广东省湛江市数学小学奥数系列7-3加乘原理综合应用(二)
浙江省宁波市数学小学奥数系列7-3加乘原理综合应用(二)
浙江省宁波市数学小学奥数系列7-3加乘原理综合应用(二)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共41题;共185分)1. (5分)从公园到动物园有4条路,从动物园到植物园有3条路,从公园经过动物园到植物园有几种走法?2. (5分)一个三位数,如果它的每一位数字都不小于另一个三位数对应数位上的数字,就称它“吃掉”另一个三位数,例如:532吃掉311,123吃掉123,但726与267相互都不被吃掉.问:能吃掉678的三位数共有多少个?3. (5分)(1)由数字1、2可以组成多少个两位数?(2)由数字1、2可以组成多少个没有重复数字的两位数?4. (5分)如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?5. (5分)请把从猴山到飞禽馆的所有路线写出来 .6. (5分)如下图所示,从A地去B地有5种走法,从B地去C地有3种走法,那么李明从A地经B地去C 地有多少种不同的走法?7. (5分)刘佳国庆节到北京旅游,她带了白色和黄色两件上衣,蓝色、黑色和红色3条裤子,她任意拿一件上衣和一条裤子穿上,共有多少种可能?8. (5分)从四年级六个班中评选出学习、体育、卫生先进集体,如果要求同一个班级只能得到一个先进集体,那么一共有多少种评选方法?9. (5分)某次大连与庄河路线的火车,一共有6个停车点,铁路局要为这条路线准备多少种不同的车票?10. (5分) 3个3口之家在一起举行家庭宴会,围一桌吃饭,要求一家人不可以被拆开,那么一共有多少种排法?(如果某种排法可以通过旋转得到另一种排法,那么这两种排法算作同一种.)11. (1分)给布娃娃穿衣服,一共有________种穿法?12. (1分)要配成一套衣服(上衣和裤子各一件),有________ 种不同的搭配方法.13. (1分)小芳的衣橱里有3件不同的上衣和2条不同下装,要配成一套衣服,共有________ 种不同的穿衣搭配方法.14. (1分)有一些四位数,它们由4个互不相同且不为零的数字组成,并且这4个数字和等于12.将所有这样的四位数从小到大依次排列,第35个为________.15. (5分)用0~9这十个数字可组成多少个无重复数字的四位数.16. (5分)一列火车从上海开到南京,中途要经过6个站,这列火车要准备多少种不同的车票?17. (5分)用数字0,1,2,3,4可以组成多少个小于1000的自然数?18. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?19. (5分)小明要为家里买一瓶花,花店里有2种花瓶和3种花束,一共有多少种买法?请你用线连一连,再回答.20. (5分)在1000到1999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?21. (5分)甲、乙、丙三个工厂共订300份报纸,每个工厂至少订了99份,至多101份,问:一共有多少种不同的订法?22. (5分)如图列出甲、乙和丙之间的交通方法,现在由乙出发,再回乙,途中需经过甲但不可经过乙,又不准走重复的路线,问共有多少种不同的去法?23. (5分)在1000至1999这些自然数中个位数大于百位数的有多少个?24. (5分)用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?25. (5分)用图中棱长为1厘米的小正方体拼成新的正方体,并给拼成的正方体的六个面涂上颜色,有的小正方体被包在里面,一个面都不能涂到颜色,观察后填表:拼成的正方体的棱长(厘米)12345n小正方体的个数被包的小正方体的个数26. (5分)如右图,有A、B、C、D、E五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式?27. (5分)从学校经过百鸟园到猴山,有哪几条路可以走,请列举出来.28. (5分)某人忘记了自己的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?29. (5分)分别用五种颜色中的某一种对下图的,,,,,六个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?30. (5分)将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?31. (5分)要从四年级六个班中评选出学习、体育、卫生先进集体,有多少种不同的评选结果?32. (5分)用0,1,2,3四个数码可以组成多少个没有重复数字的四位偶数?33. (5分)从1到100的所有自然数中,不含有数字4的自然数有多少个?34. (5分)请问由A点到G点有多少条不同的路线?(路线或点不可重复.)35. (5分)有5张卡,分别写有数字2,3,4,5,6.如果允许6可以作9用,那么从中任意取出3张卡片,并排放在一起.问(1)可以组成多少个不同的三位数?(2)可以组成多少个不同的三位偶数?36. (5分)文艺活动小组有3名男生,4名女生,从男、女生中各选1人做领唱,有多少种选法?(4级)37. (5分)一条线段上除了两个端点还有6个点,那么这段线段上可以有多少条线段?38. (1分)电子表用表示点分,用表示点分,那么点到点之间电子表中出现无重复数字的时刻有________次.39. (5分)将1332,332,32,2这四个数的10个数码一个一个的划掉,要求先划位数最多的数的最小数码,共有多少种不同的划法?40. (5分)奥苏旺大陆上的居民使用的文字非常独特,他们文字的每个单词都由个字母、、、、组成,并且所有的单词都有着如下的规律,⑴字母不打头,⑵单词中每个字母后边必然紧跟着字母,⑶ 和不会出现在同一个字母之中,那么由四个字母构成的单词一共有多少种?41. (5分)按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?参考答案一、 (共41题;共185分)1-1、2-1、3-1、3-2、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、26-1、27-1、28-1、29-1、30-1、31-1、32-1、33-1、34-1、35-1、35-2、36-1、37-1、38-1、39-1、40-1、41-1、。
小学奥数- 加乘原理之数字问题(一)
一、加乘原理概念
生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中 的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加 法原理来解决.
还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方 法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.
【例 13】从 1 到 100 的所有自然数中,不含有数字 4 的自然数有多少个?
【巩固】 从 1 到 500 的所有自然数中,不含有数字 4 的自然数有多少个?
【巩固】 从 1 到 300 的所有自然数中,不含有数字 2 的自然数有多少个?
【例 14】 将各位数字的和是 10 的不同的三位数按从大到小的顺序排列,第 10 个数是
【例 19】自然数 8336,8545,8782 有一些共同特征,每个数都是以 8 开头的四位数,且每个数中恰好有两 个数字相同.这样的数共有多少个?
【巩固】 在 1000 到 1999 这 1000 个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?
【例 20】如果一个三位数 ABC 满足 A B , B C ,那么把这个三位数称为“凹数”,求所有“凹数”的个数.
二、加乘原理应用
应用加法原理和乘法原理时要注意下面几点: ⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的 不同方法数等于各类方法数之和. ⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘 积. ⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理, 综合分析,正确作出分类和分步. 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问 题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 乘法原理运用的范围:这件事要分几个彼此互.不.影.响.的独.立.步.骤.来完成,这几步是完成这件任务缺.一.不. 可.的.,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.
