金属有机化学中的钯催化的反应全解
钯催化构建天然产物(1)
钯催化构筑天然产物【摘要】过渡金属钯在金属有机化学方面具有丰富的反应性, 用作催化剂具有高效率、用量少、选择性高等优点, 钯催化剂在有机合成中的应用有着举足轻重的地位, 由于钯催化剂的新应用, 有机合成领域出现了很多新的合成工艺、合成产物等[1]。
本文在查阅文献的基础上,对钯催化C-C, C-N键偶联构筑天然产物进行了概述。
【关键词】钯催化C-C, C-N键偶联1.钯催化C-C偶联构筑天然产物钯催化的交叉偶联反应金属钯催化的交叉偶联反应是最有效的形成C-C键的方法之一。
经过30多年来的发展,已经实现了各种卤代芳烃及酚类衍生物与各种有机金属试剂及不饱和烃类化合物的交叉偶联反应,如Heck偶联反应,Negishi偶联反应,Stille偶联反应,Kumada偶联反应,Ullmann 偶联反应,以及Suzuki-Miyaura偶联反应。
这类偶联反应已广泛应用于天然产物、生理活性化合物以及有机电子材料的合成中,并已实现了产业化应用。
基于该方法学在有机合成及材料合成领域的杰出贡献,Heck,Suzuki和Negish等三位科学家获得了2010年诺贝尔化学奖。
虽然金属钯催化的交叉偶联反应得到了蓬勃的发展,但在提高催化反应的催化活性、降低催化剂用量、实现温和的反应条件、扩大反应原料的适用性等方面仍是具有挑战性的研究课题。
1.1.1 Mizoroki-Heck反应Mizoroki和Heck分别于1971和1972年发现了一类重要的形成与不饱和双键相连新的C-C 键的反应,故称作Mizoroki-Heck反应。
此类反应在过去的40多年中已经逐渐发展成为一种应用日益广泛的有机合成方法,Heck反应机理如下(Scheme 1)。
Mizoroki-Heck反应是合成具有各种取代基的不饱和化合物最为有效的方法之一。
由于它具有广泛的底物适用性和对许多官能团有好的兼容性,因此,被广泛的应用于新药合成、染料以及有机发光料等领域。
金属有机化学中的钯催化的反应讲解
XXXX大学研究生学位课程论文(2012 ---- 2013 学年第一学期)学院(中心、所):化学化工学院专业名称:应用化学课程名称:高等有机化学论文题目:金属有机化学中的钯催化的反应授课教师(职称)XXXX(教授)研究生姓名:XXXX年级:2012级学号:XXXXXXXXX成绩:评阅日期:XXXX大学研究生学院2012年12 月25 日金属有机化学中的钯催化的反应XXXXXX(XXXX大学化学化工学院,山西,太原,030006)摘要:过渡金属钯在金属有机化学方面具有丰富的反应性,在各类有机化学反应中如氢化、氧化脱氢、偶联、环加成等反应中,钯是优良的催化剂,或是催化剂的重要组分之一。
本文在查阅大量近几年文献资料的基础上,综述了钯催化的反应,同时综述了钯催化反应的机理以及钯催化反应的研究现状。
关键词:钯,催化剂,反应机理,研究进展1钯催化的反应类型及反应机理在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂。
对石油重整反应,钯也是常选取的催化剂组分之一。
1.1氢化反应钯催化剂具有很大的活性和极优良的选择性,部分氢化选择性高,常用作烯烃选择性氢化催化剂。
1.1.1反应式及反应机理反应底物首先和氢气分子分别被吸附到催化剂上,然后和催化剂的活性中心形成配位键,最后完成氢的转移,氢和反应底物形成σ-键。
1.1.2反应方程式举例1.2氧化反应烯烃和炔烃是十分常见并且重要的有机化合物,选择性地氧化这类不饱和碳氢化合物一直是化学工业和学术界的重要研究目标之一。
1.2.1分子氧参与的钯催化烯烃的氧化反应根据亲核试剂的不同,如氧、氮和碳等亲核试剂,把催化烯烃的氧化反应可以形成C-O、C-N和C-C键。
1.2.1.1反应机理钯催化烯烃的氧化反应都经过三个过程:首先,把插入烯烃形成新的C-Pd键;接着,有机钯中间体进行β-H消除产生Pd(0);最后,Pd(0)被重新氧化为Pd(П)。
钯催化的碘化反应
钯催化的碘化反应引言:钯催化的碘化反应是有机合成中常用的一个反应类型。
该反应以钯催化剂为催化剂,实现有机化合物中碘原子的引入或转移。
钯催化的碘化反应具有高效、高选择性和广泛的底物适应性等优点,在有机化学合成中得到了广泛的应用。
一、钯催化的碘化反应的基本原理钯催化的碘化反应是通过钯催化剂对底物中的碘键进行断裂和生成新的碘键,实现碘原子的引入或转移。
钯催化剂通常以钯(II)盐的形式存在,通过与底物发生配位作用,生成一个活性的钯(II)中间体。
该中间体与底物中的碘键发生反应,形成钯(IV)中间体。
最后,钯(IV)中间体通过一系列的反应步骤,生成含有新碘键的产物。
二、钯催化的碘化反应的适用范围钯催化的碘化反应适用于底物中存在碘键的有机化合物。
常见的底物包括碘代烷烃、碘代芳烃、碘代醇等。
在该反应中,碘键可以被引入到底物中,也可以被转移至其他位置。
此外,该反应对于底物中还存在其他官能团也具有一定的宽容性。
三、钯催化的碘化反应的应用1. 碳-碳键的生成钯催化的碘化反应在有机合成中常用于构建碳-碳键。
通过该反应,可以将碘原子引入到有机分子中,从而实现碳-碳键的生成。
这对于构建有机分子的骨架具有重要意义。
2. 官能团的转化钯催化的碘化反应还可以实现官能团的转化。
通过碘键的转移,可以将一个官能团转化为另一个官能团。
这为有机合成中的官能团转化提供了一种有效的方法。
3. 药物合成钯催化的碘化反应在药物合成中得到了广泛的应用。
通过该反应,可以引入或转移碘原子,从而实现药物分子的结构修饰。
