《分式方程的实际应用》同步练习题
分式方程及其应用的同步训练题
分式方程及其应用训练:一.填空选择题:1.下列各式中,不是分式方程的是( ) A.x x x 11-= B.1)1(1=+-x x xC.21311-=-+x xD.31·(3)121=+x2.方程02211=-+-x x 可能产生的增根是 ( )A .1B .2C .-1或2D .1或2 3.解分式方程2322-+=-x x x ,去分母后的结果是 ( )A .32+=xB .3)2(2+-=x x C. )2(32)2(-+=-x x x D . 2)2(3+-=x x 4.要把分式方程xx 1423=-化为整式方程,方程两边需要同时乘以 ( )A .)2(2-x xB .xC .2-xD .42-x 5若关于x 的分式方程3232-=--x mx x 无解,则m 的值为__________6.若分式方程5156-=+--x k x x (其中k 为常数)产生增根,则增根是 ( )A.x=6B.x=5C.x=kD.无法确定A.-1B. 1C. ±1D.-27.老张师傅做m 个零件用了一个小时,则他做20个零件需要的小时数是 ( ) A.20m B.m20 C.20m D.20+m8、一项工程,甲单独做a 小时可以完成, 乙 单 独做 b 小时可以完成,问甲乙两人合作完成这项工程需要几小时? 问:(1)甲每小时完成 ____________.(2)乙每小时完成_____________.(3)甲乙两人合作完成这项工程共需要 ____________ 小时。
9.某 市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,设原计划每天管道铺设管道x 米,则实际每天管道铺设管道___________米,实际施工__________天,可列方程为__________________。
分式方程实际应用练习题
分式方程实际应用练习题一、行程问题1. 甲、乙两地相距360公里,甲车和乙车同时从两地出发相向而行,3小时后相遇。
已知甲车速度是乙车速度的1.2倍,求甲车和乙车的速度。
2. 小明从家出发,以每小时4公里的速度步行去图书馆,1小时后,小华从同一地点出发,以每小时6公里的速度骑车去图书馆。
问小华多久能追上小明?3. 一辆汽车从A地出发,以60公里/小时的速度行驶,行驶了2小时后,距离B地还有150公里。
此时,另一辆汽车从B地出发,以80公里/小时的速度行驶,问两车何时相遇?二、工程问题1. 一项工程,甲队单独完成需要12天,乙队单独完成需要18天。
两队合作,多少天可以完成这项工程?2. 某工程队计划在30天内完成一项工程,先由甲队单独工作10天,然后甲队和乙队共同工作15天,由乙队单独工作完成剩余工程。
若甲队单独工作30天可完成工程的3/5,求乙队单独完成整个工程需要多少天?3. 一项工程,甲、乙、丙三个工程队合作需要20天完成。
若甲队单独完成需要30天,乙队单独完成需要40天,求丙队单独完成这项工程需要多少天?三、浓度问题1. 有浓度为30%的溶液500克,要使其浓度变为50%,需要蒸发多少克水?2. 将浓度为20%的溶液与浓度为60%的溶液混合,得到浓度为40%的溶液。
若混合后溶液共200克,求两种溶液各需要多少克?3. 有浓度为10%的盐酸溶液若干,加入一定量的水后,浓度变为5%。
若加入的水是原溶液质量的1/4,求原溶液的质量。
四、比例问题1. 在一个比例尺为1:1000的地图上,甲、乙两地的实际距离是20公里,求地图上甲、乙两地的距离。
2. 某商品的原价为1000元,打折后售价为800元。
求打折比例。
3. 甲、乙两数的比例为3:4,若甲数增加50,乙数减少50,求新的比例。
五、几何问题1. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,求AB的长度。
2. 一个正方形的边长为8厘米,求其面积。
2020年九年级数学中考二轮复习《分式方程实际应用》练习(含答案)
二轮复习同步练习:《分式方程实际应用》1.随着《流浪地球》的热播,其同名科幻小说的销量也急剧上升为了应对这种变化,某网店分别用20000元和30000元先后两次购买该小说,第二次的数量比第一次多500套且两次进价相同.(1)该科幻小说第一次购进多少套?(2)市场调查发现该产品每天的销量y(套)与售价x(元)之间是一次函数关系,当销售单价是25元时,每天的销量是250套,销售单价每上涨一元,每天的销售量就减少10套,网店要求每套书的利润不低于10元且不高于18元,求网店销售该科幻小说每天的销量y(套)与销售单价x(元)之间的函数关系式,并直接写出自变量x的取值范围.2.草莓是种老少皆宜的食品,深受市民欢迎.今年3月份,甲,乙两超市分别用3000元以相同的进价购进质量相同的草莓.甲超市销售方案是:将草莓按大小分类包装销售,其中大草莓400千克,以进价的2倍价格销售,剩下的小草莓以高于进价的10%销售.乙超市销售方案是:不将草莓按大小分类,直接包装销售,价格按甲超市大、小两种草莓售价的平均数定价.若两超市将草莓全部售完,其中甲超市获利2100元(其他成本不计).(1)草莓进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.3.为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工30天后,B工程公司参与合作,两工程公司又共同施工60天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?4.足球是世界第一运动,参与足球运动可以锻炼身体,陶冶情操.“高新美少年,阳春蹴鞠忙”,让学生走出教室,走进阳光,让每一位学生健康、快乐成长,是高新一中初中校区一直秉承的理念.本月,我校第四届校园足球联赛落下了帷幕,并取得了四满成功.为了举办本次活动,我校在商场购买甲、乙两种不同的足球,购买甲种足球共花费2600元,购买乙种足球共花费1328元,购买甲种足球的数量是购买乙种足球数量的2.5倍,且购买一个乙种足球比购买一个甲种足球多花18元.求购买一个甲种足球、一个乙种足球各需多少元?5.2019年4月12日,安庆“筑梦号”自动驾驶公开试乘体验正式启动,让安庆成为全国率先开通自动驾驶的城市,智能、绿色出行的时代即将到来.普通燃油车从A地到B地,所需油费108元,而自动驾驶的纯电动车所需电费27元,已知每行驶1千米,普通燃油汽年所需的油费比自动的纯电动汽年所需的电费多0.54元,求自动驾驶的纯电动汽车每行驶1千米所需的电费.6.为“厉行节能减排,倡导绿色出行”,某公司拟在我县甲、乙两个街道社区试点投放一批共享单车(俗称“小黄车”),这批自行车包括A、B两种不同款型,投放情况如表:成本单价(单位:元)投放数量(单位:辆)总价(单位:元)A型x50 50xB型x+10 50成本合计(单位:元)7500(1)根据表格填空:本次试点投放的A、B型“小黄车”共有辆;用含有x的式子表示出B型自行车的成本总价为;(2)试求A、B两种款型自行车的单价各是多少元?(3)经过试点投放调查,现在该公司决定采取如下方式投放A型“小黄车”:甲街区每100人投放n辆,乙街区每100人投放(n+2)辆,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有人,求甲街区每100人投放A型“小黄车”的数量.7.某文教用品商店计划从厂家购买同一品牌的钢笔和笔记本,已知购买一支钢笔比购买一个笔记本多用15元,若用300元购买钢笔和用240元购买笔记本,则购买钢笔的数量是购买笔记本数量的一半.(1)求购买该品牌一支钢笔、一个笔记本各需要多少元?(2)经商谈,厂家给予该文教用品商店购买一支钢笔赠送一个该品牌笔记本的优惠,如果该文教用品商店需要笔记本的数量是钢笔数量的3倍还多6个,且该商店购买钢笔和笔记本的总费用不超过2760元,那么该文教用品商店最多可购买多少支该品牌的钢笔?8.改革开放40年来,我国交通运输发生了翻天覆地的变化,从上海到北京的距离是1463千米,现在乘高铁从上海到北京比上世纪八十年代的乘特快列车快了10小时,高铁的平均速度是特快列车的3.5倍,则特快列车和高铁的速度各是多少?9.为落实“美丽城市”的工作部署,市政府计划对城区道路进行改造.现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两队每天能改造道路的长度分别是多少米?10.某建筑公司甲、乙两个工程队通过公开招标获得某改造工程项目.已知甲队单独完成这项工程的时间是乙队单独完成这项工程时间的倍,由于乙队还有其他任务,先由甲队单独做55天后,再由甲、乙两队合做20天,完成了该项改造工程任务.(Ⅰ)请根据题意求甲、乙两队单独完成改造工程任务各需多少天;(Ⅱ)这项改造工程共投资200万元,如果按完成的工程量付款,那么甲、乙两队可获工程款各多少万元?11.张老师和王老师准备整理化学实验室的一批实验器材.张老师单独整理需要40分钟完成;若张老师和王老师共同整理20分钟后,王老师需再单独整理20分钟才能完成.(1)求王老师单独整理需要多少分钟完成;(2)若张老师因工作需要,他的整理时间不超过20分钟,则王老师至少整理多少分钟才能完成?12.甲乙两名工人各承包了一段500米的道路施工工程,已知甲每天可完成的工程比乙多5米.两人同时开始施工,当乙还有100米没有完成时,甲已经完成全部工程.(1)求甲、乙每天各可完成多少米道路施工工程?(2)后来两人又承包了新的道路施工工程,施工速度均不变,乙承包了500米,甲比乙多承包了100米,乙想:这次我们一定能同时完工了!请通过计算说明乙的想法正确吗?若正确,求出两人的施工时间;若不正确,则应该如何调整其中一人的施工速度才能使两人同时完工,请通过计算给出调整方案.13.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用45天时间完成整个工程.当一号施工队工作10天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前21天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?14.节能环保的油电混合动力汽车,既可用油做动力行驶,也可用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?(2)甲、乙两地的距离是多少千米?15.一条笔直的公路依次经过A,B,C三地,且A,B两地相距1000m,B,C两地相距2000m.甲、乙两人骑车分别从A,B两地同时出发前往C地.(1)若甲每分钟比乙多骑100m,且甲、乙同时到达C地,求甲的速度;(2)若出发5min,甲还未骑到B地,且此时甲、乙两人相距不到650m,请判断谁先到达C地,并说明理由.16.某服装店老板在武汉发现一款羽绒服,预测能畅销市场,就用a万元购进了x件.这款羽绒服面市后,果然十分畅销,很快售完.于是老板又在上海购进了同款羽绒服,所购数量比在武汉所购的数量多20%,单价贵20元,总进货款比前一次多23%.(1)请用含a和x的代数式分别表示在武汉以及上海购进的羽绒服的单价(单位:元/件);(2)若服装店老板两次进货共花费17.84万元,在销售这款羽绒服时每件定价都是1200元,第二次销售后期由于天气转暖,服装还剩没有卖出,老板决定打8折销售,最后全部售完.两次销售,服装店老板共盈利多少元?17.甘蔗富含大量铁、钙、锌等人体必需的微量元素,素有“补血果”的美称,是冬季热销的水果之一,为此,某水果商家12月份第一次用600元购进云南甘蔗若干千克,销售完后,他第二次又用600元购进该甘蔗,但这次每千克的进价比第一次的进价提高了20%,所购进甘蔗的数量比第一次少了25千克.(1)求该商家第一次购买云南甘蔗的进价是每千克多少元?(2)假没商家两次购进的云南甘蔗按同一价格销售,要使销售后获利不低于1000元,则每千克的售价至少为多少元?18.沅陵一中有360张旧课桌需维修,经过甲、乙两个维修小组的竞标得知,甲组工作效率是乙组的1.5倍,且甲组单独维修完这批旧课桌比乙组单独维修完这批旧课桌少用5天;已知甲组每天需要付工资800元,乙组每天需要付工资400元;(1)求甲、乙两个小组每天各维修多少张旧棵桌?(2)学校维修这批旧课桌预算资金不超过7200元,时间不超过12天,请你帮学校算一算有几种维修方案(天数不足1天的按1天算);每种方案需要多少钱?19.近几年,国家大力提倡从纯燃油汽车向新能源汽车转型.某汽车制造企业推出了一款新型油电混合动力汽车(在行驶过程中,既可以使用汽油驱动汽年,也可以使用电力驱动汽车,汽油驱动和电力驱动不同时工作).经试验,该型汽车从甲地驶向乙地,只用汽油进行驱动,费用为56元,只用电力进行驱动,费用为20元.已知每行驶1千米,只用汽油驱动的费用比只用电力驱动的费用多0.36元.(1)求每行驶1千米,只用汽油驱动的费用;(2)要使从甲地到乙地所需要的燃油费用和电力费用不超过38元,则至少要用电力驱动行驶多少千米?20.近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路的发展树立了新的标杆,随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自已的喜好依然选择乘坐普通列车,已知从咸宁地到某地的普通列车行驶路程是520千米,是高铁行驶路程的1.3倍,请完成以下问题:(1)高铁行驶的路程为千米.(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.参考答案1.解:(1)设该科幻小说第一次购进m套,则,∴m=1000,经检验,当m=1000时,m(m+500)≠0,则m=1000是原方程的解,答:该科幻小说第一次购进1000套;(2)每本进价为:(元),∵网店要求每套书的利润不低于10元且不高于18元,∴30≤x≤38,根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38).2.解:(1)设草莓进价为每千克x元,则甲、乙两超市分别购进草莓千克,依题意,得:400x+10%x•(﹣400)=2100,解得:x=5,经检验x=5是原方程的解,且符合题意.答:草莓进价为每千克5元.(2)由(1)知:每个超市购进草莓的总量为3000÷5=600(千克),甲超市大草莓的售价为5×2=10(元),小草莓的售价为5×(1+10%)=5.5(元),∴乙超市获得的利润为(﹣5)×600=1650(元).∵2100>1650,∴∴甲超市销售方式更合算.3.解:(1)设B工程公司单独完成需要x天,根据题意得:.解得:x=120.经检验x=120是分式方程的解,且符合题意,答:工程公司单独完成需要120天.(2)解:根据题意得:.整理得:.∵m<46,n<92,∴.解得42<m<46,∵m为正整数,∴m=43,44,45.又∵为正整数,∴m=45,n=90.答:两个A、B工程公司各施工建设了45天和90天.4.解:设一个甲种足球需要x元,∴一个乙种足球需要(x+18)元,由题意可知:=2.5×,解得:x=65,∴x+18=83,答:购买一个甲种足球、一个乙种足球各需65和83元5.解:设纯电动汽车每行驶1千米所需的电费为x元,则普通燃油车所需的油费为(x+0.54)元,由题意得=,解得:x=0.18经检验x=0.18为原方程的解.答:自动驾驶的纯电动汽车每行驶1千米所需的电费为0.18元.6.解:(1)∵50+50=100(辆),∴本次试点投放的A、B型“小黄车”共有100辆;B型自行车的成本总价为:50(x+10)元,故答案为:100;50(x+10);(2)设A型车的成本单价为x元,B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得:x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;(3)根据题意可得:×100+×100=,解得:n=2,∴甲街区每100人投放A型“小黄车”2辆.7.解:(1)设购买该品牌钢笔每支需x元,则购买每个笔记本需(x﹣15)元,依题意,得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x﹣15=10.答:购买该品牌钢笔每支需25元,笔记本每本10元.(2)设该文教用品商店可购买m支该品牌的钢笔,依题意,得:25m+10(3m+6﹣m)≤2760,解得:m≤60,∵m为整数,∴m的最大值为60.答:该文教用品商店最多可购买60支该品牌的钢笔.8.解:设特快列车的平均速度为x千米/小时,则高铁的平均速度为3.5x千米/小时,依题意,得:﹣=10,解得:x=104.5,经检验,x=104.5是原方程的解,且符合题意,∴3.5x=365.75.答:特快列车的平均速度为104.5千米/小时,高铁的平均速度为365.75千米/小时.9.解:设乙队每天能改造道路的长度为x米,∴甲队每天能改造道路的长度为x,根据题意可知:=﹣3,解得:x=40,经检验,x=40是方程的解,∴=60,答:甲、乙两队每天能改造道路的长度分别是60、40米.10.解:(Ⅰ)设甲、乙两队单独完成改造工程任务各需5x天,4x天依题意得:55×+20×(+)=1.整理得:20x=80.解得:x=4.经检验:x=4是原方程的解.∴5x=20,4x=16.答:甲队单独完成改造工程任务需20天,乙队单独完成改造工程任务需16天;(Ⅱ)甲队可获工程款=×200=150(万).乙队可获工程款=×200=50(万).答:甲队可获工程款150万,乙队可获工程款50万.11.解:(1)设王老师单独整理x分钟完工,根据题意得:+=1,解得x=80,经检验x=80是原分式方程的解.答:王老师单独整理80分钟完工.(2)设王老师整理y分钟完工,根据题意,得+≥1,解得:y≥80,答:王老师至少整理80分钟完工.12.解:(1)设乙每天施工x米,则甲每天施工(x+5)米,根据题意可得:解得:x=20,检验:当x=20时,x(x+5)≠0,∴x=20是原方程的解,则x+5=25(米)答:甲、乙每天各可完成25米,20米道路施工;(2)∵甲完成600米,需要天,乙完成500米,需要天,∴甲乙不能同时完工;方案一:将甲施工速度减少a千米/天,根据题意可得:解得:a=1,经检验:a=1是原方程的解,方案二:将乙施工速度增加b千米/天,根据题意可得:解得:b=,经检验:b=是原方程的解,综上所述:将甲施工速度减少1千米/天,将乙施工速度增加千米/天,13.解:(1)设二号施工队单独施工需要x天,依题可得:×10+(+)×(45﹣10﹣21)=1,解得:x=30,经检验,x=30是原分式方程的解,答:由二号施工队单独施工,完成整个工期需要60天.(2)由题可得1÷(+)=18(天),∴若由一、二号施工队同时进场施工,完成整个工程需要18天.14.解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,根据题意可得:=,解得:x=0.3,经检验得:x=0.3是原方程的解,答:汽车行驶中每千米用电费用是0.3元;(2)甲、乙两地的距离是:30÷0.3=100(千米).15.解:(1)设甲的速度为x m/min,则乙的速度为(x﹣100)m/min,由题意得=.解得x=300.经检验,x=300是原方程的解.答:甲的速度为300 m/min.(2)解法一:设甲的速度为x m/min,乙的速度为ym/min,因为出发5 min,甲还未骑到B地,可得5x<1000,解得x<200.因为出发5 min,甲、乙两人相距不到650 m,可得5y+1000﹣5x<650.化简得x﹣y>70.设甲、乙从出发到到达C地所用的时间分别为t甲,t乙,则t甲﹣t乙=﹣=1000().因为x﹣y>70,所以y<x﹣70.所以3y﹣2x<3(x﹣70)﹣2x.即3y﹣2x<x﹣210.又因为x<200,所以3y﹣2x<0.因为由实际意义可知xy>0,所以t甲﹣t乙<0.即t甲<t乙.所以甲先到达C地.解法二:设甲的速度为x m/min,乙的速度为ym/min,因为出发5 min,甲还未骑到B地,可得5x<1000,解得x<200.因为出发5 min,甲、乙两人相距不到650 m,可得5y+1000﹣5x<650.化简得x﹣y>70.由题可知,出发后,甲经过min追上乙,则此时s甲=.因为x﹣y>70,且x<200,所以s甲<<3000,也即甲追上乙时,两人还未到达C地.因为x>y,所以甲先到达C地;16.解:(1)由题意可知:武汉购进羽绒服单件价格为元,上海购进羽绒服数量为x+0.2x=1.2x件,进货款为a+0.23a=1.23a,∴上海购进羽绒服单件价格为=元;(2)由题意可知:a+1.23a=17.84,∴a=8,根据题意可知:+20=,∴x=100,∴第一次购进了100件,第二购进了120件,第一次购进羽绒服的单件为:=800元第二购进羽绒服的单件为:=820元,∴第一销售完所获得的利润为:(1200﹣800)×100=40000元,第二销售完所获得的利润为:(1200﹣820)××120+(1200×0.8﹣820)××120=39840元,答:两次销售,服装店老板共盈利79840元.17.解:(1)设该商家第一次购买云南甘蔗的进价是每千克x元,根据题意可知:=﹣25,x=4,经检验,x=4是原方程的解,答:该商家第一次购买云南甘蔗的进价是每千克4元;(2)设每千克的售价为y元,第一销售了=150千克,第二次销售了125千克,根据题意可知:150(y﹣4)+125(y﹣4.8)≥1000,解得:y≥8,答:每千克的售价至少为8元.18.解:(1)设乙小组每天维修x张旧课桌,∴甲小组每天维修1.5x张旧课桌,根据题意可知:=﹣5,解得:x=24,经检验,x=24是原分式方程的解,答:甲每天维修张36旧课桌,乙每天维修24张旧课桌;(2)由甲单独负责,此时完成工作需要=10天,需要费用为10×800=8000元,由乙单独负责,此时完成工作需要=15天,需要费用为15×400=6000元,故由甲或乙单独负责该项目都不符合题意,需要考虑甲乙合作完成,设甲负责m张旧课桌,则乙负责(360﹣m)张旧课桌,∴,解得:m=216,此时学校需要付费为:800×+400×=7200元答:由甲负责216张旧课桌,乙负责144张旧课桌,需要费用为7200元;19.解:(1)设用纯电行驶1千米的费用为x元,则用纯油行驶1千米的费用为(x+0.36)元,根据题意得:=,解得:x=0.2,经检验:x=0.2是原分式方程的解,x+0.36=0.56,答:每行驶1千米,只用汽油驱动的费用为0.56元;(2)设从A地到B地用电行驶y千米,根据题意得:0.2y+0.56×(﹣y)≤38,解得:y≥50,答:至少要用电力驱动行驶50千米.20.解:(1)高铁行驶的路程为:520÷1.3=400(千米);故答案为:400;(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时,则题意得:=﹣3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.。
