聚酰胺的合成方法和应用及其进展)

合集下载

功能性聚酰胺纤维技术研究新进展

功能性聚酰胺纤维技术研究新进展

综述与专论合成纤维工业,2023,46(3):53CHINA㊀SYNTHETIC㊀FIBER㊀INDUSTRY㊀㊀收稿日期:2022-08-28;修改稿收到日期:2023-04-12㊂作者简介:李婷婷(1995 ),女,硕士生,主要研究方向为功能性化纤及纺织复合材料㊂E-mail:1522063766@㊂功能性聚酰胺纤维技术研究新进展李婷婷1,2(1.江苏新视界先进功能纤维创新中心有限公司,江苏苏州215228;2.国家先进功能纤维创新中心,江苏苏州215228)摘㊀要:详述了功能性聚酰胺纤维的各种改性技术及其研究进展,介绍了 十四五 期间聚酰胺纤维的相关政策,并对功能性聚酰胺纤维今后的发展提出建议㊂功能性聚酰胺纤维的制备技术主要包括物理改性㊁化学改性和生物基聚酰胺技术,其中物理改性主要有共混法㊁复合纺丝法㊁纤维截面异形化及静电纺丝技术,化学改性主要有共聚法㊁原位聚合法及表面化学改性,生物基聚酰胺技术主要是开发具有自主知识产权的生物基聚酰胺56纤维㊂ 十四五 期间关于聚酰胺纤维需要重点突破的关键技术有聚酰胺6熔体直纺技术㊁高品质差别化纤维技术㊁生物基聚酰胺纤维规模化生产技术等㊂功能性聚酰胺纤维未来的发展应向着绿色化和可循环再生方向发展,重点在研发多功能复合型聚酰胺纤维,突破生物基聚酰胺56大容量连续聚合及熔体直纺关键技术,加快实现静电纺丝功能性聚酰胺纤维产业化㊂关键词:聚酰胺纤维㊀功能性纤维㊀物理改性㊀化学改性㊀生物基聚酰胺㊀技术进展中图分类号:TQ342+.1㊀㊀文献标识码:A㊀㊀文章编号:1001-0041(2023)03-0053-06㊀㊀随着生活水平的提高,人们对纺织品已经不只是要求蔽体㊁保暖,纺织品的保健㊁舒适等功能性也是关注的重点㊂聚酰胺纤维具有拉伸强度高㊁弹性大㊁耐磨性好等优点,被广泛应用于服用㊁装饰用和工业用纺织品等领域,但传统的聚酰胺纤维存在耐热性㊁吸湿性和染色性较差等缺点㊂为改善聚酰胺纤维的缺点,众多研究者开展了对传统聚酰胺纤维的功能改性研究,各种功能性聚酰胺纤维也随着国内外化纤行业中新技术㊁新设备的不断涌现而被开发和应用㊂功能性聚酰胺纤维是指通过对普通聚酰胺改性或采用生物基聚酰胺得到的具有某些特殊功能的聚酰胺纤维㊂功能性聚酰胺纤维的制备技术主要包括物理改性㊁化学改性和生物基聚酰胺技术㊂其中,物理改性包括共混法㊁复合纺丝法㊁纤维截面异形化和静电纺丝法等;化学改性包括共聚法㊁原位聚合法及表面化学改性等[1]㊂此外,生物基聚酰胺也是目前功能性聚酰胺纤维的研发热点之一㊂作者综述了功能性聚酰胺纤维的不同改性技术及其研究进展,以及近两年国家的相关政策方针,并对今后聚酰胺纤维功能改性技术的发展提出建议㊂1㊀物理改性1.1㊀共混法共混法是聚合物改性的一种常用方法,通常是将无机小分子㊁有机低分子或有机高分子与聚酰胺切片共混㊁熔融纺丝制备功能性聚酰胺纤维㊂杜邦公司在共混改性领域的研究较多,在20世纪80年代就开展了对聚酰胺共混改性的研究㊂共混改性适合微观尺寸较大的添加剂或改性剂,其工艺简单,可用于常规纺丝设备生产,纤维的物理性能可以达到常规纤维的质量要求㊂HAN J [2]采用溶液聚合法,以4-乙烯基吡啶㊁甲基丙烯酸甲酯及2-(全氟辛基)合成长链季铵盐(NP),将NP 与聚己内酰胺(PA 6)混合,通过熔融纺丝及拉伸制得抗菌PA 6纤维,与纯PA 6纤维相比,在经过洗涤7d 后仍能灭活96%以上的接种大肠杆菌和金黄色葡萄球菌㊂CHEN T等[3]将聚己二酰己二胺(PA 66)分别和球磨法处理后的对羧基化的多壁碳纳米管及十二烷基苯磺酸钠改性的碳纳米管共混熔融纺丝制备复合纤维,复合纤维拉伸强力相比于纯PA 66纤维分别提高27%和24%㊂袁修钦[4]通过在熔融纺丝过程中添加黑色母㊁自发热粉体㊁抗菌粉体,与PA 6共混熔融纺丝制备黑色PA 6纤维㊁自发热PA 6纤维㊁抗菌PA6纤维,黑色PA6纤维具有较好的黑色光泽性,抗菌PA6纤维对大肠杆菌具有90%以上的杀菌率㊂赖慧玲[5]将PA6与一种新型架状硅酸盐(QE粉)熔融共混,经双螺杆挤出㊁造粒得到QE/PA6母粒,使用高速纺丝机通过纺丝㊁拉伸一步法工艺制备QE/PA6并列复合纤维,纤维在UVA波段(320~400nm)的透过率较纯PA6纤维降低20%~35%,说明复合纤维较纯PA6纤维的抗紫外性能有明显提升㊂蔡倩等[6-7]以季戊四醇磷酸酯(PEPA)㊁二乙基次膦酸铝(ADEP)和三聚氰胺磷酸盐(MPP)为阻燃剂,共混熔融制备阻燃PA6,结果表明将质量比为3 1的PEPA和MPP复配加入PA6中,具有一定的协同阻燃效果,当阻燃剂总质量分数为20%时,共混体系的极限氧指数(LOI)为28%,阻燃等级为UL-94V-2级㊂共混改性是制备功能性聚酰胺纤维的常见方法,工艺简单,可通过添加不同的改性剂制备具有不同功能的聚酰胺纤维,如阻燃㊁抗菌㊁抗紫外聚酰胺纤维等㊂1.2㊀复合纺丝法复合纺丝法是将两种或两种以上不同化学组成或不同浓度的纺丝流体同时通过一个具有特殊分配系统的喷丝头制得复合纤维[8]㊂复合纤维以皮芯结构和海岛结构为主㊂何淑霞等[9]以二甲苯作为开纤剂,制得PA6/聚乙烯(PE)海岛型复合超细纤维㊂甘宇等[10]制备了聚酰胺/聚酯皮芯型复合纤维,当两组分熔体温度差较小㊁黏度相近时,更易制备结构稳定和性能较好的复合纤维㊂李顺希等[11]以高密度聚乙烯(HDPE)为皮,以PA6为芯,通过皮芯复合纺丝制备HDPE/PA6复合纤维,当以HDPE与PA6切片的质量比为40 60进行复合纺丝时,制备的复合纤维断裂强度较高,达到3.57~3.82cN/dt-ex,且复合纤维面料具有较好的接触凉感性能,接触凉感系数达0.23J/(cm2㊃s)㊂崔晓玲等[12]以聚苯硫醚(PPS)为皮层㊁PA6为芯层,制备PPS/ PA6偏心皮芯型复合纤维,拉伸后得到具有三维卷曲性能的纤维,改善了纤维的蓬松性,并且在酸处理后,芯层PA6被腐蚀,形成C形截面纤维,有利于改善复合纤维过滤材料的过滤性能㊂复合纺丝技术是制造超细纤维的重要手段之一,可以实现改善纤维的吸湿性㊁永久卷曲性㊁蓬松性,尤其是可以开发力学性能优异的超细聚酰胺纤维㊂1.3㊀纤维截面异形化纤维截面异形化是指采用特殊形状的喷丝孔纺制非圆形截面的异形纤维,如三角形㊁星形和Y 形纤维等㊂纤维截面异形化是制备功能纤维的一种重要方法,异形截面纤维具有特殊的光泽㊁膨松性和耐污性,并具有抗起球性,能改善纤维的回弹性等㊂2014年日本东丽公司推出的速干尼龙纤维产品Salacona是通过六叶形截面尼龙纤维与圆形截面尼龙纤维的混纺丝所产生的毛细现象来实现快速吸汗[13]㊂陈立军等[14]通过母粒法共混熔融纺丝制备圆形㊁三角形和十字形截面的PA6/石墨烯复合纤维,纤维截面异形度显著增加,具有较好的负离子释放功能㊁远红外保健效果,以及优异的吸湿和干燥效果,其中十字形截面纤维异形度达58.29%,负离子释放浓度最高达1820个/cm3,远红外法向发射率达0.93,远红外辐射温升为1.70ħ,3h吸水率达4.4%,1h失水率达到2.6%㊂凌荣根等[15]采用纳米级负氧离子粉体改性PA6制备功能母粒,与PA6切片进行共混纺丝,制备出扁平形及三叶形的PA6纤维,纤维异形度达40%以上,因比表面积大更容易释放负氧离子,其释放负离子浓度达到4560个/cm3,三叶形PA6纤维还具有优良的毛细芯吸作用和干爽的手感,所制备的织物具有良好的悬垂性㊁吸汗㊁清凉感和快干特点,适合夏季等高热湿环境㊂赵晓敏[16]首先使用硅烷偶联剂KH550对纳米级玉石粉㊁氮化铝粉㊁碳化硅粉进行改性处理,通过熔融共混制备改性PA6切片,采用熔融纺丝法制备十字形截面PA6纤维;再对其进行织造,得到凉感PA6织物,织物的芯吸高度达102mm,符合国家标准中对织物吸湿性指标的规定㊂与常规纤维相比,纤维截面异形化显著增加了纤维截面异形度,改善了纤维的膨松性㊁吸湿性㊁光泽㊁弹性等,可用于开发速干型纺织品及其他功能性纺织品㊂1.4㊀静电纺丝法静电纺丝法[17]是一种新型的物理改性方法,将不同性质㊁相对分子质量的聚合物和活性成分通过静电纺丝加工成纳米级纤维,可改善纤维的孔隙结构㊁亲水性㊁催化性㊁抗菌性和生物相容性等,使其在吸附分离㊁污水处理㊁生物传感㊁防护㊁空气过滤㊁智能穿戴及组织工程等不同领域和场45㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年第46卷景具有广泛的应用前景㊂ZHANG H T等[18]采用静电纺丝技术制备PA6/壳聚糖复合纳米纤维膜,壳聚糖的添加提高了纳米纤维膜的亲水性㊂M.FAZELI[19]采用静电纺丝技术成功制备PA6/壳聚糖纳米复合膜,纤维中PA6和壳聚糖之间存在分子间相互作用,形成新的氢键,且纳米复合膜的电导率随着壳聚糖含量的增加而提高㊂J.S.JEONG等[20]采用静电纺丝技术制备多壁碳纳米管/PA66复合纳米纤维,随着多壁碳纳米管的添加纤维的电性能得到改善㊂牛小连[21]以PA6/PA66为基质,通过静电纺丝和仿生矿化等技术开发出仿生人工骨修复材料㊂熔体静电纺丝法与溶液静电纺丝法相比,具有无溶剂污染㊁产率较高的优势,但是制备的纤维相对较粗㊂杜远之等[22]采用自主设计的熔体静电纺丝设备成功制备PA6超细纤维,纤维平均直径为2.25~6.31μm㊂刘伟伟[23]利用自行设计制造的高效熔体静电纺丝装置成功制备PA6微纳米纤维,平均直径在7μm左右㊂静电纺丝技术是近年来的研究热点,很多科研机构㊁高等院校都在进行研究,主要方向是静电纺超细纤维在空气过滤㊁柔性电子材料及医用防护等领域的应用㊂聚酰胺纤维的静电纺丝技术目前仍处于实验室阶段,将其应用于产业化还有较大困难㊂2㊀化学改性2.1㊀共聚法共聚法是聚酰胺纤维化学改性的主要手段,通过共聚单体的选择改变聚合物的性能[24],在改变聚合物的组成和结构的同时改变其熔点㊁溶解性㊁结晶度和透明性等,从而制备具有多功能的共聚酰胺㊂将两种及两种以上聚酰胺单体进行共聚,可制得多种具有特殊性能的共聚酰胺纤维,如美国Auied公司已工业化生产的高吸水共聚酰胺纤维 drofile 系列化产品是以PA6与聚氧化乙烯二胺的嵌段共聚物通过熔体纺丝制得[25]㊂此外,将聚乙二醇(PEG)端基进行氨基化改性,与PA6制备的共聚酰胺纤维具有优良的吸湿性㊂欧育湘等[26]采用双(4-竣苯基)苯基氧化膦己二胺盐/己二酸己二胺盐无规共聚得到本质阻燃PA66,由于双(4-羧苯基)苯基氧化膦中含有大量的苯环结构,显著提升PA66燃烧后的残炭量,明显改善PA66的阻燃性能㊂2021年,天津科技大学与天津长芦海晶集团有限公司合作,通过选择合适的共聚单体和聚合物,制备出具有软化点低㊁柔软㊁透明性好和易溶解等特殊性能的聚酰胺㊂共聚改性是聚酰胺最为简单有效的改性方法之一,是从分子结构入手,利用共聚方法制备具有阻燃性能㊁吸水率低㊁抗静电㊁柔软㊁透明性好㊁易溶解等功能的聚酰胺纤维㊂2.2㊀原位聚合法原位聚合法是通过在聚酰胺聚合过程中添加改性剂对其进行改性㊂通过原位聚合可开发出品种繁多的功能性聚酰胺纤维新产品㊂WU