(精品)小学奥数7-3-1 加乘原理之综合运用.专项练习及答案解析
1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题.在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 商店里有2种巧克力糖:牛奶味、榛仁味;有2种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友.⑴如果小明只买一种糖,他有几种选法?⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法?教学目标例题精讲知识要点7-3-1.加乘原理之综合运用【考点】加乘原理之综合运用 【难度】1星 【题型】解答【解析】 ⑴小明只买一种糖,完成这件事一步即可完成,有两类办法:第一类是从2种巧克力糖中选一种有2种办法;第二类是从3种水果糖中选一种,有3种办法.因此,小明有235+=种选糖的方法.⑵小明完成这件事要分两步,每步分别有2种、3种方法,因此有326⨯=种方法.【答案】⑴5 ⑵6【例 2】 从2,3,5,7,11这五个数中,任取两个不同的数分别当作一个分数的分子与分母,这样的分数有_______________个,其中的真分数有________________个。
小学奥数——乘法原理与加法原理
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载小学奥数——乘法原理与加法原理地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容乘法原理与加法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的.在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要 n 个步骤,其中,做第一步有 m1 种不同的方法,做第二步有 m2 种不同的方法,…,做第 n 步有 mn 种不同的方法,那么,完成这件事一共有N=m1×m2×……×mn 种不同的方法.这就是乘法原理.某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成.①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法.②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法.由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?分析由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B,由于A已放定,那么放A的那一行和一列中的其他方格内也不能放B,故还剩下9个方格可以放B,B有9种放法;第三步放C,再去掉B所在的行和列的方格,还剩下四个方格可以放C,C有4种放法;最后一步放D,再去掉C所在的行和列的方格,只剩下一个方格可以放D,D有1种放法,本题要由乘法原理解决.现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?分析要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.但要注意,要求“至少取一张”.生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用我们将讨论的加法原理来解决.例如某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.一般地,如果完成一件事有 k 类方法,第一类方法中有 m1 种不同做法,第二类方法中有 m2 种不同做法,…,第 k 类方法中有 mk 种不同的做法,则完成这件事共有N=m1+m2+……+mk 种不同的方法.这就是加法原理.学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本.那么,小明借一本书可以有多少种不同的选法?一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?补充说明:由本题应注意加法原理和乘法原理的区别及使用范围的不同,乘法原理中,做完一件事要分成若干个步骤,一步接一步地去做才能完成这件事;加法原理中,做完一件事可以有几类方法,每一类方法中的一种做法都可以完成这件事.事实上,往往有许多事情是有几大类方法来做的,而每一类方法又要由几步来完成,这就要熟悉加法原理和乘法原理的内容,综合使用这两个原理.如右图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走.那么,从甲地到丙地共有多少种走法?分析从甲地到丙地共有两大类不同的走法.第一类,由甲地途经乙地到丙地.第二类,由甲地直接到丙地.如下页图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?分析从A点到B点有两类走法,一类是从A点先经过C点到B点,一类是从A点先经过D点到B点.两类中的每一种具体走法都要分两步完成,所以每一类中,都要用乘法原理,而最后计算从A到B的全部走法时,只要用加法原理求和即可.有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?分析要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.从1到500的所有自然数中,不含有数字4的自然数有多少个?分析从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理.补充说明:这道题也可以这样想:把一位数看成是前面有两个0的三位数,如:把1看成是001.把两位数看成是前面有一个0的三位数.如:把11看成011.那么所有的从1到500的自然数都可以看成是“三位数”,除去500外,考虑不含有4的这样的“三位数”.百位上,有0、1、2、3这四种选法;十位上,有0、1、2、3、5、6、7、8、9这九种选法;个位上,也有九种选法.所以,除500外,有4×9×9=324个不含4的“三位数”.注意到,这里面有一个数是000,应该去掉.而500还没有算进去,应该加进去.所以,从1到500中,不含4的自然数仍有324个.这是一种特殊的思考问题的方法,注意到当我们对“三位数”重新给予规定之后,问题很简捷地得到解决.如图,要从A点沿线段走到B,要求每一步都是向右、向上或者向斜上方.问有多少种不同的走法?分析观察下页左图,注意到,从A到B要一直向右、向上,那么,经过下页右图中C、D、E、F四点中的某一点的路线一定不再经过其他的点.也就是说从A到B点的路线共分为四类,它们是分别经过C、D、E、F的路线.自我检测某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法?如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?如下图中,沿线段从点A走最短的路线到B,各有多少种走法?在1~1000的自然数中,一共有多少个数字0?在1~500的自然数中,不含数字0和1的数有多少个?十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?。
云南省普洱市数学小学奥数系列7-3加乘原理综合应用(二)
云南省普洱市数学小学奥数系列7-3加乘原理综合应用(二)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共41题;共185分)1. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?2. (5分)一只青蛙在A,B,C三点之间跳动,若青蛙从A点跳起,跳4次仍回到A点,则这只青蛙一共有多少种不同的跳法?3. (5分)从北京到广州可以选择直达的飞机和火车,也可以选择中途在上海或者武汉作停留,已知北京到上海、武汉和上海、武汉到广州除了有飞机和火车两种交通方式外还有汽车.问,从北京到广州一共有多少种交通方式供选择?4. (5分)商店里有2种巧克力糖:牛奶味、榛仁味;有3种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友.(1)如果小明只买一种糖,他有几种选法?(2)如果小明想买水果糖、巧克力糖各种,他有几种选法?5. (5分)一把钥匙开一把锁,现在有五片钥匙五把锁,最多试几次可以打开所有锁?6. (5分)五种颜色不同的信号旗,各有5面,任意取出三面排成一行,表示一种信号,问:共可以表示多少种不同的信号?7. (5分)某人忘记了自己的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?8. (5分)小明要为家里买一瓶花,花店里有2种花瓶和3种花束,一共有多少种买法?请你用线连一连,再回答.9. (5分)如图,某城市的街道由5条东西向马路和7条南北向马路组成,现在要从西南角的处沿最短的路线走到东北角出,由于修路,十字路口不能通过,那么共有________种不同走法.10. (5分)如图所示,从A点到B点,如果要求经过C点或D点的最近路线有多少条?11. (1分)小明要买一本数学课外书和一本语文课外书.在书店里他发现4种数学课外书、5种语文课外可供选用.他有________种不同的选择方法?12. (1分)少年宫街心花园学校,小欣从少年宫经过街心花园到学校,一共有________ 条路线可以走.13. (1分)妈妈买回来8个大苹果给小丽吃,如果每天至少要吃掉3个苹果,最多可以有________ 种不同的吃法.14. (1分)把5根香蕉分给长颈鹿、大象、小熊,每只动物至少分一根,有________种方法。
用图片详细讲小学奥数题-加乘原理
加乘原理
加法原理:一般地,如果完成一件事有k类 方法,第一类方法中有m1种不同做法,第二类 方法中有m2种不同做法......,第 k 类方法中有mk 种不同做法,则完成这件事共有 m1+m2+......+mk种不同方法。
艾迪要从 3 件不同的外套和 5 条不同的裤子中各选一件穿好出门,他 有多少种不同的搭配方法。
3
第2棒选定后 还剩两人选其一
2
第2、3棒选定后 只剩下1人
1
题目解析:
甲不能跑第一棒,所以第一棒有3种可能;第二棒没有限制,从第一棒选剩下的三人种任意选一个,所以
第2棒有3种可能,以此类推,最终结果为:3 ×3 ×2 ×1 = 18(种) 7
特殊位置优先考虑(三)
例题:
运动会上,甲乙丙丁 4 名运动员组队参加 4 × 100 米 接力赛,甲不能跑第一棒和第四棒,一共有多少种不同的跑法?
第1棒
第2棒
第3棒
பைடு நூலகம்
第4棒
乙、丙、丁 3人选其2人, 因为要留一个跑第4棒
第1棒选定1人 还剩下3人选其1
第2棒选定后 还剩两人选其一
第2、3棒选定后 只剩下1人
2
3
2
1
题目解析:
甲不能跑第1棒,要从乙、丙、丁中三人挑一人,同时,甲也不能跑第4棒,要保留乙、丙、丁三人中的一人在第4棒;所以第1棒
只有2种人选。第2棒没有限制,从第1棒选剩下的三人种任意选一个,所以第2棒有3种可能;
第2棒的选择方法为3(种),以此类推,该题最终答案:1 ×3 ×2 ×1 = 6(种) 6
特殊位置优先考虑(二)
例题:
运动会上,甲乙丙丁 4 名运动员组队参加 4 × 100 米 接力赛,甲不能跑第一棒,一共有多少种不同的跑法?
