足这个条件。这个证明起来其实很简单,但是对于 当时着了迷的毕达哥拉斯派学者来说,这完全不能接 受,就好像发现自己一直深爱的很纯洁的美女是绿茶 妹一样,这些气急败坏的学者们最后把希帕索斯扔到 海里面去了。这就是典型的学术迫害啊。
数学的三大危机和悖论
• 在数学的历史上,有过三次比较重大的危机。
• 第一次是关于无理数的,这次危机把毕达哥拉斯的数 学王朝推翻。 • 第二次数学危机是关于微积分的,是常识跟数学之间 的契合的问题。
• 第三次数学危机发生在二十世纪初,这次危机涉及到 了数学中最基础的大厦,差点把整个数学理论推翻重 来。
的 地 位 下 降 ︐ 几 何 学 的 地 位
第 一 次 数 学 危 机 使 得 纯 代 数
多 的 学 者 发 现
一 个 希 帕 索 斯 ︐ ︐ 自 然 会 ︐ 有 更 ︔ √2 √3 √5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学悖论默认分类2010-05-20 10:20:02 阅读20 评论0 字号:大中小订阅数学的基础是什么?1. 定义2. 公理3. 逻辑首先说公理的陈述,这就是一个很麻烦的事情。
在你的公理中一定会有很多名词,比如点,线,等等,因此似乎需要先定义这些最基本的名词。
但当你尝试作这样的定义的时候,你会发现你还是无从下手,无论你怎么定义它们,你都会引入其它未定义的名词。
其实在逻辑上,对最基本的名词的定义就是不可能的事情。
我们采用的办法就是使用未经定义的最基本的名词来陈述公理,在公理中同时也就给出了这些对象的属性。
再说逻辑,比如最基本,最有名的三段论。
大前提:人都会死。
小前提:亚里士多德是人。
结论:亚里士多德会死。
粗看,我们得到这个结论一点问题都没有。
但你仔细想想,是什么原因我们可以使用这样的推导?我们采用这样的方法进行推导就一定不会出现问题吗?能否证明这样的推导过程就一定是正确的?其实这是一个没有办法证明的问题。
但我们的实践经验告诉我们这样的推导是不会有问题的,是正确的。
因此我们也同样采用公理的方法确定下来三段论的逻辑推导方法是正确的。
在逻辑上,这样的例子还有很多。
由此,可以看出,数学的基础就是公理。
数学只是公理集之上的推导和演绎。
推导和演绎的基础仍然是公理。
“……古往今来,为数众多的悖论为逻辑思想的发展提供了食粮。
”——N·布尔巴基一、悖论的历史与悖论的定义悖论的历史源远流长,它的起源可以一直追溯到古希腊和我国先秦时代。
“悖论”一词源于希腊文,意为“无路可走”,转义是“四处碰壁,无法解决问题”。
在古希腊时代,克里特岛的哲学家伊壁门尼德斯(约公元前6世纪)发现的“撒谎者悖论”可以算作人们最早发现的悖论。
公元前4世纪的欧布里德将其修改为“强化了的撒谎者悖论”。
在此基础上,人们构造了一个与之等价的“永恒的撒谎者悖论”。
埃利亚学派的代表人物芝诺(约490B.C.—430B.C.)提出的有关运动的四个悖论(二分法悖论、阿基里斯追龟悖论、飞矢不动悖论与运动场悖论)尤为著名,至今仍余波未息。
在中国古代哲学中也有许多悖论思想,如战国时期逻辑学家惠施(约370B.C.—318B.C.)的“日方中方睨,物方生方死”、“一尺之棰,日取其半,万世不竭”;《韩非子》中记载的有关矛与盾的悖论思想等,这些悖论式的命题,表面上看起来很荒谬,实际上却潜伏着某些辨证的思想内容。
在近代,著名的悖论有伽利略悖论、贝克莱悖论、康德的二律背反、集合论悖论等。
在现代,则有光速悖论、双生子佯谬、EPR悖论、整体性悖论等。
这些悖论从逻辑上看来都是一些思维矛盾,从认识论上看则是客观矛盾在思维上的反映。
尽管悖论的历史如此悠久,但直到本世纪初,人们才真正开始专门研究悖论的本质。
在此之前,悖论只能引起人们的惊恐与不安;此后,人们才逐渐认识到悖论也有其积极作用。
特别是本世纪60、70年代以来,出现了研究悖论的热潮。