这对于药物的活性和选择性的调节具有重要意义。
四、钯催化的碘化反应的优势和挑战1. 优势钯催化的碘化反应具有高效、高选择性和广泛的底物适应性等优点。
该反应可以在温和的条件下进行,产率较高,产物纯度较高。
同时,钯催化剂具有较好的催化活性和稳定性。
2. 挑战钯催化的碘化反应在实际应用中还存在一些挑战。
首先,钯催化剂的选择对反应的效果具有重要影响。
钯催化suzuki反应的应用
钯催化suzuki反应的应用全文共四篇示例,供读者参考第一篇示例:钯催化Suzuki反应是有机合成领域中一种重要的反应。
它的原理是通过钯催化剂将芳基卤代烃和烯基硼酸酯在碱性条件下偶联成为一个新的芳烃产物,并且在反应中不需要高温条件。
钯催化Suzuki反应的重要性在于其高效性、高选择性和较温和的条件。
这种反应通常在水溶液中进行,无需特殊的溶剂,也不产生过多的副反应产物。
它在有机合成中具有广泛的应用前景。
钯催化Suzuki反应在药物合成领域中得到了广泛的应用。
因为其反应条件温和,适用于多种官能团和取代基的底物,使得其在制备药物中得到了广泛的运用。
盐酸多沙酮是一种镇痛药物,它的合成就可以通过Suzuki反应来进行反应。
这种反应可以在较低温度下实现,避免了不必要的副反应,保证了产物的纯度和收率。
钯催化Suzuki反应在材料科学领域也有着重要的应用。
如现在许多有机光电材料的合成中,往往需要进行取代基的控制,以调控其电荷传输和光学性质。
而Suzuki反应由于其高效性和高选择性,成为了制备这类材料的理想选择。
比如多芳基硼酸酯与卤代芳烃的Suzuki反应可以用于合成聚合物和有机光电材料。
钯催化Suzuki反应在农药和化工领域也被广泛应用。
许多农药和化工原料都是通过有机合成来得到的,而Suzuki反应因其高效、高选择性的特点,成为了这些产物合成中的一种重要方法。
比如一些农药的前体物合成中,就需要用到Suzuki反应。
一些高端化工产品的合成中,也离不开Suzuki反应的帮助。
钯催化Suzuki反应是一个非常重要的有机反应,它的应用范围涵盖了许多领域。
它的高效性、高选择性和温和条件使得它成为了有机合成领域中不可或缺的工具。
随着有机化学和材料科学的发展,相信Suzuki反应会有更广泛的应用,并为人类的生活和科学研究带来更多的帮助。
第二篇示例:钯催化Suzuki反应是一种重要的有机合成方法,广泛应用于药物合成、材料科学和化学生物学等领域。
钯催化反应及其机理
钯催化反应及其机理研究摘要:目前过渡金属催化的有机反应研究一直是一个比较热的话题,其中由于钯催化的反应活性和稳定性等原因,使其在有机反应中得到了广泛的使用,被全球广泛关注。
本文主要列举了钯催化的交叉偶联反应的机理,及与偶联反应相关的钯催化的碳氢键活化反应、钯催化的脂肪醇的芳基化反应等的机理。
关键词:过渡金属催化偶联反应钯催化机理1.引言进入二十一世纪以后,钯催化的偶联反应已经建立了比较完整的理论体系,研究的侧重点也和以前有所不同化学键的断裂和形成是有机化学的核心问题之一。
在众多化学键的断裂和形成方式中,过渡金属催化的有机反应有着独特的优势:这类反应通常具有温和的反应条件,产率很高并有很好的选择性(包含立体、化学、区域选择性)。
很多常规方法根本无法实现的化学反应,采用了过渡金属催化后可以很容易地得到实现。
在众多过渡金属中,金属钯是目前研究得最深入的一个。
自上世纪七十年代以来,随着Kumada,Heck,Suzuki,Negishi [1]等偶联反应的陆续发现,钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用。
2.钯催化各反应机理的研究2.1.钯催化的交叉偶联反应自上世纪七十年代以来,随着Kumada,Heck,Suzuki,Negishi 等偶联反应的陆续发现[1],钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用[2]。
交叉偶联,就是两个不同的有机分子通过反应连在了一起(英文中交叉偶联为crosscoupling,同种分子偶联为homo coupling)。
2.1.1Heck反应Heck 反应是不饱和卤代烃和烯烃在强碱和钯催化下生成取代烯烃的反应,是一类形成与不饱和双键相连的新C—C 键的重要反应[3]。
反应物主要为卤代芳烃(碘、溴)与含有α-吸电子基团的烯烃,生成物为芳香代烯烃。
(完整)金属有机化学中的钯催化的反应全解
(完整)金属有机化学中的钯催化的反应全解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)金属有机化学中的钯催化的反应全解)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)金属有机化学中的钯催化的反应全解的全部内容。
XXXX大学研究生学位课程论文(2012 —--— 2013 学年第一学期)学院(中心、所):化学化工学院专业名称: 应用化学课程名称:高等有机化学论文题目: 金属有机化学中的钯催化的反应授课教师(职称) XXXX(教授)研究生姓名: XXXX年级: 2012级学号: XXXXXXXXX成绩:评阅日期:XXXX大学研究生学院2012年 12 月 25 日金属有机化学中的钯催化的反应XXXXXX(XXXX大学化学化工学院,山西,太原,030006)摘要:过渡金属钯在金属有机化学方面具有丰富的反应性,在各类有机化学反应中如氢化、氧化脱氢、偶联、环加成等反应中,钯是优良的催化剂,或是催化剂的重要组分之一.本文在查阅大量近几年文献资料的基础上,综述了钯催化的反应,同时综述了钯催化反应的机理以及钯催化反应的研究现状。