小学奥数——乘法原理与加法原理
乘法原理与加法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的.在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要个步骤,其中,做第一步有种不同的方法,做第二步有种不同的方法,…,做第步有种不同的方法,那么,完成这件事一共有种不同的方法.这就是乘法原理.例1.某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2.右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?例3.书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?例4.王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?例5.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成.①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法.②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法.例6.由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.例7.右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?分析由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B,由于A已放定,那么放A的那一行和一列中的其他方格内也不能放B,故还剩下9个方格可以放B,B有9种放法;第三步放C,再去掉B所在的行和列的方格,还剩下四个方格可以放C,C有4种放法;最后一步放D,再去掉C所在的行和列的方格,只剩下一个方格可以放D,D有1种放法,本题要由乘法原理解决.例8.现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?分析要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.但要注意,要求“至少取一张"。
小学奥数 加乘原理之综合运用 精选例题练习习题(含知识点拨)
1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题. 在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 商店里有2种巧克力糖:牛奶味、榛仁味;有2种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友.⑴如果小明只买一种糖,他有几种选法?⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法?【考点】加乘原理之综合运用 【难度】1星 【题型】解答【解析】 ⑴小明只买一种糖,完成这件事一步即可完成,有两类办法:第一类是从2种巧克力糖中选一种有2种办法;第二类是从3种水果糖中选一种,有3种办法.因此,小明有235+=种选糖的方法. ⑵小明完成这件事要分两步,每步分别有2种、3种方法,因此有326⨯=种方法.【答案】⑴5 ⑵6【例 2】 从2,3,5,7,11这五个数中,任取两个不同的数分别当作一个分数的分子与分母,这样的分数有_______________个,其中的真分数有________________个。
小学数学《加、乘原理综合运用》练习题(含答案)
小学数学《加、乘原理综合运用》练习题(含答案)Ⅰ、简单加乘原理综合运用【例1】(★)从学而思学校到王明家有4条路可走,从王明家到张老师家有2条路可走,从学而思学校到张老师有3条路可走,那么从学而思学校到张老师家共有多少种走法?分析:根据乘法原理,经过王明家到张老师家的走法一共有4×2=8种方法,从学而思学校直接去张老师家一共有3条路可走,根据加法原理,一共有8+3=11种走法.[拓展一]如下图,从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路可走,从丁地到丙地也有3条路,请问从甲地到丙地共有多少种不同走法?分析:根据乘法原理,经过乙地到丙地的走法一共有4×2=8种方法,经过丁地到丙地一共有3×3=9种方法,根据加法原理,一共有8+9=17种走法.[拓展二]如下图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?分析从A点到B点有两类走法,一类是从A点先经过C点到B点,一类是从A点先经过D点到B点.两类中的每一种具体走法都要分两步完成,所以每一类中,都要用乘法原理,而最后计算从A到B的全部走法时,只要用加法原理求和即可.从A点先经过C到B点共有:1×3=3(种)不同的走法.从A点先经过D到B点共有:2×3=6(种)不同的走法.所以,从A点到B点共有:3+6=9(种)不同的走法.【例2】(★★走进美妙数学花园少年数学邀请赛)如图,将1,2,3,4,5分别填入图中1×5的格子中,要求填在黑格里的数比它旁边的两个数都大.共有种不同的填法.分析:填在黑格里的数是5和4时,不同的填法有2!×3!=12(种);填在黑格里的数是5和3时,不同的填法有2×2=4(种).所以,共有不同填法12+4=16(种).[前铺]一个篮球队有五名队员A,B,C,D,E,由于某种原因,E不能做中锋,而其余四个人可以分配到五个位置的任何一个上,问一共有多少种不同的站位方法?分析:先确定做中锋的人选,除E以外的四个人任何一个都可以,其余四人对应四个位置,有4!=24(种)排列,由乘法原理,4×24=96,所以一共有96种不同的站位方法.Ⅱ、加乘原理与数论【例3】(★★)从19,20,21,…,93,94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?分析:76个数当中有38个奇数和38个偶数,选取两个数只要是奇偶性质相同就能保证其和为偶数,选取两个奇数的方法有38×37÷2=703种,选取两个偶数的方法有38×37÷2=703种,一共有1406种选取方法.[拓展]在3000与8000之间,有多少个数字不重复的偶数?分析:千位必须是3,4,5,6,7中的一个,个位必须是0,2,4,6,8中的一个,分类考虑:个位上是0,2,8时,个位有3种选择,千位可以是3,4,5,6,7,有5种选择,百位、十位可以从剩下的8个数字中选择,由乘法原理,有3×5×8×7=840个;个位是4或6时,千位可以从3,4,5,6,7中除4或6以外的4个数中选择,百位、十位可以从剩下的8个数字中选择,由乘法原理,有2×4×8×7=448个,根据加法原理,一共有:840+448=1288个符合条件的偶数.【例4】(★★)在1~10这10个自然数中,每次取出两个不同的数,使它们的和是3的倍数,共有种不同的取法.分析:两个数的和是3的倍数有两种情况,或者两个数都是3的倍数,或有1个除以3余1,另一个除以3余2.1~10中能被3整除的有3个数,取两个有3种取法;除以3余1的有4个数,除以3余2的有3个数,各取1个有3×4=12种取法.所以共有取法:3+12=15(种).[前铺]用1,2,3,4,5五个数字,不许重复,位数不限,能写出多少3的倍数?分析:按照位数分类考虑:一位数只有1个3;两位数,由1与2,1与5,2与4,4与5四组数字组成,每一组可以组成2×1=2个数字,共可以组成2×4=8个不同的两位数;三位数,由1、2与3,1、3与5,2、3与4,3、4与5四组数字组成,每一组可以组成3×2×1=6个数字,共可以组成6×4=24个不同的三位数;四位数,由1、2、4与5四个数字组成,有 4×3×2×1=24个不同的四位数;五位数,由1、2、3、4与5五个数字组成,有 5×4×3×2×1=120个不同的五位数,由加法原理,一共有1+8+24+24+120=177个满足条件的数.[拓展]在1~10这10个自然数中,每次取出三个不同的数,使它们的和是3的倍数有 种不同的取法.分析:三个不同的数和为3的倍数有四种情况:三个数同余1,三个数同余2,三个数都被3整除,余1余2余0各有1个,三类情况分别有4种、1种、1种、36种,所以一共有42种.【例5】 (★★★)有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?分析:要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.第一类,两个数字同为奇数.由于放两个正方体可认为是一个一个地放.放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现奇数也有三种可能,由乘法原理,这时共有3×3=9种不同的情形.第二类,两个数字同为偶数,类似第一类的讨论方法,也有3×3=9种不同情形.最后再由加法原理即可求解.两个正方体向上的一面数字之和为偶数的共有3×3+3×3=18种不同的情形.[巩固]有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为奇数的有多少种情形?分析:要使两个数字之和为奇数,只要这两个数字的奇偶性不同,即这两个数字一个为奇数,另一个为偶数,由于放两个正方体可认为是一个一个地放.放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现偶数也有三种可能,由乘法原理,这时共有3×3=9种不同的情形.Ⅲ、加乘原理与图论(染色、图形组合)【例6】 (★★★)地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝三种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?分析:A 有3种颜色可选;当B ,C 取相同的颜色时,有2种颜色可选,此时D 也有2种颜色可选,不同的涂法有3×2×2=12(种);当B ,C 取不同的颜色时,B 有2种颜色可选,C 仅剩1种颜色可选,此时D 也只有1种颜色可选(与A 相同),不同的涂法有3×2×1×1=6(种).C BD A所以共有12+6=18种不同的涂法.