Z Y等[27]选用三聚氰胺氰尿酸酯(MCA)作为阻燃剂,通过原位聚合制备阻燃PA6,原位聚合后体系中的MCA粒子具有直径小于50nm的纳米尺寸,且均匀地分散在PA6基体中,得到的阻燃PA6的阻燃性能可以达到UL-94V-0级㊂原位聚合阻燃PA6的特点是不同种类的粉体阻燃剂在PA6基体中均匀分散,并且阻燃剂在PA6中不易析出,具有阻燃持久稳定性㊂TANG L等[28]通过原位聚合法制备PA6/石墨烯复合材料,再通过熔融纺丝制备PA6/石墨烯复合纤维,加入石墨烯质量分数为0.05%时复合纤维的断裂强度最大达5.3cN/dtex,与纯PA6纤维相比,复合纤维表现出更好的抗蠕变性能㊂王一帆[29]设计并合成一种具有活性端基的刚性芳香族聚酰胺预聚体,然后将其分散于己内酰胺熔体之中,通过原位聚合制备芳香族聚酰胺-聚己内酰胺共聚物(APA),并通过熔融纺丝制备APA纤维,结果表明,通过向PA6的主链中引入芳香族聚酰胺,APA纤维的最大抗拉强度较未改性的PA6纤维高出140.97%,断裂伸长率明显下降㊂于昆[30]通过原位聚合法制备出PA6/11/氧化石墨烯复合切片,并经熔融纺丝工艺制备PA6/11/氧化石墨烯复合纤维;当添加的氧化石墨烯质量分数为0.5%时,复合纤维的拉伸强度可达610 MPa;当添加的氧化石墨烯质量分数为1.0%时,复合纤维的饱和吸水率下降61.6%,电导率达到3.4ˑ10-9S/m,纤维热性能㊁导电性能和吸湿性能都得到了有效改善㊂原位聚合改性技术是在生产源头添加不同的改性剂制备不同功能性的聚酰胺纤维,如阻燃聚酰胺纤维㊁凉感聚酰胺纤维和原液着色聚酰胺纤55第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀李婷婷.功能性聚酰胺纤维技术研究新进展维等,其中原液着色聚酰胺纤维已经很好地实现了产业化㊂2019年中国平煤神马集团帘子布发展公司制备出工业用PA66色丝,2021年神马实业股份有限公司成为全球最大PA66原液着色纤维生产基地,该技术是在PA66纤维生产源头直接添加染色剂,并在封闭㊁高温㊁高压环境下一次聚合而成[31]㊂2020年化纤联盟开发出原液着色聚酰胺纤维高效制备成套技术,成功制得高色牢度㊁深色细旦的多色彩㊁多功能高品质聚酰胺纤维㊂2021年海阳科技股份有限公司研发出细旦㊁超细旦长丝用高性能黑色原位聚合PA6切片及超高强PA6长丝,该技术是在聚合过程中采用纳米级着色剂与PA6熔体充分混合,经纺丝得到有色PA6纤维,纤维色牢度高,织造后无需再染色,无染色污水排放,省水节能,绿色环保[32]㊂恒申集团以颜料㊁尼龙粉末和助剂为原料制备PA6色母粒,再通过高温熔融纺丝制备原液着色PA6长丝;还通过添加玉石粉制备可快速逸散热量的凉感PA6纤维,纤维接触凉感系数可达0.25 J/(cm2㊃s)㊂2.3㊀表面化学改性表面化学改性是通过改变聚酰胺纤维大分子的表面化学结构,以达到改善纤维的表面性能的目的㊂D.PAPPAS等[33]将PA6纤维在大气压辉光放电(APGD)下用氮气㊁氦气和乙炔进行等离子处理,等离子处理后纤维的水接触角显著降低,表面亲水性得到改善㊂徐娜等[34]用常压等离子对PA6纤维进行改性处理,然后采用(3-巯基丙基)三甲氧基硅烷(MPS)对PA6纤维表面进行巯基化改性,并用乙烯基胶原蛋白对巯基化PA6纤维进行表面修饰,得到的纤维吸水率提高155%,具有良好的吸湿性能㊂表面化学改性是在纤维成形后进行,该方法应用最多的是在聚酰胺分子链中引入大量亲水性基团,通过接枝共聚或通过添加某些有机物从而提高聚酰胺纤维亲水性和染色性㊂3㊀生物基聚酰胺纤维生物基聚酰胺纤维技术是指利用可再生的生物质为原料,通过生物㊁化学及物理等手段制备用于合成聚酰胺的原料包括生物基二元酸和生物基二元胺等,再通过聚合反应合成生物基聚酰胺,通过纺丝制备生物基聚酰胺纤维㊂该方法具有绿色㊁环境友好和原料可再生等特点㊂2016年,北京中丽制机工程技术有限公司通过系统研究生物基聚酰胺56(PA56)的纺丝工艺技术,开发出国产生物基PA56长丝一步法纺牵联合机及生物基PA56工业丝纺牵联合机,为生物基PA56纤维产业化提供了设备保障[35]㊂东华大学和盛虹集团等10家单位联合承担 十三五 国家重点研发计划项目 生物基聚酯㊁聚酰胺高效聚合纺丝技术,开发了生物基聚酰胺高效聚合纺丝技术㊂MAO L等[36]以2,5-二羧酸二甲基呋喃和1,3-环己二胺为原料,通过熔体聚合合成生物基聚酰胺㊂CAO K K等[37]采用生物基2,5-呋喃二甲酰氯和3,4-二氨基二苯醚在N,N-二甲基乙酰胺中进行低温溶液缩聚制备一种含有呋喃环的芳族聚酰胺树脂,并采用干喷湿法纺丝法制备出溶解性㊁可纺性㊁耐热性和阻燃性能优良的含呋喃环的芳香族聚酰胺纤维,纤维的LOI为40%,阻燃等级为UL-94V-0级,其中单体2,5-呋喃酰氯为生物质,资源丰富㊂目前,我国自主研发且具有完整知识产权的生物基聚酰胺纤维品种是生物基PA56纤维㊂生物基PA56纤维的强度和密度可以媲美PA66纤维,染色性㊁吸湿快干性和阻燃性更优于PA66纤维㊂上海凯赛生物技术股份有限公司推出了生物基PA56纤维产品 泰纶®,其生物质质量分数高达47%~100%,原料主要以自主研发的生物基戊二胺和不同的二元酸聚合而成㊂生物基PA56纤维具有良好的力学性能㊁吸湿性㊁柔软性㊁耐磨性㊁染色性㊁耐热性㊁耐化学性与阻燃性,适合应用于服装㊁家纺㊁产业用纺织品等领域,但生物基PA56纤维的大规模推广还面临生物原料供给与成本控制,生产中能耗降低及副产物综合利用等问题,今后需要继续在生物基单体发酵与纯化㊁聚合㊁纺丝及应用等领域加大研发投入,不断降低生产成本,才能促进生物基PA56纤维在纺织领域的大规模应用[38]㊂4㊀相关政策随着地球环境问题和资源能源问题的日益突出,绿色可持续发展成为各界关注的焦点㊂为巩固提升纺织工业竞争力,满足消费升级需求,服务战略性新兴产业发展,国家出台了相应的政策支持㊂65㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年第46卷2021年6月,中国纺织工业联合会发布的‘纺织行业 十四五 科技发展指导意见“中关于聚酰胺需要重点突破的关键共性技术有:研究PA6熔体直纺技术,突破生物基聚酰胺纤维规模化生产关键技术,开发高品质差别化产品,加强应用技术开发,2025年聚酰胺纤维材料高效柔性制备技术达到国际先进水平㊂2022年4月,工信部㊁国家发改委联合印发的‘关于化纤工业高质量发展的指导意见“指出:加快生物基化学纤维和可降解纤维材料的发展,提升生物基化学纤维单体及原料纯度,加快稳定㊁高效㊁低能耗成套技术与装备集成,实现规模化㊁低成本生产,并强调了提升生物基聚酰胺纤维的规模化生产关键技术,加快生物基聚酰胺纤维的发展㊂此外,根据政策的指导方向,为实现绿色可持续发展,国内化学纤维行业龙头企业均对全流程生产低碳化㊁产品绿色化㊁可再生循环等方面制定了发展目标㊂5 结语随着应用研究的不断深入,功能性聚酰胺纤维在服用㊁民用及军用领域的应用将不断扩大,同时对其综合性能的要求也越来越高㊂ 十四五 期间是我国纺织工业迈向世界科技强国前列的重要时期,绿色发展成为全球产业发展的刚性要求㊂功能性聚酰胺纤维未来的发展应向着绿色化和可循环再生方向发展㊂(1)研发耐高低温㊁耐辐照及具备阻燃抗菌等多功能复合型聚酰胺纤维,满足在各种特种条件下的应用㊂(2)生物基聚酰胺纤维将成为未来的研究重点㊂推动生物基聚酰胺纤维在军用领域和民用领域的规模化应用,推动再生循环发展,实现 低碳 甚至 零碳 排放㊂重点突破生物基PA56大容量连续聚合及熔体直纺关键技术,实现生物基PA56纤维的规模化生产㊂(3)加快实现静电纺丝功能性聚酰胺纤维产业化㊂静电纺功能性聚酰胺纤维在光电子传感器㊁过滤材料和生物医学材料等方面的应用十分广泛,这些方向将成为未来改性研究的重点㊂参㊀考㊀文㊀献[1]㊀孙振华.聚酰胺改性技术及改性产品研究进展[J].纺织科学与工程学报,2018,35(4):163-166,121. [2]㊀HAN J,YIN S,ZHANG X,et al.Design and synthesis ofbactericidal block copolymer for preparing durably antibacterial PA6fiber[J].Micro&Nano Letters,2019,15(1):47-51.[3]㊀CHEN T,LIU H H,WANG X C,et al.Properties and fabri-cation of PA66/surface-modified multi-walled nanotubes com-posite fibers by ball milling and melt-spinning[J].Polymers, 2018,10(5):547.[4]㊀袁修钦.功能尼龙6纤维的制备及性能表征[D].武汉:武汉纺织大学,2018.[5]㊀赖慧玲.量子能微粒改性聚酰胺6纤维的制备及应用[D].杭州:浙江理工大学,2019.[6]㊀蔡倩.阻燃PA6的制备及结构性能研究[D].北京:北京服装学院,2017.[7]㊀蔡倩,王锐,董振峰,等.PA6/PEPA复合物的制备及结构性能研究[J].化工新型材料,2018,46(1):144-149. [8]㊀宁宁,甘佳佳,冯培,等.并列型PA6/PET复合扁平纤维挤出成形工艺的数值模拟[J].合成纤维工业,2016,39(6):60-64.[9]㊀何淑霞,胡国樑,李霞.PA6/PE海岛型复合超细纤维的开纤工艺研究[J].现代纺织技术,2016,24(2):4-7. [10]甘宇,姬洪,徐锦龙,等.聚酰胺/聚酯皮芯复合纤维的研究开发[J].合成纤维,2020,49(2):7-12,18. [11]李顺希,许志强,詹莹韬,等.高密度聚乙烯/聚酰胺6复合纤维的制备及性能[J].合成纤维工业,2020,43(1): 42-45,49.[12]崔晓玲,王依民,胡申伟,等.PPS/PA6偏心皮芯型复合纤维的研究[J].合成纤维,2008,37(2):14-17. [13]钱伯章.东丽推出速干尼龙纤维材料[J].合成纤维,2014,43(10):54.[14]陈立军,钟百敏,胡泽旭,等.截面形状对聚酰胺6/石墨烯复合纤维性能的影响[J].