分子遗传学讲义26页PPT

合集下载

分子遗传学 (共33张PPT)

分子遗传学  (共33张PPT)

五、基因突变
细胞中核酸序列的改变通过基因表达有可能导致生物遗传 特征的变化。这种核酸序列的变化称为基因突变。
DNA序列中涉及单个核苷酸或碱基的变化称为点突变。点 突变通常有两种情况:一是一个碱基或核苷酸被另一种碱 基或核苷酸所替换;二是一个碱基的插入或缺失。
DNA链中某一个碱基被另一个所替换,这种替换的结果有 时可以不影响其所翻译的蛋白质的结构和功能。这种突变 称为同义突变。
二、基因的表达
• 1、转录 • 2、翻译
RNA分子是单链的,RNA在细胞核内产生,然后进入细 胞质,在蛋白质的合成中起重要作用。
RNA分子结构
RNA是核糖核酸的缩写,它与脱氧核糖核酸(DNA)的主要 差别在于: (1)RNA大多是单链分子; (2)含核糖而不是脱氧核糖; (3)4种核苷酸中,不含胸腺嘧啶(T),而是由尿嘧啶 (U)代替了胸腺嘧啶(T)。
(4) 原核和真核的mRNA一般都以AUG作为翻译起始的密 码子,GUG和UUG比较少见,但两者翻译的起始机制不同。原 核mRNA在5’端起始密码子AUG的上游有4~6个碱基的多嘌呤 序列,协助翻译过程的启动。在真核细胞中,转录完成后 mRNA被修饰加上了5’端帽子结构,该5’端帽子结构提供了
信号作用,使之能够从核内输送到细胞质,也让40S核糖体
1按 碱基互补的原则,合 成 一 条 单 链 RNA , DNA 分子携带的遗传信息 被转移到RNA中,细胞 中的这一过程被称为 转录。转录发生在细 胞核中。
转录的开始与终止是 由启动子和终止子控 制的。
在真核生物细胞核中,DNA 链上具有不能编码蛋白质 的核苷酸片段即内含子和 编码蛋白质的核苷酸片段 即外显子。转录后新合成 的 mRNA 是 未 成 熟 的 mRNA , 又称为前体mRNA或核内非 均一RNA,这些RNA需要经 过一定的加工过程。包括 剪 接 除 去 内 含 子 , 5' 端 加 一个7-甲基鸟苷酸“帽子 ” 和 在 3' 端 加 上 一 个 多 聚 腺苷酸尾。

分子遗传学课件-遗传多态性-

分子遗传学课件-遗传多态性-
E DNA需要量大, 检测技术繁杂, 难以用于大规模 的育种实践中。在植物分子标记辅助育种中需要将 RFLP转换成以PCR为基础的标记。
PCR-RFLP
PCR-RFLP Analysis
TT: 55+68+135+241+302bp CT: 55+68+135+241+302+543bp
CC: 55+68+135+543bp
大家应该也有点累了, 稍作休息
大家有疑问的, 可以询问和交
8
DNA标记的分类
依据多态性的检测手段,DNA标记可分为四大类: (1)基于DNA-DNA杂交的DNA标记.
该标记技术是利用限制性内切酶及凝胶电 泳分离不同生物体的DNA分子,然后用经标记 的DNA探针,通过放射自显影或非同位素显色 技术来揭示DNA的多态性.其中最具代表性的 是发现最早和应用广泛的RFLP标记.
2)序列多态性: DNA片段碱基排列顺序的个体差别。 单核苷酸多态性
(single ucleotidepolymorphism,SNPs) 原因: 碱基的置换、插入、缺失。 特点: 多位于非编码区,选择压力。 数量多,1/1000 bp,300万 二态性,2个等位基因,多态性 程度较低。 孤立事件,人类遗传学意义大。
的插入、缺失、重排或点突变所引起的
。这种差异反映在酶切片段的长度和数
目上碱基组成的序列,并在这些序列位
限制性片段长度多态性的DNA基础 (1) 识别部位的点突变: 碱基的替换、修
饰(甲基化)或插入与缺失。 (2) 识别部位间的片段插入与缺失。 (3) 识别部位间的重复序列数目的变化。
基因型判定
由于在变性胶中PCR产物是单链, 并且不 受其碱基组成影响, 因此, 如果微卫星PCR产 物两条互补链分子质量相近, 在变性胶中纯 合子为单带, 杂合子为双带;如果微卫星 PCR产物两条互补链分子质量相差较大, 在 变性胶中纯合子为双带, 杂合子为四条带。