[前铺]为“学习改变命运”六个字涂色,现在有红、黄、蓝三种颜色,使相邻的字颜色不同,但不是每种颜色都必须要用,问有多少涂色方法?分析:第一个字有3种颜色可选,第二个字有2种颜色可选,第三个字有2种颜色可选,……以此类推,第六个字也有两种颜色可选,所以不同的涂色方法有:3×2×2×2×2×2=96(种)[拓展一]如果有红、黄、蓝、绿四种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?分析:第一步,首先对A 进行染色一共有4种方法,然后对B 、C 进行染色,如果B 、C 取相同的颜色,有三种方式,D 剩下3种方式,如果B 、C 取不同颜色,有3×2=6种方法,D 剩下2种方法,对该图的染色方法一共有4×(3×3+3×2×2)=84种方法.[拓展二]用四种颜色对下图的A ,B ,C ,D ,E 五个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:共有多少种不同的染色方法?分析:第一步给C 上色,有4种选择; 然后对A 染色,A 有3种颜色可选; 当B ,E 取相同的颜色时,有2种颜色可选,此时D 也有2种颜色可选,不同的涂法有3×2×2=12(种);当B ,E 取不同的颜色时,B 有2种颜色可选,E 仅1种颜色可选,此时D 也只有1种颜色可选(与A 相同),不同的涂法有3×2×1×1=6(种).所以共有4×3×(2×2+2)=72种不同的涂法.思考本题与例题5的关系.【例7】 (★★)在一个圆周上均匀分布10个点,以这些点再加上圆心一共11个点为端点,可以画出多少长度小于直径的线段.分析:由于10个点全在圆周上,所以这10个点没有三点共线,故只要在10个点中取2个点,就可以画出一条线段一共有45种方法,其中包括5条直径,应当舍去,其余线段的长都小于直径,一共有40种方法 .以圆心为端点的线段一共有10条,所以一共可以画出40+10=50条线段.[拓展]一个半圆周上共有12个点,直径上5个,圆周上7个,以这些点为顶点,可以画出多少个三角形?E D C B A分析:(方法一)所有的三角形一共可以分为3类,第一类:三角形三个顶点都在圆周上,这样的三角形一共有7×6×5÷(3×2×1)=35种;第二类:三角形两个顶点在圆周上,这样的三角形一共有7×6÷(2×1)×5=105种;第三类:三角形一个顶点在圆周上,这样的三角形一共有7×5×4÷(2×1)=70种;一共可以画出35+105+70=210种.(方法二)不共线的3点可以确定一个三角形,这样任取3点构成的组合数与三角形的个数之间便有了一定的联系,但是要注意去掉其中3点共线的情况.12×11×10÷(3×2×1)-5×4×3÷(3×2×1)=210种.【例8】直线a,b上分别有5个点和4个点,以这些点为顶点可以画出多少个三角形?分析:画三角形需要在一条线上找1个点,另一条线上找2个点,本题分为两种情况:(1)在a线上找一个点,有5种选取法,在b线上找两个点,有4×3÷2=6(种),根据乘法原理,一共有:5×6=30(个)三角形(2)在b线上找一个点,有4种选取法,在a线上找两个点,有5×4÷2=10(种),根据乘法原理,一共有:4×10=40(个)三角形根据加法原理,一共可以画出:30+40=70(个)三角形[巩固]直线a,b上分别有5个点和4个点,以这些点为顶点可以画出多少个四边形?分析:画四边形需要在每条线上取2个点,在a线上取2个点共有5×4÷2=10(种),在b线上取2个点共有4×3÷2=6(种),根据乘法原理,一共可以画出6×10=60(个)三角形.Ⅳ、排列组合【例9】(★★)用数字0,1,2,3,4,(可重复使用)可以组成多少个:小于1000的自然数?分析:小于1000的自然数有三类.第一类是0和一位数,有5个;第二类是两位数,有4×5=20个;第三类是三位数,有4×5×5=100个.共有5+20+100=125个.[拓展]用1、2、3、4、5这五个数字,可以组成多少个比20000大且百位数字不是3的无重复数字的五位数?分析:分两类(1)把3排在最高位上,其余四个数字可以任意放到其余四个数位上,有4×3×2×1=24种做法,对应24个不同的五位数(2)把2、4、5放在最高位上,有3种选择,百位数上有除最高位和3以外的三种选择,其余的三个数字可以任意放到其余3个数位上,由乘法原理,可以组成3×3×3×2×1=54个不同的五位数由加法原理,可以组成24+54=78个不同的五位数.【例10】(★★★)从1到100的所有自然数中,不含有数字4的自然数有多少个?分析:从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数只有100.所以一共有8+8×9+1=81个不含4的自然数.[拓展] 从1到300的所有自然数中,不含有数字2的自然数有多少个?分析:从1到300的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含2的有8个,它们是1、3、4、5、6、7、8、9;两位数中,不含2的可以这样考虑:十位上,不含4的有l、3、4、5、6、7、8、9这八种情况.个位上,不含2的有0、1、3、4、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含2.三位数中,除去300外,百位数只有1一种取法,十位与个位均有0,1,3,4,5,6,7,8,9九种取法,根据乘法原理,不含数字2的三位数有:1×9×9=81个,还要加上300.所以根据加法原理,从1到300的所有自然数中,不含有数字2的自然数一共有8+72+82=162个.【例11】(★★★)在100~1995的所有自然数中,百位数与个位数不相同的自然数有多少个?分析:先考虑100~1995这1896个数中,百位与个位相同的数有多少个,在三位数中,百位与个位可以是1~9,十位可以是0~9,由乘法原理,有9×10=90个,四位数中,千位是1,百位和个位可以是0~9,十位可以是0~9,由乘法原理,10×10=100个,但是要从中去掉1999,在100~1995中,百位与个位相同的数共有90+99=189个,所以,百位数与个位数不相同的自然数有:1896-189=1707个[拓展]在1000至1999这些自然数中,个位数大于百位数的有多少个?分析:(方法一)解决计数问题常用分类讨论的方法.设在1000至1999这些自然数中满足条件的数为1abc(其中c>a);(1)当a=0时,c可取1~9中的任一个数字,b可取0~9中的任一个数字,于是一共有9×10=90个.(2)当a=1时,c可取2~9中的任一个数字,b仍可取0~9中的任一个数字,于是一共有8×10=80个.(3)类似地,当a依次取2,3,4,5,6,7,8时分别有70,60,50,40,30,20,10个符合条件的自然数.所以,符合条件的自然数有90+80+70+…+20+10=450个.(方法二)1000至1999这1000个自然数中,每10个中有一个个位数等于百位数,共有100个;剩余的数中,根据对称性,个位数大于百位数的和百位数大于个位数的一样多,所以总数为-÷=个.(1000100)2450【例12】(★★)红、黄、蓝、白四种颜色不同的小旗,各有2,2,3,3面,任意取出三面按顺序排成一行,表示一种信号,问:共可以表示多少种不同的信号?分析:(方法一)取出的3面旗子,可以是一种颜色、两种颜色、三种颜色,应按此进行分类(1)一种颜色:都是蓝色的或者都是白色的,2种可能;(2)两种颜色:(4×3)×3=36(3)三种颜色:4×3×2=24所以,一共可以表示2+36+24=62种不同的信号(方法二)每一个位置都有4种颜色可选,共有4×4×4=64种,但是不能有三红或者三黄,所以减去2种,共有64-2=62种.[前铺]一共有赤橙黄绿青蓝紫七种颜色的等各一盏,把七盏灯都串起来,紫灯不排在第一位也不排在第七位的串法有多少种?分析:先考虑紫灯的位置,除去第一位和第七位外,有5种选择,然后把剩下的6盏灯随意排,有6×5×4×3×2×1=720种排法,由乘法原理,一共有5×720=3600种1.(★例1)从北京到广州可以选择直达的飞机和火车,也可以选择中途在上海或者武汉作停留,已知北京到上海、武汉或者上海、武汉到广州除了有飞机和火车两种交通方式外还有汽车.问,从北京到广州一共有多少种交通方式供选择?分析:从北京转道上海到广州一共有3×3=9种方法,从北京转道武汉到广州一共也有3×3=9种方法供选择,从北京直接去广州有2种方法,所以一共有9+9+2=20种方法.2.(★★例3)在所有的三位数中,各位数字之和是19的数共有多少个?分析:三个数字之和是19的共有10种,9,9,1;9,8,2;9,7,3;9,6,4;9,5,5;8,8,3;8,7,4;8,6,5;7,7,5;7,6,6.其中三个数字各不相同的有5种,每种能组成6个不同的三位数;三个数字中有两个相同的有5种,每种能组成3个不同的三位数,所求数共有:6×5+5×3=45(个)3.(★★例11)从54到199的整数中,各位数字互不相同的数有多少个?分析:从54至99的整数中,各位数字互不相同的数有46-5=41个.从100至199的整数中,各位数字互不相同的数有9×8=72个,总共有41+72=113个.4.(★★★例8)直线a,b上分别有4个点和2个点,以这些点为顶点可以画出多少个三角形?分析:画三角形需要在一条线上找1个点,另一条线上找2个点,本题分为两种情况:(3)在a线上找一个点,有4种选取法,在b线上找两个点,有1种,根据乘法原理,一共有:5×1=5(个)三角形(4)在b线上找一个点,有2种选取法,在a线上找两个点,有4×3÷2=6(种),根据乘法原理,一共有:2×6=12(个)三角形根据加法原理,一共可以画出:5+12=17(个)三角形5.(★★★例12)五种颜色的小旗,任意取出三面排成一行表示各种信号,问:共可以表示多少种不同的信号?分析:分3种情况(1)三面小旗一种颜色,可以表示5种信号(2)三面小旗两种颜色:可以表示5×4×3=60种信号(3)三面小旗三种颜色:可以表示:5×4×3=60种信号由加法原理,一共可以表示:5+60+60=125种信号.。
广东省深圳市数学小学奥数系列7-3加乘原理综合应用(二)