合成纤维,2019,48(7):5-8.[15]凌荣根,李彩娥,郭成越,等.负氧离子PA6异形纤维的制备[J].丝绸,2010(5):35-37.[16]赵晓敏.凉感聚酰胺6纤维的制备及性能评价[D].上海:东华大学,2016.[17]李福顺,李显波,潘福奎.电极丝静电纺制备聚酰胺纳米纤维膜[J].塑料工业,2017,45(5):78-82. [18]ZHANG H T,LI S B,BRANFORD WHITE C J,et al.Studieson electrospun nylon-6/chitosan complex nanofiber interactions [J].Electrochimica Acta,2009,54(24):5739-5745. [19]FAZELI M,FAZELI F,NUGE T,et al.Study on the prepara-tion and properties of polyamide/chitosan nanocomposite fabri-cated by electrospinning method[J].Journal of Polymers and the Environment,2022,30:644-652.[20]JEONG J S,JEON S Y,LEE T Y,et al.Fabrication ofMWNTs/nylon conductive composite nanofibers by electrospin-ning[J].Diamond and Related Materials,2006,15(11/12): 1839-1843.[21]牛小连.仿生矿化静电纺聚酰胺纳米纤维骨组织工程支架研究[D].太原:太原理工大学,2021.75第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀李婷婷.功能性聚酰胺纤维技术研究新进展[22]杜远之,徐阳,魏取福,等.熔体静电纺PA6超细纤维的制备与工艺研究[J].工程塑料应用,2013,41(10):38-41.[23]刘伟伟.熔体静电纺丝法制备高分子纤维材料的实验研究[D].青岛:青岛科技大学,2013.[24]WHA K,KIM S H,KIM E A.Improved surface characteristicsand the conductivity of polyaniline-nylon6fabrics by plasma treatment[J].Journal of Applied Polymer Science,2001,81(3):684-694.[25]朱建民.聚酰胺纤维[M].北京:化学工业出版社,2014.[26]欧育湘,陈宇,王筱梅.阻燃高分子材料[M].北京:国防工业出版社,2001.[27]WU Z Y,XU W,XIA J K,et al.Flame retardant polyamide6by in situ polymerization ofε-caprolactam in the presence of melamine derivatives[J].Chinese Chemical Letters,2008,19(2):241-244.[28]TANG L,LI Y R,CHEN Y,et al.Preparation and character-ization of graphene reinforced PA6fiber[J].Journal of Ap-plied Polymer Science,2018,135(10):45834.[29]王一帆.芳香族聚酰胺预聚体共聚改性聚已内酰胺的研究[D].苏州:苏州大学,2013.[30]于昆.聚酰胺6/11/碳纳米复合纤维的制备与性能研究[D].广州:华南理工大学,2020.[31]郑宁来.神马尼龙66工业用色丝顺利下线[J].合成纤维工业,2020,43(2):36.[32]李若欣,陈国强,常广涛,等.一种尼龙6原位着色切片及其制备方法:112724399B[P].2021-06-22. [33]PAPPAS D,BUJANDA A,DEMAREE J D,et al.Surfacemodification of polyamide fibers and films using atmospheric plasmas[J].Surface and Coatings Technology,2006,201(7):4384-4388.[34]徐娜,王学川,黄剑锋,等.常压等离子体对聚酰胺纤维表面刻蚀及巯基化研究[J].西部皮革,2018,40(21):43-47.[35]刘博.国产尼龙56长丝一步法纺牵联合机的探究[J].价值工程,2016,35(27):107-111.[36]MAO L,PAN L J,MA B,et al.Synthesis and characteriza-tion of bio-based amorphous polyamide from dimethyl furan-2, 5-dicarboxylate[J].Journal of Polymers and the Environment, 2022,30(3):1072-1079.[37]CAO K K,LIU Y F,YUAN F,et al.Preparation and proper-ties of an aromatic polyamide fibre derived from a bio-based fu-ran acid chloride[J].High Performance Polymers,2021,33(9):1083-1092.[38]孙朝续,刘修才.生物基聚酰胺56纤维在纺织领域的应用研究进展[J].纺织学报,2021,42(4):26-32.New progress in technology research of functional polyamide fiberLI Tingting(1.Jiangsu New Vision Advanced Functional Fiber Innovation Center Co.,Ltd.,Suzhou215228;2.National Advanced Functional Fiber Innovation Center,Suzhou215228) Abstract:The different modification technologies of functional polyamide fibers and their research progress were reviewed.The relevant policies for polyamide fibers during the14th Five Year Plan period were introduced.And some suggestions for the future development of functional polyamide fibers were put forward.The preparation technology of functional polyamide fibers mainly in-cludes physical modification,chemical modification and bio-based polyamide technology,among which the physical modification mainly includes blending method,composite spinning technology,fiber profiled cross-section modification and electrospinning technology,the chemical modification mainly includes copolymerization method,in-situ polymerization method and surface chem-ical modification,and the bio-based polyamide technology is to mainly develop bio-based polyamide56fiber with independent in-tellectual property rights.During the14th Five Year Plan period,the key technologies of polyamide fibers that need to make breakthroughs include polyamide6melt direct spinning technology,high-quality differentiated fiber technology,and large-scale bio-based polyamide fiber production technology.The future development of functional polyamide fibers should be oriented to-wards greening and recyclable regeneration,with a focus on the research and development of multifunctional composite polyamide fibers,the breakthroughs in the key technologies of high-capacity continuous polymerization and melt direct spinning of bio-based polyamide56,and the acceleration of electrospun functional polyamide fibers industrialization.Key words:polyamide fiber;functional fiber;physical modification;chemical modification;bio-based polyamide;technology progress85㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年第46卷。

