材料力学复习要点
材料力学总复习
一、基本变形
外力
拉伸与压缩
扭转
弯曲
内力
FN F
应力 强度条件
变形
FN
A
max [ ]
l FNl EA
刚度条件
T Me
T
IP
max [ ]
Mnl
GI P
FS 外力
M 外力对形心之矩
My
,
FS
S
* z
Iz
bI z
, max [ ] max [ ]
1、积分法
2、叠加法
∑Fix= 0, FN1 cos30°+FN2=0 (1)
(2)画节点A的位移图(见图c) (3)建立变形方程
△L1=△L2cos30°
(4)建立补充方程
△L1=△LN1+△LT,
即杆①的伸长△l1由两部份组成,△l N1表示由轴力FN1引起的变形, △lT表示温度升高引起的变形,因为△T 升温,故△lT 是正值。
因为AB 杆受的是拉力,所以沿AB 延
长线量取BB1等于△L1;同理,CB 杆受
的也是拉力,所以沿杆CB 的延长线量取
BB2 等于△L。
分别在点B1 和B2 处作BB1 和BB2 的垂
线,两垂线的交点B′为结构变形后节点
B应有的新位置。即结构变形后成为
ABˊC 的形状。图c称为结构的变形图。
为了求节点B的位置,也可以单独作出节点B的位移图。位移图的作 法和结构变形图的作法相似,如图d所示。
C1 5、求应力并校核强度:
A1
1
FN 1 A
66 .7 MPa ,
2
FN 2 A
133 .2MPa ,
剪切
F AB A1
F BC A2
材料力学复习
第一章 绪论1. 承载能力:强度:构件在外力作用下抵抗破坏的能力刚度:构件在外力作用下抵抗变形的能力稳定性:构件在外力作用下保持其原有平衡状态的能力2. 变形体的基本假设:连续性假设、均匀性假设、各向同性假设3. 求内力的方法:截面法4. 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲第二章 拉伸、压缩1. 轴力图必须会画:轴力N F 拉为正、压为负2. 横截面上应力:均匀分布 AF N =σ 3. 斜截面上既有正应力,又有切应力,且应力为均匀分布。
ασσα2cos =αστα2sin 21=σ为横截面上的应力。
横截面上的正应力为杆内正应力的最大值,而切应力为零。
与杆件成45°的斜截面上切应力达到最大值,而正应力不为零。
纵截面上的应力为零,因此在纵截面不会破坏。
4. 低碳钢、灰铸铁拉伸时的力学性能、压缩时的力学性能低碳钢拉伸在应力应变图:图的形状、四个极限、四个阶段、各阶段的特点、伸长率(脆性材料、塑性材料如何区分)5. 强度计算脆性材料、塑性材料的极限应力分别是 拉压时的强度条件:][max max σσ≤=AF N 强度条件可以解决三类问题:强度校核、确定许可载荷、确定截面尺寸 6.杆件轴向变形量的计算 EA l F l N =∆ EA :抗拉压刚度 7. 剪切和挤压:剪切面,挤压面的判断第三章 扭转1.外力偶矩的计算公式: 2.扭矩图T 必须会画:扭矩正负的规定3.切应力互等定理、剪切胡克定律4.圆轴扭转横截面的应力分布规律:切应力的大小、作用线、方向的确定sb σσ,min /::)(9549r n kW P m N n P M ⋅=5.横截面上任一点切应力的求解公式:ρI ρT τP ρ=——点到圆心的距离6. 扭转时的强度条件:][max max ττ≤=tW T 7.实心圆截面、空心圆截面的极惯性矩、抗扭截面模量的计算公式 实心圆截面:极惯性矩432D πI p =,抗扭截面模量316D πW t = 空心圆截面:极惯性矩)1(3244αD πI P -=,抗扭截面模量)1(1643αD πW t -==, 8.圆轴扭转时扭转角:pI G l T =ϕ p I G :抗扭刚度 第四章 弯曲内力1.纵向对称面、对称弯曲的概念2. 剪力图和弯矩图必须会画:剪力、弯矩正负的规定3.载荷集度、剪力和弯矩间的关系4. 平面曲杆的弯矩方程5.平面刚架的弯矩方程、弯矩图第五章 弯曲应力1. 纯弯曲、中性层、中性轴的概念2.弯曲时横截面上正应力的分布规律:正应力的大小、方向的确定3. 横截面上任一点正应力的计算公式:zI My =σ 4. 弯曲正应力的强度校核][max max σσ≤=zW M 或][max max max σI y M σz ≤= 对于抗拉压强度不同的材料,最大拉压应力都要校核5. 矩形截面、圆截面的惯性矩和抗弯截面模量的计算 矩形截面:惯性矩,1213bh I z =抗弯截面模量:261bh W z = 实心圆截面:惯性矩464D πI z =,抗弯截面模量:332D πW z = 空心圆截面:惯性矩)1(6444αD πI z -=,抗弯截面模量:)1(3243αD πW z -=, 第七章 应力和应变分析、强度理论1. 主应力、主平面、应力状态的概念及应力状态的分类2. 二向应力状态分析的解析法:应力正负的规定:正应力以拉应力为正,压应力为负;切应力对单元体内任意点的矩顺时针转向为正;α角以逆时针转向为正D d α=D d α=任意斜截面上的应力计算最大最小正应力的计算公式最大最小正应力平面位置的确定 最大切应力的计算公式主应力、主平面的确定3. 了解应力圆的做法,辅助判断主平面4. 广义胡克定律5.四种强度理论内容及适用范围第八章 组合变形1. 组合变形的判断2. 圆截面轴弯扭组合变形强度条件 第三强度理论:[]σσ≤+=WT M r 223 第四强度理论:[]σσ≤+=W T M r 22375.0 W ——抗弯截面模量323d W π=第九章 压杆稳定1. 