人教版八年级数学上15.3.2分式方程的应用-同步练习.docx
初中数学试卷 桑水出品15.3 第3课时 分式方程的应用一、选择题1.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等。
设小明打字速度为x 个/分钟,则列方程正确的是( )A :x x 1806120=+B :x x 1806120=-C :6180120+=x xD :6180120-=x x 2.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,则根据题意列出的方程是( ).A .80705x x =-B .80705x x =+ C .80705x x =+ D .80705x x =-3.(2010年益阳市) 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是 A.203525-=x x B.xx 352025=- C.203525+=x x D.xx 352025=+ 4.(2012四川内江)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依题意列方程正确的是( )A .30x =4015x -B .3015x -=40xC .30x =4015x +D .3015x +=40x 5.(2013年河北)甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m.依题意,下面所列方程正确的是A .120x =100x -10B .120x =100x +10C .120x -10=100x D .120x +10=100x 6.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100B .306030100-=+x xC .x x +=-306030100 D .306030100+=-x x 7.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。
人教版八年级上册数学 15.3 分式方程—分式方程的应用 同步测试(含解析)
15.3 分式方程—分式方程的应用同步测试一.选择题1.甲、乙二人做某种机械零件,已知每小时甲比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,设乙每小时做x个零件,以下所列方程正确的是()A.B.C.D.2.在2018年太原国际马拉松赛中,小张参加了迷你马拉松(全程约4.2km)项目,已知小张全程匀速前进,若将速度每小时加快2km,则正好比实际提前10min到达终点.设小张的速度为xkm/h,那么可列方程为()A.B.C.D.3.“绿水青山就是金山银山”.为改造太湖水质,某工程队对2400平方公里的水域进行水质净化,实际工作时每天的工作效率比原计划提高了20%,结果提前了40天完成任务.设实际每天净化的水域面积为x平方公里,则下列方程中正确的是()A.﹣=40B.﹣=40C.﹣=40D.﹣=404.南京市某花卉种植基地欲购进甲、乙两种兰花进行培育,每株甲种兰花的成本比每株乙种兰花的成本多100元,且用1200元购进的甲种兰花与用900元购进的乙种兰花数量相同,求甲、乙两种兰花每株成本分别为多少元?若设乙种兰花的成本是x元.则下列方程正确的是()A.=B.=C.=D.=5.某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多20元.李老师购买篮球花费900元,购买足球花费400元,结果购得的篮球数量是足球数量的1.5倍.设购买的足球数量是x个,则下列选项中所列方程正确的是()A.=+20B.=+20C.=+20D.=+206.圣湖路全长为600米,路面需整改,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,设原计划每天整改x米,则下列方程正确的是()A.﹣=5B.﹣=5C.﹣=5D.﹣=57.为有效解决交通拥堵问题,营造路网微循环,某市决定对一条长860m的道路进行改造拓宽,为了尽量减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加10%,结果提前6天完成任务,求实际每天改造道路的长度与实际施工天数.嘉琪同学根据题意列出方程:=6,则方程中未知数x所表示的量是()A.实际每天改造道路的长度B.原计划每天改造道路的长度C.原计划施工的天数D.实际施工的天数8.在“建设美丽阜新”的行动中,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm管道,根据题意,所列方程正确的是()A.﹣=30B.﹣=30C.﹣=30D.﹣=309.某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.10.某服装制造厂要在开学前赶制3000套校服,为了尽快完成任务,厂领导合理调配人力使每天完成的校服比原计划多20%,结果提前4天完成任务.问:原计划每天能完成多少套校服?设原来每天完成校服x套,则可列出方程()A.+=4B.﹣=4C.=+4D.=4+二.填空题11.甲和乙同时从A地出发,匀速行走到B地.甲走完一半路程时,乙才走了4千米,乙走完一半路程时,甲已走了9千米.当甲走完全程时,乙未走完的路程还有千米.12.某工程队修建一条长1200m的道路;采用新的施工方式,工效提升了50%,结果提前4天完成任务,设这个工程队原计划每天修建道路xm,则列出的方程为.13.疫情期间,某工厂一生产车间获得150000只口罩的生产订单,加工60000个口罩后,采用了新的生产工艺,效率提高到原来的2倍,任务完成后,发现比原计划少用了10个小时.设采用新工艺之前每小时可生产口罩x个,依据题意可得方程.14.为了改善生态环境,防止水土流失,某村计划在荒坡上种树480棵.由于青年志愿者的支援,每天比原计划多种10棵,结果提前4天完成任务.设原计划每天种x棵树,则根据题意可列方程为.15.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了赶在雨季前竣工,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划工作时每天绿化的面积为x万平方米,根据题意列方程得.三.解答题16.李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有48分钟,于是他立即步行(匀速)回家,在家拿道具用了2分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度是多少?(2)李明能否在联欢会开始前赶到学校?17.为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树,由于青年团员的支援,每日比原计划多种20棵,结果在时间相同的情况下多种了240棵树,原计划每天种植多少棵树?18.平价大药房准备购进KN95、一次性医用两种口罩.两种口罩的进价和售价如表.已知:用1800元购进一次性医用口罩的数量是用2000元购进KN95口罩的数量的5倍.KN95口罩一次性医用口罩进价(元/个)m+10.2m售价(元/个)15 2.5(1)求m的值;(2)要使购进的KN95、一次性医用两种口罩共1000个的总利润不少于1560元,且不超过1603元,问该药店共有多少种进货方案?参考答案一.选择题1.解:设乙每小时做x个零件,则甲每小时做(x+6)个零件,依题意,得:=.故选:C.2.解:设小张的速度为xkm/h,则加快后的速度是(x+2)km/h,根据题意,得.故选:C.3.解:设实际每天净化的水域面积为x平方公里,根据题意可得:﹣=40.故选:A.4.解:设乙种兰花的成本是x元,则甲种兰花的成本为(x+100)元,根据题意可得:=.故选:B.5.解:设购买的足球数量是x个,则购买篮球数量是1.5x个,根据题意,得=+20.故选:C.6.解:设原计划每天铺设x米管道,则实际施工每天铺设(1+20%)x米管道,根据题意列得:﹣=5.故选:C.7.解:设原计划每天改造管道x米,则实际每天改造管道(1+10%)x,根据题意,可列方程=6,所以嘉琪所列方程中未知数x所表示的量是原计划每天改造管道的长度,故选:B.8.解:设实际每天铺xm管道,则原计划每天铺m管道,根据题意,得﹣=30,故选:B.9.解:设班级共有x名学生,依据题意列方程得,.故选:B.10.解:设原来每天完成校服x套,则实际每天完成校服(1+20%)x套,依题意,得:=4+.故选:D.二.填空题11.解:设A,B两地之间的路程为x千米,依题意,得:=,化简,得:x2=144,解得:x1=12,x2=﹣12,经检验,x1=12,x2=﹣12均为原方程的解,x1=12符合题意,x2=﹣12不符合题意,舍去,∴x﹣4×2=4.故答案为:4.12.解:设原计划每天修建道路x米,则实际每天修建道路(1+50%)x米,根据题意,列方程为:﹣=4.故答案是:﹣=4.13.解:设采用新工艺之前每小时可生产口罩x个,则采用新工艺之后每小时可生产口罩2x个,依题意,得:﹣=10.故答案是:﹣=10.14.解:设原计划每天种x棵树,实际每天种树(x+10)棵树,由题意得,﹣=4.故答案为:﹣=4.15.解:∵原计划工作时每天绿化的面积为x万平方米,实际工作时每天的工作效率比原计划提高了25%,∴实际工作时每天绿化的面积为(1+25%)x万平方米.依题意,得:﹣=30.故答案为:﹣=30.三.解答题16.解:(1)设李明步行的速度为x米/分,则骑自行车的速度为3x米/分.依题意,得:﹣=20,解得:x=70,经检验,x=70是原方程的解,且符合题意.答:李明步行的速度是70米/分.(2)++2=42(分钟),∵42<48,∴李明能在联欢会开始前赶到学校.17.解:设原计划每天种植x棵树,则实际每天种(x+20)棵树,由题意可得:,解得:x=80,经检验,x=80是原方程的解,并符合题意,答:原计划每天种植80棵树.18.解:(1)由题意得:=×5,解得:m=9,经检验,m=3是原方程的解,且符合题意,∴m=9;(2)∵m=9,∴m+1=10,0.2m=1.8,设购进的KN95口罩为x个,一次性医用口罩为(1000﹣x)个,由题意得:1560≤(15﹣10)x+(2.5﹣1.8)×(1000﹣x)≤1603,解得:200≤x≤210,即x的取值有11个,∴药店共有11种进货方案.。
2022-2023学年华东师大版八年级数学下册《分式方程的应用》同步练习题(附答案)
2022-2023学年华东师大版八年级数学下册《分式方程的应用》同步练习题(附答案)1.为响应“绿色出行”的号召,小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18km,他乘公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程多10km.他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的.小王乘公交车上班平均每小时行驶()A.30km B.36km C.40km D.46km2.《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为()A.1.8升B.16升C.18升D.50升3.某地为美化环境,计划种植树木6000棵.由于志愿者加入,实际每天植树棵数比原计划增加了25%,结果提前3天完成任务.则实际每天植树棵.4.端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?5.小江与小杰两名同学为学校图书馆清点一批图书,小江清点完600本图书比小杰清点完540本图书少用了5min.已知小江平均每分钟清点图书的数量是小杰的1.25倍,求两名同学平均每分钟清点图书各多少本.6.为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多25元,用2000元购进篮球的数量是用750元购进足球数量的2倍,求:每个篮球和足球的进价各多少元?7.为落实“数字中国”的建设工作,市政府计划对全市中小学多媒体教室进行安装改造,现安排两个安装公司共同完成.已知甲公司安装工效是乙公司安装工效的1.5倍,乙公司安装36间教室比甲公司安装同样数量的教室多用3天.(1)求甲、乙两个公司每天各安装多少间教室?(2)已知甲公司安装费每天1000元,乙公司安装费每天500元,现需安装教室120间,若想尽快完成安装工作且安装总费用不超过18000元,则最多安排甲公司工作多少天?8.“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?9.某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.(1)原来每天生产健身器械多少台?(2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?10.为落实“乡村振兴计划”的工作要求,某区政府计划对乡镇道路进行改造,安排甲、乙两个工程队完成,已知乙队比甲队每天少改造20米,甲队改造400米的道路与乙队改造300米的道路所用时间相同,求甲、乙两个工程队每天改造的道路长度分别是多少米?11.某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?12.某中学初三学生在开学前去商场购进A,B两款书包奖励班级表现优秀的学生,购买A 款书包共花费6000元,购买B款书包共花费3200元,且购买A款书包数量是购买B款书包数量的3倍,已知购买一个B款书包比购买一个A款书包多花30元.(1)求购买一个A款书包、一个B款书包各需多少元?(2)为了调动学生的积极性,学校在开学后再次购进了A,B两款书包,每款书包不少于14个,总花费恰好为2268元,且在购买时商场对两款书包的销售单价进行了调整,A 款书包销售单价比第一次购买时提高了8%,B款书包按第一次购买时销售单价的九折出售.求此次A款书包有几种购买方案?(3)在(2)的条件下,商场这次销售两款书包,单价调整后利润比调整前减少72元,直接写出两款书包的购买方案.13.为增加学生阅读量,某校购买了“科普类”和“文学类”两种书籍,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多20%,购买“科普类”图书的数量比“文学类”图书的数量多20本.(1)求这两种图书的单价分别是多少元?(2)学校决定再次购买这两种图书共100本,且总费用不超过1600元,求最多能购买“科普类”图书多少本?14.为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?15.为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买A品牌足球共花费2880元,B品牌足球共花费2400元,且购买A品牌足球数量是B品牌数量的1.5倍,每个足球的售价,A品牌比B品牌便宜12元.今年由于参加俱乐部人数增加,需要从该店再购买A、B两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A品牌比去年提高了5%,B品牌比去年降低了10%,如果今年购买A、B两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B品牌足球?16.永州市某村经济合作社在乡村振兴工作队的指导下,根据市场需求,计划在2022年将30亩土地全部用于种植A、B两种经济作物.预计B种经济作物亩产值比A种经济作物亩产值多2万元,为实现2022年A种经济作物年总产值20万元,B种经济作物年总产值30万元的目标,问:2022年A、B两种经济作物应各种植多少亩?17.小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.(1)求小刚跑步的平均速度;(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.18.六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件.(1)求第一次每件的进价为多少元?(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?19.为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同.求每千克有机大米的售价为多少元?20.为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4:3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?参考答案1.解:设小王用自驾车方式上班平均每小时行驶xkm,则乘公交车平均每小时行驶(x+10)km,由题意得:=×,解得:x=30,经检验,x=30是原方程的解,则x+10=40,即小王乘公交车上班平均每小时行驶40km,故选:C.2.解:根据题意得:3斗=30升,设可以换得的粝米为x升,则=,解得:x==18(升),经检验:x=18是原分式方程的解,答:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为18升.故选:C.3.解:设原计划每天植树x棵,则实际每天植树(1+25%)x棵,依题意得:﹣=3,解得:x=400,经检验,x=400是原方程的解,且符合题意,∴(1+25%)x=500.故答案为:500.4.解:(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,依题意得:﹣=50,解得:x=4,经检验,x=4是原方程的解,则2x=8,答:甲种粽子的单价为8元,乙种粽子的单价为4元.(2)设购进甲种粽子m个,则购进乙种粽子(200﹣m)个,依题意得:8m+4(200﹣m)≤1150,解得:m≤87.5,答:最多购进87个甲种粽子.5.