聚酰胺的合成方法和应用及其进展)

聚酰胺的合成方法和应用及其进展)

1 , 6 - 己 二 胺 和 1 , 6 - 己 二 酸 缩 聚 所 得 聚 合 物 称 为 PA 6 6 1,4-丁二胺和1,6-己二酸缩聚得到的聚合物称为PA46。
⑶ 用重复的二胺或二酸的简称表示
如间苯二甲胺(Metaxylylene diamine)简称为 MXDA,间苯二甲胺与己二酸合成的聚合物称为尼 龙MXD6;对苯二甲酸英文名为Terephthalic Acid, 己二胺和对苯二甲酸合成的聚合物称为6T,壬二胺 和对苯二甲酸合成的聚合物称为9T。
⑵ 域。
主要用途是空调、彩电、程控交换机、复印机、 计算机的线圈骨架、接插件、接线柱、高压包、转动 轮、小型变压器等部件;移动电话外壳、电器电源装 置的高低压开关、继电器外壳等。
⑶ 机械工业
也是PA应用的主要领域。机械工业包括矿山机械 、造纸机械、橡塑机械、纺织机械、轧钢机械、食品 加工机械、机加工机械、搬运机械等众多产业。
尼龙的化学结构通式基本有两种: ⑴由ω-氨基酸自缩聚或它的内酰胺开环聚合制得:
NH ( CH2 )n-1 C Op
⑵由二元酸和二元胺缩聚制得:
NH ( CH2 )m NH C O
( CH2 )n C Op
二元胺和二元酸或二元胺或二元酸中的亚甲基可以 被环状或芳香族化合物取代,也可以是上述结构尼 龙的共聚物。
⑴ 由内酰胺开环聚合的尼龙,称为尼龙n,简写为PAn。
通式为:
N ( CH2 )n-1 C p
H
O
如 ε - 己 内 酰 胺 开 环 聚 合 得 到 的 聚 合 物 , 称 为 PA 6 ,
ω-氨基十一酸合成的聚合物为PA11。
⑵ 由二元胺和二元酸缩聚得到的聚合物,称为尼龙mn, 简写为PAmn,m为重复单元二元胺的碳原子数,n为 重复单元中二元酸的碳原子数,通式为:

聚酰胺多胺环氧氯丙烷的改性及应用进展

聚酰胺多胺环氧氯丙烷的改性及应用进展

作者简介:沈一丁先生,教授,博士生导师;研究方向:高分子化学及精细化学。

收稿日期:2004-10-08(修改稿)ÓPAE 改性及应用Ó聚酰胺多胺环氧氯丙烷的改性及应用进展沈一丁 彭晓凌(陕西科技大学化学与化工学院,陕西咸阳,712081)摘 要:介绍了通过尿素、松香、甲酸、甲醛、壳聚糖、蒙脱土等对聚酰胺多胺环氧氯丙烷(P AE )树脂进行化学改性制备抗水剂、湿强施胶剂、吸水助剂、絮凝剂及胶质去除剂的方法、各自的应用情况以及用丙烯酸甲酯和木素对其进行物理改性的方法及其在提高纸页柔软性和制备木材粘合剂方面的应用情况。

关键词:PAE;抗水剂;絮凝剂;湿强施胶剂;胶质去除剂中图分类号:TS727 文献标识码:A 文章编号:0254-508X(2005)04-0055-04聚酰胺多胺环氧氯丙烷树脂(Polyamide -Polyamine Epichlorohydrine Resin,简写为PPE 或PAE 树脂)[1]是一种水溶性阳离子型热固性树脂,自20世纪60年代初问世以来,得到了广泛的应用,其在造纸业主要用作湿强剂和抗水剂,PAE 是目前使用最广泛的增湿强剂,它可在较宽范围内使用,有较强的自固着性,在含有较多阴离子杂质或高盐浓度的环境中仍能发挥良好的增湿强效果。

PAE 增湿强效果好,用量少,无毒无害,pH 值适用范围大,适合中碱性抄纸,使用方便,损纸回收容易,且兼有助留助滤等优点;但它亦存在一些问题,如抗水性不如三聚氰胺甲醛树脂,作为涂布抗水剂需进一步改性;在提高纸页的干强度方面作用不明显。

因此,近年来人们对PAE 的改性研究十分重视,进行了大量有价值的研究开发工作。

1 聚酰胺多胺环氧氯丙烷的化学改性111 聚脲改性聚酰胺多胺环氧氯丙烷PAE 在造纸行业广泛用作湿强剂,作为抗水剂则因其固含量低,需在碱性条件下熟化而受到限制。

根据造纸涂布的实际需要和高分子设计原理及有关专利[2],沈一丁[3]等通过聚脲改性,制备了固含量高、稳定性好的聚脲改性聚酰胺多胺环氧氯丙烷抗水剂,它具有明显的增湿强作用和表面抗水作用,性能和使用效果都优于氨基树脂抗水剂,是一种新型的环境友好型抗水剂。

生物基聚酰胺的制备与应用研究进展

生物基聚酰胺的制备与应用研究进展

综述CHINA SYNTHETIC RESIN AND PLASTICS合 成 树 脂 及 塑 料 , 2023, 40(6): 58DOI:10.19825/j.issn.1002-1396.2023.06.12聚酰胺(PA)是分子主链上含有重复酰胺基团的热塑性树脂总称,主要包括脂肪族PA、脂肪-芳香族PA和芳香族PA。

其中,脂肪族PA品种多、产量大,是世界上第一种合成纤维,广泛应用于电子电器、汽车、运动器械、医药等领域[1-3]。

生物基PA理论上可以100%替代石油基同类产品,开发生物基PA可减少对石油资源的依赖,具有低碳、环保、可持续发展的优势。

目前,生物基PA主要包括PA 11,PA 10,PA 1010,PA 610,PA 1012,PA 410,PA 1012,PA 46,PA 56等产品[4]。

市场中的PA消费仍以PA 6和PA 66为主,已经商品化的生物基PA由于生产企业数量少等原因,市场占比较低,产量不足PA总产量的1%。

未来随着石油资源的进一步萎缩,生物基PA具有非常光明的前景,本文对生物基PA的单体合成及应用进展进行了综述。

1 生物基PA种类部分已商品化的生物基PA见表1。

生物基PA 制备的关键难点是通过生物质原料制备PA的单体,根据生物质的来源不同,生物基PA的单体制备路线主要分为油脂路线和多糖路线[5]。

2 油脂路线油脂路线通常采用蓖麻油、油酸、亚油酸等可再生的天然油脂,使用最多的是蓖麻油,其主要成分为蓖麻油酸。

天然油脂经过一系列化学或生物变化得到制备PA的单体,主要包括ω-十一氨基生物基聚酰胺的制备与应用研究进展许 凯,李振虎,李 超,潘 蓉,杨 璐,琚裕波(华阳集团产业技术研究总院新材料分院,山西 太原 030027)摘要:综述了生物基聚酰胺的合成单体及聚酰胺的制备研究进展。