压杆稳定校核的计算步骤(1)计算λ1和λ2(2)计算柔度λ,根据λ 选择公式计算临界应(压)力(3)根据稳定性条件,判断压杆的稳定性2. P 1σπλE = ba s 2σλ-= ⎪⎪⎩⎪⎪⎨⎧+-=--++=ατασστατασσσσσαα2cos 2sin 22sin 2cos 22xy y x xy y x y x 22min max 22xy y x y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+=⎭⎬⎫y x xy σστα--=22tan 0231max σστ-=柔度i lμλ= AI i = I ——惯性矩 μ——长度系数;两端铰支μ=1;一端铰支,一段固定μ=0.7;两端固定μ=0.5; 一端固定,一端自由μ=23. 大柔度杆1λλ≥ 22cr λπσE = 中柔度杆12λλλ<≤ λσb a -=cr小柔度杆 2λλ< s cr σσ=4. 稳定校核条件st cr n n FF ≥= F ——工作压力 cr F =cr σ A 第十章 动载荷1. 冲击动荷因数冲击物做自由落体 冲击开始瞬间冲击物与被冲击物接触时的速度为 v水平冲击时 Δst 是冲击点的静变形。
材料力学总复习
步 骤:1、近似微分方程 E Iw M (x)
2、积分
E Iw M (x )d x C 1
E I w [ M ( x ) d x ] d x C 1 x C 2
3、代入边界条件,解出积分常数
4、写出挠曲线方程和转角方程
材料力学
➢ 叠加法求挠度和转角
Fq
()
正确地、熟练地
A
B
C
a
a
使用附录Ⅳ
ε2 E 1[σ2(σ3σ1)]
ε3 E1[σ3(σ1σ2)]
材料力学
➢ 强度理论 ( )
相当应力 σr []
r1 1 σr2 σ1 (σ2 σ3)
σr3 σ1 σ3
σr4
1 2[(σ1
σ2
)2
(σ2
σ3
)2
(σ3
σ1)2
]
材料力学
强度计算的步骤
(1)外力分析:确定所需的外力值; (2)内力分析:画内力图,确定可能的危险面; (3)应力分析:画危面应力分布图,确定危险点并画出单元体,
25
材料力学
➢ 刚度条件
相对扭转角
Tl
GI p
刚度条件
max
Tmax GIp
180 []
26
材料力学
➢ 等直圆杆扭转时的应变能
应变能密度
vε
1
2
应变能
Vε
W
1T
2
1 T2l 2GIp
27
材料力学
1、等截面圆轴扭转时的危险点在
。
2、实心圆轴受扭,当其直径增加一倍时,则最大剪应力是
原来的(
截面应力:
T
Ip
()
T
max
材料力学性能复习重点汇总
第一章包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(OP)或屈服强度(OS)增加;反向加载时弹性极限(OP)或屈服强度(OS)降低的现象。
解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面一一解理面,一般是低指数,表面能低的晶面。
解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。
静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。
可以从河流花样的反“河流”方向去寻找裂纹源。
解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。
5.影响屈服强度的因素与以下三个方面相联系的因素都会影响到屈服强度位错增值和运动晶粒、晶界、第二相等外界影响位错运动的因素主要从内因和外因两个方面考虑(一)影响屈服强度的内因素1.金属本性和晶格类型(结合键、晶体结构)单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力一一派拉力、位错运动交互作用产生的阻力)决定。
派拉力:2G加2G 罕位错交互作用力aGbQ是与晶体本性、位错结构分布相关的比例系数,L是位错间距。
)2.晶粒大小和亚结构晶粒小一晶界多(阻碍位错运动)一位错塞积〜提供应力一位错开动一产生宏观塑性变形。
晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。
屈服强度与晶粒大小的关系:霍尔一派奇(Hall-Petch)o s= o i+kvd-1/23.溶质元素加入溶质原子一(间隙或置换型)固溶体〜(溶质原子与溶剂原子半径不一样)产生晶格畸变一产生畸变应力场〜与位错应力场交互运动一使位错受阻一提高屈服强度(固溶强化)。
4.第二相(弥散强化,沉淀强化)不可变形第二相提高位错线张力一绕过第二相一留下位错环一两质点间距变小一流变应力增大。
材料力学复习笔记
材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。
为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。
【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。
【内容讲解】一、基本概念强度—-构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形.刚度-—构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。
稳定性--构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。
杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。
(一)连续性假设-—假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。
这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。