解:设小杰平均每分钟清点图书x本,则小江平均每分钟清点图书1.25x本,依题意得:﹣=5,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴1.25x=1.25×12=15.答:小杰平均每分钟清点图书12本,小江平均每分钟清点图书15本.6.解:设每个足球的进价是x元,则每个篮球的进价是(x+25)元,依题意得:=2×,解得:x=75,经检验,x=75是原方程的解,且符合题意,∴x+25=75+25=100.答:每个足球的进价是75元,每个篮球的进价是100元.7.解:(1)设乙公司每天安装x间教室,则甲公司每天安装1.5x间教室,根据题意得:=3,解得:x=4,经检验,x=4是所列方程的解,则1.5x=1.5×4=6,答:甲公司每天安装6间教室,乙公司每天安装4间教室;(2)设安排甲公司工作y天,则乙公司工作天,根据题意得:1000y+×500≤18000,解这个不等式,得:y≤12,答:最多安排甲公司工作12天.8.解:(1)设A奖品的单价为x元,则B奖品的单价为(x﹣25)元,由题意得:=,解得:x=40,经检验,x=40是原方程的解,则x﹣25=15,答:A奖品的单价为40元,则B奖品的单价为15元;(2)设购买A种奖品的数量为m件,则购买B种奖品的数量为(100﹣m)件,由题意得:,解得:22.5≤m≤25,∵m为正整数,∴m的值为23,24,25,∴有三种方案:①购买A种奖品23件,B种奖品77件;②购买A种奖品24件,B种奖品76件;③购买A种奖品25件,B种奖品75件.9.解:(1)设原来每天生产健身器械x台,则提高工作效率后每天生产健身器械1.4x台,依题意得:+=8,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:原来每天生产健身器械50台.(2)设使用m辆大货车,使用n辆小货车,∵同时使用大、小货车一次完成这批健身器械的运输,∴50m+20n≥500,∴n≥25﹣m.又∵运输公司大货车数量不足10辆,且运输总费用不多于16000元,∴,即,解得:8≤m<10.又∵m为整数,∴m可以为8,9.当m=8时,n≥25﹣m=25﹣×8=5;当m=9时,n≥25﹣m=25﹣×9=,又∵n为整数,∴n的最小值为3.∴共有2种运输方案,方案1:使用8辆大货车,5辆小货车;方案2:使用9辆大货车,3辆小货车.方案1所需费用为1500×8+800×5=16000(元),方案2所需费用为1500×9+800×3=15900(元).∵16000>15900,∴运输方案2的费用最低,最低运输费用是15900元.10.解:设甲工程队每天改造的道路长度是x米,列方程得:,解得:x=80.经检验x=80是所列方程的根,所以80﹣20=60.答:甲工程队每天改造的道路长度是80米,乙工程队每天改造的道路长度是60米.11.解:设该商品打折前每件x元,则打折后每件0.8x元,根据题意得,+2=,解得,x=50,检验:经检验,x=50是原方程的解.答:该商品打折前每件50元.12.解:(1)设购买一个A款书包需要x元,则购买一个B款书包需要(x+30)元,依题意得:=3×,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+30=50+30=80(元).答:购买一个A款书包需要50元,购买一个B款书包需要80元.(2)设购买m个B款书包,则购买=(42﹣m)个A款书包,依题意得:,解得:14≤m≤21.又∵(42﹣m)为整数,∴m为3的倍数,∴m可以取15,18,21,∴此次A款书包有3种购买方案.(3)依题意得:80×(1﹣0.9)m﹣50×8%(42﹣m)=72,解得:m=18,∴42﹣m=42﹣×18=18(个).答:购买18个A款书包,18个B款书包.13.解:(1)设“文学类”图书的单价为x元/本,则“科普类”图书的单价为(1+20%)x 元/本,依题意:﹣20=,解之得:x=15.经检验,x=15是所列方程的根,且符合题意,所以(1+20%)x=18.答:科普类书单价为18元/本,文学类书单价为15元/本;(2)设“科普类”书购a本,则“文学类”书购(100﹣a)本,依题意:18a+15(100﹣a)≤1600,解之得:a≤.因为a是正整数,所以a最大值=33.答:最多可购“科普类”图书33本.14.解:设该景点在设施改造后平均每天用水x吨,则在改造前平均每天用水2x吨,根据题意,得﹣=5.解得x=2.经检验:x=2是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2吨.15.解:设去年A足球售价为x元/个,则B足球售价为(x+12)元/个.由题意得:,即,∴96(x+12)=120x,∴x=48.经检验,x=48是原分式方程的解且符合题意.∴A足球售价为48元/个,B足球售价为60元/个.设今年购进B足球的个数为a个,则有:.∴50.4×50﹣50.4a+54a≤2640.∴3.6a≤120,∴.∴最多可购进33个B足球.16.解:设2022年A种经济作物应种植x亩,则B种经济作物应种植(30﹣x)亩,根据题意,得+2=.解得x=20或x=﹣15(舍去).经检验x=20是原方程的解,且符合题意.所以30﹣x=10.答:2022年A种经济作物应种植20亩,则B种经济作物应种植10亩.17.解:(1)设小刚跑步的平均速度为x米/分,则小刚骑自行车的平均速度为1.6x米/分,根据题意,得,解得:x=150,经检验,x=150是所列方程的根,答:小刚跑步的平均速度为150米/分.(2)他不能在上课前赶回学校,理由如下:由(1)得小刚跑步的平均速度为150米/分,则小刚跑步所用时间为1800÷150=12(分),骑自行车所用时间为12﹣4.5=7.5(分),∵在家取作业本和取自行车共用了3分,∴小刚从开始跑步回家到赶回学校需要12+7.5+3=22.5(分).又∵22.5>20,∴小刚不能在上课前赶回学校.18.解:(1)设第一次每件的进价为x元,则第二次进价为(1+20%)x,根据题意得:,解得:x=50,经检验:x=50是方程的解,且符合题意,答:第一次每件的进价为50元;(2)70×()﹣3000×2=1700(元),答:两次的总利润为1700元.19.解:设每千克有机大米的售价为x元,则每千克普通大米的售价为(x﹣2)元,依题意得:=,解得:x=7,经检验,x=7是原方程的解,且符合题意.答:每千克有机大米的售价为7元.20.解:(1)设一等奖奖品单价为4x元,则二等奖奖品单价为3x元,依题意得:+=25,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴4x=60,3x=45.答:一等奖奖品单价为60元,二等奖奖品单价为45元.(2)设购买一等奖奖品m件,二等奖奖品n件,依题意得:60m+45n=1275,∴n=.∵m,n均为正整数,且4≤m≤10,∴或或,∴共有3种购买方案,方案1:购买4件一等奖奖品,23件二等奖奖品;方案2:购买7件一等奖奖品,19件二等奖奖品;方案3:购买10件一等奖奖品,15件二等奖奖品.。
分式方程应用题专项练习50题[推荐五篇]
分式方程应用题专项练习50题[推荐五篇]第一篇:分式方程应用题专项练习50题分式方程应用题专项练习1、老城街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的2;若由甲队先做103天,剩下的工程再由甲、乙两队合作30天可以完成.;求甲、乙两队单独完成这项工程各需多少天?2.某工厂为了完成供货合同,决定在一定天数内生产原种零件400个,由于对原有设备进行了技术改进,提高了生产效率,每天比原计划增产25%,结果提前10天完成了任务.原计划每天生产多少个零件?3、某项工程如果甲单独做,刚好在规定的日期内宛成,如果乙单独做,则要超出规定日期3天,现在先由甲、乙两人合做两天后,剩下的任务由乙完成,也刚好能按做时完式,问规定的日期是几天?4、某工程由甲、乙两队合做6天完成,厂家需会甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的2,厂家需付甲、丙两队共55003元。
(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。
5.一个水池有甲乙两个进水管,甲管注满水池比乙管快4小时,如果单独放甲管5小时,再单独开放乙管6小时,就可以注满水池的一半,求单独开放一个水管,注满水池各需多长时间?6、轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间相同,已知水流的速度是3千米/时,求轮船在静水中的速度。
7.一列客车长200米一列货车长280米,在平行轨道上相向而行,从车头相遇到车尾相离一共经过8秒钟.已知客车与货车的速度之比为5∶3.求两车的速度.8、如图,小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3km,王老师家到学校的路程为0.5km,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min,问王老师的步行速度及骑自行车的速度各是多少?9、一小船由A港到B顺流航行需6小时,由B港到A港逆流航行需8小时,小船从早晨6时由A港到B港时,发现一救生圈在途中掉落水中,立即返航,2小时后找到救生圈。
分式专项训练之08-分式方程的实际应用(含答案)
分式专项训练之八(分式方程的实际应用)含答案一.解答题(共30小题)1.(2014•云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?2.(2014•贺州)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.3.(2014•长春)某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.4.(2014•日照)为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?5.(2014•张家界)国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?6.(2014•扬州)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?7.(2014•襄阳)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km 处的C站.求动车和特快列车的平均速度各是多少?8.(2014•达州)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?9.(2014•随州)某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?10.(2014•盘锦)某城市的A商场和B商场都卖同一种电动玩具,A商场的单价与B商场的单价之比是5:4,用120元在A商场买这种电动玩具比在B商场少买2个,求这种电动玩具在A商场和B商场的单价.11.(2014•哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?12.(2014•永州)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙对.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?13.(2014•自贡)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?14.(2014•六盘水)某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?15.(2014•广东)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?16.(2014•深圳)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求由几种方案?17.(2014•娄底)娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比小张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,求小张离长沙还有多远?18.(2014•牡丹江)学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?19.(2014•漳州)杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)20.(2014•靖江市模拟)某超市规定:凡一次购买大米180kg以上可以按原价打折出售,购买180kg(包括180kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要500元;若多买40kg,则按打折价格付款,恰巧需要也是500元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?21.(2014•江阴市二模)杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?22.(2014•营口)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?23.(2014•曲靖三模)某体育用品专卖店今年3月初用4000元购进了一批“中考体能测试专用绳”,上市后很快售完.该店于3月中旬又购进了和第一批数量相同的专用绳,由于第二批专用绳的进价每根比第一批提高了10元,结果进第二批专用绳共用了5000元.(1)第一批专用绳每根的进货价是多少元?(2)若第一批专用绳的售价是每根60元,为保证第二批专用绳的利润率不低于第一批的利润率,那么第二批专用绳每根售价至少是多少元?(提示:利润=售价﹣进价,利润率=)24.(2014•金乡县模拟)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?25.(2014•日照三模)甲喜欢喝西湖龙井茶,乙喜欢喝咖啡.1包西湖龙井茶叶,甲、乙两人一起喝10天喝完,甲单独喝则比乙单独喝快48天喝完;1罐咖啡,甲、乙两人一起喝12天喝完,乙单独喝则需20天喝完.(1)甲、乙单独喝完1包茶叶各需多少天?(2)假如现在让甲单独先喝咖啡,而让乙单独先喝茶,甲在有咖啡的情况下决不能喝自己喜欢的茶,而乙在有茶叶的情况下决不能喝自己喜欢的咖啡,问两人一起喝完1包茶叶和1罐咖啡需要多少天?26.(2014•丰润区二模)某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.(1)求第一批每只文具盒的进价是多少元?(2)卖完第一批后,第二批按24元/只的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的文具盒全部按同一标准一次性打折销售,但要求这批文具盒利润不得少于288元,问最低可打几折?27.(2014•平房区二模)某超市销售甲、乙两种商品,3月份该超市同时一次购进甲乙两种商品共100件,购进甲种商品用去300元,购进乙种商品用去1200元.(1)若购进甲、乙两种商品的进价相同,求两种商品的数量分别是多少?(2)由于商品受到市民欢迎,超市4月份决定再次购进甲、乙两种商品共100件,但甲、乙两种商品进价在原基础上分别降20%、涨20%,甲种商品售价20元,乙种商品售价35元,若这次全部售出甲、乙两种商品后获得的总利润不少于1200元,该超市最多购进甲种商品多少件?28.(2014•长沙模拟)某中学为了创建书香校园,去年购买了一批图书,其中科普书的单价比文学书的单价多4元,用1200元购买的科普书与用800元购买的文学书数量相等.(1)求去年购买的文学书和科普书的单价各是多少元?(2)若今年文学书的单价比去年提高了25%,科普书的单价与去年相同,这所中学今年计划再购买文学书和科普书共200本,且购买文学书和科普书的总费用不超过2135元,这所中学今年至少要购买多少本文学书?29.(2014•潮安区模拟)某公司投资某个工程项目,甲、乙两个工程队有能力承包这个项目,公司调查发现:乙队单独完成工程的时间是甲队的2倍:甲、乙两队合作完成工程需要20天:甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息回答:(1)甲、乙两队单独完成此项工程各需多少天?(2)从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?30.(2014•内江)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a 万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?分式专项训练之八(分式方程的实际应用)含答案参考答案与试题解析一.解答题(共30小题)1.(2014•云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?盒,则第一批进的数量是:,第二批进的数量是:×=2.(2014•贺州)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.+103.(2014•长春)某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.﹣=44.(2014•日照)为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?=155.(2014•张家界)国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?×,6.(2014•扬州)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?=107.(2014•襄阳)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km 处的C站.求动车和特快列车的平均速度各是多少?=,8.(2014•达州)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?由题意得,2=,9.(2014•随州)某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?天,则甲队的工作效率为××∵﹣,10.(2014•盘锦)某城市的A商场和B商场都卖同一种电动玩具,A商场的单价与B商场的单价之比是5:4,用120元在A商场买这种电动玩具比在B商场少买2个,求这种电动玩具在A商场和B商场的单价.+2=11.(2014•哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?=×12.(2014•永州)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙对.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?()13.(2014•自贡)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?分钟,则王师傅的工作效率为分钟,则王师傅的工作效率为()×﹣÷14.(2014•六盘水)某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?12=15.(2014•广东)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?=这一隐藏的等量关系列出方程即可;16.(2014•深圳)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求由几种方案?17.(2014•娄底)娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比小张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,求小张离长沙还有多远?=118.(2014•牡丹江)学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?=1019.(2014•漳州)杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)2=×80%+20.(2014•靖江市模拟)某超市规定:凡一次购买大米180kg以上可以按原价打折出售,购买180kg(包括180kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要500元;若多买40kg,则按打折价格付款,恰巧需要也是500元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?元;折扣价为元.据题意列方程为:21.(2014•江阴市二模)杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?22.(2014•营口)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?,.则可列方程=23.(2014•曲靖三模)某体育用品专卖店今年3月初用4000元购进了一批“中考体能测试专用绳”,上市后很快售完.该店于3月中旬又购进了和第一批数量相同的专用绳,由于第二批专用绳的进价每根比第一批提高了10元,结果进第二批专用绳共用了5000元.(1)第一批专用绳每根的进货价是多少元?(2)若第一批专用绳的售价是每根60元,为保证第二批专用绳的利润率不低于第一批的利润率,那么第二批专用绳每根售价至少是多少元?(提示:利润=售价﹣进价,利润率=)由题意得:由题意得:24.(2014•金乡县模拟)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?。