广东省深圳市数学小学奥数系列7-3加乘原理综合应用(二)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共41题;共185分)1. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?2. (5分)聪聪给同学们安排了4项秋游内容.3. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?4. (5分)用数码0,1,2,3,4,可以组成多少个小于1000的没有重复数字的自然数?5. (5分)用0,1,2,3四个数码可以组成多少个没有重复数字的四位偶数?6. (5分)如下图所示,从A地去B地有5种走法,从B地去C地有3种走法,那么李明从A地经B地去C 地有多少种不同的走法?7. (5分)学校为艺术节选送节目,要从8个合唱节目中选出4个,2个舞蹈节目中选出一个,一共有多少种不同的选送方案?8. (5分)小红家到书店有两条路,书店到少年宫有三条路。
小红从家经过书店到少年宫,有多少种不同的走法?9. (5分)有5张卡,分别写有数字2,3,4,5,6.如果允许6可以作9用,那么从中任意取出3张卡片,并排放在一起.问(1)可以组成多少个不同的三位数?(2)可以组成多少个不同的三位偶数?10. (5分)用数字0,1,2,3,4可以组成多少个:(1)三位数?(2)没有重复数字的三位数?11. (1分)奥运吉祥物中的个“福娃”取“北京欢迎您”的谐音:贝贝、晶晶、欢欢、迎迎、妮妮.如果在盒子中从左向右放个不同的“福娃”,那么,有________种不同的放法.【第六届小学“希望杯”全国数学邀请赛12. (1分)用2、3、7、8四个数字组成四位数,每个数中不许有重复数字,一共可以组成18个的不同的四位数.________ . (判断对错)13. (1分)说出乘法算式中各部分的名称:14. (1分)电子表用表示点分,用表示点分,那么点到点之间电子表中出现无重复数字的时刻有________次.15. (5分)从甲地到乙地,每天有2班轮船,4班火车,6班汽车,那么这一天中乘坐这些交通工具,从甲地到乙地共有多少种走法?16. (5分)从1到500的所有自然数中,不含有数字4的自然数有多少个?17. (5分)在1000到1999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?18. (5分)小明要为家里买一瓶花,花店里有2种花瓶和3种花束,一共有多少种买法?请你用线连一连,再回答.19. (5分)要从四年级六个班中评选出学习、体育、卫生先进集体,有多少种不同的评选结果?20. (5分)某人忘记了自己的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?21. (5分)一次象棋比赛共有10名选手参加,他们分别来自甲、乙、丙三个队,每个选手都与其余9名选手各赛1盘,每盘棋的胜者得1分,负者得0分,平局双方各得0.5分.结果,甲队选手平均得4.5分,乙队选手平均得3.6分,丙队选手平均得9分.那么,甲、乙、丙三队参加比赛的选手人数各多少?22. (5分)文艺活动小组有3名男生,4名女生,从男、女生中各选1人做领唱,有多少种选法?(4级)23. (5分)刘佳国庆节到北京旅游,她带了白色和黄色两件上衣,蓝色、黑色和红色3条裤子,她任意拿一件上衣和一条裤子穿上,共有多少种可能?24. (5分)用图中棱长为1厘米的小正方体拼成新的正方体,并给拼成的正方体的六个面涂上颜色,有的小正方体被包在里面,一个面都不能涂到颜色,观察后填表:拼成的正方体的棱长(厘米)12345n小正方体的个数被包的小正方体的个数25. (5分)用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?26. (5分)如右图,有A、B、C、D、E五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式?27. (5分)如图列出甲、乙和丙之间的交通方法,现在由乙出发,再回乙,途中需经过甲但不可经过乙,又不准走重复的路线,问共有多少种不同的去法?28. (5分)用0~9这十个数字可组成多少个无重复数字的四位数.29. (5分)分别用五种颜色中的某一种对下图的,,,,,六个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?30. (5分)将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?31. (5分)请用你所学的“解决问题的策略”,解决下面的问题.数学信息(图1)问题(图2)32. (5分)请问由A点到G点有多少条不同的路线?(路线或点不可重复.)33. (5分)从四年级六个班中评选出学习、体育、卫生先进集体,如果要求同一个班级只能得到一个先进集体,那么一共有多少种评选方法?34. (5分)自然数8336,8545,8782有一些共同特征,每个数都是以8开头的四位数,且每个数中恰好有两个数字相同.这样的数共有多少个?35. (5分)有6种不同颜色的笔,来写“学习改变命运”这六个字,要求相邻字的颜色不能相同,有多少种不同的方法?36. (5分)从公园到动物园有4条路,从动物园到植物园有3条路,从公园经过动物园到植物园有几种走法?37. (5分)将1332,332,32,2这四个数的10个数码一个一个的划掉,要求先划位数最多的数的最小数码,共有多少种不同的划法?38. (1分)用1~9可以组成________个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成________个满足要求的三位数?39. (5分)如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块……,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?40. (5分)一条线段上除了两个端点还有6个点,那么这段线段上可以有多少条线段?41. (5分)“数学”这个词的英文单词是“MATH”.用红、黄、蓝、绿、紫五种颜色去分别给字母染色,每个字母染的颜色都不一样.这些颜色一共可以染出多少种不同搭配方式?参考答案一、 (共41题;共185分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、9-2、10-1、10-2、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、26-1、27-1、28-1、29-1、30-1、31-1、32-1、33-1、34-1、35-1、36-1、37-1、38-1、39-1、40-1、41-1、。
湖南省长沙市小学数学小学奥数系列7-3加乘原理综合应用(二)
湖南省长沙市小学数学小学奥数系列7-3加乘原理综合应用(二)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共41题;共185分)1. (5分)(1)小丽上学共有几条路线?(2)算一算,小丽上学最近的路线有多少米?2. (5分)用5种不同颜色的笔来写“智康教育”这几个字,相邻的字颜色不同,共有多少种写法?3. (5分)请用你所学的“解决问题的策略”,解决下面的问题.数学信息(图1)问题(图2)4. (5分)小红家到书店有两条路,书店到少年宫有三条路。
小红从家经过书店到少年宫,有多少种不同的走法?5. (5分)有5个同学,他们每两人互相送一件礼物,一共要送多少件礼物?6. (5分)(1)由数字1、2可以组成多少个两位数?(2)由数字1、2可以组成多少个没有重复数字的两位数?7. (5分)邮递员投递邮件由A村去B村的道路有3条,由B村去C村的道路有2条,那么邮递员从A村经B村去C村,共有多少种不同的走法?8. (5分)在1000到1999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?9. (5分)如果一个四位数与一个三位数的和是,并且四位数和三位数是由个不同的数字组成的,那么,这样的四位数最多能有多少个?10. (5分)按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?11. (1分)有一些四位数,它们由4个互不相同且不为零的数字组成,并且这4个数字和等于12.将所有这样的四位数从小到大依次排列,第35个为________.12. (1分)如图所示,每个小正三角形边长为1,小虫每步走过1,从A出发,恰走4步回到A的路有________ 条.(途中不再回A)13. (1分) (2018三上·盐田期末) 食堂有2种主食和4种炒菜,如果一种主食和一种炒菜作为一种配餐,共有________种不同的配餐方法。
小学数学 加乘原理的综合应用 带作业带答案
练习5 过年了,妈妈买了7件不同的礼物,要送给亲朋好友的5个孩子
每人一件.其中姐姐的儿子小强想从智力拼图和遥控汽车中选一 个,朋友的女儿小玉想从学习机和遥控汽车中选一件.那么,妈 妈送出这5件礼物共有( )种方法.
若将遥控汽车给小强,则学习机要给小玉,此时另外3个孩子在剩余5件礼物中任选3 件,有5×4×3=60种方法;若将遥控车给小玉,则智力拼图要给小强,此时也有60 种方法;若遥控车既不给小强、也不给小玉,则智力拼图要给小强,学习机要给小 玉,此时仍然有60种方法.所以共有60+60+60=180种方法.
甲地到丁地有3条路可走,从丁地到丙地也有3条路,请问从
甲地到丙地共有多少种不同走法?
甲
乙
从甲地到丙地有两种方法:第一类,从甲地经
过乙地到丙地,根据乘法原理,走法一共有
4×2=8种方法,;第二类,从甲地经过丁地到
丁
丙
丙地,一共有3×3=9种方法.根据加法原理,
一共有8+9=17种走法.
例3
如下图,八面体有12条棱,6个顶点.一只蚂蚁从顶点取出一面、两面或三面排成一行表示
各种信号,问:共可以表示多少种不同的信号?
分3种情况: ⑴取出一面,有5种信号; ⑵取出两面:可以表示5×4=20种信号; ⑶取出三面:可以表示:5×4×3=60种信号; 由加法原理,一共可以表示:5+20+60=85种信号. 第三类,三种颜色:4×3×2=24 所以,根据加法原理,一共可以表示2+36+24=62种不同的信号. (二)白棋打头的信号,后两面旗有4×4=16种情况.所以白棋不打头的信号有62-16=46种 .