关键词:钯,催化剂,反应机理,研究进展1钯催化的反应类型及反应机理在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂.对石油重整反应,钯也是常选取的催化剂组分之一。
1.1氢化反应钯催化剂具有很大的活性和极优良的选择性,部分氢化选择性高,常用作烯烃选择性氢化催化剂.1。
1.1反应式及反应机理反应底物首先和氢气分子分别被吸附到催化剂上,然后和催化剂的活性中心形成配位键,最后完成氢的转移,氢和反应底物形成σ—键。
卤代烷烃的钯催化偶联
卤代烷烃的钯催化偶联卤代烷烃的钯催化偶联反应是有机合成中的重要反应之一。
这个反应可以将卤代烷烃与有机金属化合物(有机锌、有机锡等)进行反应,生成新的碳-碳键。
这个反应在有机合成中广泛应用,能够合成一系列重要的有机化合物,包括药物、天然产物和杂环化合物等。
钯催化偶联反应的机制是通过钯的配体促进的。
在反应中,钯配体与钯形成配位键,形成了一个活性的钯催化剂。
这个催化剂能够将卤代烷烃与有机金属化合物反应,生成钯的中间体。
然后,中间体与另一个有机金属化合物发生反应,最终生成新的碳-碳键。
钯催化偶联反应的一个重要应用是合成有机化合物中的碳-碳键。
通过这个反应,可以将不同的有机化合物连接起来,生成更复杂的化合物。
这对于有机合成来说非常重要,因为有机化合物的复杂性往往决定了它的化学性质和生物活性。
此外,钯催化偶联反应还可以用于构建环状化合物。
通过选择合适的底物和配体,可以使得反应生成环状化合物。
这对于合成杂环化合物来说尤为重要,因为杂环化合物在药物和天然产物合成中具有重要的地位。
在实际应用中,钯催化偶联反应的反应条件需要精确控制。
反应温度、反应物的浓度、催化剂的选择等因素都会对反应的效果产生影响。
此外,配体的选择也非常重要。
不同的配体可以影响反应的速率和选择性。
因此,在具体的反应中,需要根据具体的情况选择合适的反应条件和配体。
总的来说,卤代烷烃的钯催化偶联反应是一种非常重要的有机合成反应。
它可以合成多种有机化合物,包括碳-碳键和杂环化合物。
这个反应在药物和天然产物的合成中具有重要的应用价值。
因此,对于有机化学研究和应用来说,掌握钯催化偶联反应的机制和应用是非常重要的。
钯催化的反应总结
钯催化的反应总结引言钯(Palladium,Pd)是一种常见的过渡金属催化剂,它在有机合成中有着广泛的应用。
由于钯具有良好的催化活性、选择性和功能多样性,钯催化反应已成为有机合成领域备受关注的重要研究方向之一。
本文将对钯催化的一些重要反应进行总结,以便更好地了解和应用这些反应。
催化剂的选择在钯催化反应中,催化剂的选择起着至关重要的作用。
常见的钯催化剂包括[Pd(PPh3)4]、Pd(PPh3)2Cl2、Pd(OAc)2等,这些催化剂具有良好的催化性能和稳定性。
此外,还可以通过对催化剂进行配体修饰来改变其催化性能,如引入膦配体、氨基配体等。
钯催化的碳-碳键形成反应1. Heck反应Heck反应是钯催化的一个重要的碳-碳键形成反应,它通过亲电性或亲核性的烷基化试剂与不饱和化合物间的交叉偶联,在构建碳-碳键的同时保留官能团的特点。
通常情况下,该反应需要碱的存在,并在乙酸盐氛围中进行。
Heck反应适用于合成各类芳香烃、乙烯烃、酮类等化合物。
2. Suzuki-Miyaura偶联反应Suzuki-Miyaura偶联反应是钯催化的另一个重要的碳-碳键形成反应。
该反应利用有机硼酸酯与卤代化合物在碱的存在下进行交叉偶联,生成对应的芳香烃。
Suzuki-Miyaura偶联反应具有底物宽容性和功能团兼容性高的优点,被广泛应用于有机合成中。
钯催化的碳-氮键形成反应1. Buchwald-Hartwig氨基化反应Buchwald-Hartwig氨基化反应是钯催化的一种重要的碳-氮键形成反应,可以将芳香或烯丙基溴化物与氨或胺类化合物发生反应,生成相应的胺化物。
该反应具有反应条件温和、底物宽容性好的特点,被广泛应用于药物合成和天然产物的合成等领域。
2. Sonogashira偶联反应Sonogashira偶联反应是钯催化的一种重要的碳-氮键形成反应,它通过芳香溴化物或卤代烯烃与炔烃发生偶联反应,生成相应的炔烃衍生物。
Sonogashira偶联反应具有底物宽容性好、反应条件温和的特点,被广泛应用于有机合成中。
钯系催化剂加氢反应及应用开发
1 引 言
212 炔烃加氢
加氢还原是有机合成的一个重要单元操作。还 原催化剂主要有贵金属 ( Pt ,Rh , Pd) 催化剂 ,镍系催 化剂 ,铜系催化剂和钴系催化剂等 。贵金属催化剂 具有反应条件温和 , 活性高 , 选择性好等优点 , 得到 广泛的应用 。贵金属催化剂又分为固体催化剂和均 相催化剂 。固体催化剂不溶于反应介质 , 与产物易 分离 ,可循环使用 ,如 Pd/ C 催化剂 。均相催化剂溶 于反应介质 , 如威尔金森催化剂〔RhCl ( PPh 3 ) 3 〕 。 本文主要讨论 Pd/ C 催化剂在加氢反应中的开发应 用。 2 钯系催化剂加氢反应类型[ 1 ]
HO
θ
HO
CH = CHCOOH + H Pd/ C 2
θ
HO
CH2 CH2 COOH
OC4 H9 3 - 硝基 - 4 - 丁氧基苯甲酸 NO2 + H2
Pd/ Al2O3
OC4 H9 3 - 氨基 - 4 - 丁氧基苯甲酸 NHOH
3 ,4 —二羟基肉桂酸
3 ,4 —二羟基苯丙酸
硝基环己烷
・8 ・
专论与综述
化学工业与工程技术
2000 年第 21 卷第 5 期
