用反比例方法解决问题
用反比例函数解决问题
函数图像可以直观的解决数学问题.
11.3 用反比例函数解决问题(1)
问题2 某厂计划建造一个容积为4×104m3的长
方形蓄水池. (1)蓄水池的底面积 S(m2)与其深度 h(m)有怎 样的函数关系?
解:(1)由Sh=4×104,得
40000 S= . h
蓄水池的底面积S是其深度 h 的反比例函数.
11.3 用反比例函数解决问题(1)
问题2 某厂计划建造一个容积为4×104m3的长 方形蓄水池. (2)如果蓄水池的深度设计为5 m ,那么它的 底面积应为多少? 40000 解:(2)把h=5代入 S= ,得 h 40000 S= =8000 .
当蓄水池的深度设计为5 m 时,它的底面积应为
8000m2.
96 V= ≈0.686. 140
所以为了安全起见,气体的体
积应不少于0.69m3.
11.3 用反比例函数解决问题(1)
生活中还有许多反比例函数模型的实际问 题,你能举出例子吗?
11.3 用反比例函数解决问题(1)
小结:
转化 实际问题 解决 老师寄语: 数学来源于生活,生活中处处有数学, 让我们学会用数学的眼光看待生活. 数学问题 (反比例 函数)
录入任务. 在函数求值的过程中,要注意单位的一致.
11.3 用反比例函数解决问题(1)
问题1 小明要把一篇24000字的社会调查报告录
入电脑.
(4)要在3 h 内完成录入任务,小明每分钟至少 应录入多少个字?
解:(4)把t=180代入v· t=24000,得 24000 400 v= = ≈133.3. 180 3 小明每分钟至少应录入134字,才能在3 h 内完成
11.3 用反比例函数解决问题(1)
用反比例方法解决问题
对于两个量 x 和 y,如果它们的比例是常数 k,则可以表示 为 x/y = k。
反比例方法的适用范围
反比例方法适用于解决涉及两个量之间比例的问题,特别是当一个量随着另一个 量的增加而减少,或者一个量随着另一个量的减少而增加的情况。
常见应用场景包括工程、物理、化学、商业等领域。
反比例方法的解题步骤
06
总结与展望
总结:反比例方法的重要性和应用领域
反比例方法的重要性
反比例方法是数学中一种重要的比例关 系,它揭示了两个量之间的变化关系。 在解决实际问题中,反比例方法具有广 泛的应用价值,能帮助我们更好地理解 问题的本质和找到有效的解决方案。
VS
应用领域
反比例方法在各个领域都有广泛的应用, 如物理学、工程学、经济学等。例如,在 物理学中,反比例关系可以描述电磁场、 引力场等场的性质;在工程学中,反比例 方法可用于优化设计、控制工程等;在经 济学中,反比例方法可用于研究市场供求 关系、货币供应等。
05
用反比例方法解决复杂问题的案例分析
案例一:最优库存问题
01 总结词
通过使用反比例函数,我们可以有效地解 决最优库存问题,以实现最大化的利润。
03
02
公式解释
04
详细描述
在最优库存问题中,我们需要确定一个最优 的库存水平,以平衡库存持有成本和缺货成 本。通过使用反比例函数,我们可以将这两 个成本之间的关系表示为数学模型,从而找 到最优解。
谢谢您的聆听
THANKS
首先确定每个员工完成的工作量比例 ,这可以通过考虑每个员工完成的工 作量与总工作量的比例来计算。然后 ,使用反比例公式将权重分配给每个 员工,即每个员工的权重 = 总权重 / (员工的完成比例)。最后,根据每个 员工的权重计算其工作效率得分。
10、用反比例函数解决问题
用反比例函数解决问题要点一、利用反比例函数解决实际问题1.基本思路:建立函数模型,即在实际问题中求得函数解析式,然后应用函数的图象和性质等知识解决问题.2.一般步骤如下:(1)审清题意,根据常量、变量之间的关系,设出函数解析式,待定的系数用字母表示.(2)由题目中的已知条件,列出方程,求出待定系数.(3)写出函数解析式,并注意解析式中变量的取值范围.(4)利用函数解析式、函数的图象和性质等去解决问题.要点二、反比例函数在其他学科中的应用1.当圆柱体的体积一定时,圆柱的底面积是高的反比例函数;2.当工程总量一定时,做工时间是做工速度的反比例函数;3.在使用杠杆时,如果阻力和阻力臂不变,则动力是动力臂的反比例函数;电压一定,输出功率是电路中电阻的反比例函数.要点三、反比例函数中的最值问题理论:若0a >,0b >,则a b +³a b =时等号成立)例题:对于函数()10y x x x=+>,当x 取何值时,函数y 的值最小?最小值是多少?0x Q >,12y x x \=+³=,当且仅当1x x =时,等号成立,由1x x=得:1x =或10x =-<(舍去),经检验,1x =是方程1x x =的解,故当x=1时,函数y 的值最小,最小值是2题型一:反比例函数实际问题与图象1.已知矩形的面积为 10,它的长y 与宽x 之间的关系用图象大致可表示为( )A .B .C .D .2.当温度不变时,某气球内的气压(kPa)p 与气体体积2(m )V 成反比例函数关系(其图象如图所示),已知当气球内的气压120kPa p >时,气球将爆炸,为了安全起见,气球内气体体积V 应满足的条件是( )A .不大于24m 5B .大于25m 4C .不小于24m 5D .小于25m 43.伟大的古希腊哲学家、数学家、物理学家阿基米德有句名言:“给我一个支点,我可以撬动地球!”这句名言道出了“标杆原理”的意义和价值.“标杆原理”在实际生产和生活中,有着广泛的运用.比如:小明用撬棍撬动一块大石头,运用的就是“标杆原理”.已知阻力1(N)F 和阻力臂1(m)L 的函数图像如图,若小明想使动力2F 不超过150N ,则动力臂2L 至少需要( )m .A .2B .1C .6D .44.体育课上,甲、乙、丙、丁四位同学进行跑步训练,如图用四个点分别描述四位同学的跑步时间y(分钟)与平均跑步速度x(米/分钟)的关系,其中描述甲、丙两位同学的y与x之间关系的点恰好在同一个反比例函数的图像上,则在这次训练中跑的路程最多的是()A.甲B.乙C.丙D.丁5.某商家设计了一个水箱水位自动报警仪,其电路图如图1所示,其中定值电阻110ΩR=,2R是一个压敏电阻,用绝缘薄膜包好后放在一个硬质凹形绝缘盒中,放入水箱底部,受力面水平,承受水压的面积S为0.012m,压敏电阻2R的阻值随所受液体压力F的变化关系如图2所示(水深h越深,压力F越大),电源电压保持6V不变,当电路中的电流为0.3A时,报警器(电阻不计)开始报警,水的压强随深度变化的关系图象如图3所示(参考公式:UIR =,F pS=,1000Pa1kPa=).则下列说法中不正确的是()A.当水箱未装水(0mh=)时,压强p为0kPaB.当报警器刚好开始报警时,水箱受到的压力F为40NC.当报警器刚好开始报警时,水箱中水的深度h是0.8mD.若想使水深1m时报警,应使定值电阻1R的阻值为12W题型二:利用反比例函数解决实际问题1.如图是某种电子理疗设备工作原理的示意图,其开始工作时的温度是20℃,然后按照一次函数关系一直增加到70℃,这样有利于打通病灶部位的血液循环,在此温度下再沿反比例函数关系缓慢下降至35℃,然后在此基础上又沿着一次函数关系一直将温度升至70℃,再在此温度下沿着反比例函数关系缓慢下降至,35℃如此循环下去.(1)t的值为;:分钟内温度大于或等于50℃时,治疗效果最好,则维持这个温度范围的持(2)如果在0t续时间为分钟.2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x (分钟)的变化规律如图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?请说明理由.3.某水果生产基地在气温较低时,用装有恒温系统的大棚栽培一种新品种水果,如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度()y ℃与时间()h x 之间的函数关系,其中线段,表示恒温系统开启后阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)这个恒温系统设定的恒定温度为多少℃;(2)求全天的温度y 与时间x 之间的函数关系式;(3)若大棚内的温度低于()10℃不利于新品种水果的生长,问这天内,相对有利于水果生长的时间共多少小时?4.心理学研究发现,一般情况下,在一节45分钟的课中,学生的注意力随学习时间的变化而变化.开始学习时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y、分别为线段,CD为双曲线的一部随时间x (分钟)的变化规律如下图所示(其中AB BC分).(1)求注意力指标数y与时间x (分钟)之间的函数表达式;(2)开始学习后第4分钟时与第35分钟时相比较,何时学生的注意力更集中?(3)某些数学内容的课堂学习大致可分为三个环节:即“教师引导,回顾旧知;自主探索,合作交流;总结归纳,巩固提高”,其中“教师引导,回顾旧知”环节10分钟;重点环节“自主探索,合作交流”这一过程一般需要30分钟才能完成,为了确保效果,要求学习时的注意力指标数不低于40,请问:这样的课堂学习安排是否合理?并说明理由.5.如图所示,小明家饮水机中原有水的温度是20,开机通电后,饮水机自动开始加热,此过程中水温y (°C )与开机时间x (分)满足一次函数关系.当加热到100°C 时自动停止加热,随后水温开始下降,此过程中水温y (°C )与开机时间x (分)成反比例关系.当水温降至20°C 时,饮水机又自动开始加热……,不断重复上述程序.根据图中提供的信息,解答下列问题:(1)当05x ££时,求水温y (°C )与开机时间x (分)的函数关系式;(2)求图中t 的值;(3)有一天,小明在上午7:20(水温20°C ),开机通电后去上学,11:33放学回到家时,饮水机内水的温度为多少°C ?并求:在7:2011:33——这段时间里,水温共有几次达到100°C ?6.据医学研究,使用某种抗生素可治疗心肌炎,某一患者按规定剂量服用这种抗生素,已知刚服用该抗生素后,血液中的含药量y(微克)与服用的时间x成正比例药物浓度达到最高后,血液中的含药量y(微克)与服用的时间x成反比例,根据图中所提供的信息,回答下列问题:(1)抗生素服用_______小时时,血液中药物浓度最大,每毫升血液的含药量有____微克;(2)根据图象求出药物浓度达到最高值之后,y与x之间的函数解析式及定义域;(3)求出该患者服用该药物10小时时每毫升血液的含药量y.题型三:最值问题1.阅读与思考任务:(1)填空:已知0x >,只有当x =______时,4x x+有最小值,最小值为______.(2)如图,P 为双曲线()60y x x =>上的一点,过点P 作PC x ⊥轴于点C ,PD y ⊥轴于点D ,求PC PD +的最小值.2.【操作发现】由()20a b -³得,222a b ab +³;如果两个正数a ,b ,即0a >,0b >,则有下面的不等式:a b +³,当且仅当a b =时取到等号.例如:已知0x >,求式子4x x +的最小值.解:令a x =,4b x =,则由a b +³44x x +³=,当且仅当4x x =时,即2x =时式子有最小值,最小值为4.(1)【问题解决】请根据上面材料回答下列问题:已知0x >,当x 为多少时,代数式9x x +的最小值为;(2)【灵活运用】当2x >时,求12x x +-的最小值;(3)【学以致用】如图,民民同学想做一个菱形风筝,现在有一根长120cm 的竹竿,他准备把它截成两段做成风筝的龙骨即菱形的对角线AC ,BD ,请你帮他设计一下,当AC 为多少cm 时菱形的面积最大,最大值为2cm (直接写出结果).3.由2()0a b -³得,222a b ab +³;如果两个正数a ,b ,即0,0a b >>,则有下面的不等式:a b +³,当且仅当a b =时取到等号.例如:已知0x >,求式子4x x+的最小值.解:令4,a x b x ==,则由a b +³44x x +³=,当且仅当4x x =时,即2x =时,式子有最小值,最小值为4.请根据上面材料回答下列问题:(1)当0x >,式子x +16x的最小值为 ;(2)当0x <,代数式364+x x最大值为多少?并求出此时x 的值;(3)用篱笆围一个面积为32平方米的长方形花园,使这个长方形花园的一边靠墙(墙长20米),问这个长方形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?4.阅读材料:①对于任意实数a 和b ,都有2()0a b -³,∴2220a ab b -+³,得到222a b ab +³,当且仅当a b =时,等号成立.②任意一个非负实数都可写成一个数的平方的形式.即:如果a ≥0,则2a =.如:22=等.例:①用配方法求代数式2283x x -+的最小值.②已知0a >,求证:12a a+>①解:由题意得:222832(2)5x x x -+=--,∵22(2)0x -³,且当2x =时,22(2)0x -=,∴22(2)55x --³-,∴当2x =时,代数式2283x x -+的最小值为:5-;②证明:∵0a >,∴2122a a +=+>=∴12a a +>12a a =,即请解答下列问题:某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙足够长),另外三边用篱笆围成(如图所示).设垂直于墙的一边长为x 米.(1)若所用的篱笆长为36米,那么:①当花圃的面积为144平方米时,垂直于墙的一边的长为多少米?②设花圃的面积为S 米2,求当垂直于墙的一边的长为多少米时,这个花圃的面积最大?并求出这个最大面积;(2)若要围成面积为200平方米的花圃,需要用的篱笆最少是多少米?题型四:反比例函数综合运用1.如图是4个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~4的整数),函数()0k y x x =>的图象为曲线L ,若曲线L 使得14T T :,这些点分布在它的两侧,每侧各2个点,则k 的取值范围是( )A .812k ££B .812k £<C .812k <£D .812k <<2.如图,矩形ABCD 对角线的交点为O ,点P 在x 轴的正半轴上,DC 平分BDP Ð,PAD V 的面积为6.若双曲线()0k y x x=>经过点D ,交PD 于点Q ,且PQ DQ =,则k 的值为 .3.如图,已知点()1,A a 和点()3,B b 是直线y mx n =+与双曲线(0)k y k x =>的交点,AOB V 的面积为43.