(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。
按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体).(三)各向同性假设——沿各个方向均具有相同力学性能。
具有该性质的材料,称为各向同性材料。
综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。
三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力.外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等.当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况.在小变形的情况下,三个坐标平面内的力互相独立,即一个坐标平面的载荷只引起这一坐标平面内的内力分量,而不会引起另一坐标平面内的内力分量。
材料力学复习资料
一基本概念1.工程构件正常工作必须满足强度、刚度和稳定性的要求。
杆件的强度代表了杆件抵抗破坏的能力;杆件的刚度代表了杆件抵抗变形的能力;杆件的稳定性代表了杆件维持原有平衡形态的能力。
2.变形固体的基本假设是连续性假设、均匀性假设、各向同性假设。
连续性假设认为固体所占据的空间被物质连续地充满而毫无空隙;均匀性假设认为材料的力学性能是均匀的;各向同性假设认为材料沿各个方向具有相同的力学性质。
3.截面法的三个步骤是截取、代替和平衡。
4.杆件变形的基本形式有:拉压,扭转,剪切,弯曲。
5.截面上一点处分布内力的集度,称为该截面该点处的应力。
6.截面上的正应力方向垂直于截面,切应力的方向平行于截面。
7.在卸除荷载后能完全消失的变形称为弹性变形,不能消失而残留下来的变形称为塑性变形。
8.低碳钢受拉伸时,变形的四个阶段为弹性阶段、屈服阶段、强化阶段和局部变形阶段。
9.由杆件截面骤然变化而引起的局部应力骤增的现象称为应力集中。
10.衡量材料塑性的两个指标是伸长率和断面收缩率。
11.受扭杆件所受的外力偶矩的作用面与杆轴线垂直。
12.低碳钢圆截面试件受扭转时,沿横截面破坏;铸铁圆截面试件受扭转时,沿45度角截面破坏。
13.梁的支座按其对梁在荷载作用平面的约束情况,可以简化为三种基本形式,即固定端、固定铰支座、可(活)动铰支座。
14.工程上常用的三种基本形式的静定梁是:简支梁、悬臂梁、外伸梁。
15.平面弯曲梁的横截面上有两个内力分量,分别为剪力和弯矩。
16.拉(压)刚度、扭转刚度和弯曲刚度的表达式分别是EA、GI p和EI z。
17.当梁上有横向力作用时,梁横截面上既有剪力又有弯矩,该梁的弯曲称为横力弯曲。
梁横截面上没有剪力(剪力为0),弯矩为常数,该梁的弯曲称为纯弯曲。
18.在弯矩图发生拐折处,梁上必有集中力的作用。
19.在集中力偶作用处,剪力图将不变。
20.梁的最大正应力发生在最大弯矩所在截面上离中性轴最远的点处。
材料力学总复习
第一部分 基本变形部分 第二部分 复杂变形部分 第三部分 压杆稳定 第四部分 能量方法
第一部分
基本变形部分
§1-4 杆件变形的基本形式
内容 种类
外力特点
轴向拉伸 及 压缩
Axial Tension
剪切 Shear
扭转 Torsion
平面弯曲 Bending
组合受力(Combined Loading)与变形
取分离体如图3, a 逆时针为正;
a 绕研究对象顺时针转为正;
由分离体平衡得:
a
a
x
图3
a a
0 0
c os2a sinacosa
或:
a a
0
2
0
2
(1cos2a sin2a
)
(合力) P
n
剪切面:
n
P (合力)
构件将发生相互的错动面,如 n– n 。
Q n
剪切面 剪切面上的内力:
变形特点
二、截面法 ·轴力 内力的计算是分析构件强度、刚度、稳定性等问题的
基础。求内力的一般方法是截面法。
1. 截面法的基本步骤: ① 截开:在所求内力的截面处,假想地用截面将杆件一分为二。 ②代替:任取一部分,其弃去部分对留下部分的作用,用作用
在截开面上相应的内力(力或力偶)代替。 ③平衡:对留下的部分建立平衡方程,根据其上的已知外力来
计算杆在截开面上的未知内力(此时截开面上的内力 对所留部分而言是外力)。
杆在轴向拉压时,横截面上的内力称为轴力。
轴力用 N 表示,方向与轴线重合
引起伸长变形的轴力为正——拉力(背离截面); 引起压缩变形的轴力为负——压力(指向截面)。
N
N
材料力学性能复习重点
期末复习资料一 名词解释1. 弹性比功:又称弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。
金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3. 循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力。
也叫金属的内耗。
4. 包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服强度)增加;反向加载,规定残余伸长应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象。
5. 应力状态软性系数:金属所受的最大切应力τmax 与最大正应力σmax 的比值大小。
即:()32131max max 5.02σσσσσστα+--== 6. 缺口效应:绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。
缺口第一效应:引起应力集中,改变了缺口前方的应力状态,使缺口试样所受的应力由原来的单向应力状态改变为两向或三向应力状态。