钯系催化剂加氢反应及应用开发
吴鹤麟 ,朱新宝 ,张金龙 ,陆长峰
( 江苏省化工研究所 ,江苏 南京 210024)
[ 摘要 ] 将钯系催化剂催化加氢反应分成 11 个类型 , 分别作了简介 。Pd/ C 催化剂已应用于蒽醌 法双氧水 、 精对苯二甲酸及己内酰胺生产 。认为我国亟待开发的技术包括间苯二胺及同系产品 、 对氨基 苯甲醚及同系产品与对氨基酚 。指出 Pd/ C 催化剂催化加氢技术开发过程中 ,应注意解决氢气源及催化 剂开发与回收利用的问题 。
钯催化交叉偶联反应
钯催化交叉偶联反应钯催化交叉偶联反应2010-10-26 17:32钯催化交叉偶联反应摘要钯催化交叉偶联反应是一类用于碳碳键形成的重要反应,在有机合成中应用十分广泛。
钯催化交叉偶联反应-简介为制造复杂的有机材料,需要通过化学反应将碳原子集合在一起。
但是碳原子在有机分子中与相邻原子之间的化学键往往非常稳定,不易与其他分子发生化学反应。
以往的方法虽然能令碳原子更加活跃,但是,过于活跃的碳原子却又会产生大量副产物。
而用钯作为催化剂则可以解决这个问题。
钯原子就像"媒人"一样,把不同的碳原子吸引到自己身边,使碳原子之间的距离变得很近,容易结合--也就是"偶联"。
这样的反应不需要把碳原子激活到很活跃的程度,副产物比较少,因此更加精确而高效。
赫克、根岸英一和铃木章通过实验发现,碳原子会和钯原子连接在一起,进行一系列化学反应。
这一技术让化学家们能够精确有效地制出他们需要的复杂化合物。
钯催化交叉偶联反应-应用如今,"钯催化交叉偶联反应"被应用于许多物质的合成研究和工业化生产。
例如合成抗癌药物紫杉醇和抗炎症药物萘普生,以及有机分子中一个体格特别巨大的成员--水螅毒素。
科学家还尝试用这些方法改造一种抗生素--万古霉素的分子,用来灭有超强抗药性的细菌。
此外,利用这些方法合成的一些有机材料能够发光,可用于制造只有几毫米厚、像塑料薄膜一样的显示器。
科学界一些人士表示,依托"钯催化交叉偶联反应",一大批新药和工业新材料应运而生,这三名科学家的科研成果如今已经成为支撑制药、材料化学等现代工业文明的巨大力量。
钯催化交叉偶联反应-诺贝尔奖2010年10月6日在瑞典皇家科学院举行的新闻发布会上,瑞典皇家科学院常任秘书诺尔马克首先宣读了获奖者名单。
他说,赫克、根岸英一和铃木章在"钯催化交叉偶联反应"研究领域作出了杰出贡献,其研究成果使人类能有效合成复杂有机物。
HECK 金属钯 串联反应 金属催化
1 - 苄基- 5 -(2 - 溴- 乙基)- 十氢-苯并[cd]〕吲哚-2-酮的合成俞可(巢湖学院化学化工与生命科学学院,安徽巢湖238000)1 引言多步骤串联反应是通过将原先多步独立合成的反应组合成为一个合成的操作,金属钯催化的多步串联反应近年来得到了广泛的应用。
1.1 串联反应许多复杂分子的合成经常需要多步完成,涉及繁琐的分离和提纯。
从经济和环保角度看,有必要减少步骤, 最大化地避免中间体的分离与提纯,具有这种合成理念的反应就是通常所说的串联反应(tandem reactions), 串联反应不是在一个反应瓶内简单地接连进行二步独立反应,而是第一反应生成的活泼中间体接着进行第二步、第三步的反应[1]。
串联反应在有机合成中具有以下优点:串联反应的中间体不需分离,直接用于原位反应,从而简化了操作步骤、对于敏感的、不稳定的中间体,这一优点尤为突出、串联反应减少了溶剂、洗脱剂的用量和副产物的产生,有利于环保、串联反应经常可以得到独特的化学结构,大多具有很高的选择性,所以近年来在有机合成领域得到了广泛的应用。
[2]串联反应一般可分为串联加成反应、串联取代反应、串联环化反应和串联重排反应以及金属催化的串联反应五大类。
1.1.1加成反应在众多串联加成反应中,Baylis-Hillman反应(BH)最具代表性(Scheme 1)。
早期的Baylis-Hillman反应(BH),一直没有被广泛接受和应用,直到2005年,由Kristin E. Price等人根据物理数据提出的机理才被人广泛接受。
[3]NN +OOMeHN NOO HH ArO HArOArONN O O H ArO NN O O Ar O Me Me Me H NN ArOHOO Ar O MeScheme 11.1.2 取代反应串联取代反应我们以咪唑并[1,5-a]吡啶羧酸酯衍生物的合成为例:王建武等发现了咪唑甲醛与γ-2溴代巴豆酸酯在弱碱条件下首先进行亲核取代反应,然后生成γ-2碳负离子并转移到α-2位,再进行分子内亲核进攻成环、脱水的串联反应(Scheme 2),这一发现为咪唑并[1,5-a]吡啶羧酸酯衍生物的合成提供了一种新的方法。
钯基催化剂的催化加氢详解
钯基催化剂的催化加氢详解钯基催化剂金属钯是催化加氢的能手。
在石油化学工业中,乙烯、丙稀、丁稀、异戊二稀等稀烃类是最重要的有机合成原料。
由石油化工得到的稀烃含有炔烃及二稀烃等杂质,可将它们转化为稀烃除去。
由于形成的稀烃容易被氢化成烷烃,必须选择合适的催化剂。
钯催化剂具有很大的活性和极优良的选择性,常用作稀烃选择性加氢催化剂,如Lindlar催化剂(测定在BaSO4上的金属钯,加喹啉以降低其活性)。
从乙烯中除去乙炔常用的催化剂是0.03% Pd/Al2O3[1]。
文献报道[2],在乙烯中加入CO可以改进Pd/Al2O3对乙炔的加氢选择性,并已工业化。
甚至有工艺可将稀烃中的乙炔降至1%以下[3]。
常用的加氢反应钯催化剂有Pd、Pd/C、Pd/BaSO4、Pd/硅藻土、PdO2、Ru-Pd/C等。