(1)求k 的值;(2)设()111,P x y ,()222,P x y 是反比例函数在同一象限上任意不重合的两点,1212y y M x x =+,2112y y N x x =+,判断M ,N的大小,并说明理由.4.已知反比例函数k y x =的图象经过点()A .(1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB .判断点B 是否在此反比例函数的图象上,并说明理由;(3)已知点()6P m +也在此反比例函数的图象上(其中0m <),过P 点作x 轴的垂线,交x 轴于点M .若线段PM 上存在一点Q ,使得OQM V 的面积是12,设Q 点的纵坐标为n ,求29n -+的值.5.如图,矩形ABCD的两边AD,AB的长分别为3,8,边BC落在x轴上,E是DC的中点,连接AE,反比例函数myx=的图象经过点E,与AB交于点F.(1)求AE的长;(2)若2AF AE-=,求反比例函数的表达式;(3)在(2)的条件下,连接矩形ABCD两对边AD与BC的中点M,N,设线段MN与反比例函数图象交于点P,将线段MN沿x轴向右平移n个单位,若MP NP<,直接写出n的取值范围.课后练习1.已知蓄电池的电压为定值,使用某蓄电池时,电流I(单位:A)与电阻R(单位:W )是反比例函数关系,它的图象如图所示,则当电阻为6W 时,电流为( )A .3AB .4AC .6AD .8A2.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流()A I .与电阻()R W 成反比例函数的图象,该图象经过点()880,0.25P .根据图象可知,下列说法正确的是( )A .当0.25R <时,880I <B .I 与R 的函数关系式是()2000I R R=>C .当1000R >时,0.22I >D .当8801000R <<时,I 的取值范围是0.220.25I <<3.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度()C y °与时间()h x 之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间()024x x ££的函数关系式;(2)若大棚内的温度低于10C °时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?4.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化:开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如图所示(其中AB BC ,分别为线段,BC x ∥轴,CD 为双曲线的一部分),其中AB 段的关系式为220y x =+.(1)点B 坐标为_______;(2)根据图中数据,求出CD 段双曲线的表达式;(3)一道数学竞赛题,需要讲20分钟,为了效果较好,要求学生的注意力指标数最低达到32,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?5.为确保身体健康,自来水最好烧开(加热到100℃)后再饮用.某款家用饮水机,具有加热、保温等功能.现将20℃的自来水加入到饮水机中,先加热到100℃.此后停止加热,水温开始下降,达到设置的饮用温度后开始保温.比如事先设置饮用温度为50℃,则水温下降到50℃后不再改变,此时可以正常饮用.整个过程中,水温()y ℃与通电时间()min x 之间的函数关系如图所示.(1)水温从20℃加热到100℃,需要______min ;请直接写出加热过程中水温y 与通电时间x 之间的函数关系式:______;(2)观察判断:在水温下降过程中,y 与x 的函数关系是______函数,并尝试求该函数的解析式;(3)已知冲泡奶粉的最佳温度在40℃左右,某家庭为了给婴儿冲泡奶粉,将饮用温度设置为40℃.现将20℃的自来水加入到饮水机中,此后开始正常加热.则从加入自来水开始,需要等待多长时间才可以接水冲泡奶粉?6.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为18: 的整数)函数()0k y x x=<的图像为曲线L ,若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的取值范围是( )A .3628k -<<-B .2214k -<<-C .2012k -<<-D .3426k -<<-7.阅读理解:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.(1)若A(m ,y 1),B(m +1,y 2),C(m +3,y 3)三点均在反比例函数4y x=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m 的值;(2)若实数a ,b ,c 是“和谐三数组”,且满足a >b >c >0,求点(,)c c P a b与原点O 的距离OP 的取值范围.8.如图直角坐标系中,矩形ABCD 的边BC 在x 轴上,点B 、D 的坐标分别为B (1,0),D (3,3).(1)点C 的坐标 ;(2)若反比例函数()0k y k x=¹的图象经过直线AC 上的点E ,且点E 的坐标为(2,m ),求m 的值及反比例函数的解析式;(3)若(2)中的反比例函数的图象与CD 相交于点F ,连接EF ,在直线AB 上找一点P ,使得32PEF CEF S S D D =,求点P 的坐标.9.阅读材料:已知,a b 为非负实数,∵2220a b +-=+-=³,∴a b +³“a b =”时,等号成立.这个结论就是著名的“均值不等式”,“均值不等式”在一类最值问题中有着广泛的应用.例:已知0x >,求函数4y x x =+的最小值.解:令a x =,4b x =,则由a b +³44y x x =+³=.当且仅当4x x=,即2x =时,函数取到最小值,最小值为4.根据以上材料解答下列问题:(1)已知0x >,则当x =______时,函数3y x x=+取到最小值,最小值为______;(2)用篱笆围一个面积为2100m 的矩形花园,则当这个矩形花园的长、宽各为多少时,所用的篱笆最短?最短的篱笆的长度是多少米?(3)已知0x >,则自变量x 取何值时,函数229x y x x =-+取到最大值?最大值为多少?。
反比例函数的方法
反比例函数的方法反比例函数是一类特殊的函数,其定义为:y = k/x,其中k为常数,x不等于0。
这意味着当x增加时,y减小,反之亦然,因此它被称为反比例函数。
在数学、物理、工程和科学等许多领域中,反比例函数都有广泛的应用。
本文将介绍反比例函数的性质、图像和解题方法。
一. 反比例函数的性质1. 垂直渐近线:x = 0是反比例函数的垂直渐近线,因为当x趋近于0时,y无限大或无限小。
2. 水平渐近线:y = 0是反比例函数的水平渐近线,因为当x趋近于无穷大或无穷小时,y趋近于0。
3. 对称中心点:反比例函数的对称中心点为(x,y) = (±√k,±√k),因为当x等于±√k时,y等于±√k,即(x,y)关于这一点对称。
4. 定义域和值域:反比例函数的定义域为x不等于0,值域为y不等于0。
二. 反比例函数的图像反比例函数的图像可以通过绘制一些点然后连接它们来得到。
例如,对于函数y = 2/x,我们可以选择一些x值,并计算相应的y值,然后将它们表示在坐标系统中,如下所示:x y-3 -2/3-2 -1-1 -21 22 13 2/3通过连接这些点,我们可以得到反比例函数的图像如下所示:此图像具有以下特征:1. 过原点(0,0),因为当x等于0时,y等于0。
2. 右上和左下方向的开口,因为当x大于0时,y小于0,当x小于0时,y大于0。
3. 垂直渐近线x = 0。
4. 水平渐近线y = 0。
5. 对称中心点为(-√2,√2)和(√2,-√2)。
三. 反比例函数的解题方法当我们需要解决与反比例函数有关的问题时,我们可以使用以下步骤:1. 理解问题并确定变量:首先,我们需要明确问题中给出的信息,并确定与反比例函数相关的变量。
例如,如果一个问题涉及到两个变量的反比例关系,我们可以使用y=k/x的形式表示它们之间的关系,并将k视为常数。
2. 列出方程:其次,我们需要将反比例关系转化为相应的方程,并用给定的值求解未知量。
八下 反比例函数 11.3 用反比例函数解决问题 含答案
11.3 用反比例函数解决问题一.选择题(共10小题)1.一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=2.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t=C.t=D.t=3.某厂现有300吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()A.(x>0) B.(x≥0) C.y=300x(x≥0)D.y=300x(x>0)4.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y= C.y=D.y=5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为()A.y=B.y=C.y=D.y=6.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I 的函数解析式为()A.B.C.D.7.某电子商城推出分期付款购买电脑的活动,一台电脑的售价为1.2万元,前期付款4000元,后期每个月分期付一定的数额,则每个月的付款额y(元)与付款月数x之间的函数关系式是()A.y=(x取正整数)B.y=C.y=D.y=8000x8.电路上在电压保持不变的条件下,电流I(A)与电阻R(Ω)成反比例关系,I与R的函数图象如图,I关于R函数解析式是()A.B. C.D.9.如果以12m3/h的速度向水箱进水,5h可以注满.为了赶时间,现增加进水管,使进水速度达到Q(m3/h),那么此时注满水箱所需要的时间t(h)与Q(m3/h)之间的函数关系为()A.t=B.t=60Q C.t=12﹣D.t=12+10.某闭合电路中,电源电压不变,电流I(A)与电阻R(Ω)成反比例,如图表示的是该电路中电流I与电阻R之间函数关系的图象,图象过M(4,2),则用电阻R表示电流I的函数解析式为()A.B.C.D.二.填空题(共10小题)11.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式.12.一批零件300个,一个工人每小时做15个,用关系式表示人数x与完成任务所需的时间y之间的函数关系式为.13.A、B两地之间的高速公路长为300km,一辆小汽车从A地去B地,假设在途中是匀速直线运动,速度为vkm/h,到达时所用的时间是th,那么t是v的函数,t可以写成v的函数关系式是.14.把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.150y(单x(单的函数解析式为,)的变化而变化,其对应的函数解析式是.三.解答题(共9小题)21.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)22.已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.23.已知圆锥的体积,(其中s表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10cm时,底面积为30cm2,请写出h关于s的函数解析式.24.我们学习过反比例函数,例如,当矩形面积一定时,长a是宽b的反比例函数,其函数关系式可以写为(s为常数,s≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:三角形的面积S一定时,三角形底边长y是高x的反比例函数;函数关系式:(s为常数,s≠0).25.有一水池装水12m3,如果从水管中1h流出x m3的水,则经过yh可以把水放完,写出y与x的函数关系式及自变量x的取值范围.26.已知一个长方体的体积是100m3,它的长是ym,宽是5 m,高为xm,试写出x、y之间的函数关系式,并注明x的取值范围.27.甲、乙两地相距100km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间t(h)表示为汽车速度v(km/h)的函数,并说明t是v的什么函数.28.已知一个面积为60的平行四边形,设它的其中一边长为x,这边上的高为y,试写出y与x的函数关系式,并判断它是什么函数.29.面积一定的梯形,其上底长是下底长的,设上底长为xcm,高为ycm,且当x=5cm,y=6cm,(1)求y与x的函数关系式;(2)求当y=4cm时,下底长多少?参考答案与试题解析一.选择题(共10小题)1.(2016•广州)一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=【分析】根据路程=速度×时间,利用路程相等列出方程即可解决问题.【解答】解:由题意vt=80×4,则v=.故选B.【点评】本题考查实际问题的反比例函数、路程、速度、时间之间的关系,解题的关键是构建方程解决问题,属于中考常考题型.2.(2015•临沂)已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t=C.t=D.t=【分析】根据路程=时间×速度可得vt=20,再变形可得t=.【解答】解:由题意得:vt=20,t=,故选:B.【点评】此题主要考查了由实际问题抽象出反比例函数解析式,关键是正确理解题意,找出题目中的等量关系.3.某厂现有300吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()A.(x>0) B.(x≥0) C.y=300x(x≥0)D.y=300x(x>0)【分析】这些煤能烧的天数=煤的总吨数÷平均每天烧煤的吨数,把相关数值代入即可.【解答】解:∵煤的总吨数为300,平均每天烧煤的吨数为x,∴这些煤能烧的天数为y=(x>0),故选:A.【点评】此题主要考查了根据实际问题列反比例函数关系式,得到这些煤能烧的天数的等量关系是解决本题的关键.4.