(完整版)斐波那契数列、走台阶问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
走台阶问题
如:
总共100级台阶(任意级都行),小明每次可选择走1步、2步或者3步,问走完这100级台阶总共有多少种走法?
解析:
这个问题本质上是斐波那契数列,假设只有一个台阶,那么只有一种跳法,那就是一次跳一级,f(1)=1;如果有两个台阶,那么有两种跳法,第一种跳法是一次跳一级,第二种跳法是一次跳两
级,f(2)=2。如果有大于2级的n级台阶,那么假如第一次跳一级台阶,剩下还有n-1级台阶,有f(n-1)种跳法,假如第一次条2级台阶,剩下n-2级台阶,有f(n-2)种跳法。这就表示f(n)=f(n-
1)+f(n-2)。将上面的斐波那契数列代码稍微改一下就是本题的答案f(n)=f(n-1)+f(n+2)
斐波那契数列
斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:F(n)=F(n-1)+F(n-2)
递推数列显然这是一个线性。
数学定义:
递归斐波纳契数列以如下被以的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)
由兔子生殖问题引出、生物 (计算科学)
特性:
这个数列从第3项开始,每一项都等于前两项之和。
特别指出:第1项是0,第2项是第一个1。
代码:
public class Test { static final int s = 100; //自定义的台阶数
static int compute(int stair){ if ( stair <=
0){ return0; } if (stair ==
1){ return1; } if (stair ==
2){ return2; } return compute(stair-1) + compute(stair-2);
//return 递归进行计算 --->递归思想进行数据计算处理
在斐波那契数列中后一项的值等于前两项的和 } public static void main(String args[]) { System.out.println("共有" + compute(s) + "种走法"); } }
return compute(stair-1) + compute(stair-2);
在return子句中调用调用compute函数
由斐波那契数列特性得到最后的值
分值拆分