冀教版八年级上册 12.5分式方程的应用同步练习题(有答案)
12.5.1分式方程的应用(一)1.某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?解:设乙工程队每小时能完成x 平方米的绿化面积,甲工程队每小时能完成2x 平方米的绿化面积,则甲工程队完成300平方米的绿化面积需要3002x 小时,乙工程队完成300平方米的绿化面积需要300x小时.根据题意列方程,得300x -3002x =3.解得x =50.检验:当x =50时,2x ≠0. 所以原分式方程的解为x =50.答:乙工程队每小时能完成50平方米的绿化面积.2.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m .依题意,下面所列方程正确的是(A )A.120x =100x -10 B.120x =100x +10 C.120x -10=100x D.120x +10=100x3.为迎接2019年全国青运会,我市加紧城市建设的步伐,某城区对一条全长1 200 m 的公路进行绿化带改造,计划每天完成绿化带改造任务x m ,当x 满足的方程为23×1 200x =1 200x +300时,下列对这一方程所反映的数量关系描述正确的是(A )A .实际每天比计划多完成改造任务300 m ,实际所用天数是计划所用天数的23B .实际每天比计划少完成改造任务300 m ,计划所用天数是实际所用天数的23C .实际每天比计划多完成改造任务300 m ,计划所用天数是实际所用天数的23D .实际每天比计划少完成改造任务300 m ,实际所用天数是计划所用天数的234.一项工程,甲独做需12天完成,若甲、乙合做需4天完成,则乙独做需6天完成. 5.为了改善生态环境,某乡村计划植树4 000棵.由于志愿者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?解:设原计划每天种x 棵树,则实际每天种(1+20%)x 棵,依题意,得 4 000x -4 000+80(1+20%)x =3. 解得x =200.经检验x =200是原方程的解. 所以4 000200=20.答:原计划植树20天.6.某中学准备改造面积为1 680平方米的旧操场,现有甲、乙两个工程队都想承建这项工程.经协商后得知,甲工程队单独改造这个操场比乙工程队多用14天;甲工程队每天比乙工程队少改造25%;甲工程队每天所需费用160元,乙工程队每天所需费用200元.(1)求甲、乙两个工程队每天各改造操场多少平方米;(2)在改造操场的过程中,学校要委派一名管理人员进行质量监督,并由学校负担他每天25元的生活补助费,现有三种方案供选择.第一种方案:由甲单独改造; 第二种方案:由乙单独改造;第三种方案:由甲、乙一起同时进行改造. 你认为哪一种方案既省时又省钱?试比较说明.解:(1)设乙工程队每天改造操场x 平方米,则甲工程队每天改造操场(1-25%)x 平方米,由题意,得1 680(1-25%)x -1 680x=14.解得x =40.经检验,x =40是方程的根. ∴(1-25%)x =30.答:甲工程队每天改造操场30平方米,乙工程队每天改造操场40平方米. (2)方案一的花费:1 68030×(160+25)=10 360(元);方案二的花费:1 68040×(200+25)=9 450(元);方案三的花费:1 68030+40×(160+200+25)=9 240(元).∴方案三最好.7.北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权,近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,铁路全长约180千米,按照设计,京张高铁列车的平均行驶速度是普通快车的平均行驶速度的1.5倍,用时比普通快车用时少了20分钟,求京张高铁列车的平均行驶速度.解:设普通快车的平均行驶速度为x 千米/小时,则高铁列车的平均行驶速度为 1.5x 千米/小时,普通快车的行驶时间为180x 小时,高铁列车的行驶时间为1801.5x小时.根据题意列方程,得180x -1801.5x =13.解得x =180.检验:当x =180时,1.5x ≠0. 所以原分式方程的解为x =180. 所以1.5x =270.答:京张高铁列车的平均行驶速度是270千米/小时.8.某次列车平均提速20 km/h ,用相同的时间,列车提速前行驶400 km ,提速后比提速前多行驶100 km ,设提速前列车的平均速度为x km/h ,下列方程正确的是(A )A.400x =400+100x +20 B.400x =400-100x -20C.400x =400+100x -20 D.400x =400-100x +209.一艘轮船在静水中的最大航速为30 km/h ,它以最大航速沿江顺流航行90 km 所用时间与以最大航速逆流航行60 km 所用时间相等,设江水的流速为v km/h ,根据题意,下列所列方程正确的是(A )A.9030+v =6030-v B.90v =6030-v C.9030-v =6030+v D.9030-v =60v10.一汽车从甲地出发开往相距240 km 的乙地,出发后第1小时内按原计划的速度匀速行驶,1小时后比原来的速度加快了14,比原计划提前24 min 到达乙地,求汽车出发后第1小时内的行驶速度.解:设汽车出发后第1小时内的行驶速度是x km/h ,根据题意,得 240x =1+240-x 54x +2460, 解得x =80.经检验,x =80是原方程的根.答:汽车出发后第1小时内的行驶速度是80 km/h.11.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?解:(1)设大巴的平均速度为x 公里/小时,则小车的平均速度为1.5x 公里/小时,根据题意,得90x =901.5x +12+14,解得x =40.经检验,x =40是原方程的解. 1.5x =60.答:大巴的平均速度为40公里/小时,小车的平均速度为60公里/小时. (2)设苏老师赶上大巴的地点到基地的路程有y 公里,根据题意,得 12+90-y 60=90-y 40. 解得y =30.答:苏老师追上大巴的地点到基地的路程有30公里.第2课时 分式方程的应用(二)1.列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?解:设台式电脑的单价是x 元,则笔记本电脑的单价是1.5x 元,购买台式电脑240 000x台,笔记本电脑72 0001.5x台.根据题意列方程,得72 0001.5x +240 000x =120.解得x =2__400.检验:当x =2__400时,1.5x ≠0. 所以原分式方程的解为x =2__400. 所以1.5x =3__600.答:台式电脑的单价是2__400元,笔记本电脑的单价为3__600元.2.小敏上月在某文具店正好用30元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小敏只比上次多用了6元钱,却比上次多买了8本,若设她上月买了x 本笔记本,则根据题意可列方程为(B )A.36x +8-30x =1 B.30x -36x +8=1 C.36x -30x +8=1 D.30x +8-36x=1 3.某校为进一步开展“阳光体育”活动,购买了一批篮球和足球.已知购买足球数量是篮球数量的2倍,购买足球用了4 000元,购买篮球用了2 800元,篮球单价比足球单价贵16元.若可列方程4 0002x =2 800x-16表示题中的等量关系,则方程中x 表示的是(D )A .足球的单价B .篮球的单价C .足球的数量D .篮球的数量4.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价是x 元,则可列方程150-xx×100%=25%.5.“母亲节”前夕,某商店根据市场调查,用3 000元购进第一批盒装花,上市后很快售完,接着又用5 000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价.解:设第一批盒装花每盒的进价是x 元,由题意,得 2×3 000x =5 000x -5.解得x =30.经检验,x =30是原方程的根. 答:第一批盒装花每盒的进价是30元.6.烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3 000元以相同的进价购进质量相同的苹果.甲超市的销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2 100元(其他成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算. 解:(1)设苹果进价为每千克x 元.由题意,得 400x +10%x(3 000x -400)=2 100.解得x =5.经检验,x =5是原方程的根. 答:苹果进价为每千克5元. (2)由(1)知:每个超市苹果总量: 3 0005=600(千克), 甲超市大、小苹果售价分别为10元和5.5元. ∴乙超市获利:600×(10+5.52-5)=1 650(元).∵2 100>1 650, ∴甲超市销售方式更合算.7.某实验室现有30%的盐酸50克,要配制25%的稀盐酸,需加入x 克水,下面是小华的学习小组所列的关于x 的方程,你认为正确的是(D )A.3050+x =25% B.5050+x =25% C.1515+x =25% D.1550+x=25% 8.(保定市竞秀区二模改编)嘉淇同学借了一本书,共360页,要在两周借期内读完.当他读了半本时,发现接下来每天要多读16页才能恰好如期读完.他读前半本时,平均每天读多少页?设读前半本时,平均每天读x 页,则下列方程中,正确的是(B )A .7x +7(x +16)=360 B.180x +180x +16=14C.7x +7x +16=1D.360x +360x +16=14 9.某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好全部运走,怎么样调配劳动力才能使挖出的土能及时运走且不窝工,解决此问题可设派x 人挖土,其他人运土,列方程:①72-x x =13;②72-x =x 3;③x +3x =72;④x 72-x=3.上述方程中正确的有(C )A .1个B .2个C .3个D .4个10.甲、乙两个转盘同时转动,甲与乙的转速比为9∶11,已知两个转盘每分钟共转200圈,求甲、乙每分钟转动的圈数.解:设甲每分钟转动的圈数为x ,根据题意,得x 200-x =911. 解得x =90.经检验,x =90是分式分程的解. 则200-x =110.答:甲每分钟转动90圈,乙每分钟转动110圈.11.八(1)班和八(2)班学生一起去春游,每班都需要费用2 000元,已知(1)班的人数是(2)班人数的45,因此(1)班比(2)班的人均费用多10元.求(1)班和(2)班的人均费用分别是多少元.解:设(2)班的人均费用为x 元,则(1)班的人均费用为(x +10)元.根据题意,得 2 000x +10=2 000x ×45, 解得x =40.经检验,x =40是所列方程的解. ∴x +10=50.答:(1)班的人均费用为50元,(2)班的人均费用为40元.12.为了充分利用雨水资源,幸福村的小明家和相邻的爷爷家采取了修建蓄水池、屋顶收集雨水的做法.已知小明和爷爷家的屋顶收集雨水的面积、蓄水池的容积和蓄水池已有水量如下表:气象预报即将会下雨,为了收集尽可能多的雨水,下雨前需从爷爷家的蓄水池中抽取多少立方米的水注入小明家的蓄水池?解:设下雨前需从爷爷家的蓄水池中抽取x 立方米的水注入小明家的蓄水池,由题意,得160120=50-(34+x )13-(11.5-x ). 解得x =6.经检验,x =6是所列方程的解,且符合题意.答:下雨前需从爷爷家的蓄水池中抽取6立方米的水注入小明家的蓄水池.。
八年级数学上册15.3.2分式方程的应用同步训练(含解析)
分式方程的应用·一.选择题(共7小题);1.(2013春•八道江区校级月考)下列关于x的方程中,是分式方程的是()A.3x= B.=2C.=D.3x﹣2y=12.(2015春•宿州期末)若分式方程=有增根,则增根为;()A.x=﹣1 B.x=1 C.x=±1D.x=03.(2012春•溧水县期中)若分式的值与2互为相反数,则x的值是;()A. B.1 C. D.4.(2015•乌鲁木齐)九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A.=﹣ B.=﹣20C.=+ D.=+205.(2015•徐州模拟)某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是();;A.= B.=C.= D.=6.(2014•蜀山区一模)市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x天,根据题意列出了方程:,则方案③中被墨水污染的部分应该是();A.甲先做了4天 B.甲乙合做了4天C.甲先做了工程的D.甲乙合做了工程的7.(2013春•沙坪坝区校级期中)一批货物要运往某地,有甲、乙、丙三辆卡车可用,已知甲、乙、丙每次运货量不变,且甲、乙两车单独运完这批货物所用次数之比为2:1.若甲、丙两车各运相同次数运完这批货时,甲共运了180吨;若乙、丙两车各运相同次数运完这批货时,乙车共运了270吨.则这批货共有();;A.360吨B.450吨C.540吨D.630吨二.填空题(共6小题)8.(2015•毕节市)关于x的方程x2﹣4x+3=0与=有一个解相同,则a= .;9.(2015•湖北)分式方程﹣=0的解是.10.(2015•大竹县校级模拟)某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快了20米,结果提前2天完成任务.若设原计划每天修建道路x米,则根据题意可列方程为.;;11.(2014•盘锦)A、B两地相距60千米,若骑摩托车走完全程可比骑自行车少用小时,已知摩托车的速度是自行车速度的2倍,求自行车的速度.设骑自行车的速度为x千米/时,根据题意可列方程为.12.(2015•黄冈中学自主招生)现有纯农药一桶,倒出20升后用水补满;然后又倒出10升,再用水补满,这时,桶中纯农药与水的体积之比为3:5,则桶的容积为升.13.(2014春•吉安期末)为了提高新产品的附加值,某公司计划将研发生产的1200件新产品进行精细加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?三.解答题(共4小题)14.(2015•扬州)扬州建城2500年之际,为了继续美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?15.(2015•河池)联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?16.(2015•抚顺)某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?17.(2015•德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP 客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.人教版八年级数学上册15.3.2《分式方程的应用》同步训练习题一.选择题(共7小题)1.(2013春•八道江区校级月考)下列关于x的方程中,是分式方程的是()A.3x=B.=2 C.=D.3x﹣2y=1考点:分式方程的定义.分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.解答:解:A、C、D项中的方程分母中不含未知数,故不是分式方程;B、方程分母中含未知数x,故是分式方程,故选B.点评:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数.2.(2015春•宿州期末)若分式方程=有增根,则增根为()A.x=﹣1 B.x=1 C.x=±1D.x=0考点:分式方程的增根.分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0即可.解答:解:∵原方程有增根,∴最简公分母x﹣1=0,解得x=1.故选:B.点评:考查了分式方程的增根,确定增根的可能值,只需让最简公分母为0即可.3.(2012春•溧水县期中)若分式的值与2互为相反数,则x的值是()考点:解分式方程.分析:根据两数互为相反数时,两数的和为0,列出方程,再解分式方程,结果要检验.解答:解:依题意,得+2=0,去分母,得1+2(x+1)=0,解得x=﹣,检验:当x=﹣时,x+1≠0,故选D.点评:本题考查了解分式方程.关键是根据题意,列出分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.A. B.1 C. D.4.(2015•乌鲁木齐)九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A.=﹣B.=﹣20 C.=+D.=+20考点:由实际问题抽象出分式方程.分析:表示出汽车的速度,然后根据汽车行驶的时间等于骑车行驶的时间减去时间差列方程即可.解答:解:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,=+.故选C.点评:本题考查了实际问题抽象出分式方程,读懂题目信息,理解两种行驶方式的时间的关系是解题的关键.5.(2015•徐州模拟)某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=考点:由实际问题抽象出分式方程.分析:设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得,现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.解答:解:设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得,=.故选B.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.6.(2014•蜀山区一模)市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x天,根据题意列出了方程:,则方案③中被墨水污染的部分应该是()A.甲先做了4天 B.甲乙合做了4天C.甲先做了工程的D.甲乙合做了工程的考点:分式方程的应用.专题:工程问题.分析:方程左边的代数式表示的是甲乙合作的工效,所以相对应的是时间.解答:解:由方程:,可知甲做了4天,乙做了x天.故条件③是甲乙合做了4天.故选B.