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y= C.y=D.y=【分析】利用三角形面积公式得出xy=10,进而得出答案.【解答】解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.【点评】此题主要考查了根据实际问题抽象出反比例函数解析式,根据已知得出xy=10是解题关键.5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为()A.y=B.y=C.y=D.y=【分析】由于近视镜度数y(度)与镜片焦距x(米)之间成反比例关系可设y=,由200度近视镜的镜片焦距是0.5米先求得k的值.【解答】解:由题意设y=,由于点(0.5,200)适合这个函数解析式,则k=0.5×200=100,∴y=.故眼镜度数y与镜片焦距x之间的函数关系式为:y=.故选;A.【点评】本题考查了根据实际问题列反比例函数关系式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.6.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I 的函数解析式为()A.B.C.D.【分析】可设I=,由于点(3,2)适合这个函数解析式,则可求得k的值.【解答】解:设I=,那么点(3,2)适合这个函数解析式,则k=3×2=6,∴I=.故选:C.【点评】解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.7.某电子商城推出分期付款购买电脑的活动,一台电脑的售价为1.2万元,前期付款4000元,后期每个月分期付一定的数额,则每个月的付款额y(元)与付款月数x之间的函数关系式是()A.y=(x取正整数)B.y=C.y=D.y=8000x【分析】根据购买的电脑价格为1.2万元,交了首付4000元之后每期付款y元,x个月结清余款,得出xy+4000=12000,即可求出解析式.【解答】解:∵购买的电脑价格为1.2万元,交了首付4000元之后每期付款y 元,x个月结清余款,∴xy+4000=12000,∴y=(x取正整数).故选A.【点评】此题主要考查了根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,注意先根据等量关系得出方程,难度一般.8.电路上在电压保持不变的条件下,电流I(A)与电阻R(Ω)成反比例关系,I与R的函数图象如图,I关于R函数解析式是()A.B. C.D.【分析】根据电压=电流×电阻得到稳定电压的值,让I=即可.【解答】解:∵当R=20,I=11时,∴电压=20×11=220,∴.故选A.【点评】考查列反比例函数关系式,关键是根据题中所给的值确定常量电压的值.9.如果以12m3/h的速度向水箱进水,5h可以注满.为了赶时间,现增加进水管,使进水速度达到Q(m3/h),那么此时注满水箱所需要的时间t(h)与Q(m3/h)之间的函数关系为()A.t=B.t=60Q C.t=12﹣D.t=12+【分析】以12m3/h的速度向水箱进水,5h可以注满,求出水箱的容量,然后根据注满水箱所需要的时间t(h)=可得出关系式.【解答】解:由题意得:水箱的容量=12m3/h×5h=60m3.∴注满水箱所需要的时间t(h)与Q(m3/h)之间的函数关系为t=.故选A.【点评】本题考查了根据实际问题列反比例函数关系式,属于应用题,难度一般,解答本题的关键是首先得出水箱的容量.10.某闭合电路中,电源电压不变,电流I(A)与电阻R(Ω)成反比例,如图表示的是该电路中电流I与电阻R之间函数关系的图象,图象过M(4,2),则用电阻R表示电流I的函数解析式为()A.B.C.D.【分析】把已知点的坐标代入可求出k值,即得到反比例函数的解析式.【解答】解:观察图象,函数经过一定点(4,2),将此点坐标代入函数解析式I=(k≠0)即可求得k的值,2=,∴K=8,函数解析式I=.故选A.【点评】用待定系数法确定反比例函数的比例系数k,求出函数解析式.二.填空题(共10小题)11.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式t=.【分析】根据蓄水量=每小时排水量×排水时间,即可算出该蓄水池的蓄水总量,再由防水时间=蓄水总量÷每小时的排水量即可得出时间t(小时)与Q之间的函数表达式.【解答】解:∵某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空,∴该水池的蓄水量为8×6=48(立方米),∵Qt=48,∴t=.故答案为:t=.【点评】本题考查了根据实际问题列出反比例函数关系式,解题的关键是根据数量关系列出t关于Q的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出函数关系式是关键.12.一批零件300个,一个工人每小时做15个,用关系式表示人数x与完成任务所需的时间y之间的函数关系式为y=.【分析】根据等量关系“x个工人所需时间=工作总量÷x个工人工效”即可列出关系式.【解答】解:由题意得:人数x与完成任务所需的时间y之间的函数关系式为y=300÷15x=.故本题答案为:y=.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题13.A、B两地之间的高速公路长为300km,一辆小汽车从A地去B地,假设在途中是匀速直线运动,速度为vkm/h,到达时所用的时间是th,那么t是v的反比例函数,t可以写成v的函数关系式是.【分析】时间=,把相关字母代入即可求得函数解析式,看符合哪类函数的特征即可.【解答】解:t=,符合反比例函数的一般形式.【点评】解决本题的关键是得到所求时间的等量关系,注意反比例函数的一般形式为y=(k≠0,且k为常数).14.(2015•青岛)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为s=.【分析】利用长方体的体积=圆柱体的体积,进而得出等式求出即可.【解答】解:由题意可得:sh=3×2×1,则s=.故答案为:s=.【点评】此题主要考查了根据实际问题列反比例函数解析式,得出长方体体积是解题关键.15.近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视镜片的焦距为0.2米,则眼镜度数y与镜片焦距x之间的函数关系式是y=.【分析】由于近视眼镜的度数y(度)与镜片焦距x(米)成反比例,可设y=,由于点(0.2,400)在此函数解析式上,故可先求得k的值.【解答】解:根据题意近视眼镜的度数y(度)与镜片焦距x(米)成反比例,由于点(0.2,400)在此函数解析式上,∴k=0.2×400=80,∴y=.故答案为:y=.【点评】考查了根据实际问题列反比例函数关系式的知识,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.16.某村利用秋冬季节兴修水利,计划请运输公司用90~150天(含90与150天)完成总量300万米3的土石方运送,设运输公司完成任务所需的时间为y(单位:天),平均每天运输土石方量为x(单位:万米3),请写出y关于x的函数关系式并给出自变量x的取值范围y=(2≤x≤).【分析】利用“每天的工作量×天数=土石方总量”可以得到两个变量之间的函数关系.【解答】解:由题意得,y=,把y=90代入y=,得x=,把y=150代入y=,得x=2,所以自变量的取值范围为:2≤x≤,故答案为y=(2≤x≤).【点评】本题考查了根据实际问题列反比例函数关系式,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.17.某户家庭用购电卡购买了2000度电,若此户家庭平均每天的用电量为x(单位:度),这2000度电能够使用的天数为y(单位:天),则y与x的函数关系式为.(不要求写出自变量x的取值范围)【分析】根据某户家庭用购电卡购买了2000度电,此户家庭平均每天的用电量为x(单位:度),利用总用电量除以使用的天数得出y与x的函数关系式.【解答】解:∵某户家庭用购电卡购买了2000度电,若此户家庭平均每天的用电量为x(单位:度),使用的天数为y(单位:天),∴y与x的函数关系式为:y=.故答案为:y=.【点评】此题主要考查了根据实际问题列反比例函数关系式,利用用电量除以使用的天数得出y与x的函数关系式是解题关键.18.若矩形的面积为48,它的两边长分别为x,y.则y关于x的函数解析式为,其中自变量x的取值范围是x>0.【分析】根据等量关系“矩形一边长=面积÷另一边长”即可列出关系式.【解答】解:由题意得:y关于x的函数解析式是y=(x>0).故答案为:y=,x>0.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.19.京沪铁路全程1463km,某次列车的平均速度v(单位km/h)随此次列车的全程运行时间t(t>0,单位:h)的变化而变化,其对应的函数解析式是(t>0).【分析】根据平均速度=总路程÷总时间可列出关系式,即可求解.【解答】解:由题意得平均速度v(单位km/h)与全程运行时间t的关系为:v=(t>0).故本题答案为:v=(t>0).【点评】根据题意,找到所求量的等量关系是解决问题的关键.除法一般写成分式的形式,除号可看成分式线.20.学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),则另一边的长y(米)与x的函数关系式为y=.【分析】根据矩形的面积=长×宽,结合题意即可得出另一边的长y(米)与x 的函数关系式.【解答】解:由题意得,xy=24,故另一边的长y(米)与x的函数关系式为:.故答案为:y=.【点评】本题考查了根据实际问题列反比例函数关系式的知识,属于基础题,熟练掌握矩形的面积公式是关键.三.解答题(共9小题)21.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)【分析】(1)设出反比例函数解析式,把A坐标代入可得函数解析式;(2)把v=1代入(1)得到的函数解析式,可得p;(3)把P=140代入得到V即可.【解答】解:(1)设,由题意知,所以k=96,故;(2)当v=1m3时,;(3)当p=140kPa时,.所以为了安全起见,气体的体积应不少于0.69m3.【点评】考查反比例函数的应用;应熟练掌握符合反比例函数解析式的数值的意义.22.已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.【分析】(1)长方体的体积等于=长×宽×高,把相关数值代入即可求解;(2)把x=2代入(1)的函数解析式可得y的值.【解答】解:(1)由题意得,10xy=100,∴y=(x>0);(2)当x=2cm时,y==5(cm).【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.23.已知圆锥的体积,(其中s表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10cm时,底面积为30cm2,请写出h关于s的函数解析式.【分析】首先根据已知求出V的值,进而代入,即可得出h与s的函数关系式.【解答】解:∵,当h为10cm时,底面积为30,∴V=×10×30=100(cm3),∴100=sh,∴h关于s的函数解析式为:.【点评】此题主要考查了根据实际问题列反比例函数解析式,根据已知得出V 的值是解题关键.24.我们学习过反比例函数,例如,当矩形面积一定时,长a是宽b的反比例函数,其函数关系式可以写为(s为常数,s≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:三角形的面积S一定时,三角形底边长y是高x的反比例函数;函数关系式:(s为常数,s≠0).【分析】联系日常生活,要解答本题关键要找出日常生活中两个数的乘积是一个不为零的常数,写出其函数关系式.【解答】解:本题通过范例,再联系日常生活、生产或学习当中可以举出许许多多与反比例函数有关的例子来,例如:实例1,三角形的面积S一定时,三角形底边长y是高x的反比例函数,其函数关系式可以写出(s为常数,s≠0).实例2,甲、乙两地相距100千米,一辆汽车从甲地开往乙地,这时汽车到达乙地所用时间y(小时)是汽车平均速度x(千米/小时)的反比例函数,其函数关系式可以写出.【点评】本题与日常生活联系在一起,要解答本题,关键是要理解反比例函数的性质.25.有一水池装水12m3,如果从水管中1h流出x m3的水,则经过yh可以把水放完,写出y与x的函数关系式及自变量x的取值范围.【分析】根据等量关系“工作时间=工作总量÷工作效率”即可列出关系式即可,注意x>0.【解答】解:由题意,得:y=(x>0).故本题答案为:y=(x>0).【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.26.已知一个长方体的体积是100m3,它的长是ym,宽是5 m,高为xm,试写出x、y之间的函数关系式,并注明x的取值范围.【分析】根据等量关系“长方体的体积=长×宽×高”,再把已知中的数据代入得出y与x之间的函数关系式即可.【解答】解:因为长方体的长是ym,宽是5m,高为xm,由题意,知100=5xy,即y=.由于长方体的高为非负数,故自变量的取值范围是0<x<4.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.27.甲、乙两地相距100km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间t(h)表示为汽车速度v(km/h)的函数,并说明t是v的什么函数.【分析】时间=路程÷速度,把相关数值代入即可求得相关函数,看符合哪类函数的一般形式即可.【解答】解:∵路程为100,速度为v,∴时间t=,t是v的反比例函数.【点评】考查列反比例函数关系式,得到时间的等量关系是解决本题的关键;用到的知识点为:反比例函数的一般式为(k≠0).28.已知一个面积为60的平行四边形,设它的其中一边长为x,这边上的高为y,试写出y与x的函数关系式,并判断它是什么函数.【分析】平行四边形一边上的高=面积÷这边长,把相关数值代入即可求得函数解析式,可符合哪类函数的一般形式即可.【解答】解:∵xy=60,∴y=,∴y是x的反比例函数.【点评】考查列反比例函数解析式,得到平行四边形一边上的高的等量关系是解决本题的关键;用到的知识点为:反比例函数的一般形式为y=(k≠0).29.面积一定的梯形,其上底长是下底长的,设上底长为xcm,高为ycm,且当x=5cm,y=6cm,(1)求y与x的函数关系式;(2)求当y=4cm时,下底长多少?【分析】(1)先根据梯形的面积公式得到梯形的面积,进而根据梯形的面积表示出梯形的高即可;(2)把y=4代入(1)得到的式子求出上底,再乘以3即为下底长.【解答】解:(1)∵x=5cm,y=6cm,上底长是下底长的,∴下底长为15cm,∴梯形的面积=×(5+15)×6=60,∴梯形的高=∴y==;(2)当y=4cm时,x=7.5,∴3x=22.5.答:下底长22.5cm.【点评】本题考查列反比例函数及相应求值问题;用到的知识点为:梯形的面积=×(上底+下底)×高.。