缺口第二效应:缺口使塑性材料强度增高,塑性降低。
7. 缺口敏感度:缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即:8. 缺口试样静拉伸试验:轴向拉伸、偏斜拉伸两种。
9. 布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。
10. 洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度11. 维氏硬度——以两相对面夹角为136°的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。
材料力学复习资料
材料力学1:对构件正常工作的要求:强度,刚度,稳定性。
2:对可变形固体的假设有:连续性假设,均匀性假设,各向同性假设,完全弹性假设,小变形假设。
3:杆件变形的基本形式:轴向拉伸或轴向拉压缩,剪切,扭转,弯曲。
4:拉杆的纵向线应变ε=Δl/l,横向线应变ε’=Δd/d。
5:胡克定律:Δl=FnL/EA,E为弹性模量,EA称为拉伸(压缩)刚度。
6:单周应力状态下的胡克定律:ε=ζ/E,δ=ε*E泊松比V= Iε1/ΕI7:被蓄在弹性体内的应变能Vε在数值上等于外力所作的功W,即Vε=W称为功能原理,Vε=(FN*NL)/2EA或Vε=(EA/2L)ΔL²8:低碳钢的拉伸过程分为四个阶段:弹性阶段,屈服阶段,强化阶段,局部变形阶段(缩颈现象)。
9:脆性材料对应力集中比较敏感(划玻璃)。
10:弹性模量E,切变模量G与泊松比的关系:G=E/2(1+V)11:传动轴的外力偶矩:Me=9.55*10³*(P/n)=传递的功率/转速12:扭转切应力的一般计算公式:Jp=Tp/Ip=扭矩/极损性矩将Wp=Ip/r带入有Jp=T/WpWp为扭转截面系数。
13:剪切胡克定理:η=G*r和δ=EεG:切变模量,14:矩形截面Iz=bh³/12 ,Wz=bh²/6。
圆截面Iz=(πd³*d)/64,Wz=πd³/32;Ip=(πd³*d)/32,Wp=πd³/16;空心圆截面:Ip=【(πD²*D²)/32】*(1-α²α²),Wp=【(πD³)/16】(1-α²α²),α=d/D15:相对扭转角ψ=Mel/GIp或ψ=TL/GIpGIp称为扭转刚度;单位长度扭转角:ψ’=T/GIp,ψ’=dψ/dλ,Δd=T1d/E1A16:弹簧所受的内力主要是扭转切应力。
17:工程上常见的三种基本静定梁:简支梁,外伸梁,悬臂梁。
材料力学重点公式复习要点
1、应力全应力正应力切应力线应变外力偶矩当功率P单位为千瓦(kW),转速为n(r/min)时,外力偶矩为PMe 9549(N.m) n当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为PMe 7024(N.m) n拉(压)杆横截面上的正应力F拉压杆件横截面上只有正应力 ,且为平均分布,其计算公式为 N (3-1) A 式中FN为该横截面的轴力,A为横截面面积。
正负号规定拉应力为正,压应力为负。
公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化的直杆,杆件两侧棱边的夹角 20时拉压杆件任意斜截面(a图)上的应力为平均分布,其计算公式为全应力正应力 0p cos (3-2) cos2 (3-3)1sin2 (3-4) 2切应力式中 为横截面上的应力。
正负号规定:由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。
拉应力为正,压应力为负。
对脱离体内一点产生顺时针力矩的 为正,反之为负。
两点结论:。
当(1)当 0时,即横截面上, 达到最大值,即 max=90时,即纵截面上, =90=0。
00000(2)当 45时,即与杆轴成45的斜截面上, 达到最大值,即( )max1.2 拉(压)杆的应变和胡克定律(1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形 l l1 l 轴向线应变横向线应变 l 横向变形 b b1 b l b 正负号规定伸长为正,缩短为负。
b(2)胡克定律当应力不超过材料的比例极限时,应力与应变成正比。
即 E (3-5)或用轴力及杆件的变形量表示为 l FNl (3-6) EA式中EA称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。
材料力学期末复习重点
材料力学期末复习重点第一章绪论及基本概念P1构件正常工作的要求。
P5可变形固体的三个基本假设。
第二章轴向拉伸与压缩P10截面法、轴力及轴力图例题:2-1P15最大正应力公式(2-3)例题:2-2P20 拉压杆伸长公式(2-5b)例题2-5P39强度条件(2-13)*例题2-8-2-10第三章扭转P62 扭矩及扭矩图例题3-1P67扭转最大切应力公式(3-7)P68 切应力互等定理式(3-12)P72 强度条件式(3-14)例题3-4第四章弯曲应力P100 梁的剪力和弯矩例题4-1P102剪力方程与弯矩方程4-2-4-6P109弯矩、剪力与分布荷载集度间的微分关系及其应用例题4-9P116按叠加原理作弯矩图例题4-10P123任意点处的正应力(4-5)P125最大正应力(4-7b)例题4-13P126梁的正应力强度条件式(4-9)例题4-14-4-16P132 任意点的切应力式(4-10)P133 矩形截面最大切应力式(4-11)P134 工字形截面最大切应力式(4-13)例题4-17P138切应力强度条件式(4-17)例题4-18第五章梁弯曲时的位移P159梁的挠曲性近似微分方程式(5-2b)例题5-1-5-2P162积分常数的几何意义P165按叠加原理计算梁的挠度和转角例题5-5P173梁的刚度校核式(5-11)第六章简单的超静定问题P184 