点评:本题考查了分式方程的应用,用到的等量关系为:工效×工作时间=工作总量.7.(2013春•沙坪坝区校级期中)一批货物要运往某地,有甲、乙、丙三辆卡车可用,已知甲、乙、丙每次运货量不变,且甲、乙两车单独运完这批货物所用次数之比为2:1.若甲、丙两车各运相同次数运完这批货时,甲共运了180吨;若乙、丙两车各运相同次数运完这批货时,乙车共运了270吨.则这批货共有()A.360吨B.450吨C.540吨D.630吨考点:分式方程的应用.分析:根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.解答:解:设这批货物共有T吨,甲车每次运t吨,乙车每次运t吨,由题意列方程:=,由甲、乙两车单独运完这批货物所用次数之比为2:1知t乙=2t甲,∴=,解得T=540.故选:C.点评:此题主要考查了列分式方程解应用,重点在于准确地找出相等关系,这是列方程的依据.二.填空题(共6小题)8.(2015•毕节市)关于x的方程x2﹣4x+3=0与=有一个解相同,则a= 1 .考点:分式方程的解;解一元二次方程-因式分解法.分析:利用因式分解法求得关于x的方程x2﹣4x+3=0的解,然后分别将其代入关于x的方程=,并求得a的值.解答:解:由关于x的方程x2﹣4x+3=0,得(x﹣1)(x﹣3)=0,∴x﹣1=0,或x﹣3=0,解得x1=1,x2=3;当x1=1时,分式方程=无意义;当x2=3时,=,解得a=1,经检验a=1是原方程的解.故答案为:1.点评:本题考查了一元二次方程的解、分式方程的解.解分式方程时,注意:分式的分母不为零.9.(2015•湖北)分式方程﹣=0的解是15 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣5﹣10=0,解得:x=15,经检验x=15是分式方程的解.故答案为:15.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.(2015•大竹县校级模拟)某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快了20米,结果提前2天完成任务.若设原计划每天修建道路x米,则根据题意可列方程为﹣=2 .考点:由实际问题抽象出分式方程.分析:设原计划每天修建道路x米,则实际每天修建道路(x+20)米,根据题意,提前2天完成任务,列方程.解答:解:设原计划每天修建道路x米,则实际每天修建道路(x+20)米,由题意得,﹣=2.故答案为:﹣=2.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.11.(2014•盘锦)A、B两地相距60千米,若骑摩托车走完全程可比骑自行车少用小时,已知摩托车的速度是自行车速度的2倍,求自行车的速度.设骑自行车的速度为x千米/时,根据题意可列方程为﹣=.考点:由实际问题抽象出分式方程.分析:设骑自行车的速度为x千米/时,则摩托车的速度为2x千米/小时,根据骑摩托车走完全程可比骑自行车少用小时,列方程即可.解答:解:设骑自行车的速度为x千米/时,则摩托车的速度为2x千米/小时,由题意得,﹣=.故答案为:﹣=.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.12.(2015•黄冈中学自主招生)现有纯农药一桶,倒出20升后用水补满;然后又倒出10升,再用水补满,这时,桶中纯农药与水的体积之比为3:5,则桶的容积为40 升.考点:分式方程的应用.分析:设桶的容积为x升,根据设桶的容积为X升,倒出20升农药后用水补满,浓度为,第二次倒出的10升中含农药10•,可计算出共倒出多少农药,根据这时,桶中纯农药与水的体积之比为3:5,纯农药占容积的,可列方程求解.解答:解:设桶的容积为x升,=x=40或x=﹣8(舍去).经检验x=40是方程的解.故桶的容积为40升.点评:本题考查理解题意的能力,关键将剩下农药的和容积的比值做为等量关系列方程求解.13.(2014春•吉安期末)为了提高新产品的附加值,某公司计划将研发生产的1200件新产品进行精细加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?考点:分式方程的应用.专题:应用题.分析:如果设甲工厂每天加工x件产品,那么根据乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍,可知乙工厂每天加工1.5x件产品.然后根据等量关系:甲工厂单独加工完成这批产品的天数﹣乙工厂单独加工完成这批产品的天数=10列出方程.解答:解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得:﹣=10,解得:x=40.经检验:x=40是原方程的根,且符合题意.所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.点评:本题考查了分式方程在实际生产生活中的应用.理解题意找出题中的等量关系,列出方程是解题的关键.注意分式方程一定要验根.三.解答题(共4小题)14.(2015•扬州)扬州建城2500年之际,为了继续美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?考点:分式方程的应用.分析:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),根据题意可得,实际比计划少用2天,据此列方程求解.解答:解:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),由题意得,﹣=2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:原计划每天种树100棵.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.15.(2015•河池)联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?考点:分式方程的应用.分析:(1)设第一次购买了x台电风扇,则第二次购买了(x﹣10)台电风扇,根据题意可得,第一次比第二次单价低30元,据此列方程求解;(2)分别求出两次的盈利,然后求和.解答:解:(1)设第一次购买了x台电风扇,则第二次购买了(x﹣10)台电风扇,由题意得,=150+30,解得:x=60,经检验:x=60是原分式方程的解,且符合题意,则x﹣10=60﹣10=50,答:第一次购买了60台电风扇,则第二次购买了50台电风扇;(2)第一次获利:(250﹣150)×60+(250﹣150﹣30)×50=6000+3500=9500(元).答:商场获利9500元.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.16.(2015•抚顺)某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?考点:分式方程的应用;一元一次不等式的应用.分析:(1)设购买一个乙礼品需要x元,根据“花费600元购买甲礼品和花费360元购买乙礼品的数量相等”列分式方程求解即可;(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(30﹣m)个,根据题意列不等式求解即可.解答:解:(1)设购买一个乙礼品需要x元,根据题意得:=,解得:x=60,经检验x=60是原方程的根,∴x+40=100.答:甲礼品100元,乙礼品60元;(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(30﹣m)个,根据题意得:100m+60(30﹣m)≤2000,解得:m≤5.答:最多可购买5个甲礼品.点评:此题主要考查了分式方程和不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程和不等式.17.(2015•德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP 客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.考点:分式方程的应用;一元一次方程的应用;一元一次不等式的应用.分析:(1)设里料的单价为x元/米,面料的单价为(2x+10)元/米,根据成本为76元列方程求解即可;(2)设打折数为m,根据利润大于等于30元列不等式求解即可;(3)设vip客户享受的降价率为x,然后根据VIP客户与普通用户批发件数相同列方程求解即可.解答:解:(1)设里料的单价为x元/米,面料的单价为(2x+10)元/米.根据题意得:0.8x+1.2(2x+10)=76.解得:x=20.2x+10=2×20+10=50.答:面料的单价为50元/米,里料的单价为20元/米.(2)设打折数为m.根据题意得:150×﹣76﹣14≥30.解得:m≥8.∴m的最小值为8.答:m的最小值为8.(3)150×0.8=120元.设vip客户享受的降价率为x.根据题意得:,解得:x=0.05经检验x=0.05是原方程的解.答;vip客户享受的降价率为5%.点评:本题主要考查的是一元一次方程、一元一次不等式、分式方程的应用,找出题目的相等关系和不等关系是解题的关键.。
2020年中考数学复习专题练:《分式方程实际应用 》(含答案)
2020年中考数学复习专题练:《分式方程实际应用》1.在抗击“新冠肺炎”战役中,某公司接到转产生产1440万个医用防护口罩补充防疫一线需要的任务,临时改造了甲、乙两条流水生产线.试产时甲生产线每天的产能(每天的生产的数量)是乙生产线的2倍,各生产80万个,甲比乙少用了2天.(1)求甲、乙两条生产线每天的产能各是多少?(2)若甲、乙两条生产线每天的运行成本分别是1.2万元和0.5万元,要使完成这批任务总运行成本不超过40万元,则至少应安排乙生产线生产多少天?(3)正式开工满负荷生产3天后,通过技术革新,甲生产线的日产能提高了50%,乙生产线的日产能翻了一番.再满负荷生产13天能否完成任务?2.某口罩生产厂在春节期间接到紧急任务,要求几天内生产出70万只口罩,为了战胜疫情,口罩厂工人愿意奉献自己的休息时间来完成这项任务,厂长决定开足全厂口罩生产线进行生产,结果每天比原来多生产3万只,而且提前了3天完成了任务,问原来要求几天完成这项紧急任务?3.在我县创建“生态保护示范县”活动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍.如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天,求甲,乙两工程队每天各能完成多少面积的绿化?4.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?5.某服装加工厂甲、乙两个车间共同加工一款休闲装,且每人每天加工的件数相同,甲车间比乙车间少10人,甲车间每天加工服装400件,乙车间每天加工服装600件.(1)求甲、乙两车间各有多少人;(2)甲车间更新了设备,平均每人每天加工的件数比原来多了10件,乙车间的加工效率不变,在两个车间总人数不变的情况下,加工厂计划从乙车间调出一部分人到甲车间,使每天两个车间加工的总数不少于1314件,求至少要从乙车间调出多少人到甲车间.6.某公司需要采购A、B两种笔记本,A种笔记本的单价高出B种笔记本的单价10元,并且花费300元购买A种笔记本和花费100元购买B种笔记本的数量相等.(1)求A种笔记本和B种笔记本的单价各是多少元;(2)该公司准备采购A、B两种笔记本共80本,若A种笔记本的数量不少于60本,并且采购A、B两种笔记本的总费用不高于1100元,那么该公司有种购买方案.7.哈市红十字预计在2019年儿童节前为郊区某小学发放学习用品,联系某工厂加工学习用品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的倍.(1)求手工每小时加工产品的数量;(2)经过调查该小学的小学生的总数不超过1332名,每名小学生分发两个学习用品,工厂领导打算在两天内(48小时)完成任务,打算以机器加工为主,同时人工也参与加工(人工与机器加工不能同时进行),为了保证按时完成加工任务,人工至多加工多少小时?8.甲、乙两个筑路队共同承担一段一级路的施工任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用15天.且甲队单独施工60天和乙队单独施工40天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了4天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?9.为维护市区的生态环境,政府决定对市区周边水域的水质进行改善,这项工程由甲、乙两个工程队承包,乙工程队单独施工140天后甲工程队加入,甲、乙两个工程队合作40天后,共完成总工程的,且甲工程队每天的施工量是乙工程队的3倍.(1)求甲工程队单独完成这项工程需要多少天?(2)若要求乙工程队施工工期不超过300天,则甲工程队至少要施工多少天?10.某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.(1)求实际每天挖掘多少米?(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?11.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.比亚迪油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为96元;若完全用电做动力行驶,则费用为36元.已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?12.某商店用1000元人民币购进水果销售,过了一段时间又用2800元购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克?(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的100千克按照标价的半价出售.售完全部水果后,利润不低于1700元,则最初每千克水果的标价至少是多少?13.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?14.某体育用品商场预测某品牌运动服能够畅销,用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场第一次购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=×100%.)15.某周日,珂铭和小雪从新天地小区门口同时出发,沿同一条路线去离该小区1800米的少年宫参加活动,为响应节能环保,绿色出行的号召,两人步行,已知珂铭的速度是小雪的速度的1.2倍,结果珂铭比小雪早6分钟到达.(1)求小雪的速度;(2)活动结東后返回,珂铭与小雪的速度均与原来相同,若小雪计划比珂铭至少提前6分钟回到小区,则小雪至少要比珂铭提前多长时间出发?16.一项工程,甲队单独完成比乙队单独完成少用8天,甲队单独做3天的工作乙队单独做需要5天.(1)甲、乙两队单独完成此项工程各需几天?(2)甲队每施工一天则需付给甲队工程款5.5万元,乙队每施工一天则需付给乙队工程款3万元.该工程先由甲、乙两队合作若干天后,再由乙队完成剩下的工程.若要求完成此项工程的工程款不超过65万元,则甲、乙两队最多合作多少天?17.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?18.国庆70华诞期间,各超市购物市民络绎不绝,呈现浓浓节日气氛.“百姓超市”用320元购进一批葡萄,上市后很快脱销,该超市又用680元购进第二批葡萄,所购数量是第一批购进数量的2倍,但进价每市斤多了0.2元.(1)该超市第一批购进这种葡萄多少市斤?(2)如果这两次购进的葡萄售价相同,且全部售完后总利润不低于20%,那么每市斤葡萄的售价应该至少定为多少元?19.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?20.某学校计划选购A、B两种图书.已知A种图书每本价格是B种图书每本价格的2.5倍,用1200元单独购买A种图书比用1500元单独购买B种图书要少25本.(1)A、B两种图书每本价格分别为多少元?(2)如果该学校计划购买B种图书的本数比购买A种图书本数的2倍多8本,且用于购买A、B两种图书的总经费不超过1164元,那么该学校最多可以购买多少本B种图书?参考答案1.解:(1)设乙条生产线每天的产能是x万个,则甲条生产线每天的产能是2x万个,依题意有﹣=2,解得x=20,经检验,x=20是原方程的解,2x=2×20=40,故甲条生产线每天的产能是40万个,乙条生产线每天的产能是20万个;(2)设安排乙生产线生产y天,依题意有0.5y+1.2×≤40,解得y≥32.故至少应安排乙生产线生产32天;(3)(40+20)×3+[40×(1+50%)+20×2]×13=180+1300=1480(万个),1440万个<1480万个,故再满负荷生产13天能完成任务.2.解:设原来每天生产x万只口罩,则实际每天生产(x+3)万只口罩,依题意,得:﹣=3,解得:x=7,经检验,x=7是原分式方程的解,且符合题意,∴==10.答:原来要求10天完成这项紧急任务.3.解:设乙工程队每天能完成xm2的绿化,则甲工程队每天能完成2xm2的绿化,依题意,得:﹣=6,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天能完成100m2的绿化,乙工程队每天能完成50m2的绿化.4.解:设慢车与快车的速是xkm/h,则快车的速度是1.2xkm/h,根据题意得﹣=,解得:x=50,检验:经检验x=50是原方程的根,答:慢车速度为50千米/小时,快车速度为60千米/小时.5.解:(1)设甲车间有x人,乙车间有(x+10)人,则:,解得:x=20,经检验:x=20是原分式方程的解.答:甲车间有20人,乙车间有30人.(2)设从乙车间调a人到甲车间;则:,解得:a≥11.4.因为a为正整数,所以a的最小值为12.答:从乙车间至少调12人到甲车间.6.解:(1)设A种笔记本的单价是x元,则B种笔记本的单价是(x﹣10)元,根据题意得,=,解得:x=15,经检验:x=15是原方程的根,∴x﹣10=5,答:A种笔记本和B种笔记本的单价各是15元和5元;(2)设该公司准备采购A种笔记本a本,采购B种笔记本(80﹣a)本,根据题意得,15a+5(80﹣a)≤1100,解得:a≤70,∵A种笔记本的数量不少于60本,∴60≤a≤70,(a为正整数),∴该公司有11种购买方案.故答案为:11.7.解:(1)设手工每小时加工产品x件,则机器每小时加工产品(2x+9)件,根据题意,得:×=,解得x=27,经检验:x=27是原分式方程的解,答:手工每小时加工产品27件;(2)设人工要加工a小时,根据题意,得:27a+(2×27+9)(48﹣a)≥2×1332,解得a≤10,答:人工至多加工10小时.8.解:(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+15)天根据题意得经检验x=30是原方程的解,则x+15=45(天)答:甲队单独完成此项任务需45天,乙队单独完成此项任务需30天.(2)解:设甲队再单独施工y天,依题意,得,解得y≥4.答:甲队至少再单独施工4天.9.解:(1)设甲工程队单独完成这项工程需要x天,则甲每天的施工量为,乙每天的施工量为,由题意得140×+40(+)=∴+=∴x=200经检验x=200是原方程的解,且符合问题的实际意义.答:甲工程队单独完成这项工程需要200天.(2)由(1)可知,乙工程队单独完成这项工程需要3×200=600天设甲工程队至少要施工y天,由题意得≤300∴y≥199答:甲工程队至少要施工199天.10.解:(1)设原计划每天挖掘x米,则实际每天挖掘1.5x米,根据题意得:﹣=25,解得x=4.经检验,x=4是原分式方程的解,且符合题意,则1.5x=6答:实际每天挖掘6米.(2)设每天还应多挖掘y米,由题意,得(70﹣)(6+y)≥500﹣300,解得y≥4.答:每天还应多挖掘4米.11.