根据生物质的来源不同,生物基聚酰胺的合成单体的制备路线主要分为油脂路线和多糖路线。

其中,油脂路线使用最多的是蓖麻油,多糖路线以葡萄糖为主。

改性PA6的合成

改性PA6的合成

改性PA6的合成改性PA6的合成摘要:聚酰胺6(PA6)是一种常见的合成材料,具有优异的物理和化学性质,广泛应用于汽车、纺织品、电子、建筑等领域。

然而,由于PA6本身的一些限制,如机械性能、耐候性、摩擦性能等方面的不足,越来越多的研究已经聚焦于改性PA6的合成,以提高其性能。

本文综述了改性PA6的合成研究进展和发展趋势,涉及改性剂种类、添加方式、反应条件等关键因素的影响,并提出了一些展望和未来的研究方向。

关键词:改性聚酰胺6,合成,性能,改性剂,添加方式1.引言聚酰胺6(PA6)是一种常见的工程塑料,由已二元酸与已二元胺以开环聚合法制备而成。

PA6具有良好的力学性能、耐热性、耐磨损性、化学稳定性和耐臭氧性,并且易于加工成为各种形状。

因此,PA6具有广泛的应用前景,尤其是在汽车、电子和建筑等领域。

然而,PA6在某些方面的性能还有待提高。

例如,PA6的摩擦性能和耐候性都比较差,使其在一些应用场合难以满足要求。

此外,PA6的热稳定性较差,容易分解和变质。

因此,研究如何改善PA6的性能已成为一个热门的研究领域。

2.改性剂种类为了改进PA6的性能,可以向PA6中添加不同的改性剂。

常用的改性剂有以下几种:(1)碳纤维:碳纤维具有高强度、高模量、耐腐蚀等特点,可以显著提高PA6的机械性能和热稳定性。

(2)纳米粒子:纳米粒子可以在PA6中形成纳米复合材料,具有优异的力学性能、导电性能和耐热性,可以提高PA6的性能。

(3)韧化剂:韧化剂可以提高PA6的韧性和耐冲击性能,同时减少PA6的脆性。

(4)填料:填料可以提高PA6的强度和刚度,减少热膨胀系数和收缩率,并降低制造成本。

3.添加方式改性剂的添加方式对PA6的性能也有很大的影响。

常见的添加方式有以下几种:(1)熔融混合:将改性剂和PA6一起加入分散剂,通过熔融混合的方法将两者混合均匀,再通过注塑成型的方式制备成型品。

(2)原位聚合法:在制备PA6的过程中添加改性剂,通过原位反应结合聚合来形成PA6改性材料。

聚酰胺的单体单元-概述说明以及解释

聚酰胺的单体单元-概述说明以及解释

聚酰胺的单体单元-概述说明以及解释1.引言1.1 概述概述部分的内容:聚酰胺是一类重要的高分子化合物,其在工业和科学领域有着广泛的应用。

聚酰胺由不同的单体单元组成,这些单元通过化学反应形成高分子链。

本文将着重探讨聚酰胺的单体单元,即构成聚酰胺链的基本结构单元。

聚酰胺的单体单元具有多样性,常见的有尿素、酰胺和酰胺酸等。

每种类型的单体单元都有各自特定的性质和反应性,因此选择合适的单体单元对于合成具有特定性质的聚酰胺至关重要。

在聚酰胺的合成过程中,单体单元之间通过缩合反应形成高分子链。

这个过程通常需要一定的催化剂和适当的反应条件,以确保单体单元能够有效地反应和连接在一起。

聚酰胺的合成方法多种多样,例如聚酰胺的酸酐法、聚酰胺的胺法等。

掌握聚酰胺的单体单元的性质和合成方法,对于了解聚酰胺的结构和性能具有重要意义。

通过对聚酰胺单体单元的研究,人们可以更好地设计和合成新型的聚酰胺材料,满足不同领域的需求。

本文将重点介绍聚酰胺的单体单元的定义、特性以及合成方法。

通过系统地整理和总结已有的研究成果,为聚酰胺的进一步发展和应用提供理论依据和实践指导。

在未来,聚酰胺的单体单元的研究将继续深入,为高分子材料的领域带来更多的创新和突破。

文章结构部分的内容如下:1.2 文章结构本文主要分为以下几个部分:引言、正文和结论。

引言部分主要对聚酰胺的单体单元进行概述,并介绍本文的目的。

首先,对聚酰胺的定义和特性进行简要介绍,包括其化学结构、物理性质以及在工业和科学领域中的广泛应用。

接着,将介绍聚酰胺的合成方法,包括传统的聚合反应和新兴的绿色合成方法。

通过对聚酰胺的单体单元的研究,我们可以更好地理解其形成机制和合成条件,为优化合成方法提供理论基础。

正文部分将详细讨论聚酰胺的单体单元。

首先,将介绍聚酰胺的定义和特性,包括其高分子链的构成和属性。

然后,将系统介绍聚酰胺的合成方法,包括原位聚合法、溶液聚合法和悬浮聚合法等。

同时,还将介绍一些特殊的合成方法,如催化剂辅助合成和生物合成等。

聚酰胺12微粉的制备及性能研究

聚酰胺12微粉的制备及性能研究

聚酰胺12微粉的制备及性能探究摘要:本文探究了聚酰胺12微粉的制备方法,包括微粉制备的原材料、工艺流程和制备设备。

通过对制备过程中不同参数的优化,有效地提高了微粉的粒径和制备效率,并对其物理和化学性能进行了探究。

利用扫描电子显微镜、X射线衍射仪等多种测试手段,分析了微粉制备过程中的晶体结构、形貌和分布规律等。

同时,本文还分别考察了微粉的热稳定性、拉伸强度、断裂伸长率、热膨胀系数等材料性能,并通过比较分析的方法,探究了不同试样尺寸和制备方法对其性能的影响,为聚酰胺12微粉的应用提供了理论依据。

关键词:聚酰胺12微粉;制备方法;物理性能;化学性能;应用价值1. 引言聚酰胺12(PA12)具有其它工程塑料难以比拟的特性,如高强度、高刚度、高耐热、耐化学腐蚀、超低摩擦系数、超高耐磨性和良好的润滑性等,在汽车、电气、航空、航天等领域有广泛应用。

PA12的微粉制备技术成为该材料利用的重要场景之一,在该领域的探究中,微粉制备是改善材料性能、提高加工效率的有效途径。

现有探究表明,对PA12微粉质量的控制和优化可以通过制备方法的改进达到最佳状态,因此本文旨在探究PA12微粉的制备方法,从而探究其物理和化学性能,为其应用提供依据。

2. 材料和方法2.1 原材料用于微粉制备的PA12材料为进口瓶装级别,由广州化学厂生产,其结构为:[H-(CH2)11-CO]n-NH2Ammi-cao提供的包括二甲苯、1,2,4-三氯苯和甲苯等试剂均为AR级别,供应商为广州化学制品有限公司。

2.2 设备制备设备为试验室自行设计的高压水下磨擦型制备器,其主要工作原理为利用高压水流的冲击力在一定的空间内使材料形成微粉,设备部分结构如图1所示:图1 制备设备的部分结构2.3 制备方法依据现有文献和试验阅历,微粉制备方法主要包括以下步骤:(1)液相预处理,将PA12样品和官能化试剂混合后,加入无水苯作为混合液载体。

液体中PA12的质量分数为10%。

生物基聚酰胺及其纤维的最新技术进展

生物基聚酰胺及其纤维的最新技术进展

生物基聚酰胺及其纤维的最新技术进展芦长椿【摘要】近年来,不断提升的公众环保意识以及对新型聚合材料的关注促进了来自于可再生资源的生物基聚合物技术的发展。

本文以聚酰胺为对象,介绍了全球聚酰胺材料的发展现状,并对国内外在生物基PA6、PA66、长链聚酰胺及其制品方面的最新研究开发情况进行了较全面的介绍和分析。

%In recent years, the constantly growing public awareness and interests in bio-based plastics around world has improved the development of several kinds of bio-polymer including polyamide. This article reviewed the development status-quo of global polyamide industry, and gave a detailed introduction on the latest R&D developments of bio-based PA6, Pa66 and long-chain polyamides as well as their down-stream products.【期刊名称】《纺织导报》【年(卷),期】2014(000)005【总页数】5页(P64-68)【关键词】生物基聚酰胺;聚酰胺纤维;可再生资源;生物技术【作者】芦长椿【作者单位】全国化纤新技术开发推广中心【正文语种】中文【中图分类】TQ342+.1根据统计,聚酰胺(PA)材料的38%用作纤维,46%注塑成型,14%挤压成型,其余深加工制品大约占2%左右。

PA纤维(主要包括PA6和PA66)是仅次于聚酯纤维的第二大合成纤维品种。

在过去的10年中,全球PA纤维生产呈持续下滑趋势,2010—2012年间西欧地区的PA市场下降了6%,美国下降了9%,2012年全球PA纤维产量维持在400.81万t。

葡聚糖接枝树枝状聚酰胺-胺聚合物及其设备制作方法和应用与设计方案

葡聚糖接枝树枝状聚酰胺-胺聚合物及其设备制作方法和应用与设计方案

本技术属于生物医学工程材料领域,公开了一种葡聚糖接枝树枝状聚酰胺胺聚合物及其制备方法和应用。

所述聚合物包括以下操作步骤:(1)将叠氮乙酸溶于DMF中,然后依次加入EDC·HCl、NHS和葡聚糖在室温下反应得到叠氮化葡聚糖;(2)将含炔基的聚酰胺胺溶于水后,依次加入叠氮化葡聚糖、无水硫酸铜和还原剂进行加热反应得到最终产物。

所得到的产物生物相容性好、表面基团丰富、易于进行化学改性;将其用于负载NO时,负载量较高,且负载的NO可以有效抑制细菌和真菌的生长和繁殖,并且在一定程度上可以消除炎症以及促进伤口的愈合,为其在制备生物医药工程材料的应用提供支持。

权利要求书1.一种葡聚糖接枝树枝状聚酰胺-胺聚合物,其特征在于分子式如下所示:其中,m为80~100之间的整数,n为10~20之间的整数。

2.一种根据权利要求1所述的葡聚糖接枝树枝状聚酰胺-胺聚合物的制备方法,其特征在于包括以下操作步骤:(1)叠氮基团修饰的葡聚糖的合成将叠氮乙酸溶于N-N-二甲基甲酰胺中,然后依次加入1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐,N-羟基琥珀酰亚胺活化得到叠氮乙酸混合溶液;将葡聚糖溶解在水中,然后加入到上述叠氮乙酸混合溶液中进行反应,反应完成后得到叠氮化葡聚糖;(2)葡聚糖接枝树枝状聚酰胺-胺聚合物的合成将含炔基的聚酰胺-胺溶解到水中,然后依次加入步骤(1)所得叠氮化葡聚糖、无水硫酸铜和还原剂进行加热反应,反应完成后得到葡聚糖接枝树枝状聚酰胺-胺聚合物。

3.一种根据权利要求2所述的葡聚糖接枝树枝状聚酰胺-胺聚合物的制备方法,其特征在于:步骤(1)中所述葡聚糖的分子量为1000~80000;步骤(1)中所述葡聚糖、1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐、N-羟基琥珀酰亚胺和叠氮乙酸的摩尔比为1:(1~12):(1~12):(1~12);步骤(1)所述的N,N-二甲基甲酰胺的用量以每10mL N,N-二甲基甲酰胺中加入1~5g叠氮乙酸计;所述的水的用量以每10mL中加入0.1g~5g叠氮乙酸计。