超静定问题及其解法6-1节,能识别超静的次数第七章应力状态和强度理论P214任意斜截面的应力(7-1)-(7-2)式P214 应力圆P216主应力与主平面(7-3)-(7-5)式例题7-2P223 空间应力状态的最大正应力(7-6)式,最大切应力(7-7)例题7-3P226广义胡克定律(7-8)式例题7-5P234 强度理论及其相当应力第一-第四强度理论及适用条件例题7-7附录I 截面的几何性质P334组合截面的静矩(I-3)式和形心(I-4)式例题I-2P336 极惯性矩、惯性矩、惯性积和惯性半径计算例题I-3P339 移轴公式(I-10)熟练利用移轴公式计算组合截面的惯性矩例题I-5-I-6。
材料力学复习考点
南通大学建工学院材料力学考点复习(个人自己参考一些资料,总结的复习考点)01 本章小结1.材料力学研究的问题是构件的强度、刚度和稳定性。
2.构成构件的材料是可变形固体。
3.对材料所作的基本假设是:均匀性假设,连续性假设及各向同性假设。
4.材料力学研究的构件主要是杆件,且是小变形杆件。
5.内力是指在外力作用下,物体内部各部分之间的相互作用;显示和确定内力可用截面法;应力是单位面积上的内力。
点应力可用正应力与剪应力表示。
6.对于构件任一点的变形,只有线变形和角变形两种基本变形。
7.杆件的四种基本变形形式是:拉伸(或压缩),剪切,扭转以及弯曲。
02-1 本章小结1.本章主要介绍轴向拉伸和压缩时的重要概念:内力、应力、变形和应变、变形能等。
轴向拉伸和压缩的应力、变形和应变的基本公式是: 正应力公式AN=σ 胡克定律EEAll σε==∆,F 胡克定律是揭示在比例极限内应力和应变的关系,它是材料力学最基本的定律之一。
平面假设:变形前后横截面保持为平面,而且仍垂直于杆件的轴线。
轴向拉伸或压缩的变形能。
2.材料的力学性能的研究是解决强度和刚度问题的一个重要方面。
对于材料力学性能的研究一般是通过实验方法,其中拉伸试验是最主要、最基本的一种试验。
低碳钢的拉伸试验是一个典型的试验。
它可得到如下试验资料和性能指标:拉伸全过程的曲线和试件破坏断口;b s σσ,—材料的强度指标; ψδ,—材料的塑性指标。
其中E —材料抵抗弹性变形能力的指标;某些合金材料的2.0σ—名义屈服极限等测定有专门拉伸试验。
3.工程中一般把材料分为塑性材料和脆性材料。
塑性材料的强度特征是屈服极限 sσ和强度极限 b σ(或 2.0σ),而脆性材料只有一个强度指标,强度极限 b σ。
4.强度计算是材料力学研究的重要问题。
轴向拉伸和压缩时,构件的强度条件:[]σσ≤=AN它是进行强度校核、选定截面尺寸和确定许可载荷的依据。
5.应通过本章初步掌握拉压超静定问题的特点及解法。
材料力学重点及公式(期末复习)
1、材料力学得任务:强度、刚度与稳定性;应力单位面积上得内力。
平均应力(1、1)全应力(1、2)正应力垂直于截面得应力分量,用符号表示。
切应力相切于截面得应力分量,用符号表示。
应力得量纲:线应变单位长度上得变形量,无量纲,其物理意义就是构件上一点沿某一方向变形量得大小。
外力偶矩传动轴所受得外力偶矩通常不就是直接给出,而就是根据轴得转速n与传递得功率P来计算。
当功率P单位为千瓦(kW),转速为n(r/min)时,外力偶矩为当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为拉(压)杆横截面上得正应力拉压杆件横截面上只有正应力,且为平均分布,其计算公式为 (3 -1)式中为该横截面得轴力,A为横截面面积。
正负号规定拉应力为正,压应力为负。
公式(3-1)得适用条件:(1)杆端外力得合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适用于离杆件受力区域稍远处得横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化得直杆,杆件两侧棱边得夹角时拉压杆件任意斜截面(a图)上得应力为平均分布,其计算公式为全应力 (3-2)正应力(3-3)切应力(3-4)式中为横截面上得应力。
正负号规定:由横截面外法线转至斜截面得外法线,逆时针转向为正,反之为负。
拉应力为正,压应力为负。
对脱离体内一点产生顺时针力矩得为正,反之为负。
两点结论:(1)当时,即横截面上,达到最大值,即。
当=时,即纵截面上,==0。
(2)当时,即与杆轴成得斜截面上,达到最大值,即1.2 拉(压)杆得应变与胡克定律(1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形轴向线应变横向变形横向线应变正负号规定伸长为正,缩短为负。
(2)胡克定律当应力不超过材料得比例极限时,应力与应变成正比。
即(3-5)或用轴力及杆件得变形量表示为 (3-6)式中EA称为杆件得抗拉(压)刚度,就是表征杆件抵抗拉压弹性变形能力得量。
《材料力学》复习要点-参考简答题答案
《材料力学》复习要点——参考简答题答案1、什么是变形固体?材料力学中关于变形固体的基本假设是什么?【解答】:在外力作用下,一切固体都将发生变形,故称为变形固体。
材料力学中对变形固体所作的基本假设:连续性假设:认为整个物体体积内毫无空隙地充满物质。
均匀性假设:认为物体内的任何部分,其力学性能相同。
各向同性假设:认为在物体内各个不同方向的力学性能相同。
小变形假设:认为固体在外力作用下发生的变形比原始尺寸小得很多,因此在列平衡方程求约束力或者求截面内力时,一般按构件原始尺寸计算。
2、什么是截面法?简要说明截面法的四个基本步骤。