小红和小明举行象棋比赛,按比赛规定,谁先胜头两局谁赢
小学四年级奥数竞赛班《加乘原理与归纳递推》
加乘原理与归纳递推是一种数学思维学习方法,它可以帮助学生更有
效地掌握知识和解决问题。
加乘原理是指,如果将两个数A和B相加,同时将这两个数分别乘以
一个数C,那么我们得到的结果是:(A+B)C=AC+BC。
这种思维原理可以用
来解决一些计算方面的问题,如几何图形的分析、几何问题的求解等等。
归纳递推是指,从一个具有特定特征的基本元素出发,通过研究它的
特征并将其包含在其他元素当中,这样就可以一步步地求得一系列新元素
的特征及它们之间的关系。
此外,归纳递推还可以更详细地分析其中一元素,比如一个几何图形,从而理解它的形状与特征。
在学习数学时,学生应该结合加乘原理和归纳递推来学习,不仅可以
更好地理解课程内容,还可以更好地记住。
在解决实际数学问题时,也可
以考虑使用加乘原理和归纳递推等数学思维方法,从而更容易地解决问题。
尤其是学习奥数时,更需要学生学习加乘原理与归纳递推的思维方法,可以使孩子们记忆数学知识和掌握解题的思维模式更加系统化,让孩子们
更有效的解决问题,从而取得更好的学习成绩。
因此,在小学四年级的奥数竞赛班中。
小学奥数7-3-3 加乘原理之数字问题(二).专项练习及答案解析
1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题.在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一..不可..的.,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 用数字1,2组成一个八位数,其中至少连续四位都是1的有多少个?【考点】加乘原理之综合运用 【难度】3星 【题型】解答【解析】 将4个1看成一个整体,其余4个数有5种情况:4个2、3个2、2个2、1个2和没有2;①4个2时,4个1可以有5种插法;②3个2时,3个2和1个1共有4种排法,每一种排法有4种插法,共有4416⨯=种;③2个2时,2个2和2个1共有6种排法,每一种排法有3种插法,共有6318⨯=种;④1个2时,1个2和3个1共有4种排法,每一种排法有2种插法,共有428⨯=种;⑤没有2时,只有1种;所以,总共有:516188148++++=个.答:至少连续四位都是1的有48个.【答案】48教学目标 例题精讲 知识要点7-3-3.加乘原理之数字问题(二)【例 2】七位数的各位数字之和为60 ,这样的七位数一共有多少个?【考点】加乘原理之综合运用【难度】3星【题型】解答【解析】七位数数字之和最多可以为9763⨯=.63603-=.七位数的可能数字组合为:①9,9,9,9,9,9,6.第一种情况只需要确定6的位置即可.所以有6种情况.②9,9,9,9,9,8,7.第二种情况只需要确定8和7的位置,数字即确定.8有7个位置,7有6个位置.所以第二种情况可以组成的7位数有7642⨯=个.③9,9,9,9,8,8,8,第三种情况,3个8的位置确定即7位数也确定.三个8的位置放置共有765210⨯⨯=种.三个相同的8放置会产生3216⨯⨯=种重复的放置方式.所以3个8和4个9组成的不同的七位数共有210635÷=种.所以数字和为60的七位数共有3542784++=.【答案】84【例 3】从自然数1~40中任意选取两个数,使得所选取的两个数的和能被4整除,有多少种取法?【考点】加乘原理之综合运用【难度】3星【题型】解答【解析】2个数的和能被4整除,可以根据被4除的余数分为两类:÷=(个),10个中选2个,有第一类:余数分别为0,0.1~40中能被4整除的数共有40410⨯÷=(种)取法;109245⨯=(种)取法;第二类:余数分别为1,3.1~40中被4除余1,余3的数也分别都有10个,有1010100第三类:余数分别为2,2.同第一类,有45种取法.根据加法原理,共有4510045190++=(种)取法.【答案】190【例 4】从1,3,5,7中任取3个数字组成没有重复数字的三位数,这些三位数中能被3整除的有个。
辽宁省小学奥数系列7-3加乘原理综合应用(二)
辽宁省小学奥数系列7-3加乘原理综合应用(二)姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、 (共41题;共185分)1. (5分)在1000到1999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?2. (5分)国际象棋棋盘是8×8的方格网,下棋的双方各有16个棋子位于16个区格中,国际象棋中的“车”同中国象棋中的“车”一样都可以将位于同一条横行或竖行的对方棋子吃掉,如果棋局进行到某一时刻,下棋的双方都只剩下一个“车”,那么这两个“车”位置有多少种情况?3. (5分)从1到500的所有自然数中,不含有数字4的自然数有多少个?4. (5分)用0,1,2,3四个数码可以组成多少个没有重复数字的四位偶数?5. (5分)如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?6. (5分)小刘有2种牙膏和3把牙刷,每次1把牙刷配一种牙膏,有几种不同的配法?请写具体方法来.7. (5分)如下图所示,从A地去B地有5种走法,从B地去C地有3种走法,那么李明从A地经B地去C 地有多少种不同的走法?8. (5分)从1到300的所有自然数中,不含有数字2的自然数有多少个?9. (5分)某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色,共有多少种不同的染色方法?10. (5分)题库中有三种类型的题目,数量分别为30道、40道和45道,每次考试要从三种类型的题目中各取一道组成一张试卷.问:由该题库共可组成多少种不同的试卷?11. (1分)每人选一种主食和一种菜,共有________种搭配方法?________种12. (1分)舞蹈兴趣小组有两名男生和三名女生,某个舞蹈表演需要一名男生和一名女生合作演出,共有________ 种不同的搭配方法.13. (1分)用5、7、9三个数字可以组成________ 个不同的三位数.14. (1分)聪聪从家到姥姥家,然后去水上乐园,有________种乘车方法?15. (5分)一把钥匙开一把锁,现在有五片钥匙五把锁,最多试几次可以打开所有锁?16. (5分)从上海到杭州,可乘汽车、火车和飞机.已知一天中汽车有3班,火车有7班,飞机有2班,从上海到杭州共有多少种不同的走法?17. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?18. (5分)有5个同学,他们每两人互相送一件礼物,一共要送多少件礼物?19. (5分)小明要为家里买一瓶花,花店里有2种花瓶和3种花束,一共有多少种买法?请你用线连一连,再回答.20. (5分)从公园到动物园有4条路,从动物园到植物园有3条路,从公园经过动物园到植物园有几种走法?21. (5分)22. (5分)自然数8336,8545,8782有一些共同特征,每个数都是以8开头的四位数,且每个数中恰好有两个数字相同.这样的数共有多少个?23. (5分)商店里有2种巧克力糖:牛奶味、榛仁味;有3种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友.(1)如果小明只买一种糖,他有几种选法?(2)如果小明想买水果糖、巧克力糖各种,他有几种选法?24. (5分)用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?25. (5分)用图中棱长为1厘米的小正方体拼成新的正方体,并给拼成的正方体的六个面涂上颜色,有的小正方体被包在里面,一个面都不能涂到颜色,观察后填表:拼成的正方体的棱长(厘米)12345n小正方体的个数被包的小正方体的个数26. (5分)如右图,有A、B、C、D、E五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式?27. (5分)某人忘记了自己的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?28. (5分)如下图,一只蜜蜂从处出发,回到家里处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法?29. (5分)分别用五种颜色中的某一种对下图的,,,,,六个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?30. (5分)将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?31. (5分)从学校经过百鸟园到猴山,有哪几条路可以走,请列举出来.32. (5分)小红家到书店有两条路,书店到少年宫有三条路。
云南省普洱市数学小学奥数系列7-3加乘原理综合应用(二)
云南省普洱市数学小学奥数系列7-3加乘原理综合应用(二)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共41题;共185分)1. (5分)刘佳国庆节到北京旅游,她带了白色和黄色两件上衣,蓝色、黑色和红色3条裤子,她任意拿一件上衣和一条裤子穿上,共有多少种可能?2. (5分)五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演节目.如果贝贝和妮妮不相邻,共有多少种不同的排法?3. (5分)在1000到1999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?4. (5分)如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?5. (5分)小刘有2种牙膏和3把牙刷,每次1把牙刷配一种牙膏,有几种不同的配法?请写具体方法来.6. (5分)用0~9这十个数字可组成多少个无重复数字的四位数.7. (5分)要从四年级六个班中评选出学习、体育、卫生先进集体,有多少种不同的评选结果?8. (5分)如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?9. (5分)如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块……,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?10. (5分)题库中有三种类型的题目,数量分别为30道、40道和45道,每次考试要从三种类型的题目中各取一道组成一张试卷.问:由该题库共可组成多少种不同的试卷?11. (1分)(2010·邯郸) 六个同学排成一排照相,共有________种不同的排法。
广东省韶关市数学小学奥数系列7-3加乘原理综合应用(二)
广东省韶关市数学小学奥数系列7-3加乘原理综合应用(二)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共41题;共185分)1. (5分)商店里有2种巧克力糖:牛奶味、榛仁味;有3种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友.(1)如果小明只买一种糖,他有几种选法?(2)如果小明想买水果糖、巧克力糖各种,他有几种选法?2. (5分)一个三位数,如果它的每一位数字都不小于另一个三位数对应数位上的数字,就称它“吃掉”另一个三位数,例如:532吃掉311,123吃掉123,但726与267相互都不被吃掉.问:能吃掉678的三位数共有多少个?3. (5分)自然数8336,8545,8782有一些共同特征,每个数都是以8开头的四位数,且每个数中恰好有两个数字相同.这样的数共有多少个?4. (5分)请把从猴山到飞禽馆的所有路线写出来 .5. (5分)某人忘记了自己的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?6. (5分)如图列出甲、乙和丙之间的交通方法,现在由乙出发,再回乙,途中需经过甲但不可经过乙,又不准走重复的路线,问共有多少种不同的去法?7. (5分)如下图所示,从A地去B地有5种走法,从B地去C地有3种走法,那么李明从A地经B地去C 地有多少种不同的走法?8. (5分)用数字0,1,2,3,4可以组成多少个小于1000的自然数?9. (5分)(1)由3、6、9这3个数字可以组成多少个没有重复数字的三位数?(2)由3、6、9这3个数字可以组成多少个三位数?10. (5分)在下图的方格内放入五枚棋子,要求每行、每列都只能有一枚棋子,共有多少种放法?11. (1分)用1~9可以组成________个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成________个满足要求的三位数?12. (1分) (2017三上·市南区期末) 每天上学小红都到小丽家约她一起去学校(如图).小红去学校一共有________种不同的走法.13. (1分)小华、小红、小芳3人,每两人互通一次电话,要通________ 次电话,每两人互寄一张卡片,一共要寄________ 张卡片.14. (1分)奥运吉祥物中的个“福娃”取“北京欢迎您”的谐音:贝贝、晶晶、欢欢、迎迎、妮妮.如果在盒子中从左向右放个不同的“福娃”,那么,有________种不同的放法.【第六届小学“希望杯”全国数学邀请赛15. (5分)往返于南京和上海之间的沪宁高速列车沿途要停靠常州、无锡、苏州三站.问:铁路部门要为这趟车准备多少种车票?16. (5分)从甲地到乙地有3条直达公路,还有5条直达铁路,那么从甲地到乙地共有多少种不同的走法?17. (5分)在1000到1999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?18. (5分)如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?19. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?20. (5分)从1到500的所有自然数中,不含有数字4的自然数有多少个?21. (5分)一次象棋比赛共有10名选手参加,他们分别来自甲、乙、丙三个队,每个选手都与其余9名选手各赛1盘,每盘棋的胜者得1分,负者得0分,平局双方各得0.5分.结果,甲队选手平均得4.5分,乙队选手平均得3.6分,丙队选手平均得9分.那么,甲、乙、丙三队参加比赛的选手人数各多少?22. (5分)刘佳国庆节到北京旅游,她带了白色和黄色两件上衣,蓝色、黑色和红色3条裤子,她任意拿一件上衣和一条裤子穿上,共有多少种可能?23. (5分)如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?24. (5分)用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?25. (5分)用图中棱长为1厘米的小正方体拼成新的正方体,并给拼成的正方体的六个面涂上颜色,有的小正方体被包在里面,一个面都不能涂到颜色,观察后填表:拼成的正方体的棱长(厘米)12345n小正方体的个数被包的小正方体的个数26. (5分)如右图,有A、B、C、D、E五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式?27. (5分)在1000至1999这些自然数中个位数大于百位数的有多少个?28. (5分)从甲地到乙地,每天有2班轮船,4班火车,6班汽车,那么这一天中乘坐这些交通工具,从甲地到乙地共有多少种走法?29. (5分)分别用五种颜色中的某一种对下图的,,,,,六个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?30. (5分)将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?31. (5分)从学校经过百鸟园到猴山,有哪几条路可以走,请列举出来.32. (5分)小刘有2种牙膏和3把牙刷,每次1把牙刷配一种牙膏,有几种不同的配法?请写具体方法来.33. (5分)(1)小丽上学共有几条路线?(2)算一算,小丽上学最近的路线有多少米?34. (5分)用0~9这十个数字可组成多少个无重复数字的四位数.35. (5分)在下图的每个区域内涂上、、、四种颜色之一,使得每个圆里面恰有四种颜色,则一共有________种不同的染色方法.36. (5分)请用你所学的“解决问题的策略”,解决下面的问题.数学信息(图1)问题(图2)37. (5分)五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演节目.如果贝贝和妮妮不相邻,共有多少种不同的排法?38. (1分)(2010·邯郸) 六个同学排成一排照相,共有________种不同的排法。
浙江省温州市数学小学奥数系列7-3加乘原理综合应用(二)
浙江省温州市数学小学奥数系列7-3加乘原理综合应用(二)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共41题;共185分)1. (5分)在1000至1999这些自然数中个位数大于百位数的有多少个?2. (5分)如图,地图上有A,B,C,D四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法?3. (5分)用数字0,1,2,3,4可以组成多少个小于1000的自然数?4. (5分)如下图所示,从A地去B地有5种走法,从B地去C地有3种走法,那么李明从A地经B地去C 地有多少种不同的走法?5. (5分)从公园到动物园有4条路,从动物园到植物园有3条路,从公园经过动物园到植物园有几种走法?6. (5分)从1到100的所有自然数中,不含有数字4的自然数有多少个?7. (5分)从1到500的所有自然数中,不含有数字4的自然数有多少个?8. (5分)在1000到1999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?9. (5分)按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?10. (5分)题库中有三种类型的题目,数量分别为30道、40道和45道,每次考试要从三种类型的题目中各取一道组成一张试卷.问:由该题库共可组成多少种不同的试卷?11. (1分)小明要买一本数学课外书和一本语文课外书.在书店里他发现4种数学课外书、5种语文课外可供选用.他有________种不同的选择方法?12. (1分) (2018三上·山东月考) 从小丽家到博物馆一共有________条不同的路线。
13. (1分)张老师有50分和80分的邮票各两枚.他用这些邮票能付________ 种邮资(寄信时需要付的钱数).14. (1分)用1~9可以组成________个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成________个满足要求的三位数?15. (5分)从上海到杭州,可乘汽车、火车和飞机.已知一天中汽车有3班,火车有7班,飞机有2班,从上海到杭州共有多少种不同的走法?16. (5分)如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?17. (5分)某人忘记了自己的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?18. (5分)邮递员投递邮件由A村去B村的道路有3条,由B村去C村的道路有2条,那么邮递员从A村经B村去C村,共有多少种不同的走法?19. (5分)要从四年级六个班中评选出学习、体育、卫生先进集体,有多少种不同的评选结果?20. (5分)(1)小丽上学共有几条路线?(2)算一算,小丽上学最近的路线有多少米?21. (5分)有个选手进行乒乓球单循环赛,结果每人获胜局数各不相同,那么冠军胜了几局?22. (5分)刘佳国庆节到北京旅游,她带了白色和黄色两件上衣,蓝色、黑色和红色3条裤子,她任意拿一件上衣和一条裤子穿上,共有多少种可能?23. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?24. (5分)用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?25. (5分)用图中棱长为1厘米的小正方体拼成新的正方体,并给拼成的正方体的六个面涂上颜色,有的小正方体被包在里面,一个面都不能涂到颜色,观察后填表:拼成的正方体的棱长(厘米)12345n小正方体的个数被包的小正方体的个数26. (5分)如右图,有A、B、C、D、E五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式?27. (5分)小红家到书店有两条路,书店到少年宫有三条路。
山西省临汾市数学小学奥数系列7-3加乘原理综合应用(二)
山西省临汾市数学小学奥数系列7-3加乘原理综合应用(二)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共41题;共185分)1. (5分)用数码0,1,2,3,4,可以组成多少个小于1000的没有重复数字的自然数?2. (5分)用数字0,1,2,3,4可以组成多少个:(1)三位数?(2)没有重复数字的三位数?3. (5分)从1到100的所有自然数中,不含有数字4的自然数有多少个?4. (5分)小红家到书店有两条路,书店到少年宫有三条路。
小红从家经过书店到少年宫,有多少种不同的走法?5. (5分)如图列出甲、乙和丙之间的交通方法,现在由乙出发,再回乙,途中需经过甲但不可经过乙,又不准走重复的路线,问共有多少种不同的去法?6. (5分)小刘有2种牙膏和3把牙刷,每次1把牙刷配一种牙膏,有几种不同的配法?请写具体方法来.7. (5分)刘佳国庆节到北京旅游,她带了白色和黄色两件上衣,蓝色、黑色和红色3条裤子,她任意拿一件上衣和一条裤子穿上,共有多少种可能?8. (5分)(1)由数字1、2可以组成多少个两位数?(2)由数字1、2可以组成多少个没有重复数字的两位数?9. (5分)北京到广州之间有10个站,其中只有两个站是大站(不包括北京、广州),从大站出发的车辆可以配卧铺,那么铁路局要准备多少种不同的卧铺车票?10. (5分)在下图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?11. (1分)配成一套衣服,有________种不同的搭配方法?12. (1分)用2、3、7、8四个数字组成四位数,每个数中不许有重复数字,一共可以组成18个的不同的四位数.________ . (判断对错)13. (1分)说出乘法算式中各部分的名称:14. (1分)看图回答________次15. (5分)某人忘记了自己的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?16. (5分)从上海到杭州,可乘汽车、火车和飞机.已知一天中汽车有3班,火车有7班,飞机有2班,从上海到杭州共有多少种不同的走法?17. (5分)用0~9这十个数字可组成多少个无重复数字的四位数.18. (5分)如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?19. (5分)自然数8336,8545,8782有一些共同特征,每个数都是以8开头的四位数,且每个数中恰好有两个数字相同.这样的数共有多少个?20. (5分)学校为艺术节选送节目,要从8个合唱节目中选出4个,2个舞蹈节目中选出一个,一共有多少种不同的选送方案?21. (5分)用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?22. (5分)邮递员投递邮件由A村去B村的道路有3条,由B村去C村的道路有2条,那么邮递员从A村经B村去C村,共有多少种不同的走法?23. (5分)在1000至1999这些自然数中个位数大于百位数的有多少个?24. (5分)用图中棱长为1厘米的小正方体拼成新的正方体,并给拼成的正方体的六个面涂上颜色,有的小正方体被包在里面,一个面都不能涂到颜色,观察后填表:拼成的正方体的棱长(厘米)12345n小正方体的个数被包的小正方体的个数25. (5分)用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?26. (5分)如右图,有A、B、C、D、E五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式?27. (5分)(1)小丽上学共有几条路线?(2)算一算,小丽上学最近的路线有多少米?28. (5分)一列火车从上海开到南京,中途要经过6个站,这列火车要准备多少种不同的车票?29. (5分)分别用五种颜色中的某一种对下图的,,,,,六个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?30. (5分)将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?31. (5分)从公园到动物园有4条路,从动物园到植物园有3条路,从公园经过动物园到植物园有几种走法?32. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?33. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?34. (5分)从1到500的所有自然数中,不含有数字4的自然数有多少个?35. (5分)将1332,332,32,2这四个数的10个数码一个一个的划掉,要求先划位数最多的数的最小数码,共有多少种不同的划法?36. (5分)请用你所学的“解决问题的策略”,解决下面的问题.数学信息(图1)问题(图2)37. (5分)在下图中,一只蚂蚁要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只蚂蚁最多有几种不同走法?38. (1分)给布娃娃穿衣服,一共有________种穿法?39. (5分)一个三位数,如果它的每一位数字都不小于另一个三位数对应数位上的数字,就称它“吃掉”另一个三位数,例如:532吃掉311,123吃掉123,但726与267相互都不被吃掉.问:能吃掉678的三位数共有多少个?40. (5分)有6种不同颜色的笔,来写“学习改变命运”这六个字,要求相邻字的颜色不能相同,有多少种不同的方法?41. (5分)五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演节目.如果贝贝和妮妮不相邻,共有多少种不同的排法?参考答案一、 (共41题;共185分)1-1、2-1、2-2、3-1、4-1、5-1、6-1、7-1、8-1、8-2、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、26-1、27-1、28-1、29-1、30-1、31-1、32-1、33-1、34-1、35-1、36-1、37-1、38-1、39-1、40-1、41-1、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省湛江市数学小学奥数系列7-3加乘原理综合应用(二)
姓名:________ 班级:________ 成绩:________
亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!