聚酰胺弹性体的应用及研究进展

聚酰胺弹性体的应用及研究进展

聚酰胺弹性体的应用及研究进展吴文敬卢先博张勇上海交通大学高分子材料研究所纲要1. 聚酰胺弹性体简介2. 聚酰胺弹性体的研究进展3. 本课题组的相关研究工作4. 结语1. 聚酰胺弹性体简介•热塑性弹性体:聚烯烃类(TPO)、苯乙烯类(SBC)、聚氨酯类(TPU)、聚酰胺类(TPAE)、聚酯类(TPEE)、聚氯乙烯类(TPVC)、聚硅氧烷类(TPSE)•性能优势:力学性能好、具有耐油性、使用温度高•主要厂家:德国Hüls公司(Diamide,现为朗盛收购)、美国Upjohn公司(现为Dow化学公司,Estamid)、法国ATO化学公司(Pebax)、瑞士EMS公司(Grilamid、Grilon)、日本酰胺公司、日本油墨公司、德国Evonik公司(Daiamid, Vestamid E)•生产方式:嵌段共聚、简单共混、动态硫化•嵌段共聚:-[(PA)m-PE-]n-–软段PE为聚醚或聚酯,如四氢呋喃聚醚(PT2MG) 、环氧丙烷聚醚(PPG) 、聚乙二醇(PEG) 、聚己内酯(PCL) 聚乙二醇、聚丙二醇、聚丁二醇、双端羟基脂肪族聚酯等;硬段PA是聚酰胺(共聚尼龙、PA6、PA11、PA12、PA66、芳香族聚酰胺等)–二元酸法:端羧基脂肪族聚酰胺嵌段与端羟基聚醚二元醇通过酯化反应–异氰酸酯法:半芳酰胺为硬段,脂肪族聚酯、聚醚或聚碳酸酯作为软段,半芳酰胺硬段是由芳香族二异氰酸酯与二元羧酸反应得到的•动态硫化(TPV):PA/rubber–最早由Gessler于1962年提出,并于80年代由Coran等成功开发出PP/EPDM TPV (美国孟山都,Santoprene)–橡胶弹性的实现:共混比,橡胶占主导,熔融共混过程橡胶相发生硫化–热塑性的实现:相反转,硫化橡胶呈分散相–性能堪比共聚型弹性体,某些性能更优–工艺简单,成本低–弹性体品种多:塑料相可为PA6、三元尼龙、共聚尼龙、长链尼龙;橡胶相涉及几乎所有橡胶(EPDM、EPM、NBR、HNBR、ACM、IIR)体育用品电器电子部件机械部件精密仪器的功能部件软管带、医用胶管high strength, high elasticity, good resiliencehigh flexibilityhigh resistance to solvents and chemicals 共混改性剂汽车输油管•聚酰胺弹性体的应用2. 聚酰胺弹性体的研究进展动态硫化、增容、形态演变/NBR/HNBR耐热性、耐油性、相间反应性动态硫化、增容方法、卤化橡胶类型Nylon /EP(D)M动态硫化、增容、形貌--性能辐射交联、动态硫化、耐热性、耐油性/ACM/IIR•PA6/EPDM1–Curing systems, compatibilizer, nylon content–Sulfur (0.5 %), MAH-g-EPR (20 wt%), rubber/plastics ratio (60/40)•PA6/EPDM-g-MA2Tensile deformation &(plastic deformation of nylon phase) relaxation recovery(elastic recovery of rubber phase)•Tensile deformation —gradual stress-transfer mechanism •Nylon ligament thickness distributionNylon phase:local yield ÆelongationÆlocal hardening Ætransfer•Elastic restoring force, elastic recovery •Interconnection of rubber particles by continuous substructure•PA6/NBR3–Curing systems (phenolic, DCP,sulfur)–Rubber/plastics ratio (60/40)–Partial miscibility (by DMA)Phenolic functional groups reactingwith PA6, increasing the viscosity,improving the mixing•PA-6/66 /NBR4•melt flow behavior (blend ratio, dynamic crosslinking, compatibilization)Nylon content Positive deviationIncreasing viscosity•Effect of compatibilizer(CPE)–High interfacial viscosity, hindering the coalescence of dispersed phase –3wt%Æ5 wt%, Interfacial saturation, starting forming micelles in the nylon matrix•Effect of dynamic vulcanization–Crosslink density, stable morphology–C-C linkage > S-S linkage–Higher crosslink density, higher viscosity, higher stresses, more extensive break up of domains•PA-6/66/10 /NBR 5,6–Carboxylation of NBR[5] Chowdhury R, et al.. Journal of Applied Polymer Science. 2007;104(1):372-7.Figure Isothermal DSC scans for a representative 60 : 40NBR/polyamide composition: (A) 60 : 40 NBR/polyamide;(B) 60 : 40 XNBR (1% OCOOH)/polyamide; (C) 60 : 40XNBR (7% OCOOH)/polyamide.Figure Plausible mechanism of reactive compatibilization of polyamide with carboxylated NBR through in situ amide formation.Tan δtraces•PA-6/66/10 /NBR–Carboxylation of NBRTable Physical and Mechanical Properties of Polyamide/NBR Blends.(A)(B)(C)Figure SEM micrographs of a 60 : 40 NBR/polyamide composition: (A) 60 : 40 NBR/polyamide;(B) 60 : 40 XNBR (1% OCOOH)/polyamide; (C) 60 : 40 XNBR (7% OCOOH)/polyamide.•PA6/HNBR7–Blending ratio–Dynamic vulcanization (peroxide)–Dynamic vulcanization (peroxide)•PA6/HNBR8, 9–Irradiation crosslinking[8] Das PK, et. al.. Polymer International 2006; 55 (1): 118-123.•Nylon MXD6/HNBR10–Cross-linker:2,5-Dimethyl( t-butylperoxy) hexane (0.9 phr), rubber/plastics ratio: 50/50, 70/30, 30/70–Effect of vulcanization, time, temperature,cross-linking degree, blend ratio•PA6/ACM 11, 12, (40/60)–The interaction between PA6 and ACMÆPA6-g-ACM–Epoxy-amine and epoxy-acid reactions[11] Jha A, et al.. Rubber Chem Technol. 1997;70(5):798-814.Figure SEM photos of cryogenically fractured nylon 6/ACM(50/50) blend after extracting the ACM phase by chloroform. X3000Figure Weight percentage of nylon grafted vs. weight fraction of ACM in the blend mixed for 13 min at 220 ℃.without dynamicvulcanizationwith dynamicvulcanizationFigure Increment in mixing torque (L max –L min ) vs. weight fraction of ACM in the blend.•Compatibilization of nylon 6-g-ACMTable Mechanical properties of 40/60 nylon 6/ACM blends.Figure Temperature dependence of tan δand E’of nylon 6/ACM (40/60) blends.•PA6/ACM13, (40/60)•Fillers (CB, silica, clay), plasticizers (DOP, DBP)•Strong interfacial reactionÆPA6-g-ACM•PA6/IIR14–IIR/PA6 (70/30)–CompatibilizerFigure SEM photographs of the composites of IIR (70) and PA (30);(a) Alloy with 10 wt parts compatibilizer and (b) Blend without compatibilizer.Table Physical Properties of Elastic Gas-Barrier Materials•PA12/CIIR15–CIIR/PA12 (60/40), sulfur curative–Dynamic vulcanization, increasing viscosity at low shear rates and dependence of viscosity on shear rateTable Mechanical properties, percentage insolubles, and swelling index values of 40PA/60CIIR blends.•PA12/IIR16–Chemical interactions:crosslinking, grafting–Reactivity: BIIR > IIRTable Percentage of Insolubles in Hexane-Extracted Samples of Polyamide/Butyl or Bromobutyl Blends•PA12/IIR17–Effects of butyl rubber type on properties–The presence and type of halogenTable Effects of rubber type on properties of 40 PA/60 butyl rubber blends. (sulfur curing system)•PA12/CIIR18–Improved solvent resistanceby dynamic vulcanization:a caging effect of the thermoplasticcomponent on the rubber phaseFigure Swelling index and elongation at break for PA/CIIR blends.Table Properties of polyamide/chlorobutyl rubber Blends3. 本课题组的相关研究工作•EPDM/Ter PA TPV–最优配方:EPDM 52、PA 35、EPM-g-MAH 13、硫黄2–硬度85,拉伸强度13.3 MPa,伸长率295 %Fig Scanning electron micrographs of dynamic vulcanized EPDM/nylon TPE fractured under liquid nitrogen and etched by heptane for 24 h: (a) EPDM/nylon (30/70) TPE and (b) EPDM/MAH-g-EPR/nylon (24/6/70) TPE.•EPDM/Ter PA TPV19–增容剂的加入使橡胶粒子更细分散,异相成核作用促进了尼龙相的结晶–增容剂含量变化与对性能影响一致Fig DSC cooling traces (cooling rate of 5°C/min):(a) PA, (b) EPDM–PA (65:35), (c) EPDM/EPR–g–MAH/PA (52:13:35), (d) EPDM/EPDM–g–MAH/PA (52:13:35), (e) EPDM–CPE–PA (52:13:35).Fig Effect of compatibilizer content on TCand enthalpies of crystallization in EPDM–PA TPVs (EPDM + compatibilizer)/PA (65:35).•EPDM/Ter PA TPV20–AFM表征形貌–增容Æ橡胶(亮区)更细分散(a)(b)(a)(c)(b)(d)Figure AFM image of dynamically vulcanized EPDM/EPDM-g-MAH/PA: (a) 65/0/35; (b)58.5/6.5/35; (c) 39/26/35; (d) 0/65/35.•EPDM/Ter PA TPV21–良好增容剂:CPEFig Scanning electron micrographs of dynamic vulcanized EPDM/PA TPV fractured under liquid nitrogen and etched by heptane for 24 hours: (a) EPDM/PA (30/70), (b) EPDM/CPE/PA (24/6/70).•PA1010/EVM blends22–EVM橡胶:尼龙良好的增韧剂Figure Effect of EVM content on the impact strength of nylon/EVM blends.Table Tensile and Flexural Properties of Nylon/EVM Blends.•PA1010/EVM blends–增容:提高增韧效率Figure Effect of EVA-g-MAH content on the impact strength ofnylon/EVM/EVA-g-MAH blends.Table Tensile and Flexural Properties of Nylon/EVM/EVA-g-MAH Blends•PA1010/EVM blendsFigure SEM image of fracture surface of nylon/EVM/EVA-g-MAH blends.(a) nylon/EVM = 100/5, (b) nylon/EVM = 100/20, (c) nylon/EVM = 100/80, (d)nylon/EVM/EVA-g-MAH = 100/20/2.5, (e) nylon/EVM/EVA-g-MAH = 100/20/5.•PA1010/EVM blends23–EVM/EVA-g-MAH RatioTable Mechanical Properties of Nylon/EVM/EVA-g-MAH Blends Table Particle Size and Impact Strength of Nylon/EVM/EVA-g-MAH Blends4. 结语•有关共混型聚酰胺热塑性弹性体的实验室研究已渐趋完善,工业化进程尚待努力•特种橡胶EVM作为橡胶相与聚酰胺制备弹性体,潜力巨大感谢国家自然科学基金委(51073092)给予的巨大支持!。