解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:=,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是36÷0.3=120(千米);(2)汽车行驶中每千米用油费用为0.3+0.5=0.8(元),设汽车用电行驶ykm,可得:0.3y+0.8(120﹣y)≤50,解得:y≥92,所以至少需要用电行驶92千米.12.解:(1)设第一次购进水果x千克,依题意可列方程:.解得x=200.经检验:x=200是原方程的解.答:第一次购进水果200千克;(2)由(1)可知,二次共购进水果600千克,设最初水果标价为y元,依题意可列不等式:500y+100×﹣3800≥1700.解得y≥10.答:最初每千克水果标价至少为10元.13.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=25,经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25×2=50(m2),答:甲、乙两工程队每天能完成绿化的面积分别是50m2、25m2;(2)设应安排甲队工作y天,根据题意得:0.35y+×0.25≤8,解得:y≥20,答:至少应安排甲队工作20天.14.解:(1)设该商场第一次购进这种运动服x套,第二次购进2x套,由题意得,﹣=10,解得:x=200,经检验:x=200是原分式方程的解,且符合题意,答:该商场第一次购进200套;(2)设每套售价是y元,两批运动服总数:200+400=600由题意得:600y﹣32000﹣68000≥(32000+68000)×20%,解得:y≥200,答:每套售价至少是200元.15.解:设小雪的速度是x米/分钟,则珂铭速度是1.2x米/分钟,依题意得:,解得:x=50,经检验x=50是原方程的解,答:小雪的速度是50米/分钟.(2)1.2×50=60(米/分钟),1800÷50=36(分钟),1800÷60=30(分钟),设小雪比珂铭提前a分钟出发,根据题意得,a+30﹣36≥6,解得a≥12,答:小雪至少要比珂铭提前出发12分钟.16.解:(1)设甲队单独完成此项工程需x天,乙队单独完成此项工程需(x+8)天根据题意得:=解得x=12经检验x=12是原方程的解当x=12时,x+8=20答:甲队单独完成此项工程需12天,乙队单独完成此项工程需20天.(2)设甲乙两队合作m天,根据题意得:5.5m+×3≤65,解得m≤10;又∵(+)m≤1,∴m≤7.5,∴甲乙两队最多合作7天.答:甲乙两队最多合作7天.17.解:(1)设购买一副羽毛球拍需要x元,则购买一根跳绳需要(x﹣20)元,依题意,得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x﹣20=5.答:购买一副羽毛球拍需要25元,购买一根跳绳需要5元.(2)设八(1)班购买m副羽毛球拍,则购买(2m+10)根跳绳,依题意,得:25m+5(2m+10﹣m)≤350,解得:m≤10.答:八(1)班最多可购买10副羽毛球拍.18.解:(1)设该超市第一批购进这种葡萄x市斤,则第二批购进这种葡萄2x市斤,依题意,得:﹣=0.2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:该超市第一批购进这种葡萄100市斤.(2)设每市斤葡萄的售价应该定为y元,依题意,得:(100+100×2)y﹣320﹣680≥(320+680)×20%,解得:y≥4.答:每市斤葡萄的售价应该至少定为4元.19.解:(1)设甲工程队单独完成这项工程需要2x天,则乙工程队单独完成这项工程需要3x天,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60,3x=90.答:甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天.(2)由题意,得:+=1,∴n=90﹣m.设施工总费用为w万元,则w=15m+8n=15m+8×(90﹣m)=3m+720.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴,∴20≤m≤40.∵15>0,∴w值随m值的增大而增大,∴当m=20时,完成此项工程总费用最少,此时n=90﹣m=60,w=780万元.答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.20.解:(1)设B种图书每本价格为x元,则A种图书每本价格为2.5x元,依题意,得:﹣=25,解得:x=40.8,经检验,x=40.8是原方程的解,且符合题意,∴2.5x=102.答:A种图书每本价格为102元,B种图书每本价格为40.8元.(2)设购买y本A种图书,则购买(2y+8)本B种图书,依题意,得:102y+40.8(2y+8)≤1164,解得:y≤4.∵y为整数,∴y的最大值为4,∴(2y+8)的最大值为16.答:该学校最多可以购买16本B种图书.。
分式方程综合实际应用专项训练(25题)(学生版)
分式方程综合实际应用专项训练(25题)一、综合题1.新华书店决定用不多于28000元购进甲乙两种图书共1200本进行销售,已知甲种图书进价是乙种图书每本进价的1.4倍,若用1680元购进甲种图书的数量比用1400元购进的乙种图书的数量少10本,(1)甲乙两种图书的进价分别为每本多少元?(2)新华书店决定甲种图书售价为每本40元,乙种图书售价每本30元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完)2.2022年疫情期问,我区爱心企业踊跃捐赠物资,以爱心助力校园抗“疫”.某爱心企业计划用2400元购买A品牌N95口罩,在购买时发现,每个A品牌N95口罩可以打八折,打折后购买的数量比打折前多100个.(1)求打折前每个A品牌N95口罩的售价是多少元?(2)由于学生的需求不同,该爱心企业决定购买A品牌N95口罩和B品牌N95口罩共800个.B品牌N95口罩每个原售价为7元,两种品牌N95口罩都打八折,且购买A品牌N95口罩的数量不超过总数量的一半,请问该爱心企业计划用的2400元钱是否够?如果够用,请设计一种最节省的购买方案,如果不够用,请求出至少还需要再添加多少钱?3.为厉行节能减排,倡导绿色出行,“共享单车”登陆某市中心城区,某公司拟在甲、乙两个街道社区投放一批“共享单车”,这批自行车包括A,B两种不同款型.请解决下列问题:(1)该公司早期在甲街区进行了试点投放,共投放A,B两型自行车各50辆,投放成本共计20500元,其中B型车的成本单价比A型车高10元,求A,B两型自行车的成本单价各是多少?(2)该公司决定采取如下投放方式:甲街区每1000人投放a辆“共享单车”,乙街区每1500人投放2a辆“共享单车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有12万人,试求a的值.4.某商店准备购进A、B两种商品,A商品每件的进价比B商品每件的进价多20元,用3000元购进A商品和用1800元购进B商品的数量相同,商店将A种商品每件售价定为80元,B种商品每件售价定为45元.(1)A商品每件的进价和B商品每件的进价各是多少元?(2)商店计划用不超过1520元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有哪几种进货方案?(3)在(2)的条件下,商品全部售出,哪种进货方案获利最大?最大利润为多少元?5.随着黑龙江省牡丹江市绥芬河市境外输入疫情防控形势的日益严峻,社会各界纷纷伸出援助之手.我省某企业准备购买红外线测温仪和防护服捐赠给绥芬河市,在市场上了解到某种红外线测温仪的单价比防护服多200元,且用70000元买这种测温仪的数量与用30000元买这种防护服的数量相同.(1)求这种红外线测温仪和防护服的单价.(2)该企业准备出资超过29.8万元又不超过30万元购买这两种防疫物资捐赠绥芬河,同时要求防护服的数量比红外线测温仪的数量多300,该企业有多少种购买方案.6.“双减”政策受到各地教育部门的积极响应,某校为增加学生的课外活动时间,现决定增购两种体育器材:跳绳和毽子.已知跳绳的单价比毽子的单价多3元,用800元购买的跳绳个数和用500元购买的键子数量相同.(1)求跳绳和毽子的单价分别是多少元?(2)由于库存较大,商场决定对这两种器材打折销售,其中跳绳以八折出售,毽子以七折出售.学校计划购买跳绳和毽子两种器材共600个,且要求跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于460根,请你求出学校花钱最少的购买方案.7.某学校购进一批成捆的A,B两种图书,每捆A种图书比每捆B种图书多10本,每捆A种图书和每捆B 种图书的价格分别是630元和600元,而每本A种图书和每本B种图书的价格分别是这一批图书平均每本价格的0.9倍和1.2倍.(1)求这一批图书平均每本的价格是多少元?(2)如果购进的这批图书共550本,A种图书至多购进350本,为了使购进的这批图书的费用最低,应购进A种图书和B种图书各多少本?并求出最低费用.8.为有效落实双减工作,切实做到减负提质,很多学校决定在课后看护中增加乒乓球项目.体育用品商店得知后,第一次用600元购进乒乓球若干盒,第二次又用600元购进该款乒乓球,但这次每盒的进价是第一次进价的54倍,购进数量比第一次少了30盒.(1)求第一次每盒乒乓球的进价是多少元?(2)若要求这两次购进的乒乓球按同一价格全部销售完后获利不低于420元,则每盒乒乓球的售价至少是多少元?9.小李从A地出发去相距4.5千米的B地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍.(1)求小李步行的速度和骑自行车的速度;(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前5分钟到达.则跑步的速度至少为多少千米每小时?10.某市轻轨3号线的一项挖土工程招标时,接到甲.乙两个工程队的投标书,每施工一天,需付甲工程队工程款2.1万元,付乙工程队工程款1.5万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程,刚好按规定工期完成.方案二:乙队单独完成这项工程要比规定工期多用5天.方案三:若由甲,乙两队合作做4天,剩下的工程由乙队单独做,也正好按规定工期完工.(1)请你求出完成这项工程的规定时间;(2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.11.某市计划在路旁栽树l200棵,由于志愿者的参与,实际每天栽树的棵数比计划多20%,结果提前2天完成任务.设原计划每天栽树工棵.(1)根据条件填写表中空格.工作总量(棵)工作时间(天)工作效率(棵/天)计划1200x实际1200(2)原计划每天栽树多少棵?12.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控.某呼吸机厂接到生产600台呼吸机的任务,以每天比原来多生产50450台呼吸机所用时间相同.(1)求该厂现在每天生产多少台呼吸机?(2)完成这批任务后,该厂又接到在10天内至少生产2400台呼吸机的任务,问该厂每天还应该至少比现在多生产多少台呼吸机才能完成任务?13.脐橙是秋冬季的时令水果,富含维生素C.一果园有甲、乙两支专业脐橙采摘队,甲队比乙队每天多采摘600公斤脐橙,甲队采摘28800公斤脐橙所用的天数与乙队采摘19200公斤脐橙所用的天数相同.(1)甲、乙两队每天分别可采摘多少公斤脐橙?(2)趁着为数不多的晴天,果园计划在24天内采摘52200公斤脐橙,先由甲、乙两队合作,中途由于甲队被调用,剩下的只能由乙队单独采摘,问甲、乙两队至少合作多少天才能在规定时间内采摘完?14.为打好“蓝天、碧水、净土”三大保卫战,某县政府决定将县城附近乡村的烧煤取暖全部改制为集中供热.“永盛”工程队承包了该项工程10000m的总管道铺设任务,若该工程队施工效率比原计划提高25%,就可以比原计划提前20天完成任务。
人教版八年级数学上册15.3_分式方程实际问题同步习题+答案
15.3分式方程实际问题学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 甲、乙两个工程队共同参与一项筑路工程,甲队单独施工需90天完成.甲队先单独施工30天,然后增加了乙队,两队又合做了15天,总工程刚好全部完成.设乙队单独施工需x天完成.根据题意可得方程( )A.4590+15x=1 B.3090+15x=1 C.1590+30x=1 D.1590+45x=12. 铜仁市碧江区瓦屋油菜花基地要筑一条水坝,需在规定的日期内完成,如果由甲队做,恰能如期完成;如果由乙队做,需超过规定日期3天完成.现甲、乙两队合做2天后,余下的工程由乙队独做,恰能在规定的日期完成,设规定日期为x天,下面的方程中,错误的是( )A.2x +xx+3=1 B.1x+1x+3=1 C.2(1x+1x+3)+x−2x+3=1 D.2x=3x+33. “十•一”期间,数学活动小组的全体同学包租一辆面包车前去某景点游览,面包车的租价为180元.出发时又增加了两名同学,结果每个同学比原来少摊了3元车费.若设数学活动小组有x人,则所列方程为()A.180x −180x−2=3 B.180x−180x+2=3 C.180x+2−180x=3 D.180x−2−180x=34. 某边防哨卡运来一筐苹果,共有60个,计划每名战士分得数量相同的若干个苹果,结果还剩5个苹果;改为每名战士再多分1个,结果还差6个苹果.若设该哨卡共有x名战士,则所列方程为( )A.60+6x =60−5x−1 B.60+6x=60−5x+1 C.60−6x=60+5x−1 D.60−6x=60+5x+15. 我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是( )A.3(x−1)=6210x B.6210x−1=3 C.3x−1=6210xD.6210x=36. 娅倩同学借了一本书,共280页,要在两周借期内读完,当她读了一半时,发现平均每天要多读21页才能在借期内读完,她读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是( )A.140x +140x−21=14 B.280x+280x+21=14C.140x +140x+21=14 D.10x+10x+21=17. 某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成;如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x天,下面所列方程中错误的是()A.2x +xx+3=1 B.2x=3x+3C.(1x+1x+3)×2+x−2x+3=1 D.1x+xx+3=18. “绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.60×(1+25%)x −60x=30 B.60(1+25%)x−60x=30C.60x −60(1+25%)x=30 D.60x−60×(1+25%)x=309. 甲乙两地之间的高速公路全长200千米,比原来国道的长度减少20千米,高速公路通车后,某长途汽车的行驶速度提高了45千米/小时,从甲地到乙地的行驶时间缩短了一半,设该长途汽车在国道上行驶的速度是x千米/小时,依题意得方程是()A.200x =180x−45⋅12B.200x=220x−45⋅12C.200x+45=180x⋅12D.200x+45=220x⋅1210. 在抗击“新冠肺炎”疫情中,某呼吸机厂家接到一份生产300台呼吸机的订单,在生产完成一半时,应客户要求,需提前供货,每天比原来多生产20台呼吸机,结果提前2天完成任务.设原来每天生产x台呼吸机,下列选项所列方程正确的是( )A.150x +150x+20=300x+2 B.150x+300x+20=300x+2C.150 x+20=300x−2 D.150x+20=150x−211. 某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套,则根据题意可得方程为________.12. 2019年2月,全球首个5G火车站在上海虹桥火车站启动,虹桥火车站中5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输8千兆数据,5G网络快720秒,求这两种网络的峰值速率,设4G网络的峰值速率为每秒传输x千兆,依题意,可列方程为________.13. 在读书活动中,某同学对甲、乙两个班学生的读书情况进行了统计:甲班学生人数比乙班学生人数多3人,甲班学生读书480本,乙班学生读书360本,乙班平均每人读书的本数是甲班平均每人读书的本数的45.求甲、乙两班各有多少人?设乙班有x人,则甲班有(x+3)人,依题意,可列方程为________.14. 某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设xm管道,那么根据题意,可得方程________.15. 某灯具厂计划加工6000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.5倍,结果提前5天完成任务. 求该灯具厂原计划每天加工这种彩灯的数量.16. 贞丰县为了落实中央的“精准扶贫政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?17. 北湖区政府为了落实中央的“强基惠民工程”,计划将三里田村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)完成这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?18. 某单位在疫情期间用3000元购进A、B两种口罩1100个,购买A种口罩与购买B种口罩的费用相同,且A种口罩的单价B种口罩单价的1.2倍:(1)求A、B两种口罩的单价各是多少元?(2)若计划用不超过7000元的资金再次购进A、B两种口罩共2600个,已知A、B 两种口罩的进价不变,求A种口罩最多能购进多少个?19. 9月26日华为新推出mate30手机,某华为手机专卖网店抓住商机,购进10000台”mate30” 手机进行销售,每台的成本是4400元,在线同时向国内、国外发售.第一个星期,国内销售每台售价是5400元,共获利100万元,国外销售也售出相同数量该款手机,但每台成本增加400元,获得的利润却是国内的6倍.(1)求该店销售该款华为手机第一个星期在国外的售价是多少元?(2)受中美贸易战影响,第二个星期,国内销售每台该款手机售价在第一个星期的基础上降低m%,销量上涨5m%;国外销售每台售价在第一个星期的基础上上涨m%,并且在第二个星期将剩下的手机全部卖完,结果第二个星期国外的销售总额比国内的销售总额多6993万元,求m的值.15.3 分式方程实际问题答案1.【答案】A2.【答案】B3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】D8.【答案】A9.【答案】D10.【答案】D11.【答案】160x +240(1+20%)⋅x=1812.【答案】8x −810x=72013.【答案】480x+3×45=360x14.【答案】120x +300−120(1+20%)x=3015.【答案】解:设原计划每天加工x个,根据题意,得6000x −60001.5x=5,解得:x=400.经检验,x=400是原方程的解,且符合题意. 答:原计划每天加工400个彩灯.16.【答案】解:(1)设这项工程的规定时间是x天,根据题意得:(1x +11.5x)×15+5x=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(130+11.5×30)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.17.【答案】解:(1)设这项工程的规定时间是x天,根据题意得:(1x +11.5x)×15+5x=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(130+11.5×30)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.18.【答案】解:(1)设B种口罩单价为x元/个,则A种口罩单价为1.2x元/个,根据题意,得:1500x +15001.2x=1100,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴ 1.2x=3.答:A种口罩单价为3元/个,B种口罩单价为2.5元/个.(2)设购进A种口罩m个,则购进B种口罩(2600−m)个,依题意,得:3m+2.5(2600−m)≤7000,解得:m≤1000.答:A种口罩最多能购进1000个.19.【答案】解:(1)设该店销售该款华为手机第一个星期在国外的售价是x元,⋅[x−(4400+400)]=6×100,根据题意得:1005400−4400解得:x=10800,答:该店销售该款华为手机第一个星期在国外的售价是10800元.(2)第一个星期国内销售手机的数量为:1000000=1000(台),5400−4400由题意得:10800(1+m%)×[10000−2000−1000(1+5m%)]−5400(1−m%)×1000(1+5m%)=69930000,10800(1+m%)(7000−5000m%)−5400×1000(1−m%)(1+5m%)= 69930000,1080(1+m%)(7−5m%)−540(1−m%)(1+5m%)=6993,设m%=a,则原方程化为:1080(1+a)(7−5a)−540(1−a)(1+5a)=6993,360(1+a)(7−5a)−180(1−a)(1+5a)=2331,解得:a2=0.01, a=0.1或−0.1(舍),∴m=10.。