【解答】:用一个假想截面,将受力构件分开为两个部分,取其中一部分为研究对象,将被截截面上的内力以外力的形式显示出来,根据保留部分的平衡条件,确定该截面内力大小、内力性质(轴力、剪力、扭转还是弯矩,符号的正负)的一种方法。
截面法贯穿于材料力学的始终,一定要反复练习,熟练掌握。
截面法的四个基本步骤:(1)截:在需要确定内力处用一个假想截面将杆件截为两段。
(2)取:取其中任何一段为研究对象(舍弃另一段)。
(3)代:用被截截面的内力代替舍弃部分对保留部分所产生的作用。
(4)平:根据保留部分的平衡条件,确定被截截面的内力数值大小和内力性质。
3、什么是材料的力学性能?低碳钢拉伸试验要经历哪四个阶段?该试验主要测定低碳钢的哪些力学性能指标?【解答】:材料的力学性能是指:在外力作用下材料在变形和破坏方面所表现出的各种力学指标。
如强度高低、刚度大小、塑性或脆性性能等。
低碳钢拉伸试验要经历的四个阶段是:弹性阶段、屈服阶段、强化阶段、颈缩断裂阶段。
低碳钢拉伸试验主要测定低碳钢的力学性能指标有:屈服极限、强度极限、延伸率、断面收缩率等。
4、什么是极限应力?什么是许用应力?轴向拉伸和压缩的强度条件是什么(内容、表达式)?利用这个强度条件可以解决哪三类强度问题?【解答】:材料失效时所达到的应力,称为极限应力。
材料力学复习重点
材料力学复习重点材料力学性能1.填空题:30个15分2.判断题:20个10分3.名词解释 10个20分4.问答题:6个35分5.计算题:2个20分第一章单向静拉伸力学性能一、解释下列名词。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
11.韧脆转变温度:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这个温度称为韧脆转变温度。
15.解理刻面:在解理断裂中具有低指数,表面能低的晶体学平面叫解理面。
这种大致以晶粒大小为单位的解理面称为解理刻面。
17.约比温度:材料的实验温度与熔点的比值。
高于这个温度的环境叫高温环境,材料的性能会随时间和温度而变化。
18.松弛稳定性:金属抵抗应力松弛的性能。
19.低周疲劳:金属材料在循环载荷作用下,疲劳寿命为102-104次的疲劳断裂叫低周疲劳。
四、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。
上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。
八、什么是包申格效应,如何解释,它有什么实际意义?包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
材料力学复习要点
第一章绪论§1.1 材料力学的任务二、基本概念1、构件:工程结构或机械的每一组成部分。
(例如:行车结构中的横梁、吊索等)理论力学—研究刚体,研究力与运动的关系。
材料力学—研究变形体,研究力与变形的关系。
2、变形:在外力作用下,固体内各点相对位置的改变。
(宏观上看就是物体尺寸和形状的改变)弹性变形—随外力解除而消失塑性变形(残余变形)—外力解除后不能消失刚度:在载荷作用下,构件抵抗变形的能力3、内力:构件内由于发生变形而产生的相互作用力。
(内力随外力的增大而增大)强度:在载荷作用下,构件抵抗破坏的能力。
4、稳定性:在载荷作用下,构件保持原有平衡状态的能力。
强度、刚度、稳定性是衡量构件承载能力的三个方面,材料力学就是研究构件承载能力的一门科学。
三、材料力学的任务材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构件,提供必要的理论基础和计算方法若:构件横截面尺寸不足或形状不合理,或材料选用不当—不满足上述要求,不能保证安全工作.若:不恰当地加大横截面尺寸或选用优质材料—增加成本,造成浪费研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。
因此在进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和手段。
四、材料力学的研究对象构件的分类:杆件、板壳*、块体*材料力学主要研究杆件﹜直杆——轴线为直线的杆曲杆——轴线为曲线的杆等截面杆——横截面的大小形状不变的杆变截面杆——横截面的大小或形状变化的杆等截面直杆——等直杆§1.2 变形固体的基本假设在外力作用下,一切固体都将发生变形,故称为变形固体。
在材料力学中,对变形固体作如下假设:1、连续性假设:认为整个物体体积内毫无空隙地充满物质灰口铸铁的显微组织球墨铸铁的显微组织22、均匀性假设:认为物体内的任何部分,其力学性能相同普通钢材的显微组织 优质钢材的显微组织3 4如右图,δ不计。
计算得到很大的简化。
材料力学复习
CD段
10 - 20 -10kN Fx 0
FN 3 F4 25kN
10
x
2、绘制轴力图。
轴向拉压时横截面上的应力
F
如果杆的横截面积为:A
FN
FN A
FN为横截面上的内力(轴力)
4、强度条件
轴力
最大工作 应力
max
FN A
材料的许用应力
横截面积
MB
B
MC
C
MA
A
MD
D
PA 400 M A = 9550 = 9550 × = 5460 N • m n 700 PB 120 M B = M C = 9550 = 9550 × = 1640 N • m n 700 PD 160 M D = 9550 = 9550 × = 2180kN • m n 700
+ Ml 16.6 Ml 4 1 Gd 2 4 G d2 32
小结
小结
内力
杆的拉压
轴力FN(拉为正) 正应力 在横截 面上均匀分布。 FN
圆轴扭转
扭矩 T (右手法)