反比例函数的实际应用、 实际问题与反比例函数(教案)
26.2 实际问题与反比例函数第1课时反比例函数的实际应用(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t 单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.(2) 写出此函数的函数关系式.(3) 若要6h排完水池的水,那么每1h的排水量应该是多少?(4) 如果每1h排水量是5m3,那么水池中【分析】解此题关键是从图象中获取有关信息,会根据图象回答.解:(1)由图象知:当每1h排水4m3时,需12h排完水池中的水,∴蓄水量为4×12 = 48(m3 )(2)由图象V与t成反比例,设V=kt(k≠0).把V=4,t=12代入得k=48,∴V =48t(t>0).(3)当t=6时,486V== 8,即每1h排水量是8m3⑷当V=5时,5 = 48t,485t∴== 9.6(h),即水池中的水需要用9.6h排完.【教学说明】例3相比前面两例,难度增加,教师在讲解本题时,要辅导学生从图象中获取信息,会根据图象回答问题.三、运用新知,深化理解1.某玻璃器皿公司要挑选一种容积为1升 (1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?2.市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了这项工程运送土石方的任务.(1)运输公司平均每天的工作量V(单位:m3/天)与完成运送任务所需的时间t (单位:天)之间具有怎样的函数关系?(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3.则公司完成全部运输任务需要多长时间?【教学说明】以上两题让学生相互交流,共同探讨,获得结果,使学生通过对上述问题的思考,巩固所学知识,增强运用反比例函数解决问题的能力.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:(1)13Sd=1,S =3d(d>0)(2)100cm2 = 1dm2,当S = 1dm2时,3d=1,d=3dm.2.解:(1)661010,(Vt V tt==>0) .(2)t=662410101010V== .即完成任务需要100天.四、师生互动,课堂小结谈谈这节课的收获和体会,与同伴交流.1.布置作业:从教材“习题26. 2”中选取.2.完成创优作业中本课时的“课时作业”部分.本节课是用函数的观点处理实际问题,其中蕴含着体积、面积这样的实际问题.而解决这些问题的关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么,可以是什么,从而逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.学生已经有了反比例函数的概念及其图象与性质这些知识作为基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,学生已经有了一定的知识准备.因此,本节课教师可从身边事物入手,使学生真正体会到数学知识来源于生活,有一种亲切感.在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来进行交流活动,不断引导学生利用数学知识来解决实际问题.26.2 实际问题与反比例函数第1课时实际问题与反比例函数(1)——面积问题与装卸货物问题一、新课导入1.课题导入前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决问题中所起的作用.这节课我们进一步探讨如何利用反比例函数解决实际问题.2.学习目标(1)掌握常见几何图形的面积(体积)公式.(2)能利用工作总量、工作效率和工作时间的关系列反比例函数解析式.(3)从实际问题中抽象出数学问题,建立函数模型,运用所学的数学知识解决实际问题.3.学习重、难点重点:面积问题与装卸货物问题.难点:分析实际问题中的数量关系,正确写出函数解析式.二、分层学习1.自学指导(1)自学内容:教材P12例1.(2)自学时间:8分钟.(3)自学指导:抓住问题的本质和关键,寻求实际问题中某些变量之间的关系.(4)自学参考提纲:①圆柱的体积=底面积×高,教材P12例1中,圆柱的高即是d,故底面积410Sd .②P12例1的第(2)问实际是已知S=500,求d.③例1的第(3)问实际是已知d=15,求S.④如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m,设AD的长为x m,DC的长为y m.a.求y与x之间的函数关系式;60 yx ⎛=⎫ ⎪⎝⎭b.若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC 的长都是整米数,求出满足条件的所有围建方案.(AD=5 m,DC=12 m;AD=6m,DC=10 m;AD=10 m,DC=6 m.)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否掌握利用面积(体积)公式列反比例函数关系式.②差异指导:辅导关注学困生.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例1的解题思路和解答过程.(2)面积公式与体积公式中的反比例关系.(3)练习:已知某矩形的面积为20 cm2.①写出其长y与宽x之间的函数表达式;②当矩形的长为12 cm时,宽为多少?当矩形的宽为4 cm,长为多少?③如果要求矩形的长不小于8 cm,其宽最多是多少?答案:①20yx=②53cm;5 cm③52cm1.自学指导(1)自学内容:教材P13例2.(2)自学时间:5分钟.(3)自学方法:认真分析例题,积极思考,结合自学参考提纲自学.(4)自学参考提纲:①工作总量、工作时间和工作效率(或速度)之间的关系是怎样的?②教材例2中这艘船共装载货物240吨,卸货速度v(吨/天)与卸货时间t(天)的关系是240 vt =.③如果列不等式求“平均每天至少要卸载多少吨”,你会怎样做?写出你的解答过程.④一司机驾汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.a.当他按原路匀速返回时,汽车速度v(千米/小时)与时间t(小时)有怎样的函数关系?480 vt⎛=⎫ ⎪⎝⎭b.如果该司机必须在4小时之内返回甲地,则返程时的速度不得低于多少?(120千米/小时)c.若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过120千米/小时,最低车速不得低于60千米/小时,试问返程所用时间的范围是多少?(4~8小时)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会列函数关系式,是否会根据反比例函数关系解决实际问题.②差异指导:指导学生从形式和自变量的取值范围两个方面对比正比例函数理解反比例函数.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例2的解题思路和解答过程.(2)练习:某学校食堂为方便学生就餐,同时又节约成本,常根据学生多少决定开放多少售饭窗口,假定每个窗口平均每分钟可以售饭给3个学生,开放10个窗口时,需1小时才能对全部学生售饭完毕.①共有多少学生就餐?②设开放x 个窗口时,需要y 小时才能让当天就餐的同学全部买上饭,试求出y 与x 之间的函数关系式;③已知该学校最多可以同时开放20个窗口,那么最少多长时间可以让当天就餐的学生全部买上饭?答案:①1800个;②10y x=;③30分钟. 三、评价1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).函数是初中数学的难点之一,当函数遇到实际应用,可谓是难上加难,但也使解题多了几种途径.对于这些实际问题,要善于运用函数的观点去处理.因此在教学过程要注意培养学生的审题能力,理解文字中隐藏的已知条件,合理地建立函数模型,然后根据模型找出实际生活中的数据与模型中的哪些量相对应.将实际问题置于已有的知识背景中,用数学知识重新解释这是什么,可以是什么,逐步培养解决实际问题的能力.一、基础巩固(70分)1.(10分)某轮船装载货物300吨,到港后,要求船上货物必须不超过5日卸载完毕,则平均每天至少要卸载(B )A.50吨B.60吨C.70吨D.80吨2.(10分) 用规格为50 cm×50 cm 的地板砖密铺客厅恰好需要60块.如果改用规格为a cm×a cm 的地板砖y 块也恰好能密铺该客厅,那么y 与a 之间的关系为(A ) A.2150000y a = B.150000y a = C.y=150000a 2 D.y=150000a3.(10分) 如果以12 m 3/h 的速度向水箱注水,5 h 可以注满.为了赶时间,现增加进水管,使进水速度达到Q (m 3/h ),那么此时注满水箱所需要的时间t (h )与Q (m3/h)之间的函数关系为(A)A.60tQ= B.t=60QC.6012tQ=- D.6012tQ=+4.(10分) 如果等腰三角形的底边长为x,底边上的高为y,当它的面积为10时,x与y 的函数关系式为(D)A.10yx= B.5yx= C.20xy= D.20yx=5.(10分) 已知圆锥的体积V=13Sh(其中S表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10 cm时,底面积为30 cm2,则h关于S的函数解析式为300 hS =.6.(10分)小艳家用购电卡购买了1000度电,那么这些电能够使用的天数m 与小艳家平均每天的用电度数n有怎样的函数关系?如果平均每天用电4度,这些电可以用多长时间?解:1000mn=;250天.7.(10分)某农业大学计划修建一块面积为2×106 m2的长方形试验田.(1)试验田的长y(单位:m)关于宽x(单位:m)的函数关系式是什么?(2)如果试验田的长与宽的比为2∶1,则试验田的长与宽分别是多少?解:(1)6210yx⨯=;(2)长:2×103 m,宽:103 m.二、综合应用(20分)8. (10分)某地计划用120~180天(含120天与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万立方米)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000立方米,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?解:(1)360yx=(2≤x≤3);(2)设原计划每天运送土石方x万立方米,实际每天运送土石方(x+0.5)万立方米.则360360240.5x x+=+().解得x=2.5.因此,原计划每天运送土石方2.5万立方米,实际每天运送土石方3万立方米.9.(10分)正在新建中的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103 m2.(1)所需瓷砖的块数n与每块瓷砖的面积S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2∶2∶1,则需三种瓷砖各多少块?解:(1)n=5×103S;(2)设需灰、白、蓝三种瓷砖分别为2x、2x、x块.(2x+2x+x)·80=5×103×104x=1.25×105因此,需灰、白、蓝三种瓷砖分别为2.5×105块、2.5×105块、1.25×105块.三、拓展延伸(10分)10.(10分) 水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现这种海产品每天的销售量y(千克)是销售价格x(元/千克)的函数,且这种函数是反比例函数、一次函数中的一种.(1)请你选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且以后每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?解:(1)12000y x;不选一次函数是因为y 与x 之间不成正比例关系. (2)30+40+48+12000240+60+80+96+100=504(千克), (2104-504)÷12000150=20(天). (3)(20-15)×12000150÷2=200(千克),12000÷200=60(元/千克).。
八下数学课件 用反比例函数解决实际问题(第二课时)
八年级 下册第十一章 反比例数11.3 用反比例函数解决实际问题
(第二课时)
学习目标
学习目标
1)运用反比例函数的知识解决实际问题。
2)经历“实际问题-建立模型-拓展应用”的过程,发展学生分析、解决问题的能力。
3)经历运用反比例函数解决实际问题的过程,体会数学建模的思想。
重点
运用反比例函数解决实际问题。
数图象的部分,下列选项错误的是( )
A.4月份的利润为50万元
B.污改造完成后每月利润比前一个月增加30万元
C.治污改造完成前后共有4个月的利润低于100万元 D.9月份该厂利润达到200万元
【详解】
治污改造完成前后,1-6月份的利润分别为200万元、100万元、
的利润低于100万元,C选项错误;
9月份的利润为30 × 9 − 70 = 200万元,D选项正确;
(1)动力 F 与动力臂 L 有怎样的函数关系?