人教版八年级数学上册《分式方程实际应用》专项练习题-附含答案
人教版八年级数学上册《分式方程实际应用》专项练习题-附含答案 类型一、销售利润问题例1.某公司推出一款桔子味饮料和一款荔枝味饮料 桔子味饮料每瓶售价是荔枝味饮料每瓶售价的54倍.4月份桔子味饮料和荔枝味饮料总销售60000瓶 桔子味饮科销售额为250000元 荔枝味饮料销售额为280000元.(1)求每瓶桔子味饮料和每瓶荔枝味饮料的售价?(2)五一期间 该公司提供这两款饮料12000瓶促销活动 考虑荔枝味饮料比较受欢迎 因此要求荔枝味饮料的销量不少于桔子味饮料销量的32;不多于枯子味饮料的2倍.桔子味饮料每瓶7折销售 荔枝味饮料每瓶降价2元销售 问:该公司销售多少瓶荔枝味饮料使得总销售额最大?最大销售额是多少元?【答案】(1)每瓶桔子味饮料的售价为10元 每瓶荔枝味饮料的售价为8元;(2)当m =7200时 销售额最大 w 最大值是76800元【解析】(1)解:设每瓶荔枝味饮料的售价为x 元 则每瓶桔子味饮料的售价为54x 元 依题意 得:2500002800006000054x x += 解得:x =8 经检验 x =8是原方程的解 且符合题意 ∴54x =10(元) 答:每瓶桔子味饮料的售价为10元 每瓶荔枝味饮料的售价为8元.(2)解:设销售荔枝味饮料m 瓶则销售桔子味饮料(12000﹣m )瓶 依题意 得:3(12000)22(1200)m m m m ⎧≥-⎪⎨⎪≤-⎩ 解得:7200≤m ≤8000 设总销售额w 元 则100.7(12000)684000w m m m ⨯⨯-+-+== ∴w 是m 的一次函数 且k =﹣1<0 ∴当m =7200时 销售额最大 w 最大值是76800元【变式训练1】某超市销售A 、B 两款保温杯 已知B 款保温杯的销售单价比A 款保温杯多10元 用600元购买B 款保温杯的数量与用480元购买A 款保温杯的数量相同.(1)A 、B 两款保温杯销售单价各是多少元?(2)由于需求量大 A B 两款保温杯很快售完 该超市计划再次购进这两款保温杯共120个 且A 款保温杯的数量不少于B 款保温杯数量的一半 若两款保温杯的销售单价均不变 进价均为30元/个 应如何进货才使这批保温杯的销售利润最大 最大利润是多少元?【答案】(1)A 款保温杯销售单价为40元 B 款保温杯销售单价为50元(2)购进A 款40个 B 款80个能使销售利润最大 最大利润2000元【解析】(1)解:设A 款销售单价为x 元 则B 款销售单价为(10x +)元 根据题意得:60048010x x=+ 解得40x = 经检验 40x =是原方程的解且符合题意 ∴10401050x +=+=答:A 款保温杯销售单价为40元 B 款保温杯销售单价为50元;(2)解:设购进A 款保温杯m 个 则购进B 款保温杯(120-m )个 总利润为W 元 ∴1201202m m -≤≤ ∴40120m ≤≤ 根据题意得:()()()40305030120102400W m m m =-+--=-+∴100-<∴W 随m 的增大而减小∴40m =时 W 最大 且2000W =最大值 此时1201204080m -=-=答:购进A 款40个 B 款80个能使销售利润最大 最大利润2000元【变式训练2】国家推行“节能减排 低碳经济”政策后 低排量的汽车比较畅销 某汽车经销商购进A B 两种型号的低排量汽车 其中A 型汽车的进货单价比B 型汽车的进货单价多2万元;花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同.(1)求A B 两种型号汽车的进货单价;(2)销售过程中发现:A 型汽车的每周销售量yA (台)与售价xA (万元台)满足函数关系yA =﹣xA +18;B 型汽车的每周销售量yB (台)与售价xB (万元/台)满足函数关系yB =﹣xB +14.若A 型汽车的售价比B 型汽车的售价高1万元/台 设每周销售这两种车的总利润为w 万元.①当A 型汽车的利润不低于B 型汽车的利润 求B 型汽车的最低售价?②求当B 型号的汽车售价为多少时 每周销售这两种汽车的总利润最大?最大利润是多少万元?【答案】(1)A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元(2)①B 型汽车的最低售价为414万元/台 ②A 、B 两种型号的汽车售价各为13万元、12万元时 每周销售这两种汽车的总利润最大 最大利润是23万元【解析】(1)解:设B 型汽车的进货单价为x 万元 根据题意 得:502x +=40x 解得x =8 经检验x =8是原分式方程的根 8+2=10(万元)答:A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元;(2)设B 型号的汽车售价为t 万元/台 则A 型汽车的售价为(t +1)万元/台①根据题意 得:(t +1﹣10)[﹣(t +1)+18]≥(t ﹣8)(﹣t +14) 解得:t ≥414 ∴t 的最小值为414 即B 型汽车的最低售价为414万元/台 答:B 型汽车的最低售价为414万元/台; ②根据题意 得:w =(t +1﹣10)[﹣(t +1)+18]+(t ﹣8)(﹣t +14)=﹣2t 2+48t ﹣265=﹣2(t ﹣12)2+23∴﹣2<0 当t =12时 w 有最大值为23.答:A 、B 两种型号的汽车售价各为13万元、12万元时 每周销售这两种汽车的总利润最大 最大利润是23万元.【变式训练3】某家电销售商城电冰箱的销售价为每台2100元 空调的销售价为每台1750元 每台电冰箱的进价比每台空调的进价多400元 商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台 设购进电冰箱x 台 这100台家电的销售总利润y 元 要求购进空调数量不超过电冰箱数量的2倍 且购进电冰箱不多于40台 请确定获利最大的方案以及最大利润.(3)实际进货时 厂家对电冰箱出厂价下调(0100)k k <<元 若商店保持这两种家电的售价不变 请你根据以上信息及(2)中条件 设计出使这100台家电销售总利润最大的进货方案.【答案】(1)每台空调的进价为1600元 则每台电冰箱的进价为2000元;(2)当购进电冰箱34台 空调66台获利最大 最大利润为13300元;(3)当50100k <<时 购进电冰箱40台 空调60台销售总利润最大;当50k =时 15000y = 各种方案利润相同;当050k <<时 购进电冰箱34台 空调66台销售总利润最大【解析】解:()1设每台空调的进价为x 元 则每台电冰箱的进价为()400x +元 根据题意得:8000064000400x x=+ 解得:1600x = 经检验 1600x =是原方程的解 且符合题意 40016004002000x +=+=答:每台空调的进价为1600元 则每台电冰箱的进价为2000元.()2设购进电冰箱x 台 这100台家电的销售总利润为y 元则()()()21002000175016001005015000y x x x =-+--=-+根据题意得:100240x x x -≤⎧⎨≤⎩ 解得:133403x ≤≤ x 为正整数 34x ∴= 35 36 37 38 39 40 ∴合理的方案共有7种即①电冰箱34台 空调66台;②电冰箱35台 空调65台;③电冰箱36台 空调64台; ④电冰箱37台 空调63台;⑤电冰箱38台 空调62台;⑥电冰箱39台 空调61台;⑦电冰箱40台 空调60台;5015000y x =-+ 500k =-< y ∴随x 的增大而减小∴当34x =时 y 有最大值 最大值为:50341500013300(-⨯+=元)答:当购进电冰箱34台 空调66台获利最大 最大利润为13300元.()3当厂家对电冰箱出厂价下调(0100)k k <<元 若商店保持这两种家电的售价不变则利润()()()()21002000175016001005015000y k x x k x =-++--=-+当500k -> 即50100k <<时 y 随x 的增大而增大 133403x ≤≤ ∴当40x =时 这100台家电销售总利润最大 即购进电冰箱40台 空调60台; 当50k =时 15000y = 各种方案利润相同;当500k -< 即050k <<时 y 随x 的增大而减小 133403x ≤≤ ∴当34x =时 这100台家电销售总利润最大 即购进电冰箱34台 空调66台; 答:当50100k <<时 购进电冰箱40台 空调60台销售总利润最大;当50k =时 15000y = 各种方案利润相同;当050k <<时 购进电冰箱34台 空调66台销售总利润最大.【变式训练4】为迎接“五一”小长假购物高潮 某品牌专卖店准备购进甲、乙两种衬衫 其中甲、乙两种衬衫的进价和售价如下表:若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元 且不超过34700元 问该专卖店有几种进货方案;(3)在(2)的条件下 专卖店准备对甲种衬衫进行优惠促销活动 决定对甲种衬衫每件优惠a 元(6080)a <<出售 乙种衬衫售价不变 那么该专卖店要获得最大利润应如何进货?【答案】(1)甲种衬衫每件进价100元 乙种衬衫每件进价90元;(2)共有11种进货方案;(3)当6070a <<时 应购进甲种衬衫110件 乙种衬衫190件;当70a =时 所有方案获利都一样;当7080a <<时 购进甲种衬衫100件 乙种衬衫200件.【详解】解:(1)依题意得:3000270010m m =- 整理 得:3000(10)2700m m -= 解得:100m = 经检验 100m =是原方程的根 答:甲种衬衫每件进价100元 乙种衬衫每件进价90元; (2)设购进甲种衬衫x 件 乙种衬衫(300)x -件根据题意得:(260100)(18090)(300)34000(260100)(18090)(300)34700x x x x -+--⎧⎨-+--⎩ 解得:100110x x 为整数 110100111-+= 答:共有11种进货方案;(3)设总利润为w 则(260100)(18090)(300)(70)27000(100110)w a x x a x x =--+--=-+①当6070a <<时 700a -> w 随x 的增大而增大 ∴当110x =时 w 最大此时应购进甲种衬衫110件 乙种衬衫190件;②当70a =时 700a -= 27000w =(2)中所有方案获利都一样;③当7080a <<时 700a -< w 随x 的增大而减小 ∴当100x =时 w 最大此时应购进甲种衬衫100件 乙种衬衫200件.综上:当6070a <<时 应购进甲种衬衫110件 乙种衬衫190件;当70a =时 (2)中所有方案获利都一样;当7080a <<时 购进甲种衬衫100件 乙种衬衫200件.类型二、方案问题例.某商店决定购进A 、B 两种纪念品.已知每件A 种纪念品的价格比每件B 种纪念品的价格多5元 用800元购进A 种纪念品的数量与用400元购进B 种纪念品的数量相同.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件 考虑市场需求和资金周转 用于购买这100件纪念品的资金不少于800元 且不超过850元 那么该商店共有几种进货方案?(3)已知商家出售一件A 种纪念品可获利m 元 出售一件B 种纪念品可获利(6﹣m )元 试问在(2)的条件下 商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)【答案】(1)购进A 种纪念品每件需要10元 B 种纪念品每件需要5元;(2)共有11种进货方案;(3)当3m ≥;A 种70件 B 种30件时可获利最多;当03m << A 种60件 B 种40件时可获利最多【详解】解:(1)设购进A 种纪念品每件价格为m 元 B 种纪念币每件价格为5m -元 根据题意可知: 8004005m m =- 解得:10m = 55m -=. 答:购进A 种纪念品每件需要10元 B 种纪念品每件需要5元.(2)设购进A 种纪念品x 件 则购进B 种纪念品100x -件 根据题意可得:800105(100)850x x ≤+⨯-≤ 解得:6070≤≤x x 只能取正整数 60,61,,70x ∴=⋅⋅⋅ 共有11种情况故该商店共有11种进货方案分别为:A 种70件 B 种30件;A 种69件 B 种31件;A 种68件 B 种32件;A 种67件 B 种33件;A 种66件 B 种34件;A 种65件 B 种35件;A 种64件 B 种36件;A 种63件 B 种37件;A 种62件 B 种38件;A 种61件 B 种39件;A 种60件 B 种40件. (3)销售总利润为(100)(6)(26)600100W mx x m m x m =+--=-+-商家出售的纪念品均不低于成本价 0m ∴>根据一次函数的性质 当260m -≥时 即3m ≥W 随着x 增大而增大当70x =时 W 取到最大值;即方案为:A 种70件 B 种30件时可获利最多;当260m -<时 即03m << W 随着x 增大而减小当60x =时 W 取到最大值;即方案为:A 种60件 B 种40件时可获利最多.【变式训练1】为切实做好疫情防控工作 开学前夕 我县某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只 每盒水银体温计有10支 每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计 且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数) 则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在民联药店累计购医用品超过1800元后 超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买 共支付总费用w 元;①当总费用不超过1800元时 求m 的取值范围;并求w 关于m 的函数关系式.②若该校有900名学生 按(2)中的配套方案购买 求所需总费用为多少元?【答案】(1)每盒口罩和每盒水银体温计的价格各是200元、50元;(2)购买水银体温计5m 盒能和口罩刚好配套;(3)①w =450(4)360360(4)m m m m ≤⎧⎨+>⎩;②购买口罩和水银体温计各18盒、90盒 所需总费用为6840元【解析】解:(1)设每盒口罩和每盒水银体温计的价格分别是x 元 (150)x -元根据题意 得1200300150x x =- 解得200x = 经检验 200x =是原方程的解15050x ∴-= 答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y 盒能和口罩刚好配套根据题意 得100210m y =⨯ 则5y m =答:购买水银体温计5m 盒能和口罩刚好配套;(3)①由题意得:2005051800m m +⨯4501800m ∴ 4m ∴ 此时 450w m =;若4m > 则1800(4501800)0.8360360w m m =+-⨯=+ 综上所述:450(4)360360(4)m m w m m ⎧=⎨+>⎩; ②若该校九年级有900名学生 需要购买口罩:90021800⨯=(支)水银体温计:9001900⨯=(支)此时180010018m =÷=(盒) 51890y =⨯=(盒) 则360183606840w =⨯+=(元).答:购买口罩和水银体温计各18盒、90盒 所需总费用为6840元.【变式训练2】某超市准备购进甲、乙两种牛奶进行销售 若甲种牛奶的进价比乙种牛奶的进价每件少5元 其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是每件多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件 两种牛奶的总数不超过95件 该商场甲种牛奶的销售价格为49元 乙种牛奶的销售价格为每件55元 则购进的甲、乙两种牛奶全部售出后 可使销售的总利润(利润=售价﹣进价)超过371元 请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?【答案】(1)甲种牛奶、乙种牛奶的进价分别是每件45元、50元;(2)商场购进甲种牛奶64件 乙种牛奶23件;或商场购进甲种牛奶67件 乙种牛奶24件;或商场购进甲种牛奶70件 乙种牛奶25件;【详解】(1)设甲种牛奶进价为x 元 则乙种牛奶进价为:()5+x 元根据题意 得:901005x x =+ ∴45x = 当45x =时 0x ≠ 且50x +≠∴45x =是方程901005x x =+的解 ∴550x += ∴甲种牛奶、乙种牛奶的进价分别是每件45元、50元;(2)设该商场购进乙种牛奶数量为m 件 则该商场购进甲种牛奶数量为()35m -件∴两种牛奶的总数不超过95件 ∴3595m m -+≤ ∴25m ≤∴销售的总利润(利润=售价﹣进价)超过371元 ∴()()()3549455550371m m --+-≥∴17391m ≥ ∴23m ≥ ∴2325m ≤≤∴商场购进甲种牛奶64件 乙种牛奶23件;或商场购进甲种牛奶67件 乙种牛奶24件;或商场购进甲种牛奶70件 乙种牛奶25件.【变式训练3】某公司经销甲种产品 受国际经济形势的影响 价格不断下降.预计今年的售价比去年同期每件降价1000元 如果售出相同数量的产品 去年销售额为10万元 今年销售额只有8万元.(1)今年这种产品每件售价多少元?(2)为了增加收入 公司决定再经销另一种类似产品乙 已知产品甲每件进价为3500元;产品乙每件进价为3000元 售价3600元 公司预计用不多于5万元且不少于4.9万元的资金购进这两种产品共15件 分别列出具体方案 并说明哪种方案获利更高.【答案】(1)今年这种产品每件售价为4000元;(2)有三种方案:方案①:甲产品进货8件 乙产品进货7件;方案②:甲产品进货9件 乙产品进货6件;方案③:甲产品进货10件 乙产品进货5件;方案①的利润更高.【详解】解:()1设今年这种产品每件售价为x 元 依题意得:10000080000x 1000x=+ 解得:x 4000=. 经检验:x 4000=是原分式方程的解.答:今年这种产品每件售价为4000元.()2设甲产品进货a 件 则乙产品进货()15a -件.依题意得:()()3500a 300015a 500003500a 300015a 49000⎧+-≤⎪⎨+-≥⎪⎩解得:8a 10≤≤因此有三种方案:方案①:甲产品进货8件 乙产品进货7件;方案②:甲产品进货9件 乙产品进货6件;方案③:甲产品进货10件 乙产品进货5件.方案①利润:()()4000350083600300078200-⨯+-⨯=方案②利润:()()4000350093600300068100-⨯+-⨯=方案③利润:()()40003500103600300058000-⨯+-⨯=820081008000>>∴方案①的利润更高.类型三、工程问题例.为稳步推进5G 网络建设 深化共建共享 现有甲、乙两个工程队参与5G 基站建设工程.