剪应力 在横截 面上线性分布。 max T 最大剪 应力在 o 表面处
应力
FN / A
抗拉刚度
τ max = T / Wp
2、材料力学研究的对象
在外力作用下,一切固体都将发生变形,故称 为变形固体(变形体),而构件一般均由固体材料 制成,故构件一般都是变形固体。 变形固体的变形:弹性变形、塑性变形 弹性变形:载荷卸除后能消失的变形 塑性变形:载荷卸除后不能消失的变形
3、材料力学的基本假设
材料力学的研究对象是变形固体。变形与材料 有关。为研究方便,采用下述假设:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学复习要点第一章绪论§1.1 材料力学的任务二、基本概念1、构件:工程结构或机械的每一组成部分。
(例如:行车结构中的横梁、吊索等)理论力学—研究刚体,研究力与运动的关系。
材料力学—研究变形体,研究力与变形的关系。
2、变形:在外力作用下,固体内各点相对位置的改变。
(宏观上看就是物体尺寸和形状的改变)弹性变形—随外力解除而消失塑性变形(残余变形)—外力解除后不能消失刚度:在载荷作用下,构件抵抗变形的能力3、内力:构件内由于发生变形而产生的相互作用力。
(内力随外力的增大而增大)强度:在载荷作用下,构件抵抗破坏的能力。
4、稳定性:在载荷作用下,构件保持原有平衡状态的能力。
强度、刚度、稳定性是衡量构件承载能力的三个方面,材料力学就是研究构件承载能力的一门科学。
三、材料力学的任务材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构件,提供必要的理论基础和计算方法若:构件横截面尺寸不足或形状不合理,或材料选用不当—不满足上述要求,不能保证安全工作. 若:不恰当地加大横截面尺寸或选用优质材料—增加成本,造成浪费研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。
因此在进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和手段。
四、材料力学的研究对象构件的分类:杆件、板壳*、块体*材料力学主要研究杆件﹜直杆——轴线为直线的杆曲杆——轴线为曲线的杆等截面杆——横截面的大小形状不变的杆变截面杆——横截面的大小或形状变化的杆等截面直杆——等直杆§1.2 变形固体的基本假设在外力作用下,一切固体都将发生变形,故称为变形固体。
在材料力学中,对变形固体作如下假设:1、连续性假设:认为整个物体体积内毫无空隙地充满物质灰口铸铁的显微组织球墨铸铁的显微组织2、均匀性假设:认为物体内的任何部分,其力学性能相同普通钢材的显微组织优质钢材的显微组织AB C F δδ3、各向同性假设:认为在物体内各个不同方向的力学性能相同(沿不同方向力学性能不同的材料称为各向异性材料。
如木材、胶合板、纤维增强材料等)4、小变形与线弹性范围:认为构件的变形极其微小,比构件本身尺寸要小得多。
如右图,δ远小于构件的最小尺寸,所以通过节点平衡求各杆内力时,把支架的变形略去不计。
计算得到很大的简化。
§1.3 外力及其分类外力:来自构件外部的力(载荷、约束反力)按外力作用的方式分类体积力:连续分布于物体内部各点的力。
如重力和惯性力表面力:分布力:连续分布于物体表面上的力。
如油缸内壁的压力,水坝受到的水压力等均为分布力集中力:若外力作用面积远小于物体表面的尺寸,可作为作用于一点的集中力。
如火车轮对钢轨的压力等按外力与时间的关系分类静载:载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著,称为静载动载:载荷随时间而变化。
如交变载荷和冲击载荷§1.4 内力、截面法和应力的概念内力:外力作用引起构件内部的附加相互作用力。
求内力的方法—截面法(1)假想沿m-m横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留下部分的作用用内力代替(4)对留下部分写平衡方程,求出内力的值。
Fa aSF F M Fa=∆∆x+∆xy o γ M M L N L N §1.4 内力、截面法和应力的概念例 1.1 钻床,求:截面m-m 上的内力解:用截面m-m 将钻床截为两部分,取上半部分为研究对象,受力如图:为了表示内力在一点处的强度,引入内力集度,即应力的概念。
§1.5 变形与应变1.位移:MM' 刚性位移;变形位移。
2.变形:物体内任意两点的相对位置发生变化。
取一微正六面体两种基本变形:线变形 —— 线段长度的变化角变形 ——线段间夹角的变化3.应变正应变(线应变) x 方向的平均应变:M 点处沿x 方向的应变:类似地,可以定义εy ,εz切应变(角应变) M点在xy 平面内的切应变为: ε,γ均为无量纲的量。
例 1.2 已知:薄板的两条边固定,变形后a'b, a'd仍为直线。
求:ab 边的εm 和 ab 、ad 两边夹角的变化。
§1.6 杆件变形的基本形式杆件的基本变形:拉伸(压缩)、剪切、扭转、弯曲xs xm∆∆=εxs x x ∆∆=→∆0lim ε)2(lim 00N M L ML MN '''∠-=→→πγ第二章拉伸、压缩与剪切(1)§2.1 轴向拉伸与压缩的概念和实例受力特点与变形特点:作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。
§2.2 轴向拉伸或压缩时横截面上的内力和应力1、截面法求内力(1)假想沿m-m横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留下部分的作用用内力代替(4)对留下部分写平衡方程求出内力即轴力的值2、轴力:截面上的内力由于外力的作用线与杆件的轴线重合,内力的作用线也与杆件的轴线重合。
所以称为轴力。