迄今为止,钯催化剂制备的方法有浸渍法、金属蒸汽沉淀法、溶剂化金属原子浸渍法[11]、离子交换法、溶剂—凝胶法等。
钯催化剂一般都为负载型催化剂,载体一般为活性炭、γ-Al2O3及目前研究较多的高分子载体和钯基金属膜催化剂。
以下主要介绍几类目前研究较多的钯催化剂及相应的催化剂反应现状。
1、Pd/CPd/C催化剂是催化加氢最常用的催化剂之一。
因为活性炭具有大的表面积、良好的孔结构、丰富的表面基团,同时有良好的负载性能和还原性,当Pd负载在活性炭上,一方面可制得高分散的Pd,另一方面炭能作为还原剂参与反应,提供一个还原环境,降低反应温度和压力,并提高催化剂活性。
Pd/C主要用于NO2的还原及选择还原C=C。
自从1872年钯黑对苯环上的硝基加氢还原反应具有催化作用以来[1],Pd-C催化加氢以其流程少,转化率高,产率高,三废少等优点,引起了国内外极大的关注,相继有大量的专利及文献报道[2,3]。
如喻素娟[4]等以邻硝基苯胺为原料,以Pd/C为催化剂低压催化加氢还原合成邻笨二胺,收率>90%,产品质量分数>98%,并减少了“三废”污染。
钯催化的四大偶联反应
钯催化的四大偶联反应
钯催化的四大偶联反应是指在活性金属钯催化剂作用下,将有机和无机合成中热力学不利的步骤偶联在一起实现的一系列重要的反应。
这四种反应涉及到多个元素,提供了一种以低能耗、高效率和可控性的方法来实现复杂化合物的合成。
首先,钯催化的环氧化反应,简称为CCO反应,是通过钯催化剂催化烟酸或硫酸的脱水反应,将有机醛或醇转化为对应的环状有机物,如环醛、环醇或环酮。
该反应具有低活化能、高效率、反应条件温和、操作简单以及产物结构多样等优点,在有机合成及化学生物学领域有着广泛的应用。
其次,钯催化的氧化反应,简称为Cox反应,是指在钯催化的情况下,可以通过氧化反应将有机烃和烷基环氧化物形成有机化合物的反应。
Cox反应具有低活化能、低温度、反应快速、不产生有害产物的特点,使得它在有机合成中有着广泛的应用。
再次,钯催化的醇氧化反应,简称为COx反应,是钯催化剂催化醇氧化反应而得到醛类有机化合物的反应。
COx 反应是一种低温、低活化能、反应快速、不产生有害产物的反应,在有机合成中有着广泛的应用。
最后,钯催化的水解反应,简称为CHOx反应,是指通过钯催化剂催化有机化合物的水解反应而得到有机物的反应。
CHOx反应具有低活化能、反应快速、低温度、不产生有害产物的特点,在有机合成及化学生物学领域有着广泛的应用。
钯催化的四大偶联反应是有机合成中非常重要的研究领域,已经被广泛的应用到多种有机合成及化学生物学中。
它们有着许多优点,如低能耗、高效率、不产生有害产物、可控性等,可以有效地改善热力学不利步骤,实现复杂有机物合成,是当前有机合成研究的一个重要热点。
钯的置换反应
钯的置换反应
钯的置换反应是指将钯(Pd)作为催化剂参与有机化合物的转化反应。
钯具有良好的催化活性和选择性,广泛应用于有机合成中的各种置换反应。
钯的常见置换反应包括:
1. 氢化反应:钯催化的氢化反应是将不饱和化合物(如烯烃、炔烃、芳香化合物)与氢气反应,添加氢原子以饱和化合物。
这是一种重要的加氢反应,常用于合成醇、醛、胺等化合物。
2. 碘化反应:钯催化的碘化反应可以将有机物中的氢原子取代为碘原子。
这种反应在药物合成和有机化学中广泛应用,例如合成碘代芳烃和碘代酮等。
3. 氨基化反应:钯催化的氨基化反应是将有机物中的氢原子取代为氨基基团(-NH2)。
这种反应在合成胺类化合物和药物中具有重要应用。
4. 烷基化反应:钯催化的烷基化反应可以将有机物中的氢原子取代为烷基基团。
这种反应可用于合成烷基化产物,广泛应用于有机合成和药物化学领域。
5. 偶联反应:钯催化的偶联反应是将两个不同的有机分子连接在一起形成新的键。
其中最著名的是钯催化的Suzuki偶联和Heck偶联反应,广泛应用于构建碳-碳键和碳-氮键的合成中。
这些钯催化的置换反应具有高效、高选择性和广泛的底物适用性。
它们在有机合成中起着重要的作用,为合成化学家提供了强大的工具和方法。
钯催化的碳—碳偶联反应研究简介
钯催化的碳—碳偶联反应研究简介作者:陶凤来源:《科技创新与应用》2016年第15期摘要:在有机化学中,C-C键的形成是有机合成研究的重要内容,而过渡金属钯催化的偶联反应则是形成C-C键的一种有效手段。
目前钯催化的偶联反应已在科研、医药生产等领域得到广泛应用。
偶联反应的种类较多,文章主要内容是简单介绍过渡金属钯在以下几种碳碳偶联反应以及合成中的应用。
关键词:钯催化;碳-碳键;偶联反应前言与一般催化剂相同,过渡金属催化的有机反应也只是改变了化学反应的速度,降低了反应的活化能,使原来难于发生的反应变得容易进行。
过渡金属催化的有机反应常常具有很高的选择性,这种选择性决定了其在未来的偶联反应中具有更广阔的发展空间,概括其选择性主要有以下几点:包括化学选择性、区域选择性和立体选择性。
文章以下便针对常用的几种偶联反应进行简要分析。
1 常用偶联反应简介1.1 Stille偶联反应Stille偶联反应是有机锡化合物和不含β-氢的卤代烃(或三氟甲磺酸酯)在钯催化下发生的交叉偶联反应。
其机理最初就是由Stille根据转金属复合物的决速步骤而提出的四步循环机理。
四(三苯基膦)合钯(0)是最常用的钯催化剂。
对于Stille交叉偶联反应还有一个有趣的现象就是添加物对这个反应有很大的影响,尤其是铜的添加物,对反应起着很大的作用,在反应过程中Cu与反应媒介生成了更加活泼的铜媒介,使得反应更易发生。
1.2 Negishi偶联反应Negishi交叉偶联反应有机锌试剂与卤代烃在钯配合物的催化下发生偶联反应,生成新的碳-碳键。