聚酰胺

聚酰胺

机械设备 其他行业
球拍线 螺旋推进器
改性
主要在以下几方面进行改性:
①改善尼龙的吸水性,提高制品的尺寸稳定性。
②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。 ③提高尼龙的机械强度,以达到金属材料的强度,取代金属 ④提高尼龙的抗低温性能,增强其对耐环境应变的能力。 ⑤提高尼龙的耐磨性,以适应耐磨要求高的场合。 ⑥提高尼龙的抗静电性,以适应矿山及其机械应用的要求。 ⑦提高尼龙的耐热性,以适应如汽车发动机等耐高温条件的领域。 ⑧降低尼龙的成本,提高产品竞争力。
阻隔 尼龙
• 与PET的混合料符合食品卫生要求,是阻隔性很高的理想 包装材料,可用于药品、碳酸饮料、酒类、食品等包装。
应用与 改性
主要应用
代替金属材料,质量轻,具有优异的力学性能、耐油性和 电绝缘性,适合制造汽车发动机周边部件和电子电器部件
汽车工业 电子电器工业
发动机部件、电器部件、车身其他部件等 壳体材料、绝缘材料(空气开关、接线盒等)
接 线 盒
发动机部件
散热风扇
雨刮器
空 气 开 关
主要应用
齿轮、绝缘垫圈、挡板座、涡轮、螺旋 桨轴、螺旋推进器、滑动轴承等 包装薄膜、球拍线等
• 凯芙拉具有极佳的抗拉 性能,其强度为同等质 量钢铁的五倍,而密度 仅为钢铁约五分之一
改性尼龙
基于Kevlar质量轻、抗冲击 能力强、韧性大的特点,广 泛应用于防弹衣、装甲的制 造。
因其耐磨性,也被用于 手机外壳
改性尼龙
铸型 尼龙
“以塑代钢、性能卓越”,用途极其广泛。 它具有重量轻、强度高、自润滑、耐磨、防 腐,绝缘等多种独特性能是应用广泛的工程 塑料。
最重要的合成纤维原料而后发展为工程塑料 是最早出现能够承受负荷的热塑性塑料,也是五大通用工

聚酰胺的合成方法和应用及其进展

聚酰胺的合成方法和应用及其进展

尼龙螺丝
拉链
尼龙软管
尼龙手套
尼龙梳子
尼龙布

我国聚酰胺工程塑料的主要消费市场是汽车工业、电子
电器、机械部件、交通器材、纺织和包装领域,其中汽车
工业是最大消费领域。随着汽车小型化、电子电气设备高 性能化、机械设备轻量化的进程加快,对尼龙的需求急剧 上升。但目前国内的生产企业数量少,规模较小,生产能 力有限,产能供不应求。最致命的是生产技术薄弱,大多
尼龙的化学结构通式基本有两种: ⑴由ω-氨基酸自缩聚或它的内酰胺开环聚合制得:
NH ( CH2 )n-1 C O p
⑵由二元酸和二元胺缩聚制得:
NH ( CH2 )m NH C O ( CH2 )n C O p
二元胺和二元酸或二元胺或二元酸中的亚甲基可以 被环状或芳香族化合物取代,也可以是上述结构尼 龙的共聚物。
尼龙首先是作为最重要的合成纤维原料而后发展 为工程塑料。
PA具有良好的综合性能,包括力学性能、耐热性、 耐磨损性、耐化学药品性和自润滑性,且摩擦系数 低,有一定的阻燃性,易于加工,适于用玻璃纤维 和其它填料填充增强改性,提高性能和扩大应用范 围。 根据主链结构可分为脂肪族聚酰胺、半芳香族聚 酰胺、全芳香族聚酰胺、含杂环芳香族聚酰胺、脂 环族聚酰胺。
⑶ 用重复的二胺或二酸的简称表示
如间苯二甲胺 (Metaxylylene diamine) 简称为 MXDA,间苯二甲胺与己二酸合成的聚合物称为尼 龙MXD6;对苯二甲酸英文名为Terephthalic Acid, 己二胺和对苯二甲酸合成的聚合物称为6T,壬二胺 和对苯二甲酸合成的聚合物称为9T。
⑵ 电子电气工业 电子电气行业是PA的消费第二领域,是应用开发 较早的领域。 主要用途是空调、彩电、程控交换机、复印机、 计算机的线圈骨架、接插件、接线柱、高压包、转动 轮、小型变压器等部件;移动电话外壳、电器电源装 置的高低压开关、继电器外壳等。

聚酰胺-胺(PAMAM)树状大分子的研究进展

聚酰胺-胺(PAMAM)树状大分子的研究进展
1 结构和性质
111 结构 1985 年 Tom alia[ 6 ]等人首次合成了这种高度支
化 、对称 、呈辐射状的聚酰胺 - 胺大分子 ,并称其为 星射状树形聚合物 。聚酰胺 - 胺树状大分子由初始 引发核 、与初始引发核径向连接的重复支化单元和 与最外层重 复支化单元连接 的末端基组成 [ 7 ] 。由 于表面官能团的数目随代数的增加而成指数增长 ,
最终导致表面空间拥挤而产生几何变化 。聚酰胺 胺树状大分子代数较低时一般为开放的分子构型 , 随着层数的增加和支化的继续 ,从第四代树状大分 子开始就形成了较为封闭的多孔的球形三维结构 , 第八代则是表面几乎无缝的球体。且高代数的树状 大分子形成表面紧密堆积的三维结构 ,内部空间较 大 ,其性质与胶团相似 [8 - 12 ] 。树状大分子中结构单 元每重复一次成为一次繁衍 ,得到的产物的代数就 增加 1,据报道 ,目前聚酰胺 - 胺 ( PAMAM ) 树状大 分子已合成到 10. 0 代 [ 13 ] 。 112 结构特点
由于树状大分子内部具有广阔的空腔 ,分子内 部和外部具有大量的活性官能团 ,所以可以在树状 大分子内部引入催化剂的活性中心 [ 25 ] ,在空腔内部 完成整个催化过程 ;同时也可以利用端基的活性 ,将 催化剂的活性中心连接在树状大分子的外部。 B runn er等 [ 25 ]报道了树状大分子封装金属纳米粒子 复合材料的合成及其催 化作用 。王金凤 [ 26 ] 等用苯 甲醛 、苄基 氯和三苯甲基氯等对 第三代的 PAMAM 进行修饰使其外层的每一个 - NH2 分别接上一个、 两个 、三个苯环 ,再用 TiCl4 与这些被修饰的化合物 进行配合 ,得到的配合物可用于催化有机聚合反应。 Zhao 等 [ 27 ]报道了用 4. 0 代的 PAMAM 树状大分子 作为样板 ,将过渡金属 Cu、Pt、Pd等分散在其表面上 起到载体的作用 ,该催化剂可用于烯烃的加成反应。 这为贵金属催化剂提供了一类新型的载体 。 412 金属纳米材料

聚酰亚胺的研究及应用进展_蒋大伟

聚酰亚胺的研究及应用进展_蒋大伟

33绝缘材料2009,42(2)聚酰亚胺的研究及应用进展蒋大伟1,2,姜其斌1,2,刘跃军1,李强军2(1.湖南工业大学包装新材料与技术重点实验室,湖南株洲412008;2.株洲时代新材料科技股份有限公司,湖南株洲412007)摘要:综述了当前国内外聚酰亚胺材料的发展概况,阐述了聚酰亚胺材料的结构性能以及研究进展,展望了聚酰亚胺材料的发展趋势。

关键词:聚酰亚胺;结构;性能;进展中图分类号:T M 215.1文献标志码:A文章编号:1009-9239(2009)02-0033-04The Research and A pp lication of Pro g ress of the Pol y imideJIANG Da-Wei 1,2,JIANG Qi-Bin 1,2,L IU Yue-Jun 1,LI Qiang-Jun2(1.K ey Labor atory o f N ew Packagi ng M ater ial and T echnology of H unan Uni v ersityo f T echnology ,Zhuz hou 412008,Chi na;2.Zhuz hou T imes N ew M at er ial T echnolo gy Co.L td ,Zhuz hou 412007,Chi na )Abstract :The current status o f p ol y imid e films in the world was r eviewed .The str uctural p erfor -mance of the materials was p r esented,and the research p ro g ress and develo p ment tr end in the near future were p r o s p ected.Key words :po lyimide;structure;properties;progress蒋大伟等:聚酰亚胺的研究及研究进展收稿日期:2008-10-18作者简介:蒋大伟(1984-),男,安徽滁州人,硕士生,研究方向为绝缘材料的制备与改性,(电子信箱)daiw ei0555@y 。

聚酰亚胺合成

聚酰亚胺合成

聚酰亚胺的研究与进展摘要聚酰亚胺是一种重要的高性能聚合物材料,由于其优异的耐热性能、介电性能、粘附性能、耐辐射性能、力学机械性能以及很好的化学物理稳定性等,近年来在航天航空、电子电力、精密机械等高新技术领域得到了广泛的应用,是目前树脂基复合材料中耐温性最高的材料之一。

本文详细介绍了聚酰亚胺的分类, 合成方法, 应用及其发展究现状和未来的发展动向。

关键词聚酰亚胺;合成方法;耐高温复合材料;涂料;覆铜板1、前言随着航空航天、电子信息、汽车工业、家用电器等诸多方面技术领域日新月异的发展, 对材料提出的要求也越来越高。

如: 高的耐热性和机械性能,优良的电性能和耐久性等,因此材料的研究也在不断地朝着高性能化、多功能化、轻量化和低成本化方向发展。

聚酰亚胺就是综合性能非常优异的材料。

它是一类主链上含有酰亚胺环的高分子材料。

由于主链上含有芳香环, 它作为先进复合材料基体,具有突出的耐温性能和优异的机械性能,是目前树脂基复合材料中耐温性最高的材料之一。

用作电子信息材料,聚酰亚胺除了具有突出的耐高温性外, 还具有突出的介电性能与抗辐射性能,是当前微电子信息领域中最好的封装和涂覆材料之一。

除此之外,聚酰亚胺树脂在胶粘剂、纤维、塑料与光刻胶等方面也表现出综合性能优异的特点。

为此,近些年来,人们对聚酰亚胺树脂给予了高度的重视,聚酰亚胺树脂的研究与应用得以迅速发展。

在应用方面,目前国际上生产聚酰亚胺的厂家有超过60家之多并且聚酰亚胺种类繁多,重要品种就有20多个,其应用领域也在不断扩大。

从上世纪60年代以来,我国聚酰亚胺材料也迅速发展。

2、聚酰亚胺材料的分类聚酰亚胺主要分为脂肪族聚酰亚胺和芳香族聚酰亚胺。

因为脂肪族聚酰亚胺实用性差, 因此通常所说的聚酰亚胺一般指芳香族聚酰亚胺。

另外,从合成方法来分,聚酰亚胺材料可分为热固性树脂和热塑性树脂两大类。

热塑性聚酰亚胺材料一般采用两步合成法制备,即首先在极性溶剂中由有机芳香四酸二酐和有机芳香二胺反应制成聚酰胺酸溶液, 然后经高温热处理使聚酰胺酸环化脱水生成不溶不熔的聚酰亚胺材料。