悖论的定义有很多说法,影响较大的有以下几种,如“悖论是指这样一个命题A,由A出发可以找到一语句B,然后,若假定B真,就可推出¬B真,亦即可推出B假。
若假定¬B真,即B假,又可推导出B真”。
又如“悖论是一种导致逻辑矛盾的命题,这种命题,如果承认它是真的,那么它又是假的;如果承认它是假的,那么它又是真的。
”再如“如果某一理论的公理和推理原则看上去是合理的,但在这个理论中却推出了两个互相矛盾的命题,或者证明了这样一个复合命题,它表现为两个互相矛盾的命题的等价式,那么,我们就说这个理论包含了一个悖论。
”上述各种悖论定义,都有其合理的一面,但又都不十分令人满意。
从潜科学的观点来看,悖论是一种在已有科学规X中无法解决的认识矛盾,这种认识矛盾可以在新的科学规X中得到克服,这是悖论的广义定义。
悖论有其存在的客观性和必然性,它是科学理论演进中的必然产物,在科学发展史上经常出现,普遍存在于各门科学之中。
不仅在语义学、形式逻辑和数理逻辑等领域出现悖论,而且在物理学、天文学、系统论和哲学等领域也经常出现悖论。
悖论是一种认识矛盾,它既包括逻辑矛盾、语义矛盾,也包括思想方法上的矛盾。
悖论常常以逻辑推理为手段,深入到原理论的根基之中,尖锐地揭露出该理论体系中潜藏着的无法回避的矛盾,所以它的出现必然导致现存理论体系的危机。
科学危机的产生,往往是科学革命的前兆和强大杠杆,是科学认识飞跃的关节点和开始进入新阶段的重要标志。
我国著名数学家徐利治教授指出:“产生悖论的根本原因,无非是人的认识与客观实际以及认识客观世界的方法与客观规律的矛盾,这种直接和间接的矛盾在一点上的集中表现就是悖论。
”所谓主客观矛盾在某一点上的集中表现,是指由于客观事物的发展造成了原来的认识无法解释新现实,因而要求看问题的思想方法发生转换,于是在新旧两种思想方法转换的关节点上,思维矛盾特别尖锐,就以悖论的形式表现出来。
二、数学悖论与数学史上的三次危机数学悖论作为悖论的一种,主要发生在数学研究中。
按照悖论的广义定义,所谓数学悖论,是指数学领域中既有数学规X中发生的无法解决的认识矛盾,这种认识矛盾可以在新的数学规X中得到解决。
数学中有许多著名的悖论,除前面提到的伽利略悖论、贝克莱悖论外,还有康托尔最大基数悖论、布拉里——福蒂最大序数悖论、理查德悖论、基础集合悖论、希帕索斯悖论等。
数学史上的危机,指数学发展中危及整个理论体系的逻辑基础的根本矛盾。
这种根本性矛盾能够暴露一定发展阶段上数学体系逻辑基础的局限性,促使人们克服这种局限性,从而促使数学的大发展。
数学史上的三次危机都是由数学悖论引起的,下面作以简要的分析。
毕达哥拉斯学派主X“数”是万物的本原、始基,而宇宙中一切现象都可归结为整数或整数之比。
公元前5世纪,毕达哥拉斯学派的成员希帕索斯(470B.C.前后)发现:等腰直角三角形斜边与一直角边是不可公度的,它们的比不能归结为整数或整数之比。
这一发现不仅严重触犯了毕达哥拉斯学派的信条,同时也冲击了当时希腊人的普遍见解,因此在当时它就直接导致了认识上的“危机”。
希帕索斯的这一发现,史称“希帕索斯悖论”,从而触发了数学史上的第一次危机。
在希帕索斯悖论发现之前,人们仅认识到自然数和有理数,有理数理论成为占统治地位的数学规X,希帕索斯发现的无理数,暴露了原有数学规X的局限性。
由此看来,希帕索斯悖论是由于主观认识上的错误而造成的。
希帕索斯的发现,促使人们进一步去认识和理解无理数。
但是,基于生产和科学技术的发展水平,毕达哥拉斯学派及以后的古希腊的数学家们没有也不可能建立严格的无理数理论,他们对无理数的问题基本上采取了回避的态度,放弃对数的算术处理,代之一几何处理,从而开始了几何优先发展的时期,在此后两千年间,希腊的几何学几乎成了全部数学的基础。
当然,这种将整个数学捆绑在几何上的狭隘作法,对数学的发展也产生了不利的影响。