最早的报道见于1977年,这个反应可以进行Csp3-Csp2,也可以进行Csp3-Csp3之间进行的碳-碳键偶联。
反应整体上经过了卤代烃对金属的氧化加成、金属转移与还原消除这三步。
这个反应的卤代物的活性顺序为Zn>Mg>>Li。
对于锌试剂在温和条件下就能发生反应。
与格式试剂相比,锌试剂在官能团容忍度上更胜一筹。
钯催化反应及其机理
钯催化反应及其机理研究摘要:目前过渡金属催化的有机反应研究一直是一个比较热的话题,其中由于钯催化的反应活性和稳定性等原因,使其在有机反应中得到了广泛的使用,被全球广泛关注。
本文主要列举了钯催化的交叉偶联反应的机理,及与偶联反应相关的钯催化的碳氢键活化反应、钯催化的脂肪醇的芳基化反应等的机理。
关键词:过渡金属催化偶联反应钯催化机理1.引言进入二十一世纪以后,钯催化的偶联反应已经建立了比较完整的理论体系,研究的侧重点也和以前有所不同化学键的断裂和形成是有机化学的核心问题之一。
在众多化学键的断裂和形成方式中,过渡金属催化的有机反应有着独特的优势:这类反应通常具有温和的反应条件,产率很高并有很好的选择性(包含立体、化学、区域选择性)。
很多常规方法根本无法实现的化学反应,采用了过渡金属催化后可以很容易地得到实现。
在众多过渡金属中,金属钯是目前研究得最深入的一个。
自上世纪七十年代以来,随着 Kumada,Heck,Suzuki,Negishi [1]等偶联反应的陆续发现,钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用。
2.钯催化各反应机理的研究.钯催化的交叉偶联反应自上世纪七十年代以来,随着 Kumada,Heck,Suzuki,Negishi 等偶联反应的陆续发现[1],钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用[2]。
交叉偶联,就是两个不同的有机分子通过反应连在了一起(英文中交叉偶联为crosscoupling,同种分子偶联为 homo coupling)。
反应Heck 反应是不饱和卤代烃和烯烃在强碱和钯催化下生成取代烯烃的反应,是一类形成与不饱和双键相连的新 C—C 键的重要反应[3]。
反应物主要为卤代芳烃(碘、溴)与含有α-吸电子基团的烯烃,生成物为芳香代烯烃。
HECK 金属钯 串联反应 金属催化
9
2 实验操作部分 通过阅读以上文献,我们设想能不能用 N-(2-环己烯基)-N-苄基丙烯酰胺 和反式 1,4 二溴-二丁烯在金属钯催化下发生 Heck 类型的串联反应。我们用 0.2g N-(2-环己烯基)-N-苄基丙烯酰胺,反式 1,4 二溴二丁烯 0.3g,使用 5mg 醋酸 钯做催化剂, 3ml 三丁胺做碱, 1ml DMF 为溶剂, 在氮气保护,130 摄氏度,磁力 搅拌 12 小时,当有钯黑析出,反应完成。之后我们根据薄层色谱分析发现,原料 全部消失,有个新点出现,分离出新点后,经过鉴定该点是目标产物 1 - 苄基 - 5 -(2 - 溴 - 乙基)- 十氢 -苯并[cd]〕。接着,我们开始优化条件,分别就反应温 度,催化剂,碱对产率的影响展开实验探究。
ArOTf
+ O
PdOAc)2-2(R)-BINAP base benzene 313K
Scheme 16
O Ar
O Ar
1.2.2.5 常规规分子间的 Heck 反应
常规分子间的 Heck 反应有很多,这里以芳香卤代物与不饱和羧酸合成反式 3-芳基不饱和酸为例:
Br I + HOOC
Pd(OAc)2 Et3N CH3CN
PPh3 (60% mol)
R
Ag2CO3, THF,
2, TBAF, THF
H OH
Scheme 15
分子间的主要包括常规规分子间的 Heck 反应,不对称分子间的反应以及非 常用离去基团的 Heck 反应。分子间的 Heck 反应与分子内 Heck 反应的反应类型 有很大的不同。一般生成季碳中心的反应在分子间的 Heck 反应中很少见[18]。
Br COOH
Scheme 17
钯催化剂的制备及应用研究
钯催化剂的制备及应用研究钯催化剂是一类在有机合成、医药、环境保护等领域广泛应用的重要催化剂。
其制备方法多样,包括化学共沉淀、微波辅助还原等方法。
本文将简要介绍钯催化剂的制备方法以及其在有机合成中的应用研究。
一、钯催化剂的制备方法1. 化学共沉淀法化学共沉淀法是一种制备钯催化剂的常用方法。
其具体步骤为,将钯盐和还原剂溶于水中并加热至一定温度,形成氢氧化钯沉淀。
进一步处理得到钯颗粒较小、分散性较好的催化剂。
此法简单易行,但由于可能存在温度、PH值等条件的限制,其合成的催化剂活性、选择性不够高。
为此,国内外许多研究者对此法进行了改进和优化,如加入表面活性剂、微波辅助还原等方法。
2. 微波辅助还原法微波辅助还原法是近年来发展起来的一种制备高效、选择性好的钯催化剂的方法。
其利用微波加热的特性,使反应系统达到高温高压状态,促进还原剂的反应,大大降低了制备时间。
由于催化剂颗粒尺寸小、分散性好,且表面活性高,因此在催化反应中具有高效、选择性好等优点。
微波辅助还原法的研究,对于提高钯催化剂的制备效率和性能具有重要意义。
二、钯催化剂在有机合成中的应用研究钯催化剂在有机合成中被广泛应用,常见于Suzuki偶联中、Heck偶联、Sonogashira偶联、C-H键活化及纳米颗粒制备等反应中。
以下是一些典型例子:1. Suzuki偶联以苯硼酸和卤化芳烃作为反应物,在钯催化下与王水处理后的碳酸钾溶液反应,生成含有苯基的联化物。