生物基聚酰胺研究进展

生物基聚酰胺研究进展

生物基聚酰胺研究进展作者:黄浩来源:《现代盐化工》2022年第03期关键词:生物基;聚酰胺;生物技术聚酰胺俗称尼龙,主链结构中含有酰胺基团重复单元,具有质轻、耐疲劳、耐化学腐蚀、耐热、耐磨、机械强度高等优点,有一定的自熄性和自润滑性,被应用于服装、汽车、医疗器械、建筑、力学组件和电气等领域。

随着科技的发展,其应用领域在不断扩大[1-3]。

根据不同的分子主链结构,聚酰胺可分为脂肪族聚酰胺、芳香族聚酰胺和半芳香族聚酰胺,目前,已经被工业化的有聚酰胺6、聚酰胺66、聚酰胺610、聚酰胺6T、聚酰胺11、聚酰胺46、聚酰胺10、聚酰胺1010、聚酰胺12、聚酰胺1212等品种。

其中,在我国市场上,聚酰胺6和聚酰胺66占90%以上[4]。

传统聚酰胺生产工艺的原料为石油,通过二酸/二胺单体缩聚和氨基酸缩聚/内酰胺单体开环聚合。

随着化石能源的消耗和人们可持续发展观念的强化,生物质环保原料的开发和应用成为当前研究的热点。

例如将粮食或者非粮食环保生物质通过生物技术转化为生物基单体,生物基单体再通过聚合反应生成聚酰胺,即生物基聚酰胺。

生物基聚酰胺的原料丰富,为绿色、环保、可持续开发聚酰胺产品提供了途径[5]。

1 生物基聚酰胺的原料1.1 油脂蓖麻油可以用于合成生物基或半生物基聚酰胺,合成工艺:蓖麻油→蓖麻油酸→单体。

目前,采用此工艺路线已合成的生物基聚酰胺有聚酰胺11、聚酰胺610、聚酰胺1010等。

蓖麻油经酯交换得到蓖麻油酸,蓖麻油酸经裂化、酸化可以得到癸二酸,癸二酸与二胺、己二胺缩聚得到聚酰胺410、聚酰胺610,癸二酸经氨化后可以得到癸二胺,癸二胺可以与癸二酸缩聚得到聚酰胺1010。

蓖麻油酸经热裂解、溴化、氨化等工艺合成1-氨基十一烯酸,最后经聚合可以得到聚酰胺11(见图1)。

1.2 氨基酸氨基酸中含有大量氨基和羧基,是合成生物基聚酰胺的主要原料之一,目前主要采用赖氨酸合成聚酰胺。

赖氨酸结构单元侧基上含两个氨基和一个羧基,能制得1,5-戊二胺、氨基戊酸、己内酰胺等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑷ 共聚尼龙是用上述方法命名的尼龙名称组合的 ,主要成分的尼龙名称放在前面。
如尼龙6和尼龙66的共聚尼龙称为6/66;若主要 成分为尼龙66,则称为66/6。
(1) 汽车工业
汽车工业是聚酰胺工程塑料最大的消费市场。PA具 有较好的机械性能和耐热稳定性,是制造强度高、耐热 性好零件的理想材料。
PA具有较好的耐热性,可经受汽车发动机运转等产 生的高温和环境产生的高、低温变化;有优良的耐油性 ,可以经受汽车上使用的汽油、机油、齿轮油、制动油 和润滑油;耐化学药品腐蚀,不受汽车冷却液、蓄电池 液等的腐蚀;具有高强度,是汽车发动机、传动部件及 受力结构部件的理想材料。
⑷ 办公和家用电器
⑸ 包装工业
包装工业(保鲜、贮存)使用PA是近年开发的一个热 门领域。消费品市场中需求最大的是PA6薄膜。
⑹ 交通运输
尼龙螺丝 拉链
尼龙软管 尼龙手套
尼龙梳子 尼龙布
• 我国聚酰胺工程塑料的主要消费市场是汽车工业、电子 电器、机械部件、交通器材、纺织和包装领域,其中汽车 工业是最大消费领域。随着汽车小型化、电子电气设备高 性能化、机械设备轻量化的进程加快,对尼龙的需求急剧 上升。但目前国内的生产企业数量少,规模较小,生产能 力有限,产能供不应求。最致命的是生产技术薄弱,大多 依靠从国外成套引进聚合设备和专利技术,发展受限。因 此,亟待国内的生产企业及科研院所提高聚酰胺产品的自 主研发能力,加大技术投入,奋起直追,以满足国内快速 增长的市场需求。
• 汽车及电子电器行业的快速发展不仅对聚酰胺的需求 量有要求,对各方面的性能也提出了更高的标准,然 而尼龙的固有缺点限制了其应用领域。因此,需要采 取适当的手段进行改性来提高某些性能,以满足相关 行业发展的要求。目前的改性方法主要有增强、增韧、 阻燃、导热、耐磨及合金化等,还需要进一步研究更 实用、经济、有效的改性手段来实现尼龙复合材料的 高性能化与功能化,进而促进相关行业产品向高性能、 高质量方向发展。
⑴ 由内酰胺开环聚合的尼龙,称为尼龙n,简写为PAn。
通式为:
N ( CH2 )n-1 C p
H
O
如 ε - 己 内 酰 胺 开 环 聚 合 得 到 的 聚 合 物 , 称 为 PA 6 ,
ω-氨基十一酸合成的聚合物为PA11。
⑵ 由二元胺和二元酸缩聚得到的聚合物,称为尼龙mn, 简写为PAmn,m为重复单元二元胺的碳原子数,n为 重复单元中二元酸的碳原子数,通式为:
• (2)由苯酚或环己烷开环聚合可制得聚酰胺6、聚酰胺12等。 • (3)用ω氨基十一碳酸缩聚可得到PA11。而ω氨基十一碳酸 可将十一碳烯酸与溴化氢加成再与氨作用制得。
• (4)用聚酰胺作原料进行共聚可制得聚酰胺共聚物如PA6/ 66。 • (5)用各种聚酰胺树脂共混,可以制得新的聚酰胺树脂。
聚酰胺按原料的不同,命名分为以下4种情况:
聚酰胺一般可由氨基酸缩聚,内酰胺开环聚合或者 由相应的二元酸与二元胺缩聚而成,属逐步聚合反应。
聚酰胺有以下几种合成工艺路线:
(1)二元酸和二元胺缩聚:如用己二酸与己二胺在乙 醇中,以等摩尔比先制成66盐,在280℃和加压条件下 缩聚即得PA66;用己二胺与癸二酸中和成盐,在加压下 间歇或连续缩聚可得PA610;用己二胺与十二碳二酸可 制得PA612。同样的方法可以制得PA46,PA1010等。
尼龙首先是作为最重要的合成纤维原料而后发展 为工程塑料。
PA具有良好的综合性能,包括力学性能、耐热性、 耐磨损性、耐化学药品性和自润滑性,且摩擦系数 低,有一定的阻燃性,易于加工,适于用玻璃纤维 和其它填料填充增强改性,提高性能和扩大应用范 围。
根据主链结构可分为脂肪族聚酰胺、半芳香族聚 酰胺、全芳香族聚酰胺、含杂环芳香族聚酰胺、脂 环族聚酰胺。
CONTENTS
01 02 03 04
聚酰胺(Polyamide),简称PA, 俗称尼龙(Nylon)。大分子主链 中含有重复结构单元酰胺基团
的聚合物的统称,在晶体中呈
现完全伸展的平面锯齿形结构。 PA的品种繁多,有PA6、PA66、PA11、PA12、
PA46、PA610、PA612、PA1010等,以及近几年开 发的半芳香族尼龙PA6T和特种尼龙等很多新品种。
1 , 6 - 己 二 胺 和 1 , 6 - 己 二 酸 缩 聚 所 得 聚 合 物 称 为 PA 6 6 1,4-丁二胺和1,6-己二酸缩聚得到的聚合物称为PA46。
⑶ 用重复的二胺或二酸的简称表示
如间苯二甲胺(Metaxylylene diamine)简称为 MXDA,间苯二甲胺与己二酸合成的聚合物称为尼 龙MXD6;对苯二甲酸英文名为Terephthalic Acid, 己二胺和对苯二甲酸合成的聚合物称为6T,壬二胺 和对苯二甲酸合成的聚合物称为9T。
⑵ 电子电气工业
电子电气行业是PA的消费第二领域,是应用开发 较早的领域。
主要用途是空调、彩电、程控交换机、复印机、 计算机的线圈骨架、接插件、接线柱、高压包、转动 轮、小型变压器等部件;移动电话外壳、电器电源装 置的高低压开关、继电器外壳等。
⑶ 机械工业
也是PA应用的主要领域。机械工业包括矿山机械 、造纸机械、橡塑机械、纺织机械、轧钢机械、食品 加工机械、机加工机械、搬运机械等众多产业。
尼龙的化学结构通式基本有两种: ⑴由ω-氨基酸自缩聚或它的内酰胺开环聚合制得:
NH ( CH2 )n-1 C Op
⑵由二元和二元胺缩聚制得:
NH ( CH2 )m NH C O
( CH2 )n C Op
二元胺和二元酸或二元胺或二元酸中的亚甲基可以 被环状或芳香族化合物取代,也可以是上述结构尼 龙的共聚物。
相关文档
最新文档