(2)当动力臂为1.5米时,撬动石头至少需要多大的力?
(3)若想使动力F不超过题(2)中所用力的一半, 则动力臂至少要加长多少米?
2)把L=1.5带入到函数解析式F=
600
解得,F=400(N)
则对于函数F=
600
,当L=1.5米时,F=400 N,此时
段是恒温阶段,BC段是双曲线 = 的一部分,请根据图中信息解答下列问题:
(1)求k的值;
(2)恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有多少小时?
(1)把B(12,20)代入 = 中得:k=12×20=240;
(2)设AD的解析式为:y=mx+n.
把(0,10)、(2,20)代入y=mx+n中
用反比例解决问题
河南学校小学六年级数学导学案 主备人:朱琳 使用人:刘欢、朱琳 课型:新授课 审核人: 上课时间: 学生姓名: 德育教育:博观而约取,厚积而薄发。
安全教育:平安,平安,平平安安,人人平安,家家欢喜。
课题:用反比例解决问题学习目标:1、通过自学,学生自我构建用比例知识解答含有反比例关系问题的步骤和方法。
2、在对比练习中,学生能熟练地判断出题中两种相关联的量成什么比例,加深对正、反意义的理解,沟通知识间的联系。
并会用比例正确解决生活中的实际问题。
3、通过题组练习,发展学生探究解决问题策略的能力,帮助其建构相应的知识结构,同时培养学生良好的解答应用题的习惯。
重点:会用比例知识解决含有反比例关系的问题。
难点:正确判断数量之间的比例关系,并能根据正、反比例的意义列出方程。
基础知识训练: 1.25×0.6÷1.25 4.8×0.25 12.7-(3.7+0.84)一、温故互查(独立完成后,二人小组互相检查)1、判断下面各题中两种量成什么比例?说明理由。
(由卫生组长和安全组长分别讲解给大、小组长听,相互补充纠正) (1)、路程一定,汽车行驶的速度和时间。
(2)、有一批书,每包的本书与包数。
2、用比例解决问题。
(由大、小组长分别讲给卫生组长和安全组长)一辆汽车3小时行了180千米。
照这样的速度,这辆汽车5小时可以行多少千米?二、自主学习仔细阅读课本60页的例6,同时完成设问导读内容。
1、用我们以前学过的方法解答。
2、用比例知识解答。
(1)、题中( )和( )是相关联的量,这两种量成( )比例。
(2)、请用比例知识独立解决例6.三、自学检测(用比例知识解决)。
1、车从甲地到乙地,每小时行驶80千米,5小时到达。
如果每小时行驶100千米,多少小时可以到达?2、同学们做操,每行12人,可站8行。
如果每行站16人,可站多少行?四、巩固练习(用比例知识解决下列问题)。
1、王师傅要做一批零件,如果每小时做25个,6小时可完成。
用反比例知识解决问题
用反比例知识解决问题内乡县桃溪镇桃庄河小学彭海楼学习目标:1、使学生能正确判断应用题中涉及的量成什么比例关系。
2、能利用反比例的意义正确解答实际问题。
学习重点:认识反比例实际问题的特点。
学习难点:掌握用反比例知识解答实际问题的解题思路。
学习过程:㈠复习导入:前面我们学习了用正比例解决问题,现在学校幼儿园铺地砖,用同样的砖铺地,铺18㎡,要用618块砖,如果铺50㎡,要用多少块砖?那么用比例知识如何解答呢?(提问生回答后)如果学校给幼儿园大班教室铺地砖,用面积是9dm2的方砖,需要96块,如果改用面积是4dm2的方砖,需要多少块?请同学们先说出题中有哪两种量,并判断它们成什么比例关系。
(生回答:反比例)这节课我们就学习用反比例知识解决实际问题。
(板书课题)㈡这节课所要达到的学习目标是:1、使学生能正确判断应用题中涉及的量成什么比例关系。
2、能利用反比例的意义正确解答实际问题。
㈢学一学:结合学习目标,自学课本60页内容,思考并回答下列问题:x和1、题中告诉了哪两种量?这两种量成什么比例关系?30×20×18的积各表示什么?2、列比例式时应注意什么?3、还可以怎样列式子呢?4、你会检验吗?㈣做一做:1、请同学们用反比例的知识先完成导入中的问题。
2、第60页做一做第2小题。
㈤议一议:用反比例知识解决实际问题的思路是什么?①判断——不变量②数值——对应③列式——对应㈥练一练:1、我来填:⑴铺地面积一定,方砖的( )和方砖的( )成反比例。
⑵圆柱的体积一定,( )和( )成反比例。
⑶正方体的体积一定,底面积和高( )比例。
⑷若x ×k y =,则y 与x ( )比例。
⑸如果=3a4b ,那么=b a :( )∶( ),a 与b 成( )比例。
⑹已知a ÷c b =,( )一定,( )和( )成( )比例; 已知a ×c b =,( )一定,( )和( )成( )比例。
初中数学利用反比例函数关系式解决实际问题建议收藏
初中数学利用反比例函数关系式解决实际问题建议收藏利用反比例函数关系式解决实际问题数学是一门非常重要的学科,在我们生活中处处都有数学的运用。
反比例函数是初中数学内容中的一部分,它在解决实际问题中有着广泛的应用。
在本文中,我们将以一些实际问题为例,来说明如何利用反比例函数关系式解决这些问题,并给出一些建议。
问题一:电子产品的价格每年以15%的速度下降,如果第一年的售价为1000元,问第五年的售价是多少?解析:题目中已经给出了每年降价的百分比,因此我们可以使用反比例函数来解决这个问题。
设第n年的售价为y元,根据反比例函数的关系式y=k/x,其中k为常数,x为年份。
根据题目中的已知条件:第一年的售价为1000元(即x=1,y=1000),我们可以得到:1000=k/1,解得k=1000因此,反比例函数的模型为y=1000/x。
要求第五年的售价,即x=5,带入模型中计算得:y=1000/5=200因此,第五年的售价为200元。
问题二:一辆汽车以每小时80公里的速度行驶,从A地到B地共耗时5小时,问如果以每小时100公里的速度行驶,从A地到B地需要多长时间?解析:题目中给出了两种速度以及耗时,我们可以利用反比例函数来解决这个问题。
设从A地到B地的距离为x公里,根据反比例函数的关系式t=k/v,其中k为常数,t为时间,v为速度。
根据题目中的已知条件:以每小时80公里的速度行驶共耗时5小时(即v=80,t=5),我们可以得到:5=k/80,解得k=400因此,反比例函数的模型为t=400/v。
要求以每小时100公里的速度行驶的时间,即v=100t=400/100=4因此,以每小时100公里的速度行驶,从A地到B地需要4小时。
通过以上两个实际问题的解析,我们可以看出,在解决实际问题中,我们可以利用反比例函数的关系式来建立数学模型,并通过已知条件来确定常数。
通过数学模型,我们可以求解未知量,解决实际问题。
在利用反比例函数解决实际问题的过程中,我们需要注意以下几点:1.明确已知条件:在建立数学模型之前,我们需要明确题目中给出的已知条件,包括数值以及物理意义。
用反比例解决问题
x=7.5 答:现在30天的用电量原来只够用7.5天。
1、题目中相关联的两种量是( 每包的本数 ) 和( 包数 ). 20×18÷30 = 12(本) 2、( 书的总数 )一定,(包数 )和(每包的本数) 成( 反 )比例,也就是说( 每包的本数 )和 ( 包数 )的( 乘积 )相等.
解:设如果每包30本,要捆 包. 30 x 20 18 20 18 如果要捆15包, x 30 每包多少本? x 12 答:要捆12包.
解:设这堆煤实际可以烧
天.
2.4 x 3 96
3 96 x 2.4
x 120
答:这堆煤实际可以烧 120 天.
华南服装厂3天加工西装180套,照这 样计算,要生产540套西装,需要多少天?
归纳
用比例解答应用题的关键: (1)正确找出与问题有关的两种相 关联的量;
(2)判断它们是哪种比例关系;
解这个问题的关键是找到 哪两个量的乘积一定。
答:原来5天的用电量现在可以用20天。
新知:
一个办公楼原来平均每天照明用电100千瓦时。改用节能 灯以后,平均每天只用电25千瓦时。原来5天的用电量现在可 以用多少天? 现在30天的用电量原来只够用几天?
你可以用比例解答吗?试试看吧!
解:设现在30天的用电量原来只够用x天。 100x=25×30 x= 25×30 100
x=0.4 答:每小时应收割0.4公顷。
应用:
小明家用收割机收割小麦。如果每小时收割0.3公顷,40小 时能完成任务。 (2)每公顷产小麦8t,这块地共产小麦多少吨? 0.3×40×8
=12×8
=96(吨) 答:这块地共产小麦96吨。
你能提出其他数学问题并解答吗?
一堆煤,原计划每天烧3吨,可以 烧96天,由于改进炉灶,每天烧2.4 吨,这堆煤实际可以烧多少天?