遗传的分子基础-PPT课件.ppt

遗传的分子基础-PPT课件.ppt
(1)稀有性 (2)重演性 (3)可逆性 (4)多向性 (5)有害性和有利性 (6)突变的时期
稀有性
突变率(mutation rate):指在特定的条件下一
个细胞的某一基因在一个世代中发生突变的概
率。
表3-1人类中某些遗传病的基因突变频率
遗传病
突变频率
白化病 苯丙酮尿症
血友病 色盲 鱼鳞病 肌肉退化症 小眼球症
三、基因突变的类型和遗传效应
(一)碱基替换
➢ 碱基替换发生在编码区可出现的效应: 同义突变(same sense mutation) 错义突变(missense mutation) 无义突变(nonsense mutation)
例:DNA ——ATG → ATT m RNA——UAC → UAA (酪氨酸)(终止信号)
➢ 短分散序列 ➢ 长分散序列
短分散序列
DNA序列长度300-500bp,拷贝数可达105 以上,但无编码作用,散在分布于人类 基因组中,平均间隔距离约2.2kb。
如:Alu家族(Alu family)
Alu家族
长达300bp,在一个基因组中重复30万~50万次。
长分散序列 DNA序列长5-7kb,拷贝数在102-104之间。 如:KpnⅠ家族(KpnⅠ family)
“基因”概念的发展
19世纪60年代初,孟德尔提出“遗传因子”(genetic factor) 1909年,Johansen提出了“基因”(gene) 1910年,摩尔根等证明基因位于染色体上,并呈直线排列。基 因既是一个结构单位,又是一个功能单位(重组单位和突变单 位)——遗传的染色体理论 1941年,Beadle和Tatum提出了“一个基因一个酶”的学说 1944年,Avery证明DNA是遗传物质 1953年,Watson和Crick提出了DNA双螺旋结构模型,明确了 DNA在活体内的复制方式 1957年,Crick提出中心法则,并于1961年提出三联遗传密码

分子遗传学绪论概述 PPT课件

分子遗传学绪论概述 PPT课件

第一章 绪论
遗 传 学 ( genetics ) 是 于 1909 年 由 Batesons 首 先 提 出 的 , Gene 是 希 腊 字 根 , 有 出 生 与 祖 先 之 意 , Genetics 含 义 是 出 生 与 祖 先的关系。
遗传学主要研究遗传物质的结构与功能, 以及遗传信息的传递与表达。
分子遗传学
授课教师:刘自强 zqliu@
2011年2月
授课要求:通过本课程的学习,掌握分子遗传 学的基本概念、原理、技术和方法,为以后的 学习和工作打下基础。
32学时,16次课,无实验 考试方式:关于分子遗传某一领域、早退,课堂 提问、讨论及遵守课堂纪律等方面),上讲台 做研究性报告,综述。
丹麦 哥本哈根 Kalckar Lab. 博士后
访问意大利那不勒斯动物研究所时 King’s Lab. London University
Maurice Wilkins
Francis Crick (35y) James Watson(23y)
1951年,剑桥大学 Cavendish Lab.
性格不同,专业互补 紧密合作,锁定目标
功能蛋白质
性状(现象型)
信息源 信息模板 工作分子
生长、分化、发育过程中的分子事件
中心法则
分子遗传学的范畴
分子遗传学不等同于中心法则的演绎:分子遗传学 的研究范畴要比中心法则广泛得多,深刻得多。
中心法则只是对DNA编码序列及其表达在分子水 平上的解释,但是从中心法则到性状的形成,仍 然是一个复杂的、语焉不详的过程,它不是中心 法则所能解释清楚的。
DNA 双螺旋模型 1953
Maurice Wilkins (46y)
乳糖操纵子模型 开辟了分子遗传 学研究新天地

分子遗传学基础精品PPT课件

分子遗传学基础精品PPT课件
from an adult cell 2000 Human Genome Project completes seenome Project
The Human Genome Project is an international research effort to map the human genome and the genomes of other organisms.
It officially began in 1990 with planning and funding through the US Department of Energy and the National Institutes of Health.
The aim was to complete physical and genetic maps of the entire human genome, elucidating the complete sequence of the 3 billion base pairs per genome, localizing all the genes therein, and making the data public along the way. The project uses DNA from a number of individuals who will remain anonymous to protect their privacy.
1985-6 The Human Genome Project was first proposed 1986 Mullis invented the concept of PCR 1990 Official start of the Human Genome Project 1995 First genome fully sequenced H. influenzae 1996 First eukaryote genome fully sequenced – yeast 1997 Dolly first successful attempt at animal cloning

分子遗传学理论与技术基础讲课文档

分子遗传学理论与技术基础讲课文档

• For example: E.coli DNA polymerase I.

Taq DNA polymerase.
第8页第八,页共,2共72页7页。。
(3)Ligase 鄂p306.
• Ligase can catalysis the ligation (连接反应)of DNA’s or RNA’s nick.that divided to DNA ligase and RNA ligase.
• DNase can catalysis DNA molecular catabolicing. If we control the reaction
• density and the reaction time, the nick • frequency of DNA molecular can be • controlled.

and to delete RNA mixture in DNA

sample.
• *RNase H type: be used to catabolic RNA strand

of RNA/ DNA hybrid molecules.
第13页,第共十三2页7,共页27。页。
(8) DNase I (现代分子生物学手册 p169)
• (3) the recon transformate the host cell.
• there is only one recon in one host cell.
• (4)the transformated host cells are cultured
• in plate medium, then to screen the target • gene cell clone for clone amplify.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档