(1)已知乙队的工作效率是甲队的1.5倍 如果两队单独施工完成该项工程 甲队比乙队多用20天 求乙队单独施工 需要多少天才能完成该项工程?(2)当甲队施工20天完成5G 基站建设工程的13时 乙队加入该工程 结果比甲队单独施工提前25天完成了剩余的工程.①求乙队单独施工 需要多少天才能完成该项工程?②若乙队参与该项工程施工的时间不超过12天 求甲队从开始施工到完成该工程至少需要多少天?【答案】(1)乙队单独施工 需要40天才能完成该项工程.(2)①36天 ②至少40天【详解】解:(1)设乙队单独施工 需要x 天才能完成该项工程 题意 得1.5120x x=+ 解方程 得40x = 经检验 40x =是原分式方程的解 且符合题意.答:乙队单独施工 需要40天才能完成该项工程.(2)①由题意得 甲队单独施工20天完成该项工程的13 所以甲队单独施工60天完成该项工程. 甲队单独施工完成剩余23的工程的时间为602040-=(天) 于是甲、乙两队共同施工的时间为402515-=(天).设乙队单独施工需要y 天才能完成该项工程则11215603y ⎛⎫+⨯= ⎪⎝⎭解方程 得36y . 经检验 36y 是原分式方程的解 且符合题意.答:若乙队单独施工 需要36天才能完成该项工程.②设甲队从开始施工到完成该工程需要z 天依题意列不等式 得1216036z -≤ 解得:40.z ≥【变式训练1】某工程公司承包了修筑一段塌方道路的工程 并派旗下第五、六两个施工队前去修筑 要求在规定时间内完成.(1)已知第五施工队单独完成这项工程所需时间比规定时间多32天 第六施工队单独完成这项工程所需时间比规定时间多12天 如果第五、六施工队先合作20天 剩下的由第五施工队单独施工 则要误期2天完成那么规定时间是多少天?(2)实际上 在第五、六施工队合作完成这项工程的56时 公司又承包了更大的工程 需要调走一个施工队.你认为留下哪个施工队继续施工能按时完成剩下的工程?【答案】(1)规定的时间是28天;(2)留下第六施工队继续施工能在规定的时间内完成剩下的工程 见解析.【详解】解:(1)设规定的时间是x 天 根据题意 得22013212x x x ++=++ 解得28x = 经检验 28x =是原分式方程的解且符合实际意义.答:规定的时间是28天;(2)设第五、六施工队合作完成这项工程的56用了y 天 根据题意 得115283228126y ⎛⎫+= ⎪++⎝⎭ 解得20y = 由第五、六施工队单独完成剩下的工程 所需的时间分别为:5111062832⎛⎫-÷= ⎪+⎝⎭(天) 51216628123⎛⎫-÷= ⎪+⎝⎭(天) 因为2220103028,206262833+=>+=< 所以留下第六施工队继续施工能在规定的时间内完成剩下的工程.答:留下第六施工队继续施工能在规定的时间内完成剩下的工程.【变式训练1】某校利用暑假进行田径场的改造维修 项目承包单位派遣一号施工队进场施工 计划用30天时间完成整个工程.当一号施工队工作10天后 承包单位接到通知 有一大型活动要在该田径场举行 要求比原计划提前8天完成整个工程 于是承包单位派遣二号与一号施工队共同完成剩余工程 结果按通知要求如期完成整个工程.(1)若二号施工队单独施工 完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工 完成整个工程需要多少天?【答案】(1)若由二号施工队单独施工 完成整个工期需要45天;(2)若由一、二号施工队同时进场施工 完成整个工程需要18天【详解】(1)设二号施工队单独施工需要x 天 根据题意得:30830810130x---+= 解得:45x = 经检验 45x =是原分式方程的解∴若由二号施工队单独施工 完成整个工期需要45天;(2)一号、二号施工队同时进场施工需要的天数为x 天 根据题意得:1113045x ⎛⎫+= ⎪⎝⎭∴18x =∴若由一、二号施工队同时进场施工 完成整个工程需要18天.【变式训练2】2019年 在新泰市美丽乡村建设中 甲、乙两个工程队分别承担某处村级道路硬化和道路拓宽改造工程.已知道路硬化和道路拓宽改造工程的总里程数是8.6千米 其中道路硬化的里程数是道路拓宽里程数的2倍少1千米.(1)求道路硬化和道路拓宽里程数分别是多少千米;(2)甲、乙两个工程队同时开始施工 甲工程队比乙工程队平均每天多施工10米.由于工期需要 甲工程队在完成所承担的13施工任务后 通过技术改进使工作效率比原来提高了15.设乙工程队平均每天施工a 米 若甲、乙两队同时完成施工任务 求乙工程队平均每天施工的米数a 和施工的天数.【答案】(1)道路硬化里程数为5.4千米 道路拓宽里程数为3.2千米;(2)乙工程队平均每天施工20米 施工的天数为160天【详解】解:(1)设道路拓宽里程数为x 千米 则道路硬化里程数为(21)x -千米依题意 得:(21)8.6x x +-= 解得: 3.2x =21 5.4x -=∴.答:道路硬化里程数为5.4千米 道路拓宽里程数为3.2千米.(2)设乙工程队平均每天施工a 米 则甲工程队技术改进前每天施工(10)a +米 技术改进后每天施工点6(10)5a +米 依题意 得:乙工程队施工天数为3200a 天 甲工程队技术改造前施工天数为:15400180031010a a ⨯=++天 技术改造后施工天数为:15400(1)30003610(10)5a a ⨯-=++天. 依题意 得:3200180030001010a a a =+++ 解得:20a = 经检验 20a =是原方程的解 且符合题意3200a∴160=. 答:乙工程队平均每天施工20米 施工的天数为160天.【变式训练3】某市为了做好“全国文明城市”验收工作 计划对市区S 米长的道路进行改造 现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米 求甲、乙两工程队每天改造道路的长度各是多少米.(2)若甲工程队每天可以改造a 米道路 乙工程队每天可以改造b 米道路 (其中a b ).现在有两种施工改造方案: 方案一:前12S 米的道路由甲工程队改造 后12S 米的道路由乙工程队改造; 方案二:完成整个道路改造前一半时间由甲工程队改造 后一半时间由乙工程队改造.根据上述描述 请你判断哪种改造方案所用时间少?并说明理由.【答案】(1)甲工程队每天道路的长度为180米 乙工程队每天道路的长度为150米;(2)方案二所用的时间少【详解】(1)设乙工程队每天道路的长度为x 米 则甲工程队每天道路的长度为()30x +米根据题意 得:36030030x x=+ 解得:150x = 检验 当150x =时 ()300x x +≠ ∴原分式方程的解为:150x = 30180x +=答:甲工程队每天道路的长度为180米 乙工程队每天道路的长度为150米;(2)设方案一所用时间为:111()222s s a b s t a b ab+=+= 方案二所用时间为2t 则221122t a t b s += 22s t a b =+ ∴22()22()a b a b S S S ab a b ab a b +--=++ ∴a b 00a b >>,∴()20a b -> ∴202a b S S ab a b+->+ 即:12t t > ∴方案二所用的时间少.【变式训练4】2008年5月12日 四川省发生8.0级地震 某市派出两个抢险救灾工程队赶到汶川支援 甲工程队承担了2400米道路抢修任务 乙工程队比甲工程队多承担了600米的道路抢修任务 甲工程队施工速度比乙工程队每小时少修40米 结果两工程队同时完成任务.问甲、乙两工程队每小时各抢修道路多少米.(1)设乙工程队每小时抢修道路x 米 则用含x 的式子表示:甲工程队每小时抢修道路 米 甲工程队完成承担的抢修任务所需时间为 小时 乙工程队完成承担的抢修任务所需时间为 小时. (2)列出方程 完成本题解答.【答案】(1)(x ﹣40);240040x -;3000x ;(2)甲工程队每小时抢修道路160米 乙工程队每小时抢修道路200米【详解】(1)设乙工程队每小时抢修道路x 米 则甲工程队每小时抢修道路(x ﹣40)米 甲工程队完成承担的抢修任务所需时间为240040x -小时 乙工程队完成承担的抢修任务所需时间为2400600x =3000x 小时. 故答案为:(x ﹣40);240040x -;3000x . (2)依题意 得:240040x -=3000x 解得:x =200经检验 x =200是原方程的解 且符合题意∴x ﹣40=160.答:甲工程队每小时抢修道路160米 乙工程队每小时抢修道路200米.。
人教版八年级上册数学《分式方程的实际应用》专项练习(含答案)
人教版八年级上册数学《分式方程的实际应用》专项练习(含答案)1.熊大、熊二发现光头强在距离它们300米处伐木,熊二便匀速跑过去阻止.2分钟后熊大以熊二1.2倍的速度跑过去,结果它们同时到达.如果设熊二的速度为x 米/分钟,那么可列方程为( ) A .30030021.2x x -= B .30030021.2x x -=+C .30030021.2x x-= D .30030021.2x x-=+ 2.两个工程队共同参与一项筑路工程,甲队先单独施工1个月完成了总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.设乙队单独完成总工程共需x 个月,列方程正确的是( ) A .111132x++=B .111136x++=C .1111322x++= D .1111362x++= 3.某医疗器械公司接到400件医疗器械的订单,由于生产线系统升级,实际每月生产能力比原计划提高了30%,结果比原计划提前4个月完成交货.设原计划每月生产的医疗器械是x 件,则下列方程正确的是( ) A .4004004(130%)x x -=+ B .4004004(130%)x x -=+C .4004004(130%)x x-=- D .4004004(130%)x x-=-4.某店在开学初用880元购进若干个学生专用的科学计算器,按每个50元出售,很快就销售一空.据了解,学生还急需3倍数量的这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进了所需的计算器.则该店第一次购进计算器的单价为( ) A .20元B .42元C .44元D .46元5.一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了________.【注:销售利润率=(售价-进价)÷进价×100%】6.甲、乙两火车站相距1200千米,采用“和谐号”动车组提速后,列车行驶的速度是原来的2.5倍,从甲站到乙站的时间缩短了6小时,求列车提速前的速度.7.某开发公司生产的960件新产品需要精加工后才能投放市场.现有甲、乙两个工厂都想接手加工这批产品,已知甲厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,且甲工厂每天加工的数量是乙工厂每天加工数量,问甲、乙两个工厂每天各能加工多少件新产品?的238.某服装店去年10月份以每套500元的进价购进一批羽绒服,当月以标价销售,销售额14000元;进入11月份搞促销活动,每件降价50元,这样销售额比10月份增加了5500元,售出的件数是10月份的1.5倍.求每件羽绒服的标价是多少元.9.在“626”国际禁毒日到来之际,为了普及禁毒知识,提高市民禁毒意识,某区发放了一批“关爱生命,拒绝毒品”的宣传资料.据统计,甲小区共收到宣传资料350份,乙小区共收到宣传资料100份,甲小区住户比乙小区住户的3倍多25户,若两小区每户平均收到资料的数量相同,求这两小区各有多少户住户.10.2018年10月23日,港珠澳大桥正式开通.港珠澳大桥东起香港口岸人工岛,向西止于珠海洪湾,总长约55千米,是粤港澳三地首次合作共建的超大型跨海交通工程.10月24日正式通车当天,甲、乙两辆巴士同时从香港国际机场附近的香港口岸人工岛出发,已知甲乙两巴士的速度比是4∶5,乙巴士比甲巴士早11分钟到达洪湾,求两车的平均速度各是多少千米/时.参考答案1.熊大、熊二发现光头强在距离它们300米处伐木,熊二便匀速跑过去阻止.2分钟后熊大以熊二1.2倍的速度跑过去,结果它们同时到达.如果设熊二的速度为x 米/分钟,那么可列方程为( C ) A .30030021.2x x -= B .30030021.2x x -=+C .30030021.2x x-= D .30030021.2x x-=+ 2.两个工程队共同参与一项筑路工程,甲队先单独施工1个月完成了总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.设乙队单独完成总工程共需x 个月,列方程正确的是( D ) A .111132x++=B .111136x++=C .1111322x++= D .1111362x++= 3.某医疗器械公司接到400件医疗器械的订单,由于生产线系统升级,实际每月生产能力比原计划提高了30%,结果比原计划提前4个月完成交货.设原计划每月生产的医疗器械是x 件,则下列方程正确的是( A ) A .4004004(130%)x x -=+ B .4004004(130%)x x -=+C .4004004(130%)x x-=- D .4004004(130%)x x-=-4.某店在开学初用880元购进若干个学生专用的科学计算器,按每个50元出售,很快就销售一空.据了解,学生还急需3倍数量的这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进了所需的计算器.则该店第一次购进计算器的单价为( C ) A .20元B .42元C .44元D .46元5.一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 40% .【注:销售利润率=(售价-进价)÷进价×100%】6.甲、乙两火车站相距1200千米,采用“和谐号”动车组提速后,列车行驶的速度是原来的2.5倍,从甲站到乙站的时间缩短了6小时,求列车提速前的速度.解:设列车提速前的速度为x 千米/时,则提速后的速度为2.5x 千米/时.依题意得1200120062.5x x-=,解得x =120. 经检验,x =120是原方程的解,且符合题意. 答:列车提速前的速度为120千米/时.7.某开发公司生产的960件新产品需要精加工后才能投放市场.现有甲、乙两个工厂都想接手加工这批产品,已知甲厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,且甲工厂每天加工的数量是乙工厂每天加工数量的23,问甲、乙两个工厂每天各能加工多少件新产品?解:设乙工厂每天能加工新产品x 件,则甲工厂每天能加工新产品23x 件.根据题意得9609602023x x -=,解得x =24. 经检验,x =24是方程的解,且符合题意. 则22241633x =⨯=.答:甲工厂每天能加工16件新产品,乙工厂每天能加工24件新产品.8.某服装店去年10月份以每套500元的进价购进一批羽绒服,当月以标价销售,销售额14000元;进入11月份搞促销活动,每件降价50元,这样销售额比10月份增加了5500元,售出的件数是10月份的1.5倍.求每件羽绒服的标价是多少元.解:设每件羽绒服的标价为x 元,则10月份售出14000x件. 根据题意得140005500140001.550x x+=⨯-,解得x =700.经检验x =700是原方程的解,且符合题意. 答:每件羽绒服的标价为700元.9.在“626”国际禁毒日到来之际,为了普及禁毒知识,提高市民禁毒意识,某区发放了一批“关爱生命,拒绝毒品”的宣传资料.据统计,甲小区共收到宣传资料350份,乙小区共收到宣传资料100份,甲小区住户比乙小区住户的3倍多25户,若两小区每户平均收到资料的数量相同,求这两小区各有多少户住户.解:设乙小区住户为x 户. 根据题意得350100325x x=+,解得x =50. 经检验x =50是原方程的解,且符合题意. ∴甲小区住户3×50+25=175(户).答:甲小区住户有175户,乙小区住户有50户.10.2018年10月23日,港珠澳大桥正式开通.港珠澳大桥东起香港口岸人工岛,向西止于珠海洪湾,总长约55千米,是粤港澳三地首次合作共建的超大型跨海交通工程.10月24日正式通车当天,甲、乙两辆巴士同时从香港国际机场附近的香港口岸人工岛出发,已知甲乙两巴士的速度比是4∶5,乙巴士比甲巴士早11分钟到达洪湾,求两车的平均速度各是多少千米/时. 解:设甲车的速度是4x 千米/时,乙车的速度是5x 千米/时. 根据题意得5555114560x x -=,解得x =15. 经检验,x =15是原方程的解,且符合题意.则甲车的速度为4×15=60(千米/时),乙车的速度为5×15=75(千米/时). 答:甲车的速度是60千米/时,乙车的速度是75千米/时.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分式方程的实际应用》同步练习题1
一、选择题
1.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m .依题意,下面所列方程正确的是( )
A.120x =100x -10
B.120x =100x +10
C.120x -10=100x
D.120x +10=100x
2.某村计划新修水渠3 600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成任务,若设原计划每天修水渠x 米,则下面所列方程正确的是( )
A.3 600x =3 6001.8x
B.3 6001.8x -20=3 600x
C.3 600x -3 6001.8x =20
D.3 600x +3 6001.8x
=20 3.(乐山中考)甲、乙两队同时分别从A 、B 两地沿同一条公路骑自行车到C 地,已知A 、C 两地间的距离为110千米,B 、C 两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,其中正确的是( )
A.110x +2=100x
B.110x =100x +2
C.110x -2=100x
D.110x =100x -2 二、填空题
4.甲、乙承包一项任务,若甲、乙合作,5天能完成,若单独做,甲比乙少用4天,设甲单独做x 天能完成此项任务,则可列出方程________________.
5.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,则每天应多做_________件.
6.轮船顺水航行40千米所需的时间与逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为________________.
7.某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x 元/立方米,则所列方程为________________.
三、解答题
8.甲、乙两座城市的中心火车站A,B两站相距360 km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54 km/h,当动车到达B站时,特快列车恰好到达距离A站135 km处的C站.求动车和特快列车的平均速度各是多少?
9.中国地大物博,过去由于交通不便,一些地区的经济发展受到了制约,自从“高铁网络”在全国陆续延伸以后,许多地区的经济和旅游发生了翻天覆地的变化,高铁列车也成为人们外出旅行的重要交通工具.李老师从北京到某地去旅游,从北京到该地普快列车行驶的路程约为1 352 km,高铁列车比普快列车行驶的路程少52 km,高铁列车比普快列车行驶的时间少8 h.已知高铁列车的平均时速是普快列车平均时速的2.5倍,求高铁列车的平均时速.
10.有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?
11.某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2 000元要多,多出的部分能购买25副乒乓球拍.
(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;
(2)若购买的两种球拍数一样,求x.
12.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4 800元.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.
(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?
(2)若单独租用一台车,租用哪台车合算?。