一、 (共41题;共185分)
1. (5分)文艺活动小组有3名男生,4名女生,从男、女生中各选1人做领唱,有多少种选法?(4级)
2. (5分)在下图的街道示意图中,有几处街区有积水不能通行,那么从A到B的最短路线有多少种?
3. (5分)刘佳国庆节到北京旅游,她带了白色和黄色两件上衣,蓝色、黑色和红色3条裤子,她任意拿一件上衣和一条裤子穿上,共有多少种可能?
4. (5分)用数字0,1,2,3,4可以组成多少个小于1000的自然数?
5. (5分)五种颜色不同的信号旗,各有5面,任意取出三面排成一行,表示一种信号,问:共可以表示多少种不同的信号?
6. (5分)在1000到1999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?
7. (5分)有5个同学,他们每两人互相送一件礼物,一共要送多少件礼物?
8. (5分)如下图,一只蜜蜂从处出发,回到家里处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法?
9. (5分) 1、2、3、4四个数字,从小到大排成一行,在这四个数中间,任意插入乘号(最少插一个乘号),可以得到多少个不同的乘积?
10. (5分)有五张卡,分别写有数字1、2、4、5、8.现从中取出3张卡片,并排放在一起,组成一个三位数,问:可以组成多少个不同的偶数?
11. (1分)有一些四位数,它们由4个互不相同且不为零的数字组成,并且这4个数字和等于12.将所有这样的四位数从小到大依次排列,第35个为________.
12. (1分)过年了,妈妈买了7件不同的礼物,要送给亲朋好友的5个孩子每人一件.其中姐姐的儿子小强想从智力拼图和遥控汽车中选一个,朋友的女儿小玉想从学习机和遥控汽车中选一件.那么,妈妈送出这5件礼物共有________种方法.
13. (1分)新来的教学楼管理员拿15把不同的钥匙去开15个教室的站,但是不知哪一把钥匙开哪一个门,他最多试开________ 次,就可将钥匙与教室门锁配对.
14. (1分)先选择策略,再解决问题.
某商店有两种电话机,一种是按键的,一种是转盘的.每种电话机又有红、黄、绿3种颜色.每种颜色的电话机又有方、圆两种形状.一共有________种款式的电话机可供顾客选择?
15. (5分)在2000到2999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?
16. (5分)如下图,八面体有12条棱,6个顶点.一只蚂蚁从顶点出发,沿棱爬行,要求恰好经过每一个顶点一次.问共有多少种不同的走法?
17. (5分)往返于南京和上海之间的沪宁高速列车沿途要停靠常州、无锡、苏州三站.问:铁路部门要为这趟车准备多少种车票?
18. (5分)小红家到书店有两条路,书店到少年宫有三条路。
小红从家经过书店到少年宫,有多少种不同的走法?
19. (5分)从公园到动物园有4条路,从动物园到植物园有3条路,从公园经过动物园到植物园有几种走法?
20. (5分)某人忘记了自己的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?
21. (5分)下面哪两行数字的排列规律相同?请画“√"。
22. (5分)如下图所示,从A地去B地有5种走法,从B地去C地有3种走法,那么李明从A地经B地去C 地有多少种不同的走法?
23. (5分)从6名运动员中选出4人参加接力赛,求满足下列条件的参赛方案各有多少种:
(1)甲不能跑第一棒和第四棒;
(2)甲不能跑第一棒,乙不能跑第二棒
24. (5分)用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?
25. (5分)用图中棱长为1厘米的小正方体拼成新的正方体,并给拼成的正方体的六个面涂上颜色,有的小正方体被包在里面,一个面都不能涂到颜色,观察后填表:
拼成的正方体的棱长(厘米)12345n
小正方体的个数
被包的小正方体的个数
26. (5分)从学校经过百鸟园到猴山,有哪几条路可以走,请列举出来.
27. (5分)从北京到广州可以选择直达的飞机和火车,也可以选择中途在上海或者武汉作停留,已知北京到上海、武汉和上海、武汉到广州除了有飞机和火车两种交通方式外还有汽车.问,从北京到广州一共有多少种交通方式供选择?
28. (5分)从分别写有2、4、6、8的四张卡片中任取两张,做两个一位数乘法。
如果其中的6可以看成9,那么共有多少种不同的乘积?
29. (5分)
(1)由数字1、2可以组成多少个两位数?
(2)由数字1、2可以组成多少个没有重复数字的两位数?
30. (5分)从甲地到乙地,每天有2班轮船,4班火车,6班汽车,那么这一天中乘坐这些交通工具,从甲地到乙地共有多少种走法?
31. (5分)某条铁路线上,包括起点和终点在内原来共有7个车站,现在新增了3个车站,铁路上两站之间往返的车票不一样,那么,这样需要增加多少种不同的车票?
32. (5分)一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有多少种不同走法?
33. (5分)红、黄、蓝、白四种颜色不同的小旗,各有2,2,3,3面,任意取出三面按顺序排成一行,表示一种信号,问:共可以表示多少种不同的信号?如果白旗不能打头又有多少种?
34. (5分)某次大连与庄河路线的火车,一共有6个停车点,铁路局要为这条路线准备多少种不同的车票?
35. (5分)想一想,如果在他们中每次选三人排在一起照相,有________种不同的排法?
36. (5分)奥苏旺大陆上的居民使用的文字非常独特,他们文字的每个单词都由个字母、、、
、组成,并且所有的单词都有着如下的规律,⑴字母不打头,⑵单词中每个字母后边必然紧跟着字母,⑶ 和不会出现在同一个字母之中,那么由四个字母构成的单词一共有多少种?
37. (5分)在下图的方格内放入五枚棋子,要求每行、每列都只能有一枚棋子,共有多少种放法?
38. (1分)按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?
39. (5分)如右图,有A、B、C、D、E五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式?
40. (5分)分别用五种颜色中的某一种对下图的,,,,,六个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?
41. (5分)将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?
参考答案
一、 (共41题;共185分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
19-1、
20-1、
21-1、
22-1、
23-1、
23-2、
24-1、
25-1、
26-1、
27-1、
28-1、
29-1、
29-2、
30-1、
31-1、
32-1、
33-1、
34-1、
35-1、
36-1、
37-1、
38-1、
39-1、
40-1、
41-1、。