3、轴力正负号:拉为正、压为负4、轴力图:轴力沿杆件轴线的变化例题2.1已知F1=10kN;F2=20kN;F3=35kN;F4=25kN;试画出图示杆件的轴力图杆件的强度不仅与轴力有关,还与横截面面积有关。
必须用应力来比较和判断杆件的强度。
在拉(压)杆的横截面上,与轴力FN 对应的应力是正应力 。
根据连续性假设,横截面上到处都存在着内力。
于是得静力关系:观察变形:横向线ab 、cd 仍为直线,且仍垂直于杆轴线,只是分别平行移至a’b’、c’d’。
平面假设—变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线。
从平面假设可以判断: (1)所有纵向纤维伸长相等(2)因材料均匀,故各纤维受力相等(3)内力均匀分布,各点正应力相等,为常量 F F aa 'b 'c bd d 'c 'NAF dA σ=⎰N AA F dAdA A σσσ===⎰⎰该式为横截面上的正应力σ计算公式。
正应力σ和轴力FN 同号。
即拉应力为正,压应力为负。
圣维南原理圣维南原理是弹性力学的基础性原理,是法国力学家A.J.C.B.de 圣维南于1855年提出的。
其内容是:分布于弹性体上一小块面积(或体积)内的载荷所引起的物体中的应力,在离载荷作用区稍远的地方,基本上只同载荷的合力和合力矩有关;载荷的具体分布只影响载荷作用区附近的应力分布。
还有一种等价的提法:如果作用在弹性体某一小块面积(或体积)上的载荷的合力和合力矩都等于零,则在远离载荷作用区的地方,应力就小得几乎等于零。
不少学者研究过圣维南原理的正确性,结果发现,它在大部分实际问题中成立。
因此,圣维南原理中“原理”二字,只是一种习惯提法。
在弹性力学的边值问题中,严格地说在面力给定的边界条件及位移给定的边界条件应该是NF Aσ=逐点满足的,但在数学上要给出完全满足边界条件的解答是非常困难的。
另一方面,工程中人们往往只知道作用于物体表面某一部分区域上的合力和合力矩,并不知道面力的具体分别形式。
因此,在弹性力学问题的求解过程中,一些边界条件可以通过某种等效形式提出。
这种等效将出带来数学上的某种近似,但人们在长期的实践中发现这种近似带来的误差是局部的,这是法国科学家圣维南首先发现的。
其要点有两处:一、两个力系必须是按照刚体力学原则的“等效”力系;二、替换所在的表面必须小,并且替换导致在小表面附近失去精确解。
一般对连续体而言,替换所造成显著影响的区域深度与小表面的直径有关。
在解决具体问题时,如果只关心远离载荷处的应力,就可视计算或实验的方便,改变载荷的分布情况,不过须保持它们的合力和合力矩等于原先给定的值。
圣维南原理是定性地说明弹性力学中一大批局部效应的第一个原理。
例题2.2图示结构,试求杆件AB、CB的应力。
已知 F =20kN ;斜杆AB 为直径20mm 的圆截面杆,水平杆CB 为15×15的方截面杆。
解:1、计算各杆件的轴力。
(设斜杆为1杆,水平杆为2杆)用截面法取节点B 为研究对象2、计算各杆件的应力。
例题2.2悬臂吊车的斜杆AB 为直径d=20mm 的钢杆,载荷W=15kN 。
当W 移到A 点时,求斜杆AB 横截面上的应力。
解:当载荷W 移到A 点时,斜杆AB 受到拉力最大,设其值为Fmax 。
讨论横梁平衡0c M =∑max sin 0F AC W AC α⋅-⋅=max sin W F α=由三角形ABC 求出斜杆AB 的轴力为斜杆AB 横截面上的应力为§2.3 直杆轴向拉伸或压缩时斜截面上的应力 实验表明:拉(压)杆的破坏并不总是沿横截面发生,有时却是沿斜截面发生的§2.4 材料拉伸时的力学性能 一 试件和实验条件:常温、静载22sin 0.3880.8 1.9BC ABα===+max1538.7sin 0.388W F kN α===max 38.7N F F kN==332638.710(2010)412310123N F A Pa MPaσπ-⨯===⨯⨯=二低碳钢的拉伸明显的四个阶段 1、弹性阶段ob σp-比例极限 σe-弹性极限 σ=E ε胡克定律E —弹性模量(GN/m 2) 2、屈服阶段bc (失去抵抗变形的能力) σs —屈服极限3、强化阶段ce (恢复抵抗变形的能力) σb —强度极限4、局部径缩阶段ef两个塑性指标:断后伸长率 断面收缩率 δ>5%为塑性材料 δ<5%为脆性材料 低碳钢的S ≈20-30% ψ≈60%为塑性材料 三 卸载定律及冷作硬化1、弹性范围内卸载、再加载2、过弹性范围卸载、再加载材料在卸载过程中应力和应变是线性关系,这就是卸载定律。
材料的比例极限增高,延伸率降低,称之为冷作硬化或加工硬化。
四 其它材料拉伸时的力学性质对于没有明显屈服阶段的塑性材料,用名义屈服极限σp0.2来表示。
对于脆性材料(铸铁),拉伸时的应力应变曲线为微弯的曲线,没有屈服和径缩现象,试件突然拉断。
断后伸长率约为0.5%。
为典型的脆性材料。
αεσtan ==E %100001⨯-=l l l δ%100010⨯-=A A A ψσbt —拉伸强度极限(约为140MPa )。
它是衡量脆性材料(铸铁)拉伸的唯一强度指标。
第二章 拉伸、压缩与剪切(2) §2.5 材料压缩时的力学性能一 试件和实验条件:常温、静载 二 塑性材料(低碳钢)的压缩σp-比例极限 σe-弹性极限 σs-屈服极限 E-弹性模量拉伸与压缩在屈服阶段以前完全相同三 脆性材料(铸铁)的压缩脆性材料的抗拉与抗压性质不完全相同压缩时的强度极限远大于拉伸时的强度极限§2.7 失效、安全因数和强度计算一 、安全因数和许用应力工作应力bt bc σσ>>A FN=σ[]σσσ=≤nu二 、强度条件根据强度条件,可以解决三类强度计算问题1、强度校核:2、设计截面:3、确定许可载荷:例题2.4油缸盖与缸体采用6个螺栓连接。