反比例函数应用题解法
反比例函数应用题解法反比例函数是数学中常见的一类函数,它的定义式可以表述为y=k/x,其中k为常数。
在实际中,反比例函数可以用来解决很多实际问题,下面就来介绍一些反比例函数的应用题解法。
1. 水缸注水问题题目描述:有一水缸,容积为20升,里面盛有10升的水。
现有一管子,管子每分钟可以注入1升水。
问,如果以最大速度注水,那么需要多长时间才能把水缸装满?解题思路:该问题中注入水的速度是一个固定的值,因而符合反比例函数的特点。
我们设时间为x分钟,那么注入的水应该为 x*1升,而当前水缸中剩余的水为 20-10=10升-x*1升。
由于反比例函数的定义式为 y=k/x,因此我们可以列出如下的式子:x*1=20/(10-x*1)化简后可得:x^2-x+10=0解方程可得 x=3.316或x=0.684由于时间不能为负数,因此我们取大于0的根x=3.316,即水缸注满所需的时间为3.316分钟。
2. 元宝淘金问题题目描述:淘金工人会挖掘出一些元宝,而各个元宝的价值不同。
如果每个元宝价值越高,需要消耗的物力(工人的体力、时间等)就越多,这个关系可以用反比例函数表示。
现在有一组元宝,其价值和消耗值如下表所示:价值(元)| 消耗值(功)---------|---------200 | 10400 | 5800 | 2.51600 | 1.25现在需要找出最有价值的那个元宝,即价值消耗比最大的元宝。
解题思路:由于元宝的价值和消耗值之间呈反比例关系,因此我们可以通过计算各个元宝的价值消耗比来比较各个元宝的价值。
我们可以采用以下的公式计算元宝的价值消耗比:价值消耗比 = 元宝价值 / 元宝消耗值根据这个公式,我们可以得到各个元宝的价值消耗比:元宝1:20元宝2:80元宝3:320元宝4:1280由此可见,元宝4的价值消耗比最大,因此它是最有价值的元宝。
反比例函数是数学中常见的函数之一,它在实际中的应用非常广泛。
通过对反比例函数的认识和应用,在解决实际问题时能更加高效。
用反比例解决实际问题
用反比例解决实际问题1、一个修路队,原计划每天修400米,15天可以修完。
结果12天就完成了任务,实际平均每天修多少千米?(用比例解答)2、自来水公司修建一条自来水管道,用每根9米长的新管替换原来6米长的旧管,240根新管可以换下多少根旧管?(用比例解答)3、发电厂运来一批煤,计划每天用30吨,12天用完,实际每天节约6吨煤,实际比计划多用了多少天?(用比例解答)4、为创建国家文明城市,莱国道大修一段公路,原计划每天修3.2千米.18天修完。
实际提前2天完成,实际每天多修多少米?(用比例解答)5、某专业户收一批梨,每筐装30千克,要70个筐,如果每筐多装5千克,则需要多少个筐?(用比例解答)6、小明家要装修客厅。
用边长2分米的方砖铺地,需要500块。
用边长4分米的方砖铺地,需要多少块?(用比例解答)7、用边长是50厘米的方砖铺一个教室的地面,需要320块;如果改用边长是80厘米的方砖来铺,需要多少块?(用比例解答)8、一间房子要用方砖铺地,用面积是9平方分米的方砖,需用96块,如果改用面积是16平方分米的方砖,需用多少块?(用比例解)9、孙超的爸爸用方砖铺设书房地面,如果用面积是64平方分米的方砖铺,需要100块;如果改用边长为10分米的方砖,需要多少块?(用比例解答)10、学校为活动教室铺地,用边长5分米的方砖铺需要900块。
如果改用边长6分米的方砖铺,需要多少块?(用比例解答)11、给会议室铺地板砖,选用边长为0.6米的方砖,正好需要100块。
如果改用边长为5分米的方砖,至少需要多少块?(用比例解答)12、学校定制了一批运动会吉祥物,工厂计划每天生产240个,25天可以完成任务,实际提前5天交货。
实际平均每天生产多少个吉祥物?(用比例解答)13、某农具厂生产批小农具,原计划每天生产120件.30天可完成任务.实际每天多生产了30件.可以提前几天完成任务?(用比例解答)14.实验小学教职工参加植树活动,如果每行植 30棵,可以植 16 行;如果每行植 20 棵,可以植多少行?(用比例解答)。
六年级数学下册用反比例解决问题教学设计
《用反比例解决问题》导学案[教材内容]义务教育课程标准实验教科书数学六年级下册第三单元第60页例6用反比例解决问题。
[教学对象]小学六年级学生[教材分析]这类问题学生在前面实际上已经接触过,只是用归总的方法来解答,这里主要学习用反比例知识来解答。
前一个例题是用正比例解决问题,学生已基本掌握用正比例解决问题的思路与方法。
用正、反比例知识解答正、反比例的问题的关键是使学生能够正确找出两种相关联的量,判断它们成哪种比例,然后根据正比例或反比例的意义列出方程。
所以在教学前可以先给出一些数量关系,让学生判断成什么比例,依据什么判断的。
本节课还要注意正、反比例解决问题的对比。
本节课的学习能使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,巩固和加深对所学简易方程的认识,也为中学数学应用比例知识解决一些问题做较好的准备。
[学情分析]这类问题学生在以前学过,都会用归总的方法解答。
在本单元的学习中,学生也学会了判断两种相关联的量成哪种比例,前一个例题中也学习了用正比例解决问题。
但学生对于判断成正、反比例的量的知识掌握得不够好,主要是部分学生对数量关系的理解能力比较弱。
当用正、反比例解决问题同时出现时就会有的学生不理解,容易混淆。
有的学生也会受比例的知识的影响列出多种比例的式子从而对这部分知识理解得有点乱。
所以在教学中可以通过以旧引新,运用知识迁移,利用学生归总方法的知识掌握得较好的优势来学习用反例解决问题的知识,相信会有较好的效果。
[课类型]新授课[学习目标]1.能正确判断应用题中涉及的量成什么比例关系,能利用反比例的意义正确解答应用题。
2.经历用比例方法解决问题的过程,体验解决问题的策略,提高解决问题的能力,渗透数学模型思想。
3.体验解决问题的成功喜悦。
[学习重点]能利用反比例的意义正确解答应用题。
[学习难点]能正确利用反比例的关系列出含有未知数的等式。
[学习方法]自主学习、探究学习、合作交流[教学手段]多媒体课件、导学案[学习过程]一、自学。
反比例 行程问题
反比例行程问题
在行程问题中,**当路程一定时,速度和时间是成反比例关系**。
具体来说,如果速度增加或减少,为了确保总的行驶距离不变,所需的时间就会相应减少或增加。
这种关系可以用公式表示为:路程(s)= 速度(v)×时间(t)。
在这个公式中,如果s保持不变,那么v与t就是反比关系。
例如,假设一辆车以某个速度行驶了一定的距离,如果车速减少了10%,那么根据反比例关系,所需时间会增加。
具体来说,如果减速前后的速度比为10:9,则时间之比会变为9:10。
这意味着如果减速后多出了1小时,那么原定的时间就是9小时。
此外,反比例的概念也适用于其他情境,比如工作效率问题,其中工作量一定时,工作效率和工作时间也是成反比的。
理解并运用好正反比例关系,对于解决各类实际问题都是非常有帮助的。
反比例函数如何快速解题技巧
反比例函数如何快速解题技巧反比例函数如何快速解题1. 反比例函数的定义反比例函数是一种函数类型,表示为f(x) = k/x,其中k是常数,x不等于0。
2. 快速解题技巧2.1 理解反比例关系反比例函数的特点是当x增大时,f(x)会减小,反之亦然。
即,x 和f(x)的变化是相反的。
2.2 找到常数k的值在求解反比例函数时,首先要找到常数k的值。
常数k可以通过已知条件来确定,如已知f(x1) = y1,可以通过代入得到k的值。
2.3 列出函数表达式根据已知条件和常数k的值,可以将反比例函数表达为f(x) =k/x的形式。
这样就可以根据函数表达式快速计算出给定x的对应的函数值。
2.4 解决未知数问题当反比例函数中存在未知数时,可以通过已知条件列方程来解决。
以方程形式表示的未知数可以帮助快速解题。
2.5 画出函数图像通过画出反比例函数的图像,可以更直观地理解函数的性质。
反比例函数的图像是超过y轴的一条开口向下的曲线。
2.6 利用反比例性质解决问题反比例函数的性质可以帮助解决各种实际问题。
例如,当已知两个变量之间的反比例关系时,可以利用反比例函数解决相关问题。
3. 示例3.1 问题某工厂生产零件,每天的产量与工人数呈反比例关系。
已知当工人数为10人时,每天的产量为100件。
求当工人数为5人时,每天的产量是多少件?3.2 解题步骤1.找到常数k的值:根据已知条件,我们可以通过代入得到k的值,即100 = k/10,所以k = 1000。
2.列出函数表达式:根据已知条件和常数k的值,反比例函数可以表示为f(x) = 1000/x。
3.求解未知数问题:代入x = 5到函数表达式中,即可求得答案,即f(5) = 1000/5 = 200件。
结论通过掌握反比例函数的定义和快速解题技巧,我们可以更轻松地解决各种反比例函数相关的问题。
反比例函数是数学中常见的一种函数类型,在实际问题中具有广泛的应用。
4. 反比例函数的应用4.1 速度和时间的关系在某项任务中,一个人以恒定的速度行驶。
考点3:用反比例函数解决实际问题
考点3:用反比例函数解决实际问题一、考点讲解:1、反比例函数的应用注意事项:、反比例函数的应用注意事项: ⑴ 反比例函数在现实世界中普遍存在,在应用反比例函数知识,解决实际问题时,要注意将实际问题转化成数学问题;将实际问题转化成数学问题;⑵ 针对一系列相关数据探究函数自变量与因变量近似满足的函数关系。
针对一系列相关数据探究函数自变量与因变量近似满足的函数关系。
⑶ 列出函数关系式后,要注意自变量的取值范围.列出函数关系式后,要注意自变量的取值范围.二、经典考题剖析:【考题3-1】为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后y 与x 成反比例(如图1-5-16所示).现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息,解答下列问题:毫克,请根据题中提供的信息,解答下列问题:⑴药物燃烧时,y 关于x 的函数关系式为_______,自变量x 的取值范围是_________;药物燃烧后y 关于x 的函数关系式为___________.⑵研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过________分钟后,学生才能回到教室;分钟后,学生才能回到教室;⑶研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病毒,那么此次消毒有效吗?为什么?么此次消毒有效吗?为什么? 解:348;08;;304y x x y x =<£=⑵;此次消毒有效,此次消毒有效,因为把x=3分别代入34y x =和 48y x=中,可求得可求得 x=4和x=16,而 16—4=12>10,即空气中含药量不低于气中含药量不低于 3毫克/米3的持续时间为12分钟,大于10分钟的有效消毒时间.分钟的有效消毒时间.点拨:这是一道正比例与反比例函数的综合应用题,由题意设药物燃烧时,燃烧后y 与x的关系分别为y=k 1x ,2k y x =.因为x=8时,y=6.所以将其代入y=k 1x ,2k y x =中,可得k 1=34 ,k 2 =48.故应填348;08;(8);4y x x y x x =<£=> 由y=1.6代入48y x =得x=30.所以从消毒开始,至少需要过30分钟,学生才能回到教室。
第11章 11.3 用反比例函数解决问题
11.3 用反比例函数解决问题一.选择题1.矩形面积是40m2,设它的一边长为x(m),则矩形的另一边长y(m)与x 的函数关系是()A.y=20﹣x B.y=40x C.y=D.y=2.一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=3.今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=4.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t=C.t=D.t=5.某工厂现有原材料100吨,每天平均用去x吨,这批原材料能用y天,则y 与x之间的函数表达式为()A.y=100x B.y=C.y=+100 D.y=100﹣x6.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为()A.y=B.y=C.y=D.y=7.面积是160平方米的长方形,它的长y米,宽x米之间的关系表达式是()A.y=160x B.y=C.y=160+x D.y=160﹣x8.用规格为50cm×50cm的地板砖密铺客厅恰好需要60块.如果改用规格为acm×acm的地板砖y块也恰好能密铺该客厅,那么y与a之间的关系为()A.B.C.y=150000a2D.y=150000a9.某厂现有300吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()A.(x>0) B.(x≥0) C.y=300x(x≥0)D.y=300x(x>0)10.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I 的函数解析式为()A.B.C.D.11.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,如图所示,则用气体体积V表示气压p的函数解析式为()A.p=B.p=﹣C.p=D.p=﹣二.填空题12.已知圆柱的侧面积是10πcm2,若圆柱底面半径为rcm,高为hcm,则h与r 的函数关系式是.13.已知一菱形的面积为12cm2,对角线长分别为xcm和ycm,则y与x的函数关系式为14.