Suzuki偶联反应具有反应物原料易得,无毒无害等优点,因此在有机化学领域应用越来越广泛。
2. Heck偶联在Heck偶联反应中,常使用Pd-C作为催化剂,其反应原理为将含有卤代芳基或烯基的底物与烯丙基类似物反应生成新的碳-碳键。
Heck偶联反应在药物合成、天然产物合成等领域中有重要应用价值。
3. C-H键活化C-H键活化反应是一种新型的有机合成方法,它可以通过C-H键的直接官能化合成有机物,不需要使用保护基进行处理,反应体系简单,能够高效地生成复杂结构的化合物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXXX大学研究生学位课程论文(2012 ---- 2013 学年第一学期)学院(中心、所):化学化工学院专业名称:应用化学课程名称:高等有机化学论文题目:金属有机化学中的钯催化的反应授课教师(职称)XXXX(教授)研究生姓名:XXXX年级:2012级学号:XXXXXXXXX成绩:评阅日期:XXXX大学研究生学院2012年12 月25 日金属有机化学中的钯催化的反应XXXXXX(XXXX大学化学化工学院,山西,太原,030006)摘要:过渡金属钯在金属有机化学方面具有丰富的反应性,在各类有机化学反应中如氢化、氧化脱氢、偶联、环加成等反应中,钯是优良的催化剂,或是催化剂的重要组分之一。
本文在查阅大量近几年文献资料的基础上,综述了钯催化的反应,同时综述了钯催化反应的机理以及钯催化反应的研究现状。
关键词:钯,催化剂,反应机理,研究进展1钯催化的反应类型及反应机理在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂。
对石油重整反应,钯也是常选取的催化剂组分之一。
1.1氢化反应钯催化剂具有很大的活性和极优良的选择性,部分氢化选择性高,常用作烯烃选择性氢化催化剂。
1.1.1反应式及反应机理反应底物首先和氢气分子分别被吸附到催化剂上,然后和催化剂的活性中心形成配位键,最后完成氢的转移,氢和反应底物形成σ-键。
1.1.2反应方程式举例1.2氧化反应烯烃和炔烃是十分常见并且重要的有机化合物,选择性地氧化这类不饱和碳氢化合物一直是化学工业和学术界的重要研究目标之一。
1.2.1分子氧参与的钯催化烯烃的氧化反应根据亲核试剂的不同,如氧、氮和碳等亲核试剂,把催化烯烃的氧化反应可以形成C-O、C-N和C-C键。
1.2.1.1反应机理钯催化烯烃的氧化反应都经过三个过程:首先,把插入烯烃形成新的C-Pd键;接着,有机钯中间体进行β-H消除产生Pd(0);最后,Pd(0)被重新氧化为Pd(П)。
1.2.1.2形成C-C键1.2.1.2.1烯-烯偶联化合物3含有两个烯丙基,通过串联环化反应可以合成具有单萜柏木烷骨架的产物。
1.2.1.2.2烯-芳环偶联Iida等以Pd(OAc)2和Cu(OAc)2为催化剂,乙睛为溶剂,实现了芳氨取代的环己烯酮9的分子内环化反应生成咔唑酮衍生物10。
1.2.1.2.3烯-杂环化合物的偶联烯基取代的吲哚13在钯催化下可以发生分子内环化偶联反应生成具有三环结构的吲哚衍生物14 。
1.2.1.2.4烯-金属有机化合物的偶联1968年,Heck首次报道了芳基金属与烯烃的加成反应。
这里的芳基金属为芳基汞。
反应机理主要包括三个基元反应:(1)转金属化;(2)钯中间体对烯烃的加成反应;(3)β-氢消除。
1.2.1.2.5烯-羧酸脱酸偶联苯甲酸可以脱去一分子二氧化碳与烯烃发生氧化偶联反应。
Pd(OAc)2/O2/DMSO-DMF 体系下,吸电子取代的芳环和供电子取代的芳环都可以与烯烃发生氧化偶联反应。
1.2.1.2形成C-O键1.2.1.2.1烷氧基化反应醇或苯酚的-OH对碳碳双键的亲核进攻会导致烷氧基化反应。
当双键上含有烷基时氧钯化中间体将会进行β-H消除,形成烯基或烯丙基醚,被称之为Wacker类型反应。
1.2.1.2.2-酰氧基化反应烯烃的酰氧基化反应也可以形成C-O键,包括分子内酰氧基化反应生成环状内酯化合物和分子间的酰氧基化反应生成烯丙酯衍生物。
1.2.1.2.3缩醛化反应Hosokawa等使用PdCl2/ CuCl/Na2HPO4/O2催化体系实现了烯醇化合物的环化反应。
1.2.1.3形成C-N键1.2.1.3.1分子内的胺钯化反应Hegedus等最先报道了烯烃的氨钯化反应形成C-N键。
1.2.1.3.2分子间的胺钯化反应烯烃与胺发生分子间的胺钯化反应形成含C-N键的钯中间体,之后进行H消除得到烯胺化合物。
Lee等用酞胺与贫电子末端烯在把催化下发生分子间胺化反应合成了烯酞胺1.2.1.3.3烯烃的双官能团化反应烯烃的双官能团化反应在可以形成两个C-X键(X一O, N, C,是合成许多有用的有机化合物的重要手段,包括双羟化、双胺化和双氧化等等。
1.2.1.3.4烯烃的双碳化反应2009年,Sigman等用芳基锡试剂实现了烯烃的双芳化反应。
1.2.1.3.5烯烃的双氧化反应烯烃的双氧化反应可以形成两个C-O键。
2006年,Sigman等报道了把催化邻轻基苯乙烯的二烷基化反应l。
1.2.1.3.6烯烃的胺氧化反应至今为止,关于钯催化烯烃胺氧化反应的报道很少。
2009年,Muniz等实现了烯的分子内胺氧化反应。
1.2.1.3.7烯烃的碳胺化反应烯烃的碳胺化反应可以在双键上形成C-N和C-C键。
2006年,Yang等利用烯烃的胺碳化反应合成了吲哚衍生物。
1.2.1.3.8烯烃的碳氧化反应2005年,Hosokawa等报道了烯丙醇对烯醚的碳氧化反应。
该反应的机理如下,首先烯丙醇的羟基与烯醚发生氧钯化反应形成中间体62,接着C-Pd键断裂插入烯丙醇的双键形成呋喃中间体,最后进行β-氢消除得到所需产物。