希帕索斯的发现,说明直觉和经验不一定靠得住,而推理和证明才是可靠的,这就导致了亚里士多德的逻辑体系和欧几里德几何体系的建立。
十七世纪末,牛顿和莱布尼兹创立的微积分理论在实践中取得了成功的应用,大部分数学家对于这一理论的可靠性深信不移。
但是,当时的微积分理论主要是建立在无穷小分析之上的,而无穷小分析后来证明是包含逻辑矛盾的。
1734年,英国大主教贝克莱发表了《分析学者,或致一个不信教的数学家。
其中审查现代分析的对象、原则与推断是否比之XX的神秘与教条,构思更为清楚,或推理更为明显》一书,对当时的微积分学说进行了猛烈的抨击。
他说牛顿先认为无穷小量不是零,然后又让它等于零,这违背了背反律,并且所得到的流数实际上是0/0,是“依靠双重错误你得到了虽然不科学却是正确的结果”,这是因为错误互相抵偿的缘故。
在数学史上,称之为“贝克莱悖论”。
这一悖论的发现,在当时引起了一定的思想混乱,导致了数学史上的第二次危机,引起了持续200多年的微积分基础理论的争论。
贝克莱攻击“无穷小”,其目的是为XX神学作论证,而作为“贝克莱悖论”本身,则是一个思想方法问题。
因为数学要按照形式逻辑的不矛盾律来思维,不能在同一思维过程中既承认不等于零,又承认等于零。
但是,事物的运动以其终点为极限,运动的结果在量上等于零,而在起点上则不等于零,这是事物运动的两个方面,不应纳入同一思维过程,如果把它们机械地联结起来,必然会导致思维中的悖论。
贝克莱悖论产生的原因在于无穷小量的辨证性与数学方法的形式特性的矛盾。
第二次数学危机的产物——分析基础理论的严密化与集合论的创立。
“贝克莱悖论”提出以后,许多著名数学家从各种不同的角度进行研究、探索,试图把微积分重新建立在可靠的基础之上。
法国数学家柯西是数学分析的集大成者,通过《分析教程》(1821)、《无穷小计算讲义》(1823)、《无穷小计算在几何中的应用》(1826)这几部著作,柯西建立起以极限为基础的现代微积分体系。
但柯西的体系仍有尚待改进之处。
比如:他关于极限的语言尚显模糊,依靠了运动、几何直观的东西;缺乏实数理论。
法国数学家魏尔斯特拉斯是数学分析基础的主要奠基者之一,他改进了波尔查诺、阿贝尔、柯西的方法,首次用“ε—δ”方法叙述了微积分中一系列重要概念如极限、连续、导数和积分等,建立了该学科的严格体系。
“ε—δ”方法的提出和应用于微积分,标志着微积分算术化的完成。
为了建立极限理论的基本定理,不少数学家开始给出无理数的严格定义。
1860年,魏尔斯特拉斯提出用递增有界数列来定义无理数;1872年,戴德金提出用分割来定义无理数;1883年,康托尔提出用基本序列来定义无理数;等等。
这些定义,从不同的侧面深刻揭示了无理数的本质,从而建立了严格的实数理论,彻底消除了希帕索斯悖论,把极限理论建立在严格的实数理论的基础上,并进而导致集合论的诞生。
魏尔斯特拉斯用排除无穷小量的办法来解决贝克莱悖论,而在本世纪60年代,鲁滨逊又把无穷小量请了回来,引进了超实数的概念,从而建立了非标准分析,同样也能精确地描述微积分,进而也解决了贝克莱悖论。
但必须注意到,贝克莱悖论只是在相对意义下得到了解决,因为实数理论的无矛盾性归结为集合论的无矛盾性,而集合论的无矛盾性至今仍未彻底解决。
经过第一、二次数学危机,人们把数学基础理论的无矛盾性,归结为集合论的无矛盾性,集合论已成为整个现代数学的逻辑基础,数学这座富丽堂皇的大厦就算竣工了。
看来集合论似乎是不会有矛盾的,数学的严格性的目标快要达到了,数学家们几乎都为这一成就自鸣得意。
法国著名数学家庞加莱(1854—1912)于1900年在巴黎召开的国际数学家会议上夸耀道:“现在可以说,(数学)绝对的严密性是已经达到了”。
然而,事隔不到两年,英国著名数理逻辑学家和哲学家罗素(1872—1970)即宣布了一条惊人的消息:集合论是自相矛盾的,并不存在什么绝对的严密性!史称“罗素悖论”。