京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行驶完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的函数关系式是t=.15.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式.16.A、B两地之间的高速公路长为300km,一辆小汽车从A地去B地,假设在途中是匀速直线运动,速度为vkm/h,到达时所用的时间是th,那么t是v的函数,t可以写成v的函数关系式是.17.一批零件300个,一个工人每小时做15个,用关系式表示人数x与完成任务所需的时间y之间的函数关系式为.18.把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.19.某村利用秋冬季节兴修水利,计划请运输公司用90~150天(含90与150天)完成总量300万米3的土石方运送,设运输公司完成任务所需的时间为y(单位:天),平均每天运输土石方量为x(单位:万米3),请写出y关于x的函数关系式并给出自变量x的取值范围.20.若梯形的下底长为x,上底长为下底长的,高为y,面积为20,则y与x 的函数关系是.(不考虑x的取值范围)21.在某一电路中,保持电压不变,电流I(单位:A)与电阻R(单位:Ω)成反比例,当电阻R=5Ω时,电流I=2A.则I与R之间的函数关系式为.22.某户家庭用购电卡购买了2000度电,若此户家庭平均每天的用电量为x(单位:度),这2000度电能够使用的天数为y(单位:天),则y与x的函数关系式为.(不要求写出自变量x的取值范围)三.解答题23.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)24.已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.25.某三角形的面积为15cm2,它的一边长为xcm,且此边上高为ycm,请写出y与x之间的关系式,并求出x=5时,y的值.26.已知经过闭合电路的电流I与电路的电阻R是反比例函数关系,请根据表格已知条件求出I与R的反比例函数关系式,并填写表格中的空格.I(安)510R(欧)1027.已知圆锥的体积,(其中s表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10cm时,底面积为30cm2,请写出h关于s的函数解析式.28.甲、乙两地相距100km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间t(h)表示为汽车速度v(km/h)的函数,并说明t是v的什么函数.参考答案与解析一.选择题1.矩形面积是40m2,设它的一边长为x(m),则矩形的另一边长y(m)与x 的函数关系是()A.y=20﹣x B.y=40x C.y=D.y=【分析】根据等量关系“矩形的另一边长=矩形面积÷一边长”列出关系式即可.【解答】解:由于矩形的另一边长=矩形面积÷一边长,∴矩形的另一边长y(m)与x的函数关系是y=.故选C.【点评】本题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.2.一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=【分析】根据路程=速度×时间,利用路程相等列出方程即可解决问题.【解答】解:由题意vt=80×4,则v=.故选B.【点评】本题考查实际问题的反比例函数、路程、速度、时间之间的关系,解题的关键是构建方程解决问题,属于中考常考题型.3.今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=【分析】直接利用后期每个月分别付相同的数额,进而得出y与x的函数关系式.【解答】解:由题意可得:y==.故选:C.【点评】此题主要考查了根据实际问题列反比例函数关系式,正确理解题意是解题关键.4.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t=C.t=D.t=【分析】根据路程=时间×速度可得vt=20,再变形可得t=.【解答】解:由题意得:vt=20,t=,故选:B.【点评】此题主要考查了由实际问题抽象出反比例函数解析式,关键是正确理解题意,找出题目中的等量关系.5.某工厂现有原材料100吨,每天平均用去x吨,这批原材料能用y天,则y 与x之间的函数表达式为()A.y=100x B.y=C.y=+100 D.y=100﹣x【分析】利用工厂现有原材料100吨,每天平均用去x吨,这批原材料能用y天,即xy=100,即可得出答案.【解答】解:根据题意可得:y=.故选:B.【点评】此题主要考查了根据实际问题列反比例函数解析式,正确运用xy=100得出是解题关键.6.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为()A.y=B.y=C.y=D.y=【分析】由于近视镜度数y(度)与镜片焦距x(米)之间成反比例关系可设y=,由200度近视镜的镜片焦距是0.5米先求得k的值.【解答】解:由题意设y=,由于点(0.5,200)适合这个函数解析式,则k=0.5×200=100,∴y=.故眼镜度数y与镜片焦距x之间的函数关系式为:y=.故选;A.【点评】本题考查了根据实际问题列反比例函数关系式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.7.面积是160平方米的长方形,它的长y米,宽x米之间的关系表达式是()A.y=160x B.y=C.y=160+x D.y=160﹣x【分析】此题可根据等量关系“宽=长方形的面积÷长”,把相关数值代入即可求解.【解答】解:根据题意:y=,故选:B.【点评】本题主要考查长方形面积公式的灵活运用,关键是找到所求量的等量关系.8.用规格为50cm×50cm的地板砖密铺客厅恰好需要60块.如果改用规格为acm×acm的地板砖y块也恰好能密铺该客厅,那么y与a之间的关系为()A.B.C.y=150000a2D.y=150000a【分析】客厅面积为:50×50×60=150000,那么所需地板砖块数=客厅面积÷一块地板砖的面积.【解答】解:由题意设y与a之间的关系为,y=,由于用规格为50cm×50cm的地板砖密铺客厅恰好需要60块,则k=50×50×60=150000,∴.故选:A.【点评】本题考查了由实际问题列反比例函数的解析式,由题意找到所求量的等量关系是解决问题的关键.9.某厂现有300吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()A.(x>0) B.(x≥0) C.y=300x(x≥0)D.y=300x(x>0)【分析】这些煤能烧的天数=煤的总吨数÷平均每天烧煤的吨数,把相关数值代入即可.【解答】解:∵煤的总吨数为300,平均每天烧煤的吨数为x,∴这些煤能烧的天数为y=(x>0),故选:A.【点评】此题主要考查了根据实际问题列反比例函数关系式,得到这些煤能烧的天数的等量关系是解决本题的关键.10.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I 的函数解析式为()A.B.C.D.【分析】可设I=,由于点(3,2)适合这个函数解析式,则可求得k的值.【解答】解:设I=,那么点(3,2)适合这个函数解析式,则k=3×2=6,∴I=.故选:C.【点评】解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.11.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,如图所示,则用气体体积V表示气压p的函数解析式为()A.p=B.p=﹣C.p=D.p=﹣【分析】根据“气压×体积=常数”可知:先求得常数的值,再表示出气体体积V 和气压p的函数解析式.【解答】解:设P=,那么点(0.8,120)在此函数解析式上,则k=0.8×120=96,∴p=.故选C.【点评】解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.二.填空题(共11小题)12.已知圆柱的侧面积是10πcm2,若圆柱底面半径为rcm,高为hcm,则h与r 的函数关系式是h=(r>0) .【分析】圆柱的侧面积是一个长方形,根据面积=底面周长×高=2πrh可列出关系式.【解答】解:由题意得:h与r的函数关系式是:h==,半径应大于0.故本题答案为:h=(r>0).【点评】根据题意,找到所求量的等量关系是解决问题的关键.13.已知一菱形的面积为12cm2,对角线长分别为xcm和ycm,则y与x的函数关系式为y=【分析】根据菱形面积=×对角线的积可列出关系式y=.【解答】解:由题意得:y与x的函数关系式为y==.故本题答案为:y=.【点评】根据题意,找到所求量的等量关系是解决问题的关键,除法一般写成分式的形式,除号可看成分式线.14.京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行驶完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的函数关系式是t=.【分析】根据等量关系“时间=路程÷速度”即可列出关系式.【解答】解:由题意得:汽车行驶完全程所需的时间t与行驶的平均速度v之间的函数关系式是t=.故本题答案为:t=.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.15.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式t=.【分析】根据蓄水量=每小时排水量×排水时间,即可算出该蓄水池的蓄水总量,再由防水时间=蓄水总量÷每小时的排水量即可得出时间t(小时)与Q之间的函数表达式.【解答】解:∵某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空,∴该水池的蓄水量为8×6=48(立方米),∵Qt=48,∴t=.故答案为:t=.【点评】本题考查了根据实际问题列出反比例函数关系式,解题的关键是根据数量关系列出t关于Q的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出函数关系式是关键.16.A、B两地之间的高速公路长为300km,一辆小汽车从A地去B地,假设在途中是匀速直线运动,速度为vkm/h,到达时所用的时间是th,那么t是v的反比例函数,t可以写成v的函数关系式是.【分析】时间=,把相关字母代入即可求得函数解析式,看符合哪类函数的特征即可.【解答】解:t=,符合反比例函数的一般形式.【点评】解决本题的关键是得到所求时间的等量关系,注意反比例函数的一般形式为y=(k≠0,且k为常数).17.一批零件300个,一个工人每小时做15个,用关系式表示人数x与完成任务所需的时间y之间的函数关系式为y=.【分析】根据等量关系“x个工人所需时间=工作总量÷x个工人工效”即可列出关系式.【解答】解:由题意得:人数x与完成任务所需的时间y之间的函数关系式为y=300÷15x=.故本题答案为:y=.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.18.把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为s=.【分析】利用长方体的体积=圆柱体的体积,进而得出等式求出即可.【解答】解:由题意可得:sh=3×2×1,则s=.故答案为:s=.【点评】此题主要考查了根据实际问题列反比例函数解析式,得出长方体体积是解题关键.19.某村利用秋冬季节兴修水利,计划请运输公司用90~150天(含90与150天)完成总量300万米3的土石方运送,设运输公司完成任务所需的时间为y(单位:天),平均每天运输土石方量为x(单位:万米3),请写出y关于x的函数关系式并给出自变量x的取值范围y=(2≤x≤).【分析】利用“每天的工作量×天数=土石方总量”可以得到两个变量之间的函数关系.【解答】解:由题意得,y=,把y=90代入y=,得x=,把y=150代入y=,得x=2,所以自变量的取值范围为:2≤x≤,故答案为y=(2≤x≤).【点评】本题考查了根据实际问题列反比例函数关系式,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.20.若梯形的下底长为x,上底长为下底长的,高为y,面积为20,则y与x 的函数关系是y=.(不考虑x的取值范围)【分析】直接利用梯形面积公式求出y与x的函数关系式即可.【解答】解:∵梯形的下底长为x,上底长为下底长的,高为y,面积为20,∴(x+x)y=20,整理得:y=,∴y与x的函数关系是:y=.故答案为:y=.【点评】此题主要考查了根据实际问题列反比例函数关系式,正确利用梯形面积公式求出是解题关键.21.在某一电路中,保持电压不变,电流I(单位:A)与电阻R(单位:Ω)成反比例,当电阻R=5Ω时,电流I=2A.则I与R之间的函数关系式为I=.【分析】设函数解析式为I=,将R=5,I=2代入,计算即可求得k的值.【解答】解:设I=,将R=5,I=2代入,得k=IR=2×5=10,所以I与R之间的函数关系式为I=.故答案为I=.【点评】本题考查了由实际问题列反比例函数解析式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.22.某户家庭用购电卡购买了2000度电,若此户家庭平均每天的用电量为x(单位:度),这2000度电能够使用的天数为y(单位:天),则y与x的函数关系式为.