1.2.1.3.9Wacker反应1998年,Sheldon等报道了水溶液中的Wacker反应,该体系成功的关键是使用水溶性的邻菲啰琳为配体。
该反应的另一个特点是不需要加入助氧化剂(如氯化铜和苯醌)。
1.2.2分子氧参与的钯催化炔烃的氧化反应1.2.2.1形成C-C键2010年,Lei等首次报道了分子氧参与的末端炔与有机锌试剂的偶联反应。
该反应对于炔烃的适用性非常广,不管是芳炔还是烷基炔都能以较高的产率得到所需产物。
1.2.2.2炔烃的双官能团化反应1.2.2.2.1形成C-O和C-C键Gouverneur等使用β-羟基炔酮与丙烯酸甲酯反应可以得到吡喃酮衍。
反应机理如下,三键首先发生氧把化形成烯把中间体,该中间体不会进行β-氢消除而是与丙烯酸乙酯发生Heck反应。
结果在炔键上形成一个C-O键和一个C-C键。
1.2.2.2.2形成两个C-C键Larock等报道了芳基硼酸与内炔的加成反应合成了四取代烯烃。
反应的最佳条件是以Pd(OAc)2为催化剂,以DMSO为溶剂。
1.2.2.2.3形成C-C键和C-N键2009年,Jiao等报道了苯胺和贫电子炔烃的偶联/环化反应合成了吲哚衍生物特戊酸的加入可以提高产率和减少反应时间。
不过该反应仅适用于一级胺和烷基取代的二级苯胺。
1.2.2.2.4炔烃的双酮化反应Wan等发现用PdBr2/CuBr2为催化剂,1,4-二氧六环/H2O为溶剂,可以实现炔烃的双酮化反应得到1,2-羰基化合物。
1.3环化反应钯催化环化反应依据钯催化环化反应中间体将其分为以下三类:1)通过π-烯基或π-炔基钯络合物环化反应;2)通过钯的氧化加成/还原消除环化反应;3)通过π-烯丙基钯中间体环化反应。
1.3.1通过π-烯基或π-炔基钯络合物环化反应1.3.1.1烯烃的环化各种官能团化的烯烃在Pd(II)催化下可以通过以下的途径生成各种环状化合物。
首先,Pd(II)快速的与C=C形成π-烯基钯络合物(π-olefin complex)。
紧接着发生分子内的亲核进攻形成σ-烷基钯中间体[σ-alkylpalladium(II)complex],在这步反应中亲核试剂主要从反面进攻乙烯基碳取代基较多的一端。
最后该Pd(II)中间体可以经过一系列的转化从而得到环状产物。
1.3.1.1.1烯基酚的环化1973年,Hosokawa等将酚的钠盐1在化学量的PdCl2(PhCN)2催化下可以以中等的产率得到2-取代苯并呋喃2。
1.3.1.1.2烯基醇的环化1976年,Hosokawa小组首先报道了Pd(II)催化不饱和醇的环化反应。
1.3.1.1.3烯基酮的环化以烯基酮的羰基氧为亲核试剂的钯催化C-O键形成的反应也己被报道。
在PdCl2催化下,双烯基酮44很容易就可生成两边连有酯基的螺环缩醛产物45 。
1.3.1.1.4烯基酸的环化钯催化下烯基酸的环化反应由Kasahara小组首次报道,烯基酸48在化学计量的Li2PdCl4催化下很快就生成内酯49,不过最高产率却只有42%。
1.3.1.1.5烯基肟的环化一个典型的肟环化的例子就是用烯基肟56来制备取代吡啶57。
1.3.1.1.6烯基胺的环化许多含氮杂环化合物都可以通过钯催化的分子内C-N的形成来实现,吲哚类的苯醒68很容易通过胺基苯醌67的分子内的环化来制备。
1.3.1.1.7烯基氨的环化钯催化的分子内环化氨酯73可以得到结构单一的非对映异构体1,3-氧氮杂环戊烷酮74,PdCl2(MeCN)2是最理想的催化剂。
1.3.1.1.8二烯的环化1.3.1.1.8.11,2-二烯的环化1987年,Walkup和Park发现带有羟基或硅基的丙二烯可以通过钯催化的羰基化环化反应非常高效的合成四氢吠喃衍生物。
1.3.1.1.8.2 1,3-二烯的环化1975年,lzumin和Kasahara等首先报道了1,3-二烯基酸的环化反应,在Li2PdCl4催化下,烯酸105很快就转化为吡喃酮106。
1.3.1.2炔烃的环化与烯烃的环化反应类似,各种官能团取代的炔烃也可以发生直接的环化反应来制备各类的环状化合物。
不同之处在于反应起初形成的是π炔基钯络合物(π-alkyne complex)最后还原消除得到环化产物。
1.3.1.2.1炔醇的环化Utimoto等首先报道了Pd(II)催化炔醇环化制备呋喃的例子。
1.3.1.2.2炔酚的环化Yang等发现邻-(1-炔基)苯酚在PdI2/硫脲/CBr4/CO体系下可以高产率的得到2, 3-二取代苯并呋喃130。
1.3.1.2.3炔酸的环化3-和4-炔酸在Pd(II)催化同样也可以发生enda或exo型的环化反应分别得到不饱和内酯134和136。
1.3.1.2.4炔醛和炔酮的环化炔醛在Pd(II)催化下也可以发生环化反应。
在反应中易被氧化的醛并不影响环化。
Yamamoto等以炔醛146为原料,可以通过Pd(OAc)2的催化得到缩醛产物147。
1.3.1.2.5炔胺和炔氨的环化Pd(II)催化的炔胺或炔氨环化反应被广泛的应用于合成各种含氮杂环化合物。
1.3.1.2.6其他环化Cacchi等报道了炔丙基邻-((1-炔基)苯基醚183的环化反应。
1.3.2通过把的氧化加成/还原消除环化反应1.3.2.1以烯烃为底物的分子内环化当在底物分子中同时拥有烯烃以及芳基、乙烯基卤代物或三氟甲烷磺酸酯时,在Pd(0)催化下就很容易发生分子内的氧化加成还原消除从而得到各种环化产物。
1.3.2.1.1利用Heck反应的芳基卤代物分子内环化Heck反应是指芳基或烯基卤代物与烯烃的偶联反应。