(不要求写出自变量x的取值范围)【分析】根据某户家庭用购电卡购买了2000度电,此户家庭平均每天的用电量为x(单位:度),利用总用电量除以使用的天数得出y与x的函数关系式.【解答】解:∵某户家庭用购电卡购买了2000度电,若此户家庭平均每天的用电量为x(单位:度),使用的天数为y(单位:天),∴y与x的函数关系式为:y=.故答案为:y=.【点评】此题主要考查了根据实际问题列反比例函数关系式,利用用电量除以使用的天数得出y与x的函数关系式是解题关键.三.解答题(共6小题)23.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)【分析】(1)设出反比例函数解析式,把A坐标代入可得函数解析式;(2)把v=1代入(1)得到的函数解析式,可得p;(3)把P=140代入得到V即可.【解答】解:(1)设,由题意知,所以k=96,故;(2)当v=1m3时,;(3)当p=140kPa时,.所以为了安全起见,气体的体积应不少于0.69m3.【点评】考查反比例函数的应用;应熟练掌握符合反比例函数解析式的数值的意义.24.已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.【分析】(1)长方体的体积等于=长×宽×高,把相关数值代入即可求解;(2)把x=2代入(1)的函数解析式可得y的值.【解答】解:(1)由题意得,10xy=100,∴y=(x>0);(2)当x=2cm时,y==5(cm).【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.25.某三角形的面积为15cm2,它的一边长为xcm,且此边上高为ycm,请写出y与x之间的关系式,并求出x=5时,y的值.【分析】三角形的面积=边长×这边上高÷2,那么这边上高=2×三角形的面积÷边长,进而把相关数值代入求值即可.【解答】解:∵三角形的面积=边长×这边上高÷2,三角形的面积为15cm2,一边长为xcm,此边上高为ycm,∴;当x=5时,y=6(cm).【点评】考查列反比例函数关系式及求值问题,根据三角形的面积得到求一边上的高的等量关系是解决本题的关键.26.已知经过闭合电路的电流I与电路的电阻R是反比例函数关系,请根据表格已知条件求出I与R的反比例函数关系式,并填写表格中的空格.I(安)510R(欧)10【分析】根据等量关系“电流=”,把(10,10)代入即可求得固定电压,也就求得了相关函数,固定电压除以5即为空格中的电阻.【解答】解:依题意设,把I=10,R=10代入得:,解得U=100,所以.100÷5=20.I(安)510R(欧)20 10【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.27.已知圆锥的体积,(其中s表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10cm时,底面积为30cm2,请写出h关于s的函数解析式.【分析】首先根据已知求出V的值,进而代入,即可得出h与s的函数关系式.【解答】解:∵,当h为10cm时,底面积为30,∴V=×10×30=100(cm3),∴100=sh,∴h关于s的函数解析式为:.【点评】此题主要考查了根据实际问题列反比例函数解析式,根据已知得出V 的值是解题关键.28.甲、乙两地相距100km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间t(h)表示为汽车速度v(km/h)的函数,并说明t是v的什么函数.【分析】时间=路程÷速度,把相关数值代入即可求得相关函数,看符合哪类函数的一般形式即可.【解答】解:∵路程为100,速度为v,∴时间t=,t是v的反比例函数.【点评】考查列反比例函数关系式,得到时间的等量关系是解决本题的关键;用到的知识点为:反比例函数的一般式为(k≠0).。
苏科版八年级下数学用反比例函数解决问题含答案
用反比例函数解决问题 (1)1.已知长方形的面积为20 cm 2,设该长方形一边长为ycm ,另一边长为x cm ,则y 与x 之间的函数图像大致是 ( )2.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气球体积V 的反比例函数,其图像如图所示,当气球内的气压大于120 kPa 时,气球将爆炸,为了安全,气球韵体积应该 ( )A .不大于54m 3 B .小于54m 3 C .不小于54m 3 D .小于54m 3 3.圆柱的侧面积为8,高h 与底面半径r 间的函数关系式为_______.4.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为_______.5.某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200m 3的生活垃圾运走.(1)假如每天能运xm 3,所需时间为y 天,写出y 与x 之间的函数关系式;(2)若每辆拖拉机一天能运12 m 3,则5辆这样的拖拉机要用多少天才能运完?(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间内完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?6.在公式I =U R中,当电压U 一定时,电流I 与电阻R 之间的函数关系可用图像大致表示为( )7.某厂现有500吨煤,这些煤能烧的天数y 与平均每天烧的吨数x 之间的函数关系是( )A .()5000y x x =>B .()5000y x x =≥C .y =500x(x ≥0)D .y =500x(x>0)8.有一面积为10的梯形,其上底长是下底长的13,若下底长为x ,高为y ,则y 与x 的函数关系是_______.9.你吃过兰州拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(cm)是面条粗细(横截面积)x(cm 2)的反比例函数,假设其图像如图所示,则y 与x 的函数关系式为_______.10.(2013.丽水)如图,科技小组准备用材料围建一个面积为60 m 2的矩形科技园ABCD ,其中一边AB 靠墙,墙长为12 m .设AD 的长为xm ,DC 的长为ym .(1)求y 与x 之间的函数关系式;(2)若围成的矩形科技园ABCD 的三边材料总长不超过26 m ,材料AD 和DC 的长都是整米数,求出满足条件的所有围建方案.11.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?用反比例函数解决问题 (2)1.(2013.泉州)为了更好保护水资源,造福人类,某工厂计划建一个容积V(m 3)一定的污水处理池,池的底面积S(m 2)与其深度h(m)满足关系式:V =Sh(V ≠0),则S 关于h 的函数图像大致是 ( )2.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例,如图表示的是该电路中电流I 与电阻R 之间函数关系的图像,则用电阻R表示电流I 的函数解析式为 ( )A .2I R =B .3I R= C .6I R = D .6I R=- 3.(2013.扬州)在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例,当V =200时,p =50,则当p =25时,V =_______.4.(2013.益阳)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x (小时)变化的匾数图像,其中BC 段是双曲线y =k x的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k 的值;(3)当x =16时,大棚内的温度约为多少度?5.用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是P =I 2R ,下面说法正确的是 ( )A .P 为定值,I 与R 成反比例B .P 为定值,I 2与R 成反比例C .P 为定值,I 与R 成正比例D .P 为定值,I 2与R 成正比例6.(2013.台州)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度p(单位:kg/m 3)与体积V(单位:m 3)满足函数关系式p=kV(k为常数,k≠0),其图像如图所示,则k的值为( )A.9 B.-9 C.4 D.-47.如图,一块长方体大理石板的A、B、C三个面上的边长如图所示,如果大理石板的A 面向下放在地上时地面所受压强为m帕,则把大理石板B面向下放在地上,地面所受压强是_______m帕.8.已知,在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图像如图所示,则当力达到20牛时,此物体在力的方向上移动的距离是_______米.9.(2013.玉林)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料煅烧到800℃,然后停止煅烧进行锻造操作.经过8 min时,材料温度降为600℃,煅烧时,温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x( min)成反比例关系(如图),已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480℃时,须停止操作,那么锻造的操作时间有多长?10.甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=优惠金额购买商品的总金额),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.参考答案1.C2.C 3.400 4.(1) 10小时(2)216 (3)13.5℃5.B6.A 7.38.369.(1)y=128x+32(0≤x≤6) ;(2)4分钟10.(1)310元;(2)p=200x,p随x的增大而减小;(3)两家商场花钱一样多参考答案1.B2.C3.h=4r4.y=100x5.(1)y=1200x天(2)20天运完;(3)增加5辆6.D7.A8.y=15 x9.y=128 x10.(1) y=60x(2)满足条件的围建方案:AD=5 m,DC=12 m或AD=6 m,DC=10 m或AD=10 m,DC=6 m11.(1)y=1200x表中填:300 50 (2)20天(3)60元/千克。
用反比例方法解决问题
反比例的定义与性质
1
反比例是指两个变量之间的乘积为常数,即其 中一个变量乘以另一个变量的值是一个定值。
2
反比例的性质包括:当一个变量增加时,另一 个变量减少;当一个变量减少时,另一个变量 增加。
3
反比例的应用范围广泛,例如在物理、工程、 经济等领域都有应用。
在工程设计中,经常需要处理各种比例问题。使用反比例方法可以高效地解 决这些问题,例如在设计桥梁、建筑和交通设施时,通过调整不同部分的比 例,以达到整体最优的效果。
案例二:用反比例方法解决经济问题
总结词
优化资源配置和经济效益
详细描述
在经济活动中,资源通常是有限的,如何合理配置这些资源以达到最大的经济效 益是关键。使用反比例方法可以帮助我们分析和优化不同项目或不同地区的资源 配置,以获得最佳的经济效益。
案例五:用反比例方法解决社会问题
总结词
促进社会公正和提高社会效率
详细描述
在社会问题的研究中,反比例方法可以用来探讨和解决各种问题。例如,如何通过调整税收政策来促 进社会公正,如何通过优化教育资源配置来提高社会效率等。通过使用反比例方法,我们可以更好地 理解社会问题的本质并找到合适的解决方案。
THANK YOU.
用反比例方法解决实际问题
最佳采购
在采购物品时,我们通常希望在保证质量 的前提下,尽可能降低采购成本。因此, 我们需要根据物品的单价和数量来计算总 成本,并找到最佳的采购方案。当物品的 单价与数量成反比时,我们应该尽可能减 少购买数量,以降低总成本。
VS
资源分配
在资源有限的情况下,我们需要根据不同 项目的优先级来分配资源。当项目的优先 级与可用的资源数量成反比时,我们应该 优先考虑优先级更高的项目,并尽可能减 少分配给低优先级项目的资源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:X天可以完成任务。
8X=6×12
工作总量 工作效率(一定) 工作时间
解:X天可以完成任务。
1 1 6 12 8X
解:设X小时能够返回出发地点。 78x=60×6.5 也可以这样
60×6.5=78X
X=5
懒惰厌学难成器; 勤奋博学出状元。
6
如果每包30本,要 捆多少包?
这批书如果每包 20本,要捆18包。
我先算出一共 有多少本书, 再算……
也可以用比例 的方法解决。源自在这两种方案中,什么量没有变化?什么量在 发生变化?
包数 每包的本书 书的总数(一定)
因为书的总数一定,所以包数和每包的 本数成反比例。也就是说,每包的本数和包 数的乘积相等。
解:设要捆X包.
30X = 20×18 20×18 X = 30 X = 12 答:要捆12包。
6
如果每包30本,要 如果要捆15包, 捆多少包? 每包多少本?
这批书如果每包 20本,要捆18包。
解:设每包X本。 15X = 20×18 20×18 X = 15 X = 24 答:每包24本。
用比例解这类问题的过程可 以归纳为以下几个步骤:
(1)设要求的问题为x;
(2)判断题目中哪个量是一定的?另外两种
量成正比例关系(除的关系)还是成反比例关系 (乘的关系)? (3)列比例式; (4)解比例,验算,作答。
解:设可以买X枝。
2x 1.5 4
1.5 4 x 2
x3
答:可以买3枝。